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We consider the spin-orbit-induced spin Hall effect and spin swapping in diffusive superconductors. By
employing the nonequilibrium Keldysh Green’s function technique in the quasiclassical approximation, we
derive coupled transport equations for the spectral spin and particle distributions and for the energy density in the
elastic scattering regime. We compute four contributions to the spin Hall conductivity, namely, skew scattering,
side jump, anomalous velocity, and the Yafet contribution. The reduced density of states in the superconductor
causes a renormalization of the spin Hall angle. We demonstrate that all four of these contributions to the spin
Hall conductivity are renormalized in the same way in the superconducting state. In its simplest manifestation,
spin swapping transforms a primary spin current into a secondary spin current with swapped current and
polarization directions. We find that the spin-swapping coefficient is not explicitly but only implicitly affected by
the superconducting gap through the renormalized diffusion coefficients. We discuss experimental consequences
for measurements of the (inverse) spin Hall effect and spin swapping in four-terminal geometries. In our geometry,
below the superconducting transition temperature, the spin-swapping signal is increased an order of magnitude

while changes in the (inverse) spin Hall signal are moderate.
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I. INTRODUCTION

The coupling between a quasiparticle’s spin and its mo-
mentum causes an initially unpolarized current in conductors
to become spin dependent. The resulting spin-orbit-induced
effects can be intrinsic or extrinsic. Intrinsic effects are due
to the manifestation of spin-orbit coupling in the quasiparticle
band structure in combination with spin-conserving scattering
events. Extrinsic effects are due to spin orbit scattering off
impurities. We focus on extrinsic effects that give rise to spin
relaxation, spin swapping, and spin Hall and inverse spin Hall
effects.

The simplest manifestation of the spin-orbit interaction
is spin relaxation [1,2]. This causes a nonequilibrium spin
polarization to decay with time or an injected spin current
to decay with distance. Below the superconducting transition
temperature, measurements of the temperature dependence of
the spin relaxation length can be used to determine the ratio
between spin-orbit-induced and magnetic-impurity-induced
spin relaxation [3]. Our focus is on how the spin Hall effect and
the spin swapping are affected by the superconducting gap.

The correlation between the momentum and spin directions
in the impurity scattering process can cause an injected primary
spin current to transform into a secondary transverse spin
current, even in the absence of electric (charge) currents. This
effect is called spin swapping. In its simplest manifestation,
the secondary current flows along the polarization of the
injected current and with a polarization direction that is
along the primary current flow: the spin currents have been
“swapped.” This effect was first studied theoretically for
extrinsic spin-orbit coupling [4]. More recently, an intrinsic
(Rashba spin-orbit-induced) spin-swapping effect [5] was
identified in two-dimensional diffusive metals. Spin swapping
driven by electric fields in these systems has also been
considered [6]. We will determine how the spin swapping
differs in the superconducting state compared to the normal
state.
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The spin Hall effect has attracted considerable attention
[7-23]. There are two main contributions to the extrinsic spin
Hall effect: skew scattering due to the spin-dependent quasi-
particle scattering cross section and the side-jump mechanism
that arises from a spin-dependent displacement during the
scattering events. Calculating the side-jump contribution to
the spin Hall effect is a subtle issue because several terms
contribute to this contribution. In the stationary regime and in
the absence of a magnetic field, we study three contributions
in detail.

The onset of superconductivity can renormalize the various
spin transport effects and introduce new phenomena. The
temperature dependence of the spin transport parameters
below the critical temperature of the superconductor can be
used to identify and quantify the competing spin-orbit-induced
effects [3]. A giant enhancement of the spin signal of up
to five orders of magnitude in the superconducting state
was reported experimentally [3] in a nonlocal measurement
setup. In niobium, there are measurements of a factor of 4
enhancement of the spin relaxation time in the superconducting
state compared to the normal state [24].

In the inelastic transport regime, a giant increase in the non-
local spin and charge accumulation signal due to the spin Hall
effect was computed [25] at low temperatures. Moreover, these
studies indicated that the magnitudes of the skew scattering
and the side-jump contributions are renormalized by different
amounts below the superconducting critical temperature in
spin Hall devices. Recent nonlocal measurements found an
inverse spin Hall signal that is 2000 times stronger in the
superconducting state compared to the normal state [26].

Quasiparticle transport is elastic when the quasiparticle
energy is conserved during the scattering events. In the
opposite regime, quasiparticle interactions cause transport
to be inelastic, and the nonequilibrium distribution of the
quasiparticles approaches equilibrium Fermi distributions that
may be position, spin, and energy dependent. Spin transport
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in normal metals typically does not differ in the inelastic and
elastic transport regimes since the temperature is considerably
smaller than the relevant energy scale, that is, the Fermi energy.
However, in superconductors, the typical temperatures are
on a considerably smaller energy scale, namely, that of the
superconducting gap, and (spin) transport in the elastic and
inelastic transport regimes can significantly differ [27,28].
Since inelastic scattering rates increase with temperature, it
is plausible that transport below the superconducting critical
temperature is elastic [28].

In this paper, we study the elastic transport of spin,
particle, and energy in a diffusive superconductor. For this
purpose, we use Keldysh nonequilibrium Green’s functions.
We include scattering from impurities, taking the spin-orbit
coupling into account. We also complement our results with
known effects of magnetic impurity scattering. We compute
the renormalization of the spin Hall effect and spin-swapping
effect below the superconducting critical temperature. In
contrast to recent theoretical works [25] on inelastic scattering
effects on transport in superconductors, we find the same
renormalizations of all spin Hall contributions in the elastic
transport regime. Moreover, we extend these studies to
arbitrary spin polarizations and provide a rigorous discussion
on the various contributions to the side-jump mechanism,
including the anomalous velocity, the Yafet term, and an addi-
tional expression in the self-energy. Thus far, there have been
no studies on the spin-swapping effect in superconductors.
We demonstrate that the spin-swapping coefficient is only
implicitly renormalized by the superconducting gap via the
renormalized diffusion coefficients.

We apply our transport formalism to study the (inverse) spin
Hall and spin-swapping effects in a four-terminal geometry. In
this geometry, we demonstrate that the signal resulting from
the spin swapping can become an order of magnitude larger in
the superconducting state compared to the normal state. On the
other hand, changes in the signal resulting from the (inverse)
spin Hall effect are only moderate.

The remainder of this paper is organized as follows. In
Sec. II, we first present the microscopic Hamiltonian and the
resulting transport equations for spin, particle, and energy
transport, including scattering from magnetic and nonmag-
netic impurities and from spin-orbit coupling. Section III
presents the four-terminal geometry and the calculation of
the signals that result from the spin Hall effect and the
spin-swapping mechanism. Subsequently, Sec. IV provides
an overview of the microscopic derivation of our results and a
discussion of the side-jump mechanism and its contributions
to the spin Hall effect. Finally, we present our conclusions
in Sec. V. The Appendixes contain more details of our
calculations.

II. TRANSPORT EQUATIONS

Let us first describe the microscopic model of the super-
conductor and then our primary results. The main results
are the relation between the currents and the quasiparticle
distributions and the diffusion equations.

We describe the system using a four-component basis vector
in spin ® particle-hole space. We use a “hat” to label vectors
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and matrices in this 4 x 4 space. The basis vector is

It =l vy, ¢))

where ¥, is the field annihilation operator for spin o.
The field operators are described by the BCS one-particle
Hamiltonian
. 2 A .
H() = _%Di(])Di(]) +ep(l) = p+ AU) + Uor, (2)

where ¢ is the scalar potential, 1 is the chemical potential, A(/)
describes the superconducting gap, and U, describes both
spin-conserving and spin-orbit-induced impurity scattering.
We use an abbreviated notation for the coordinates that
includes both spatial and temporal coordinates, where I =
(ri,17).

The kinetic energy in Eq. (2) is expressed in terms of the
covariant derivative

af ()

alr

DD f(I) = +itsAu(D) f (D), 3)

where 73 = diag(1,1, — 1, — 1) is a generalization of the third
Pauli matrix and A, = (¢/c, — A)e/li contains the scalar
potential ¢ and the electromagnetic vector potential A. We
also introduce its conjugate operator

N 3f()
FHpla) = YT

We use the standard four-vector notation, where Greek letters
refer to both spatial and temporal coordinates, whereas Latin
letters only take values referring to the spatial coordinates, i.e.,
uw=0,1,2,3and i = 1,2,3. Summation over repeated indices

— i f(DE3A,(D). )

is implied.
The superconducting gap is included via
0 0 0 A
P 0 0 —A() 0
AD=1 0o aw 0 0 )
—A*(1) 0 0 0

which contains the s-wave superconducting scalar order pa-
rameter A(J) = A(r){y, (1)¥4+(1)), where A is the interaction
strength and (. .. ) denotes a quantum statistical average.

