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Abstract—The paper presents the derivation of a port-
Hamiltonian model of a steady-state time-invariant av-
eraged modular multilevel converter (MMC). The MMC
can not be expressed in a straightforward way in a port-
Hamiltonian framework due to the lack of skew-symmetry
of its interconnection matrices. This work proposes a
change of variable and a new per unit notation to overcome
this limitation.
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I. INTRODUCTION

The main objective of this paper is to derive a
mathematical representation of the Modular Multilevel
Converter (MMC) using the generalized Hamiltonian
formalism as presented in [1] and [2], following the
procedure of application to power electronic convert-
ers presented in [3]. The port-Hamiltonian modelling
approach is considered a control paradigm, combining
the two following main approaches [4]. First, a port-
based modelling approach build upon power preserving
interconnections (as opposed to more traditional input-
output signal processing viewpoint). Second, a Hamilto-
nian formulation, that emphasizes the geometry of the
state space and the Hamiltonian function (total stored
energy) as basic concepts for modelling multi-physics
systems. From a control perspective, it provides a natural
starting point, especially in the nonlinear case where it is
widely recognized that physical properties of the system
(such as balance and conservation laws and energy con-
siderations) should be exploited and/or respected in the
control design [5]. An almost straightforward application
of the MMC converter in a port-Hamiltonian framework
would be to use the Passivity property [6] to design
globally asymptotically stable controllers. In particular,
the passivity-based technique presented in [7] for a two-
level Voltage Source Converter (2L-VSC) stands out, as
it is based on a simple PI controller widely accepted
by practitioners. Nonetheless, the application of such

theory requires a port-Hamiltonian formulation which is
steady-state time-invariant (SSTI) as opposed to time-
periodic (SSTP). Therefore, the starting point adopted
in this work is not the averaged model of the MMC
converter in its natural time-periodic phase coordinates,
but the equivalent SSTI averaged formulation, recently
presented in [8].

This paper is organized as follows: First, a brief
review on MMC models suited for the intended ap-
plication is given in section II. Second, an attempt to
directly formulate the SSTI model of [8] using the port-
Hamiltonian formalism is presented in section III, and its
limitations are highlighted. Third, a mathematical refor-
mulation of the model of [8] is presented in section IV
such that the previous limitations are avoided, resulting
in a port-Hamiltonian model for the MMC. Fourth, the
port-Hamiltonian representation of the MMC based on
the reformulated SSTI model is validated in section V
using time-domain simulations with respect to reference
models. Finally, conclusions are drawn in section VI.

II. ON THE MODELLING OF MODULAR MULTILEVEL

CONVERTERS

A. Generalities of the detailed model

The MMC topology under consideration is repre-
sented in full-detail in Fig. 1. The converter is formed by
three upper arms and three lower arms. In turn, an arm is
formed by an arm inductor (represented by its inductance
Lσ and resistance Rσ) connected in series with N series-
connected sub-modules (SMs) in half bridge configura-
tion, each formed by two IGBTs and their respective free
wheeling diode, as well as one capacitor with equivalent
capacitance C. In addition, three filter inductors with
equivalent inductance Lf and resistance Rf are used to
interface the output of the MMC of each phase with the
ac voltage at the point of interconnection vGk , where the
subscript k indicates a generic phase; i.e., k ∈ (abc).
Furthermore, iUk and iLk are the currents in the upper
and lower arms, respectively, whereas i∆k , referred to as



the grid current, is the current flowing through the filter
inductor towards the ac grid. Finally, the dc side of the
converter under study will be simply represented by a
stiff dc source at a constant voltage vdc, and a dc current
idc flowing form the source to the converter.

B. Continuous MMC model with oscillatory state and
control variables in steady-state operation

A simplified modelling approach for the MMC useful
for control design and system analysis is shown in the
lower right part of Fig. (1). This modelling approach,
here referred to as the Arm Averaged Model (AAM),
is represented by a controlled voltage source (instead
of the series connected SMs) and by an equivalent
arm capacitance Cσ = C/N , representing the internal
arm voltage dynamics [9], [10], [11]. This simplification
does not consider the switching dynamics of the IGBTs
nor the dynamics of the sub-module capacitor voltage
balancing algorithm, but instead is based on the averaged
continuous behaviour of the arm, and still preserves
relevant non-linearities of the MMC.