The local potential

Ui(r) = U(r) + Uso(r) ©6)

includes elastic impurity scattering and spin-orbit coupling.
We express elastic impurity scattering as

O@r)y=Y ur—r, (7)
where u(r — r;)is the ith elastic scattering potential at position

r;. We consider extrinsic spin-orbit scattering governed by the
impurities. The extrinsic spin-orbit coupling is described by

Uso(r) = Zﬁso(r - rj)

i

=iy Y (38 x Vu(r —r))Y Di(r), (8
J

where & = diag(a,6*) is a generalized vector of 4 x 4 Pauli
matrices in electron-hole space. We denote the vector of
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conventional 2 x 2 Pauli matrices by . y is the spin-orbit
interaction strength. !

The spin-orbit coupling at impurities can be understood as
a consequence of the effects of intrinsic spin-orbit coupling
in the band structure. The latter renormalizes the interaction
strength y from its vacuum value. The renormalization can be
interpreted as a shift in the physical position operator,

r_>feff=r+i'301 (9)
such that, to the first order in y,
Uferr) = U(r) + Uso(r),

where the spin- and velocity-dependent correction to the
position operator

Fo = —y(B36 X p) (10)

is known as the Yafet term [1,18] or the anomalous coordinate,
where p is the momentum. The Yafet term in Eq. (10) also
contributes to the spin Hall effect, as we will discuss in more
detail below.

With this in hand, we find that the equation of motion for
the four-component basis vector 1 is

[if$3 Do(1) — F(DIP (1), (11)
and for its conjugate '
JH(D=its D) — A (1] =0, (12)

where the “prime” means that the covariant derivatives should
be replaced by their conjugated form. In other words, 7’ is the
same as 71, except that we let D,, — DL.

Starting from these equations of motion, we use the Keldysh
Green’s function formalism to obtain expressions that describe
the quasiparticle transport of spin, particle, and energy. We
employ the quasiclassical approximation, which is valid for
length scales that are considerably larger than the Fermi
wavelength, and then the diffusion approximation, which is
applicable when the system is far greater than the mean-free
path. We now present and discuss the main results. A rigorous
derivation for interested readers is included in Sec. IV.

A. Current expressions

In the elastic transport regime, energy is conserved and
transport can be described at each energy e relative to the
chemical potential in terms of spectral (energy-dependent)
currents and distributions. Our main result consists of two
parts: (i) the relations between the quasiparticle spectral
currents and the spectral distributions and (ii) the spectral
diffusion equations. We discuss the spectral currents in this
section and the spectral diffusion equations in the next section.

The spectral currents are the spectral particle current j;(€),
the spectral spin current j;;(€), the spectral energy current
Jei(€), and the spectral spin-energy current je;;(€). Spectral
currents with one subindex are particle (j;) or energy (je;)
and flow along the i direction. Quantities with two subindices

'Here, we choose the sign such that spin-orbit coupling corresponds
to its vacuum expression for which yy,. > 0.
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describe spin (ji;) or spin-energy (je;;) current, where the first
index (i) is the direction of the current flow and the second ()
denotes the spin polarization direction.

The corresponding spectral particle and energy distribution
functions are h(e) and h€(e), respectively. Similarly, the
spectral spin and spin-energy distribution functions are 4’ (¢)
and hjf’ (e), respectively, where the subindex (here, j) denotes
the spin polarization direction.

From the spectral densities and spectral currents introduced
in this section, the relevant physical quantities can be extracted.
For example, the electric current density is a sum of all the
spectral particle currents

JR) =

l

N
-5 / deji(R.€). (13a)
and the electroneutrality dictates that the electrostatic potential
is [29]

ep(R) = — / de Ns(R,e)h(R ,e), (13b)
where Ny is the renormalization of the density of states due to
the superconducting gap, which is introduced and discussed
further below. The expressions for the spin, energy, and spin-
energy properties are similar.

To the first order in the spin-orbit coupling, we compute that
there are three contributions to the spectral current, namely,
the conventional diffusion and supercurrent terms j©, the spin
Hall effects j©™), and the spin-swapping effect j©":

j©) = j O + j ) + j*M(e). (14)

We will now discuss these contributions to the spectral current.
To the zeroth order in the spin-orbit interaction strength, the
currents are well known (see, e.g., Ref. [30]):

j¥ =—D,Vih + jne, (15a)
i) = =DViht + jihS, (15b)
Jl¥ = —[DVihe + j(1 = h)], (15¢)
jel(.;)) = —[D,Vih$ + ji°h’]. (15d)

The diffusion coefficients D, and D, are well known, and
their energy dependencies are governed by the superconduct-
ing gap [30] and the nonequilibrium state. One simple limit of
these expressions is the normal state, where D, = D, = D,
where D is the diffusion constant. Another simple limit is
the BCS approximation of a dirty superconductor with no
pair-breaking processes: D,/D = €?/(e* — A*)and D./D =
1 for energies above the gap, |e€| > |A|. The current in
Eq. (15) also includes a supercurrent j*“, which is proportional
to the gradient of the superconducting phase. Microscopic
expressions for the generalized diffusion constants D,(¢)
and D.(¢) as well as the supercurrent j*¢ in general out-of-
equilibrium conditions are given in Sec. IV E.

Let us now turn to the spin-orbit-induced corrections to the
conventional spectral current, which is one of our new central
results. To the first order in the spin-orbit coupling strength y,
we compute contributions that correspond to the spin Hall and
the inverse spin Hall effects and to the spin-swapping effect.
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We find that the contributions to the spectral current due to the
spin Hall and the inverse spin Hall effects are [31]

i = —xsu€ijk DV j(Nshy), (162)
J = xengij DV INs(h — )], (16b)
Je = —xqeik DV (Nshi), (16¢)
JeiV = xeuijn DV (Nsh©), (16d)

where Ng(e) is the ratio between the (energy-dependent)
density of states in the superconducting state and the density
of states in the normal state. The normal-state spin Hall angle
XsH = X::Ik) + XS(IS_{) is given in terms of the skew scattering
constant

4n 7
(sk) tr
= —— 17a
sH 3 Tsk ( )
and the side-jump constant
h 3
$="= (17b)
Tir

The dimensionless quantity n = y p% /2 is governed by the
spin-orbit coupling strength, pg is the Fermi momentum, t,
is the transport relaxation time, and ty is the skew scattering
time.

We find that the spin Hall angles that arise from skew
scattering and side jump are all renormalized by equal
amounts below the superconducting critical temperature via
the renormalized density of states parametrized by Ng(€). In
contrast, Ref. [25] computes the spin Hall conductivity in a
different transport regime, the inelastic transport regime, and
predicts that the renormalization of the spin Hall angle due to
side jump and skew scattering differs.

We note that both the spin Hall and inverse spin Hall
effects described by Eq. (16) are created by quasiparticles,
while contributions from the condensate are absent. The origin
of this is that the inverse spin Hall effect is induced by
a nonequilibrium spin accumulation governed by the distri-
bution function, whereas the phase of the condensate wave
function remains intact. This is in contrast to the equilibrium
magnetoelectric effect produced by a static Zeeman field in
a spin-orbit-coupled superconductor discussed in Ref. [32].
In that case, the condensate current emerges due to mixing
of spin-singlet and spin-triplet Cooper pairs. Such a situation
could occur out of equilibrium by taking into account that
an effective Zeeman field may be created by spin-polarized
electrons due to the Coulomb exchange interaction of itinerant
electrons [33]. Here, we assume that the Coulomb interaction
is weak and disregard this effect.

We also disregard the condensate supercurrent associated
with the conversion of quasiparticle current into the super-
current due to the inelastic relaxation of quasiparticles (the
so-called charge imbalance relaxation). At low temperatures,
such a relaxation occurs at large length scales. We assume
that our system is small enough to disregard charge imbalance
relaxation.

When the scattering potential is isotropic, the transport

relaxation time 7, equals the elastic scattering time 7, X:f_lk) =
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4 nNoug/3 and xs(‘g) = 3ym/t, where ug = u(q = 0) is the

Fourier transformed scattering potential at ¢ = 0 and N is the
density of states at the Fermi level in the normal state. Our
results in Eq. (16) are valid for general anisotropic scattering
potentials, except that the skew scattering contribution (17a)
is computed to the lowest order in small anisotropies; see
Sec. IV. Several factors contribute to the side jump (17b),
and we discuss these factors in more detail in Sec. IV and
Appendix F.

Let us study the superconductivity-induced renormalization
of the spin Hall angle in the elastic transport regime in more
detail. For this purpose, we consider a weakly perturbed
superconductor in which the density of states is constant and
equal to the BCS density of states. We can then express the spin
Hall contribution to the spectral particle current, the inverse
spectral spin Hall current, from the zeroth-order spin current

B = Oy (18)
where we have defined the spin Hall angle in the superconduct-
ing state as Osy = xsuNs(D/D¢). Whereas (D /D) typically
only weakly depends on the energy, Ny strongly varies as a
function of energy. In the superconducting state, N is greatly
enhanced close to the superconducting gap, which causes
a significant increase of the spin Hall angle 6sy. The fact
that there is a giant enhancement in the spin Hall angle for
quasiparticles with energies around the gap is consistent with
the main findings of Refs. [25,26]. We provide microscopic
expressions for the density of states in the superconductor
with respect to its normal-state value Ng(€) and the scattering
times in Eq. (17) in Sec. IV.

The spin-swapping effect [4,5] couples only spins. To
display the spin-swapping current in a compact manner, we
define the operator [a,b]l(;w) = §;jach, — a;b;, and we obtain
the spectral currents

Ksw
2
[NSJ-SC,Z + Rp’hGS]E;W)’

J§ =t DAV IS + SV DY

XsH

2
. (sw s7(swW Xsw sq(sw
Jeii" = X DIV RETSY + SRV D). BT

n (192)

+ BN+ R AT, (19b)
The normal-state spin-swapping constant is [4]
4n T
Xsw = — _t’ (20)
3 Tow

where 7y, is the spin-swapping scattering time. The spin-
swapping constant reduces to x5, = 47/3 when the scattering
potential is isotropic. In its simplest manifestation, spin
swapping interchanges the direction of flow and the spin
polarization direction, as follows from Eq. (19). A prominent
feature of the spin-swapping effect is that it leads to in-plane
spin polarizations at the lateral edges of a two-dimensional
sample, whereas the spin Hall effect gives rise to out-of-plane
spin polarizations, which makes it possible to experimentally
distinguish the two effects. We find that spin swapping is
renormalized in the superconducting state only through the
generalized diffusion constants contained in the diffusion
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currents in Eq. (19), while xs, remains unchanged by the
superconducting gap.

The additional terms in Eq. (19) appear when there are
spatial variations in the magnitude and phase of the super-
conducting order parameter. The term proportional to j*¢2
can be viewed as super-spin-swapping current. In addition to
this term, we have a more complicated term that is related to
the gradient of 6, which is related to gradients in the spectral
properties of the superconductor.

The expressions for the spectral currents, Egs. (16) and (19),
satisfy Onsager’s reciprocal relations. For example, the spin
Hall effect and the inverse spin Hall effect are governed
by the same susceptibility xsy. The spin Hall effect and
the spin-swapping mechanisms can be detected in nonlocal
geometries. In these setups, the detected signals will also
depend on the counterflow of currents due to spin and particle
distribution buildups. We will subsequently compute these
effects and the resulting effect of the superconducting gap
on the electrochemical potentials that can be detected.

B. Diffusion equations

We now turn to the presentation of the spectral (energy-
dependent) diffusion equation. We find that the diffusion of
particle, spin, and energy is described in terms of energy-
dependent diffusion equations [31]

V.ji=ah+o‘he, (21a)
Vijy = (”T‘— + ‘;ﬁ)h, (21b)
Vije =0, 2lc)

Vijeij = ah + ah + (“ + “G“‘)h;. (21d)
’ S0 Tm

The terms proportional to & and «€ in Eqs. (21a) and (21d) are
proportional to the superconducting gap and are responsible
for converting quasiparticle currents into supercurrents [34].
For completeness, we have also included the effects of the
magnetic impurities, where we use the results from Ref. [30].
The spin relaxation terms in Eqgs. (21b) and (21d) are given
in terms of the spin relaxation scattering times ty, and 7, due
to spin-orbit coupling and magnetic impurities, respectively.
Equation (21c) expresses that spectral energy is conserved in
the elastic transport regime.

The superconducting gap leads to the introduction of
the renormalization factors «, o, 0tm, Oy, and o, [30].
These factors are energy dependent and are governed by
the superconducting state. Microscopic expressions for these
renormalization factors (and the scattering times) are presented
in Sec. IV. To obtain insights into how the various effects
occurring in Eq. (21) are renormalized, let us consider a
scenario in which the superconductor has properties that are
close to that of a bulk BCS superconductor (BCS limit). This is,
for instance, realized in large superconductors that are weakly
coupled to reservoirs that inject spin and particle currents.
Quasiparticles can propagate for energies above the gap, |€| >
|A[, when there is no conversion of quasiparticle currents to
supercurrents and ¢ = 0. At the same time, the spin relaxation
renormalization factors become otey, = ttey, = € / (> — A
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(b)

FIG. 1. Nonlocal geometries for measuring the spin Hall effect (a)
and the spin swapping (b). In both cases, a particle current flowing in
the left normal metal generates via the spin Hall effect a spin current
that flows into the superconductor. Inside the superconductor, the
inverse spin Hall effect converts the spin current into a particle current,
and spin swapping swaps the spin current polarization and flow
directions. In (a), the electrochemical potentials in the normal metals
measure the inverse spin Hall effect. In (b), the spin-polarized contacts
can be switched between a parallel and antiparallel configuration to
detect the spin-swapping effect.

for spin energy, and o, = 1 and oy, = (€2 + A?)/(e? — A?)
for spin density. This implies that the spin-orbit-induced
spin relaxation rate is identical in the superconducting and
normal states, whereas the spin-energy relaxation rate is
enhanced in the superconducting state. In contrast, when
magnetic impurities dominate the relaxations of spins, both
the spin relaxation rate and the spin-energy relaxation rates
are enhanced for quasiparticles with energies above and close
to the superconducting gap.

III. SPIN TRANSPORT IN NONLOCAL GEOMETRIES

We will now compute the signatures of the (inverse) spin
Hall effect and the spin swapping in nonlocal geometries. We
consider the setups in Fig. 1. The left normal metal (Ng)
functions as a spin injector into the superconductor (S) via
a tunnel junction. The additional normal metals to the right
(Ng1 and Ng») act as detectors of the spin-particle-coupled
properties of the superconductor.

We assume that the transparency of the tunnel contacts is
low such that there are no proximity effects between the normal
metals and the superconductor. The equilibrium properties of
the superconductor are then the same as if it were detached
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from the rest of the circuit. Furthermore, we assume that the
resistances of the tunnel contacts used for detecting the inverse
spin Hall and spin-swapping effects in the superconductors are
considerably larger than the resistance of the tunnel contact
used for spin injection. In this limit, we can first compute
the nonequilibrium spin distribution in the normal metal,
which is not influenced by the rest of the circuit. In turn,
this spin distribution leaks into the superconductor. Finally,
the electrochemical potential difference between the normal
metals to the right (Ng; and Ng;) detects the inverse spin
Hall effect and spin swapping without influencing the spin
and particle distributions in the superconductor. Our geometry
differs from the setup in [24] since the spin current into the
superconductor is injected along its long axis.

We first focus on the spin injection that originates from the
left normal metal. Since the tunnel resistances are large, we can
consider the properties of the left normal metal independently
of the rest of the circuit. The normal metal is biased so in a
way to maintain the particle distribution in the normal metal
close to the tunnel contact in equilibrium. We consider that
this is achieved with a electrochemical potential —uy /2 at
the top and wy /2 at the bottom of the left normal metal.
Such a setup prevents a charge imbalance from flowing into
the superconductor. The total electric current through the
normal metal is then I = Guy /e, where the conductance is
G = eZNLDLAL/LL in terms of the density of states Ny,
diffusion coefficient Dy, cross section Ay, and length L, of
the left normal metal. The particle current flowing along the
y direction generates via the spin Hall effect a spin current
flowing along the x direction that is spin polarized along the z
direction. In turn, the spin current induces a spin distribution at
the edges of the left (L) normal metal. The standard calculation
explained below shows that the spin distribution in the left
normal metal close to the tunnel interface is

BB €) = Lrheq(e,1/2), (22)

where the dimensionless particle-spin conversion efficiency ¢,
is independent of the energy and

2 2—
nr/2+e 4+ tanh ur/2—e
2kpT 2kpT

arises from the distributions of the quasiparticles in the
reservoirs at electrochemical potentials (¢ /2 and —py /2.
We compute the particle-spin conversion efficiency pa-
rameter ¢; as follows. To the zeroth order in the spin-orbit
coupling, we use Eq. (15a) to find the relation between
the spatial variation of the spectral particle distribution and
the spectral particle current jy(.o)(e) = —D3dyh(e) and solve
the diffusion equation of Eq. (21a) to find the spatially
varying spectral particle distribution h(¢). To the first order
in the spin-orbit coupling, the spatial variation of the spectral
particle distribution gives rise to a spin current j,.(€) and an
associated spin distribution A3(€) in the normal metal. The
spatial variation of the spin distribution A3(€) is determined
by the diffusion equation (21b) with the boundary conditions
that the spectral spin current vanishes at the edges of the
normal metal. The spectral spin current is from Eq. (16b)
Jxz(€) = =D hi(€) — xsu,. D9yh(e). Solving the diffusion
equation (21b) with these boundary conditions and assuming
the normal metal is wider than its diffusion length, we find that

heq(e,pur/2) = %[tanh j| (23)
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the spin distribution of Eq. (22) with the particle-spin efficiency
parameter {; = —2xsu.zAr/Lr, which is a dimensionless
property of the left normal metal spin injector where the
spin-diffusion length is A .