The AAM representation includes explicit represen-
tation of the currents and voltages associated with each
phase and each arm of the MMC. These variables are
time-periodic in steady state operation, with frequency
components defined by the grid frequency and its integer
multiples [12], [13], [9]. Thus, the AAM representation
of the MMC is referred to in this paper as a Steady-
State Time-Periodic (SSTP) model. Although the AAM
representation of MMCs is very useful for analysis
and simulation, this model in its current form is not
directly suited for Port-Hamiltonian modelling which
requires a uniquely defined equilibrium point for each
operating condition, which corresponds to all state vari-
ables settling to constant values in steady-state; i.e., a
Steady-State Time-Invariant (SSTI) model. For this rea-
son, dynamic state-space models of three-phase electrical
systems, including electrical machines and conventional
VSCs are commonly represented in a Synchronously Ro-
tating Reference Frame by applying Park’s transforma-
tion [14], [15]. However, the arm currents and aggregated
arm voltages of an MMC can contain multiple frequency
components during regular steady-state operation [13],
[9]. This intrinsic characteristic of the MMC topology
prevent explicit modelling of all relevant dynamics by
directly transforming the arm currents and arm voltages
into a single SRRF. Thus, structure-preserving state-
space modelling of MMC dynamics is a challenge that
has only been recently addressed.
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Fig. 1. MMC Topology and AAM for the lower arm (phase C)

C. Continuous MMC model with constant state and
control variables in steady-state operation

Modelling approaches able to represent the dynam-
ics the MMC with constant state and control variables
in steady-state have recently begun to appear in the
literature such as [16], [17], [18], [19], [8]. However,
most of these models were aimed at obtaining a SSTI
MMC model in order to further linearize it around a
well defined equilibrium point, such that small-signal
stability analysis could be performed by means of tra-
ditional eigenvalue methods [20] common in the power
system community. As consequence, the methods used
to obtained the SSTI models proposed in [16], [17], [19]
are based on linear harmonic superposition, correspond-
ing to phasor-based modelling, which could affect the
information about the non-linear characteristics of the
MMC, and correspondingly limit the applicability of the
models in non-linear techniques for control and analysis.
A similar approximation was also made when separately
modelling the fundamental frequency and second har-
monic frequency dynamics of the the upper and lower
arm capacitor voltages in [18]. However, for the model
presented in [8], the harmonic superposition was avoided
by reformulating the MMC model by representing the
internal capacitor voltages and the insertion indexes of
the MMC as the sum and difference of the variables cor-
responding to the upper and lower arms. This approach
ensured frequency separation as part of the initial model
description, and allowed for transforming all variables
into their associated SRRFs without assuming harmonic
superposition, resulting in a structure-preserving SSTI
model.

Based on the above discussion, the present work is



based on the structure-preserving SSTI MMC model
proposed in [8], as it seems to be the most suited model
for the Port-Hamiltonian viewpoint. Indeed, the reader
is referred to [8] for the complete mathematical proof
and validation of this model. However, some of the key
features of its derivation are enumerated in the following
for convenience.

1) AAM dynamics in Σ-∆ representation: The AAM
dynamics, used as a starting point for the derivation of
the SSTI model under consideration, can be re-written
using a Σ-∆ variable change, representing the sum and
difference of the state and control variables correspond-
ing to the upper and lower arms of the converter. This
results in the state-space system for a generic phase k in
(1), where (1a) represents the dynamics of the voltage
sum betwen the arms vΣ

Ck = vUCk + vLCk, while (1b) the
dynamics of the voltage difference v∆

Ck = vUCk − vLCk
between them. In addition, (1c) models the dynamic of
the circulating current iΣk = (iUk + iLk )/2, whereas (1d)
represents the dynamics of the grid current i∆k = iUk −iLk .
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Moreover, the control variables are represented by mΣ
k =

mU
k +mL

k and m∆
k = mU

k −mL
k , where mU

k and mL
k are

respectively the upper and lower arms insertion indexes.
Finally, an equivalent ac inductance and resistance are
conveniently defined as Lδ = Lσ/2 + Lf and Rδ =
Rσ/2 +Rf .