Next, we will compute the resulting spin and particle
distribution in the superconductor. Since we will focus on
spin-distribution-induced spin-particle conversion effects in
the supercurrent, we only need to focus on how spins propagate
from the left normal metal into the superconductor. At a low
transmission interface, the spectral spin currents through the
interfaces are

Jrz = Ns(@gr (B3 — 1), (24)

where the spin distribution at the normal metal side /5"

was computed in Eq. (22). The conductance of the tunnel
junction when the superconductor is in the normal state is
Gt = Nogr. We solve the spin-diffusion equation (21b) in the
superconductor with the boundary condition of continuity of
the spin current. We also expand the result to the lowest order
in the tunnel conductance and assume that the superconductor
is considerably longer than the spin-diffusion length (along
the x direction). We then find that the spatially dependent spin
distribution is governed by the ratio between the tunnel con-
ductance Ng(¢)G7 and the conductance of the superconductor
within the spin-flip length I(€), NoD¢(€)/A(€):

gTNS(G))‘(E)efx/)L(e)
Dc(e) '

The energy-dependent spin-flip length is A(e) =
[D.(e)Ts(€)]'/?, where the spin-flip relaxation rate is
1/Tst = 00/ Tso + ¥m/Tm-

In the following, we will show how the spatially dependent
spin distribution of Eq. (25) in the superconductor gives rise
to the inverse spin Hall effect and spin swapping.

hi(x,€) = ¢rheq(€, 1 /2) (25)

A. Inverse spin Hall effect

In the inverse spin Hall geometry, the inverse spin Hall
effect is measured via normal metals in tunnel contact with
the superconductor. From Eq. (16a), we see that the spin-Hall-
induced spectral particle current density is

J3€) = xsu.s DNs(€)dch(x,€), (26)

where we computed A(x,€) in Eq. (25).

We assume that the transverse width Wy of the supercon-
ductor is smaller than the charge-imbalance relaxation length.
The spin-Hall-induced spectral particle current density of
Eq. (26) must then be compensated by the zeroth-order spectral
particle current density induced by a transverse gradient of
the spectral particle distribution. Since transport is assumed
to be elastic, we use the boundary conditions that the total
(zeroth-order and spin Hall contributions) spectral particle
current density should vanish at the lateral edges. We also
only take into account the difference between the particle
distributions at y = Wg/2 and y = —Wg/2 over which the
potential is detected. The resulting relative spectral particle
distribution at y = Wg/2 is then

D*Ni(e)

—x/M(€)
won’ @

h(e) = npspheq(eaﬂL/z)
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where the dimensionless particle spin—particle conversion is
governed by npp = 1 xst1.s Wsgr /D.

The particle distribution of Eq. (27) can be detected as a
electrochemical potential in another normal metal in tunnel
contact with the superconductor. The spectral particle current
between the superconductor and this tunnel contact is

Jy = Ns(€)gr[h — heq(€,Lr/2)]. (28)

The electrochemical potential (g in the normal metal that
we detect is determined by the integral equation that the
total current into the right normal metal should vanish,
[ dejy(e) =0, and is therefore independent of the detector
tunnel conductance g7.

In linear response, we expand

heq(€,10) ~ —[0c f(€) — O f(=€)]u, (29)

where f(¢) is the Fermi-Dirac distribution function. We then
find that the ratio between the electrochemical potentials in
the superconducting state and the normal metal is

w® [ de e MOy, f()Ns(€)}[D/De(e)]
= %) ,  (30)
UM e=x/iv [ de o, f(€)Ns(€)[D,(e)De(€)/D?]

where Ay is the spin-diffusion length in the normal state.
The electrochemical potential when the superconductor is
in its normal state is u") = pg = npspe ™V 1. Naturally,
the electrochemical potential is proportional to the spin Hall
angle in the left normal metal and the spin Hall angle in
the superconductor via the particle-spin—particle-conversion
coefficient 9ygp.

We consider first the case when spin flip is predominately
due to spin-orbit scattering 1/ty, > 1/t,. Remarkably, there
is then an exact compensation of the factors in the numerator
and denominator of Eq. (30) so that V® = V™ _ This is
because Ng(e)? = D‘,,(E)Dg(e)/D2 and A(€) = Ay in that
limit. This ensures that the particle imbalance of Eq. (27)
attains its normal-state value even when the superconducting
gap is taken into account.

When spin-flip scattering due to magnetic impurities
becomes stronger, there is a decay of the spin Hall signal
when the temperature is reduced below the superconducting
transition temperature. This is caused by the reduction of the
the spin-diffusion length A(¢) with respect to its normal-state
value Ay in this regime.

We conclude that the inverse spin Hall signal is equal
to or smaller than its value in the normal state below the
superconducting transition temperature.

B. Spin swapping

To study spin swapping, we consider the geometry shown in
Fig. 1(b). In this scenario, spin swapping implies that the spin
current flowing in the superconductor along the x direction
that is polarized along the z direction will be swapped into
a secondary (and smaller) spin current that flows along the z
direction and is polarized along the x direction. From Eq. (19a),
we find that the spin-swapped-induced spectral spin current
density is

JE(€) = — xow.s Ded bl (x €). @31)
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Maintaining that the transverse width of the superconductors
is smaller than the charge imbalance length, the swapped
spectral spin current of Eq. (31) must be counterbalanced
by a spin current induced by a transverse gradient of the
spin distribution. Requiring a vanishing spectral spin current
at the edges (z = —dg/2 and z = dg/2) then determined the
transverse secondary swapped spin distribution
(sw) o MNP e

hx (x,y,6) = Mpss ds NS(G)DG(E)e s (32)
where npss = ¢1.8rds Xsw,s/ D is a dimensionless particle-spin-
spin conversion factor.

We can already here note that the swapped spin distribution
of Eq. (32) becomes larger for energies around the gap than
in the normal state. As we will demonstrate below, this also
leads to an enhanced spin-swapping signal.

The detection of the spin-swapping signal of Eq. (32)
requires the use of spin-polarized contacts. Hence, we assume
a setup such as the one shown in Fig. 1, where the right tunnel
contacts consist of ferromagnets with a spin polarization along
the x direction. We also assume that the magnetization of
the tunnel contact can be made to be parallel or antiparallel.
Furthermore, to detect the spatial variation of the swapped
spin distribution along the z direction, we consider a situation
in which the tunnel contacts are attached on top of the
superconductor. In such an experiment, we can detect the
swapped spin current.

We detect the electrochemical potential in large probe
reservoirs where there is no spin distribution. The particle
distributions in the detectors attain their local equilibrium
values heq(e€, i g) with respect to the detector electrochemical
potential  g. The spectral particle current through the detector
spin-polarized tunnel barrier is

Ji(€) = Ns(@)gra[£Pra(=h") + (heg(e.1™) — RV)],
(33)

where the sign + indicates whether the tunnel polarizer is
parallel or antiparallel to the x direction. 45 is the particle
distribution in the superconductor that will not play a role
in our spin-swapping detection scheme. Requiring no total
current to the reservoir, such that also [ de( jr=Jj7)=0,we
find an expression for the electrochemical potential difference
Ap = ut — p in linear response by using the expansion of
Eq. (29):
[ de Ng(e)h¥(€)

[ de Ng(€)dchpa(e)’
where we computed the transverse swapped spin distribution
hyY in Eq. (32).

It is instructive to consider the ratio between the elec-

trochemical potential difference in the superconducting state
versus the normal state:

Ap™ [ de Ns(€)’ID/ De()I(€) /A 1Be £ (€)]e™ /M)
ApS Jx de Ns(€)de f(€)e=/m '

A/'L = PTdncss (34)

(35)

We evaluate Eq. (35) numerically and the result is presented
in Fig. 2. As announced, below the superconducting transition
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FIG. 2. The temperature dependence of the spin-swapping signal.

temperature, there is an enhancement of the spin-swapping
signal. This can be understood from Egs. (32) and (35).
The spin-swapping spin distribution is enhanced for energies
around the gap in the superconducting state. This leads to the
enhancement of the spin-swapping signal at temperature below
the superconducting transition temperature.

IV. MICROSCOPIC DERIVATION

A. Definition of the Green’s function

In this section, we will derive our results presented in
Sec. 11, the diffusion equations (21), and the relations between
the currents and the distribution functions of Egs. (15), (16),
and (19). Our starting point is the microscopic Hamiltonian
of Eq. (2), and we use the nonequilibrium Keldysh Green’s
function formalism.

We define the kinetic Green’s function in terms of the four-
component vector of Eq. (1):

GEULI"Y = =) (1), ¥ UN1-).

where [A,B]. = AB + BA. GX is a 4 x 4 matrix in spin ®
particle-hole space, and we denote such matrices using a “hat”
superscript. Similarly, we define the retarded Green’s function

GEULIY = —i0@ — 1)@l (), ¥1UN1L),  (36b)
and the advanced Green’s function
GAULIY = 1Oty — 1)@ ([P (1), P L),

where ©(t) is the Heaviside fu{lction. Next, we construct an
8 x 8 Green’s function matrix G(/,1’) in spin ® particle-hole
® Keldysh space [35]

. (GR Gk
G:<6 GA>, 37

which obeys the right-handed equation of motion

(ihetsDo(1) — ()G, 1) = 8(1 — 1) (38)

(36a)

(36¢)

and its corresponding left-handed equation of motion
G, I (=ificts D)1y —H' ') =861 - 1) (39)

in terms of the Hamiltonian (2). We denote 8 x 8 Green’s
function matrices using a “check” superscript. The operators

PHYSICAL REVIEW B 95, 054509 (2017)

to the left of the Green’s function in Eq. (38) are 8 x 8
matrices decomposed into two identical block-diagonal 4 x 4
matrices that occupy the retarded and advanced components
in Keldysh space.

B. Derivation of the covariant Eilenberger equations

The Eilenberger equation is widely used [29]. Nevertheless,
we include a derivation of the Eilenberger equation for systems
in which the extrinsic spin-orbit interaction is essential. Spin-
orbit interactions require careful handling of the spin-orbit-
induced self-energy that appears in the Eilenberger equation.
The Eilenberger equation is obtained [29] by taking the
difference between the left- and right-handed equations of
motion (39) and (38). By taking the Wigner transform in the
mixed representation and keeping terms to first the order in
h [36], we obtain for a stationary system

A

i ViG + [ets + A,Gl — [Simp — Sm © G-
~Ee®G-G®3%)=0, (40)

where @MX =V, X+iA,[%,X]- and 3 contains all the
self-energy contributions involving Us,.

In a stationary state, the quasiclassical Green’s function is
defined as

ER prc) = / dt, G(R.p.c), @1)

which in the mixed representation is a function of the
center-of-mass coordinate R = (r; 4+ r,)/2 and the energy
€ related to the relative time coordinate t =¢; —f; by a
covariant Wigner transform as defined in Appendix A. The
momentum pr is related to the relative position r = r; —rp
by a Fourier transform and is fixed at the Fermi level, and the
integration variableis &, = p?/2m. The quasiclassical Green’s
function (41) is determined by the Eilenberger equation which
in a stationary state reads as

0=ifve-V§+[te+Ag] —[5.81-. (42)

where vg = pg/m is the Fermi velocity, and we have inserted
the various self-energies that we will address in the next
section. Upon impurity averaging, ¥, and 2;0 become
identical and are included in the commutator in Eq. (42).
Equation (42) does not determine the quasiclassical Green’s
function uniquely; therefore, we also need a normalization
condition [37,38]

F=1 (43)

We have now derived the Wigner-transformed Eilenberger
equation in the presence of spin-orbit interactions.

C. Self-energies

We consider a diffusive system and will therefore compute
average quantities relevant at length scales longer than the
mean-free path and independent of the impurity configuration.
First, we include the effects of the local potential Um within
the self-consistent Born approximation. To the second order
in the local potential, the self-energy is shown in Fig. 45 and
reads as

21,1 = (Uir NG, 1) O (r 1)), (44)
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where (. .. ). denotes averaging over all possible impurity con-
figurations, and we assume that <010t>c = 0. The self-energy
Y is a functional of the impurity-averaged full propagator
G. = (G). The terms in the local potential give rise to various
self-energy contributions that can be treated independently.
In the absence of spin-orbit coupling, the effects of elastic
impurity scattering are calculated from

S, 1) = n f driu(ry — )Gl utry — ), (453)

where n is the impurity concentration.

J

PHYSICAL REVIEW B 95, 054509 (2017)

Spin swapping and side-jump scattering arise from contribu-
tions that are linear in the spin-orbit coupling strength:

20U =n / dri dso(r; — r)Go(1, 1 u(ry — ry)

+n / driu(r; —r))Ge(1,1)is(ry —rp).
(45b)

To include spin-orbit-induced spin relaxation, we also
calculate the second-order contributions from the spin-orbit
coupling to the self-energy:

(45¢)

Yol 1) =n / dri lio(r; — r)Ge(1,1)iso(ry —r)).

We will also include contributions from skew scattering to the spin Hall and inverse spin Hall effects. However, skew scattering
does not appear within the framework of the self-consistent Born approximation. To include skew scattering, we also include
contributions that are third order in the potential u: see Fig. 45 [18,39]. To the first order in the spin-orbit coupling, the skew

scattering contributions to the self-energy are

S (1.1) =n / dr, / Q2i1o(r1 — r)Gel1,2u(rs — r)Ge@ ey — 1)

+n / dr; / d2u(r; — ri)Ge(1,2)lso(rzs — r)Ge2,1)u(ry —r;)

+n / dr; f d2u(r; —r)G(1,2)u(r; — r)G(2,1iso(ry — r;).

(45d)

Moreover, to have a closed set of equations and a complete quasiclassical theory, the self-energy [G.] is approximated by the
quasiclassical self-energy 6 [¢] in Eq. (42) which is then a functional of the quasiclassical Green’s function g. Performing impurity
average and employing the quasiclassical approximation yield simplified expressions for the various self-energy contributions of
Egs. (45) evaluated at position R, Fermi momentum pg, and energy e:

i 1
S = —— —§(R,q,e)> , (46a)
== a0
4 1 e A iy |
s = @< [#38 - (p x q),g(R,q,e)]_> + —y<—[‘[30l x (p— @), g(R,q,e)]+> , (46b)
2 \t(p—9q) 4\t(p—q) .
3 ivi o1 ) o
O = ——5 (=B - (p X qE§R.q.€)i&-(p xq)), (46¢)
2 \tlp -9 -
. iy 1 . 5 5 ) 5 5 o ,
Ok = ——<—, (B3& - (p x @)g(R,q,€)8(R,q",¢) — $(R,q,6)(R,q",€)tz& - (p X q ))>
2 \tx(p.q.9") ]
i - o L v /
- _)/< ~8(R.q,€)t38 - (q x ¢)&(R.q ,e)> , (46d)
2 fsk(p’qvq) F

where (...)r denotes an angular average with respect to ¢
(and ¢’) at the Fermi surface. We changed the notation of the
self-energy in Eq. (46) by switching from ¥ to & to emphasize
that we use the quasiclassical approximation of Eq. (45). The
elastic scattering rate is

= 2nnNolu(p — q)|?, (47a)

(p—q)

where N, is the density of states at the Fermi level in the
normal state.

[
The skew scattering rate is

1
«(P.4.9")

The skew scattering rate (47b) is on the order of 1/(Nyu)
smaller than the elastic scattering rate (47a). A detailed
derivation of Eqs. (46) and (47) is presented in Appendix E.

= 27°nNyu(p — q)u(q — ¢"u(g' — p). (47b)

D. Diffusion limit

Since elastic impurity scattering is assumed to be strong
(dirty limit), the quasiclassical Green’s function becomes
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almost isotropic and we can use an expansion in spherical
harmonics up to the first order,

§(R.pr.€) ~ &(R.€) +e, - E(R,e€), (48)

where g; and g are the isotropic and anisotropic Green’s
functions, respectively, and e, = pg/|prl|. Expanding the
normalization condition (43) to the first order yields the useful
relations
g=1 &2 =0. (49)
We use this expansion (48) in the self-energy contri-
butions of Eq. (46) and retain only the dominant terms.
As a conventional example, consider the elastic impurity
scattering. Inserting the expansion of the Green’s function
in spherical harmonics of Eq. (48) into the quasiclassical
elastic impurity scattering self-energy (46a) and performing
the angular average provides

5 i 1
Cimp(PF) = — —<(—

(gs+e §)>
2\t(p—q) !

F

i i[1 1 ( 5
= - — _ | - - — e, - s
ZTgS 2\t 1 r-8

where we dropped the center coordinate R and the energy €

10] ble\/ity, and
4 [(p Q) F

is the average elastic scattering rate and

(50a)

1 < 1
W \T(p—q)
is the inverse transport relaxation time.

Similarly, we insert the Green’s function’s expansion (48)
into the remaining self-energy contributions and perform the
angular average. We make use of the fact that § <« g and
only retain the dominant contributions. To the leading order
in the spin-orbit coupling, we then obtain the spin-swapping
(“sw”), side-jump (“sj”), and spin-orbit-induced relaxation
(“’s0”) contributions to the self-energy:

(1-e, -eq)>

F

. n A a Xy

Gsw(pr) = 3.6 [f:& > gy, (50b)
Sw

. iy f A X ey

Gsi(PF) = i [f3& > V], (50c)
tr

. i, A

Gso(PR) = — (13& x e,)gs(T3& x ep),  (50d)

167,

and, using Eq. (49), we find the skew-scattering contribution

Salpp) = ——1 (50¢)

[ [fg&
31’51( P

g Sg ] —
where [a ¥ bl =a xb=xb xa and, again, we omit the
arguments R and € for brevity. When evaluating the self-energy

to the first order in the spin-orbit coupling (45b), a contribution
to the side-jump mechanism (50c) is also obtained; see

PHYSICAL REVIEW B 95, 054509 (2017)

Appendixes E 2 and F. The elastic scattering rate is

1
— = 2mnNo(lu(e, — )Pk, (51a)
and the inverse transport relaxation time is
— = 2mnNo(|lu(e, — eq)|2(l —e,-ey))F. (51b)

Tir

Spin relaxation is determined by the spin-flip scattering rate
due to magnetic impurities
1

8
— = —nnNoS(S + D{lum(e, — e,)*)r,
Tm 3

(51c)

where S is the impurity spin quantum number, and the spin-flip
scattering rate due to spin-orbit coupling

1 8
— = P’ pinNo(lule, — e)P(e, x €)’)r.  (51d)
To 3
The spin-swapping scattering rate is
1 9 1
— = T—, (516)
Tsw 8)/ PF Tso
and the skew scattering rate is
1
— =27°nNju}. (51f)

Tsk
The results in Egs. (50) and (51) are valid irrespective of
the possible anisotropy of the scattering potential, with the
exception that the expression for the self-energy due to skew
scattering (50e) is included only to the lowest order in the
anisotropy of the scattering potentials to keep the result
compact and simple.?

The isotropic Green’s function g, and the anisotropic
Green’s function g are obtained using the expansion in spheri-
cal harmonics (48) and splitting the Eilenberger equation (42)
into an even and an odd part with respect to e,. To the first
order in the spin-orbit coupling strength, the odd part is

. e Loy .
0=ivpVgs+ —&& + [T3¢,8]- +[A,8]-

Tir
/R v
- gs[[ﬁavgs]ﬁ- ’ gsg]—
3Tsw
IV v in a o &
+ o ElElhag A AN
Tir
n ... X v oy
- [[T:&,8:]+ * &81+, (52)
37:sk

where we used the normalization condition (49).

The first line on the right-hand side contains the contribu-
tions to the zeroth order in the spin-orbit coupling strength. The
remaining terms are the contributions to the first order, which
we rewrote in a way that simplifies our further calculations.
The anisotropic Green’s function can be computed to the zeroth

2Expanding the scattering potentials in spherical harmonics, we
obtain Egs. (50e) and (51f) to zeroth order and the first-order
corrections vanish. This indicates that the anisotropy of the scattering
potentials is less relevant for skew scattering.
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order from the first line. The terms involving the energy €
and the superconducting order parameter A can be neglected
compared to the dominating contribution arising from the
elastic impurity self-energy (50a), and we obtain the following
well-known result:

g(()) = _ltrg'svgw (53)

where /;; = vgTy; is the impurity mean-free path.

By using g =29 +8% in Eq. (52) and multiplying
by itwgs from the left, the first-order corrections §g to
the anisotropic Green’s function stemming from spin-orbit

coupling are additive,
88 =088 + 659 + 65,

and are readily obtained by using Eq. (49). The spin-swapping
self-energy (50b) contributes with

(54a)

and the correction due to the self-energy contribution to the
side-jump mechanism (50c) is
c6i) _ Vs nm v X
08 = LIa[aBa s T V&I (54b)
Lastly, the correction from the skew scattering self-energy
(50e) reads as
o« Nl Tw o (a0 n o X &y
58 = — = L gll5a.8], 7 VL.
3 Tsk
We will see that the side-jump mechanism (54b) and skew
scattering (54c) both contribute to the same effect, namely, the
spin Hall effect.
Using Eq. (53) in the part of the Eilenberger equation (42)
that is even with respect to e,, we obtain the Usadel
equation [40]

(54¢)

| |
+ A3, 4] + ——[agsa, 8]
87 8Tm

= Usso, (55

where we, at this stage, have included the well-known effect of
magnetic impurities causing pair breaking and spin relaxation
represented by the scattering lifetime t,,. We also introduce
D = vgl/3 as the diffusion constant. Equation (55) is a
counterpart of the drift-diffusion equation and determines the
isotropic Green’s function.

It is possible to obtain simplified scalar equations from the
Usadel equation (55). First, we note that the normalization
condition allows the isotropic kinetic Green’s function to be
represented in terms of the distribution matrix h [38]:

¥ (R.e) = glh — hgy, (56)
where the advanced Green’s function can be expressed in terms
of the retarded Green’s function 8 = — (385 #;)". We assume
that the distribution matrix is diagonal with respect to particle-
hole space and decompose it according to

h=h+a;hS +t3(h+a,n%), (57)
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where h. and h are the energy and particle distribution
functions, respectively, and & ; and & are the spin-energy and
spin distribution functions, respectively, where the subscript
(j) denotes the spin polarization direction.

In equilibrium, all the distribution functions except the
energy distribution 4€ vanish [30]. At equilibrium, the Keldysh
function can then be expressed in terms of the retarded and
advanced functions in a simple manner

2K(R,€) = heg(8F — 22), (58)

where h,, = tanh(e/2T).

In general, g& and fX depend on position and energy and
determine how the various transport mechanisms renormalize
below the superconducting critical temperature. They are
solved by using the retarded part of Eq. (55) together with the
normalization condition (gX)?> — (£X)? = 1. For energies far
above the gap, the functions approach their high-temperature
limits (g8 — 1 and fR — 0) while they diverge for ener-
gies close to the superconducting-induced energy gap. The
presence of magnetic impurities in the system suppresses
superconductivity and reduces the gap in the energy spectrum.

E. Current and densities

Let us now turn to derive expressions that describe the phys-
ical particle and spin currents and equations that determine the
distribution matrix. We begin by defining a particle density
n'®) (1), which counts the number of electrons:

1. JU
") = 3 lim TrlA(l,1)] = ;lw;u)t/fa(l». (592)

Analogously, we define a spin density n'(1); a particle energy
density n'F-E)(1); and a spin energy density n'S-£)(1):
n®1) =1 ]]/im] Trle A(1,1)], (59b)

nPE(1) = }111,% Tr [(if%30;, — iht39,,)A(1,1)],  (59¢)
nSE(1) = }-111,% Tr [(iR%30;, — iht39,, ) A(1,1)], (59d)
with 7i(/, 1) being defined by
A1) = —%GK(J,J/) + %@(GR(J,J/) — GA,1). (60)

The trace is taken over spin ® particle-hole space. From
the densities (59), we calculate corresponding currents using
the equations of continuity. The current expressions are
Wigner transformed, and in terms of the quasiclassical Green’s
functions, we define a current density matrix

J(Re) = ”—g(g’((R,o — 5@ (R,e) — g4 (R,0))

_ YPrly
67

X
’

[#:6 > VeK(R.0)]_. (61)
where the second term is the anomalous current contribution
that arises from the anomalous velocity, which is explained in
detail in Appendix F 1.

The particle-current density and the spin-current density
in the quasiclassical approximation are found by taking the
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proper traces of the current density matrix in Eq. (61):

Ji(R) %/de Tr[#3/:(R,€)]

— No / de ji(R.€) (620)
and
No NN
Jij(R) = —T/de Tr[#:&; ji(R,€)]
— No f de jij(R.€). (62b)
No R
Ji(R) = T/df Tr[eji(R,€)]
= No_/dE Jei(R,€), (62¢)
No A
Jeij(R) = T/deeTr[eoc_,-Ji(R,e)]
= No/d6 €jeij(R,€), (62d)

respectively. Here, j; is the particle current and j;; is the spin
current, as introduced in Sec. II. The expressions for the energy
and the spin-energy current densities are derived similarly, but
are defined compared to some equilibrium value [41]. The
second term on the right-hand side of Eq. (61) results from the
anomalous velocity corrections of Eq. (F1) and contributes to
the side-jump effect; see Appendix F.

We can now express the gradient of the current using the
Usadel equation (55) in terms of the divergence of the matrix
current j. Using Egs. (53), (55), and (61), we find [40]

V. j=—3Uio)* = (Vi) = (Uiso)*D), (63)

where the contributions arise from the respective matrix block
in Eq. (55). From Eq. (63), the diffusion (21) can be derived in
terms of the distribution functions in Eq. (57). The currents in
Sec. I A are defined as indicated by Eq. (62) and are calculated
using Egs. (53) and (54) in Eq. (61).

The renormalization factors are determined by the com-
ponents of the retarded/advanced Green’s function, where we
have inserted the parametrization explained in Appendix C, as
well as the self-consistency expression. For gap scattering and
spin relaxation, they read as

o = 2Im[sinh 6] Re[e X A], (64a)

o = 2Re[sinh 6] Im[e X A], (64b)

oso = Re[cosh 61> — Re[sinh 6], (64c)

af, = Re[cosh 8] + Im[sinh 6]%, (64d)

om = Re[cosh 0] + Re[sinh 6]°, (64e)

af, = Re[cosh ] — Im[sinh A]*. (64f)

The renormalized diffusion constants are
D 2 : 2
D. = E(1+|cosh0| — |sinh6?), (65a)
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D, = 2(1 + | cosh@|* + | sinh6|%) (65b)
p 2 ?

and
Ng = Re[cosh 6] (66)

is the density of states in the superconductor normalized by
the density of states in the normal state. We also define the
following currents related to the supercurrents in the system:

v, = Vy — ng,-, (67a)
J& = {2Im(sinh* 0)}vy;, (67b)
Ji¢% = {1 = |cosh0]> + |sinh 6 v, (67c)
R/ = —2Im(sinh §)V;(Re ), (67d)
R{ = —2Re(sinh 6)V;(Im6). (67e)

This completes our derivations of the diffusion equations
and the associated relations between the currents and the
spatial variations of the densities.

V. CONCLUSION

We have derived diffusion equations for the transport of
spin, particle, and energy in the elastic transport regime,
including scattering from magnetic and nonmagnetic impu-
rities and from spin-orbit coupling. We find that the spin Hall
angle is renormalized by the reduced density of states in the
superconducting state. However, the spin-swapping coefficient
does not explicitly depend on the superconducting gap but
rather is influenced by the superconducting state through the
renormalized diffusion coefficients.

In a two-dimensional geometry, we find a large enhance-
ment of the spin-swapping effects. This result implies that it
should be possible to measure the influence of superconduc-
tivity on these largely unexplored transport properties.
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APPENDIX A: FOURIER TRANSFORM

We define the Fourier transforms as

dq . de .
— —igr/h iet/h
x(r,t) /(27rh)3e /_Znhe xr(q.€), (Ala)

xp(g.€) = / dr " f dt e “fx(r,p),

where the subscript “F” indicates that we are referring to the
Fourier transform and not the Wigner transform.

(A1b)

APPENDIX B: WIGNER TRANSFORM

In this section, we will introduce the Wigner transform
which we will use extensively. We follow the conventions in
Ref. [42] for an Abelian and spin-independent vector field.

We can relate the Fourier transform and the Wigner
transform by using a translation operator. For a function that
depends on the space-times / = X +z/2 and I’ = X — z/2,
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where X and z are the absolute and relative space-times, we
have

(BI)

xp(p,X) = fdz e P M2 x (X, X )em 1% ] Nex
where z = (¢t,r), X = (T,R), and p = (€, p). The inner prod-
uct is defined according to the mostly minus metric, as
outlined in Sec. II. To arrive at a covariant transform, we
let dx» — D, (X) and 9y, — D:L(X), where the co-variant
derivative is defined according to Eq. (3), which results in

. 1
x(p,X) = / dz e~ iP7/h [exp(% Dﬂ>x(X,X’)

*
X exp —EDM

which is how we define the covariant Wigner transform.
Note that we write the covariant Wigner transform without
a subscript “F.” We define the connector U,

; (B2)

X=X’

1
U(b,a) = exp |:if3(b —a)* / dsA,(a+ b — a)s)], (B3)
0

and to ease notation, we also define 01 = U(],X) and 02 =
U(X,I'). In terms of the connectors, the Wigner transform
becomes

*(p,X) = / dzle™ P 0y x(1,1) 051
The inverse transform is
dp A N
x(l,l’)=/m[eﬂ/hU}x(p,X)U;]. (B4)

Our Green’s functions are matrices in electron-hole space.
This carries over to a matrix structure in the connector. In
electron-hole space, the Wigner transform of our Green’s
function is defined as

G(p.X)= / dz e PO, G(1,1N0,). (B5)

In the following, we will expand the connectors in the gradient
approximation.

APPENDIX C: PARAMETRIZATION

To simplify the calculations, we apply the 6 parametriza-
tion. The retarded Green’s function is

N 1 cosh [6(e)] ioy sinh [0(€)]e!x©
$ (e)_(iazsinh[e(e)]e"x“) —1 cosh[6(e)] ) €D

The advanced function can be found using the relation
AR, €) = —(38R (R, 6)3)'. Inspecting the elements of the
retarded Green’s function in Eq. (36b) of the Green’s function,
and the normalization condition, we obtain the following
symmetries for O(R,¢) and x (R, ¢€):

(C2a)
(C2b)

x(€) = x*(—e),
0(e) = —0*(—e).

We insert these when we calculate the current.
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APPENDIX D: SELF-CONSISTENCY

The superconducting gap must be calculated self-
consistently, and we can express the gap using the Keldysh
Green’s function in the following way:

(T —it)os g

Al = —éNOA/deTr[TgS (R,e)], (D1)

where A is the strength of the pairing potential. Using our
ansatz for the distribution function in Eq. (56), we can
express the gap in terms of distribution functions and the
parametrization parameters

NoA ; . . .
A(]):T/dee’x[— Re(sinh 0)h°+i Im(sinh 6)h].  (D2)

We use this relation in our expressions. Since we have chosen
X to be a real number, the phase of the order parameter is also
real.

APPENDIX E: SELF-ENERGY

Here, we will calculate the contributions to the quasi-
classical self-energy (46) and outline how the self-energy
contributions to the Eilenberger equation (42) and the Usadel
equations (52) and (55) are obtained. We include effects from
elastic impurity scattering, magnetic impurities, and spin-orbit
coupling within the self-consistent Born approximation; see
the Feynman diagrams in Fig. 3(a). Skew scattering only
appears beyond the self-consistent Born approximation to
at least the third order in the potential u [18,39]. We take
this lowest-order contribution to the skew scattering into
account; see Fig. 3(b). The self-energies caused by elastic
scattering, magnetic impurities, and the contribution from
spin-orbit scattering to spin relaxation are well known, but
we also include their brief derivation here for completeness
and consistency in the notation.

1. Elastic impurity scattering

Using the Fourier representation of the elastic impurity
scattering potential u(r — r;), its contribution to the self-
energy (45a) is

v dq —ig-r/h -
Simp(1,1) =n / Gt lu(g)Pe """ Go(1,1),

where r = r; — r is the relative position. Next, we Fourier
transform the relative spatial and temporal coordinates using
the Fourier transform of Eq. (A1):

dq
(2mh)3

(R po€) = n / u(p — PR 0). (E)

FIG. 3. Self-energy diagrams. (a) Self-consistent Born approxi-
mation. (b) Third-order contribution that determines skew scattering.
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Within the quasiclassical framework we can approximate
f (2‘;;); Ny [ d&, , where Ny is the density of states
and e, = qg/|qFl, such that the quasiclassical approximation
to the self-energy is

é(R,q,6)> ; (E2)

. i 1
Gimp(R, pr,€) = _§<W
F

q)
where (... )p = f . - - denotes an angular average over all
momentum directions at the Fermi surface and the elastic
scattering rate is

1
t(p—9q)
We changed the notation of the self-energy in Eq. (E2) to the
symbol & to reflect that it is the quasiclassical approximation
of Eq. (E1). This is a standard result for the elastic scattering

contribution to the self-energy that we included for complete-
ness.

= 2nNolu(p — @)I*. (E3)

2. First order in spin-orbit coupling

The contributions to the self-energies above are well known.
Let us now consider the nontrivial effect of the spin-orbit
interaction to the first order in the spin-orbit interaction
strength. Inserting the expressions for i, and u into Eq. (45b)
yields

20, 1)

)/I’l

lu(q))’e """ #sa - [V,,G(1,1')xq]

(2 ﬁ)3

n ) 5 ) B
- y?/ Gy M@Pe T [GALIY,, xq] - a8

where V is defined as

— (VX)— i%A[fg,X]_, (E4a)

— (XV) + igA[X,@],. (E4b)

In the quasiclassical approximation we obtain from this
Y DF < 1

' (Pr) = ©(p—q)

[f3& - (P x @),é(Q)]_>
F

iy 1 s a s Ao
+ <—[r ax(p— q),Vg(q)]+> :
©(p—9q) F
(ES)
where we omitted R and € for brevity. We also introduced the
dimensionless parameter 7 = y pg/h’.

The first term on the right-hand side of Eq. (E5) gives rise to
the spin-swapping effect [4,5]. The second contributes to the

J

yn dq dq'

is R’ ) = - AN a2
K(R.p.€) n | @xny | Quny
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side-jump mechanism but is only present when considering the
next-to-leading order in the gradient approximation. The side-
jump mechanism is discussed in more detail in Appendix F.

3. Second order in spin-orbit coupling

Similarly, we obtain from Eq. (45¢) to the lowest order in
the quasiclassical approximation the self-energy to the second
order in the spin-orbit coupling strength:

2 9
y iy°p r
Gso(PF) = — > F<mf30€ (P xq)
x §(q)Ta - (p x @)> ) (E6)
F

where we again omitted R and €. This self-energy contribution
describes spin-orbit-induced spin relaxation.

4. Skew scattering

We include skew scattering to the lowest order in the
gradient approximation. Inserting Eqgs. (7) and (8) into the
skew-scattering contribution to the self—energy (45d) provides

]/I’l

DINOE

(2nh)* (2 h)3 u(gu(—q —q")

x [(£3& x q) - (D(r)G(1,2))G(2,1)
+ Go(1,2)(138 x q') - (D(r2)Ge(2,1)))

+ Ge(1,20(G2,1)D'(r1)) - (£3& x (q + g"))],
(E7)

where we performed a partial integration in the Dyson equation
in the last term and D’(ry) acts to the left. We rewrite the
Green’s functions in terms of their respective center-of-mass
and relative coordinates and, for example, use

r1+r2
2

. r,—r
=GC<R+ 2 1

G.(1,2) = Gc( I — T2t — fz)

5 L r/2—(r;— R).1 —l2>-

We also disregard the correction to the center-of-mass
coordinate R = (r; + r)/2 to the lowest order in the gradient
approximation, such that

Gc(1,2) ~ Go(R,r /2 — (r; — R),t; — 1),
G2, 1)~ G(R,r/2+ (r; — R),ty — 7).

After inserting the Wigner coordinates and Fourier transform-
ing Eq. (E7), we have

u(@u(—q — ¢u(g) f dr 'Prh / drs e/ TR D25 5 g)

(DR +71/2)G(R.R+71/2—r2,6)Ge(R,ry — R+71/2,6) + G(R,R +1/2 — ry,€)(13& x q') - (D(r2)

G(R,ro—R+7r/2,6)+G(R,R+7r/2—r2,6)(G(R,r»—R+71/2)D'(R —r/2,¢)) -

[B3@ x (g + ¢,
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where we used that, in a stationary case, the convolution with respect to the time variables reduces to a simple product

/ dte' / dty Ge(t; — )Gtz — t1) = Ge(€)Ge(e).

Next, we introduce new variables according to
r=x-+y,
and, consequently, we obtain

. yn dq dq’
Yk(R,p,e) =——
s Bp.€) === | s | Gany

x_
1‘2—R= b4

ar,rz)
dx.y)

2 ’

u(q)u(—q — q"u(q’) / dx e'P=0x/n / dy e P17 (236 % q) - (3, Ge(R,x,€))

x Ge(R,y,€) + Go(R,x,6)t3(& x q') - (—3x + 8,)Gc(R,y,€)) — Go(R,x,6)(3,G(R,y,€)) - [T3& x (g +¢)]],

where we only retained the lowest-order terms in the quasiclassical approximation, which reduced the covariant derivative to

normal derivatives.
Performing out the partial integration provides

. d dq' ,
Yu(p) =i% ﬁ (2;2)3 u(p — quqg —q"Hu(q" — p)
x (5@ - (p x )G(q)Ge(q) + Ge(@)t38 - (q x ))Ge(g) — Ge(q)Ge(g) 38 - (p x q')), (E8)

where we omitted the arguments R and € for brevity. Equation (E8) is in agreement with recent results [43] that are valid for a
normal metal only. Our treatment is a generalization to include skew scattering in the superconducting state. In the quasiclassical
approximation, the skew-scattering contribution to the self-energy is

Ss(PF) = —i);pF< :
s 2 \w(p.q.9)
where
1
——— =27"nNju(p — q)u(qg — q"u(qg' — p)
(P.q.q")

is the skew-scattering rate. Note that the skew-scattering rate
1/t is a factor on the order of 1/(Nyu) smaller than the elastic
scattering rate 1/7.

APPENDIX F: SIDE-JUMP MECHANISM

The derivation of the side-jump contribution to the spin
Hall effect is a subtle issue [18,44—47] because there are
three [48] contributions to this effect, and one or two of
these continue to be overlooked in many works: (i) A
contribution arises from the self-energy to the first order in
the spin-orbit interaction of Eq. (50c). This contribution only
appears beyond the lowest-order gradient approximation and is
therefore often disregarded. However, within the quasiclassical
approximation, it is of the same order as the other spin-orbit-
induced self-energy contributions of Eq. (50) and must be
included. It enters in the first term of the matrix current (61)
via the correction to the anisotropic Green’s function due
to the side-jump self-energy (54b). (ii) Additionally, there is
an anomalous current contribution (Fla) from the spin-orbit-
induced correction to the velocity operator. (iii) Finally, the
spin-orbit coupling is expressed in an effective model with a
renormalized coupling strength that is typically much larger
than the vacuum value. In this effective theory, the position
operator also acquires an additional spin-dependent and
velocity-dependent contribution, the so-called Yafet shift of
the position (10). This leads to another anomalous contribution
to the velocity operator (F1b) and to the matrix current (61).

(B - (p x PE@E) + g(@Ha - (q x §H8(q) — §(@)g(gHt:é - (P x @’))> :

F

(

Here, we will discuss these anomalous current contributions
to the side-jump mechanism and compare them to the contri-
bution from the side-jump self-energy obtained previously.

1. Anomalous contributions to the matrix current

The shift in the position operator (9) leads to a shift in the
velocity operator

b =PFer =1 + Fyo.

The velocity operator is calculated from the Heisenberg
equation of motion in terms of the Hamiltonian of Eq. (2) and
acquires two spin-dependent corrections as a consequence of
spin-orbit coupling. The first emerges from

F=—ilr ] =v— StA0) + 20
m

S0 ?

where
ﬁg(l)) = _i[rsto]f =VY Z(%‘Q x Vu(r —r;)). (Fla)

The second correction 92 = , arises from the Yafet shift

of the position operator (10) and is, to the first order in the
spin-orbit coupling strength,

0@ = —ilf0.U. =y Y (838 x Vu(r —r).  (Flb)

Note that #{)) and 92 are identical, giving rise to an overall
factor of 2. In total, the velocity operator is thus given by

D) = —L 8, + Dulr). (F2)
m
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Note that the spin-current density in this definition is not
conserved in the presence of magnetic impurities or spin-orbit
coupling.

As discussed in Sec. IV, the velocity operator (F2) acquires
the two spin-dependent corrections of Eq. (F1) as a conse-
quence of the spin-orbit coupling, giving rise to the overall
anomalous velocity contribution

Do(r) =2y (& x Vu(r —r;)). (F3)

This anomalous contribution to the matrix current defined in
Eq. (61) reads as

v llm(vqo(rz)GK(l 1)+ G 1bgo(r 1)),

2Ny 1

(F4)
The challenge in evaluating this expression is computing
the impurity average. While the conventional velocity operator
is independent of the impurity configuration, the anomalous
contribution explicitly depends on the impurities and we need
to evaluate (f)SOGK)C and (GKf)SO)C. This can be achieved by
following the procedure in Ref. [49]: from the Dyson equation,
it follows that (UG)e = X G. and (GUiop)e = G 3, where

¥ is the self-energy. Consequently,

Jsoll) =

(Do (r NGK (1, 1)) = /d2 (£Y1.2G.2.1)", (Fsa)

(GK (1,1 (r1))e = / d2 (G122 @.1))%, (Fsb)

where, within the self-consistent Born approximation to the
first order in the spin-orbit coupling [see Fig. 3(a)],

00,1y = 2yn/dr[ (& x Vu(r; —r;))

x Ge(1,1u(ry —ry), (F5c)
£00.1) =2yn / driu(r; —r)Ge(1,1')
x (£3& x Vu(ry —r;)). (F5d)
In the mixed representation, we have
«() . dq .
X (R,p.e) = Zlyn/ @y lu(p — @)1 138
x (p — @)G(R.q.¢), (F6a)
) . dq 2
X, (R,pe)= —211/71/ ) lu(p — q)l
x G(R,q.€)t3& x (p —¢q),  (F6b)
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and in the quasiclassical approximation, we obtain

&3 (pr) =

YPE 06 % €,)(3, — (e, - ). (FTa)

Tir

Y PF

¢8(pr) = (3 — (e, - B))(B3& x e,), (FTb)

tr
where we used the expansion g(R,qg.€) ~ gi(R,e)+ e, -
g(R,¢) and performed the angular average over q. We also
omitted R and € for brevity.
Using Eq. (F5), the anomalous contribution to the impurity-
averaged matrix current (F4) in the Fourier representation is

47TN0/ /(2 )}

+Ge(R.p.OL] (R.p.)~ (F8)

(Gao)e(R) = (8, (R.p.)Ge(R. p.e)

to the lowest order in the gradient approximation. In the
quasiclassical approximation, this becomes

1
(Jeo)e(R) = 7 / (6 (R.p.e)3(R.p.€)

+ER,p.FY (R p.)" ). (F9)

d
where (... ) = 4%” ... denotes an angular average over all

momentum directions at the Fermi surface. We can now use
the expansion of the Green’s functions in spherical harmonics,
Egs. (48) and (49); insert the results of Eq. (F7); and perform
the angular average. Note that, in general, an additional
term emerges when computing Eq. (F7). However, this term
vanishes when the angular average is performed on Eq. (F9)
and is consequently of no interest. With this, we finally obtain
the anomalous correction to the matrix current in Eq. (61).

2. Contributions to the spin Hall effect

As mentioned, the origins of the side-jump mechanism are
threefold [48]. An additional self-energy contribution (50c)
emerges when evaluating the self-energy to the first order in the
spin-orbit interaction strength (45b) to next-to-leading order in
the gradient approximation. This self-energy contributes to the
spin Hall effect in Eq. (16) with a term proportional to ym /1.
Additionally, the current acquires the two spin-dependent
corrections of Eq. (F1). These anomalous corrections con-
tribute with a term proportional to ym /7, each. In total, the

side-jump contribution to the spin Hall effect is thus given by

Xs(;-;) = 3ym/ 1.
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