2) State variable frequency classification: A fre-
quency analysis can be performed by briefly assuming
that mU

k is phase-shifted approximately 180° with respect
to mL

k , resulting in mΣ
k ≈ 1 and m∆

k ≈ m̂cos (ωt). By
inspecting the right-side of (1a), and further assuming
a grid current i∆k oscillating at ω, it can be seen that
in steady-state, the first product m∆

k i
∆
k /2 consists on

a product of two sinusoidal signals oscillating at ω
resulting in a 2ω sinusoidal signal plus an offset. In
addition, the second product mΣ

k i
Σ
k gives a DC value in

the case CCSC presented in [21] is used or a 2ω signal
otherwise, resulting for both cases in 2ω oscillations for
vΣ
Ck, in addition to a dc component. Similarly for v∆

Ck, the
first product on the right-side of (1b) mΣ

k i
∆
k /2 oscillates

at ω, while the second product m∆
k i

Σ
k oscillates at ω

in the case the CCSC is used or will result in a signal

TABLE I. MMC VARIABLES IN Σ-∆ REPRESENTATION

Variables oscillating at ω Variables oscillating at −2ω

i∆k = iUk − i
L
k iΣk = (iUk + iLk )/2

v∆
Ck = (−vUCk + vLCk) vΣ

Ck = (vUCk + vLCk)

m∆
k = mUk −m

L
k mΣ

k = mUk +mLk

oscillating at ω superimposed to one at 3ω otherwise.
Finally, notice that a similar analysis can be made for
the current dynamics. This leads to an initial frequency
classification of the state and control variables of the
converter based on their steady-state dynamic oscilla-
tions, as summarized in table I. Furthermore, notice that
this table does not include the dc components or the
third harmonic oscillation information, as both of these
frequencies are later conveniently extracted by means of
the zero-sequence of each variable.

3) Application of Park’s transformations at different
frequencies: Based on this initial classification; i.e., Σ-
state and control variables oscillate mainly at 2ω whereas
∆ variables oscillate at ω, the strategy depicted in Fig.
2 is implemented. More precisely, Park’s transformation
P−2ω at 2ω is applied to all the Σ vector variables vΣ

Cabc,
iΣabc and mΣ

abc. Conversely, Park’s transformation Pω at
ω is applied to the ∆ vector variables v∆

Cabc, i∆abc and
m∆

abc. Furthermore, since the zero-sequence v∆
Cz is still

SSTP at 3ω, a virtual signal is created shifted 90° with
respect to the original one as indicated in Fig. 2, such
that an additional Park transformation P3ω at 3ω can be
used to transform the SSTP vector

[
v∆
Cz, v

∆90°
Cz

]> into

the SSTI one
[
v∆
CZd

, v∆
CZq

]>
.

By further replacing all the definitions given in Fig. 2
in the three phase equivalent dynamic equations given in
(1), the structure-preserving SSTI model proposed in [8]
is obtained. The resulting model is also recalled in the
next section, although directly from a Port-Hamiltonian
viewpoint.

III. PORT-HAMILTONIAN MODELLING LIMITATIONS

OF THE SSTI MODEL OF THE MMC

A. Port-Hamiltonian modelling

The state-space equations of certain dynamical sys-
tems can be represented by means of the port-
Hamiltonian formalism, as follows:

ẋ =

(
J0 +

m∑
i=1

Jiui −R
)
∇H (x) +E (2)

where x ∈ <n is the state vector, and u ∈ <m denotes
the control vector. Furthermore, R = R> ≥ 0 is the
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Fig. 2. The proposed modelling approach based on three Park
transformations to achieve SSTI control and state variables

dissipation matrix whereas J0 = J>0 and Ji = −J>i are
the power preserving skew-symmetric interconnection

matrices of the system. Moreover, the operator∇ =
∂

∂x
,

is acting on the energy H(x) stored in the system, which
is defined as

H (x) =
1

2
x>Qx, (3)

where Q = Q> > 0 is a symmetrical matrix with the
energy storing element parameters. Finally, the vector E
contains the external sources of the system.

B. Limitations of the SSTI MMC model for port-
Hamiltonian representation

A first attempt to represent the state-space equations
of the SSTI MMC model proposed in [8] under the
mathematical formalism given in (2) is here presented.

The first step is to define the state vector x of this
model. Following the methodology presented in [3], it
is convenient to define the state vector in terms of
charges q and fluxes φ, instead of the commonly utilized
voltages v and currents i. The relationship between both
representations is straightforward since q = Cv and
φ = Li where C and L are respectively a general
capacitance and inductance. Therefore, the state vector
x of the MMC is represented as in (4), where the SSTI
vectors qΣ

Cdqz, q∆
CdqZ , φΣ

dqz and φ∆
dq defined in (5a)

can be easily expressed as a function of the respective
SSTI vectors vΣ

Cdqz, v∆
CdqZ , iΣdqz and i∆dq used in [8]

and recalled in (5b), as indicated by the second equality

in (4).

x =


qΣ
Cdqz

q∆
CdqZ

φΣ
dqz

φ∆
dq

 =


Cσv

Σ
Cdqz

Cσq
∆
CdqZ

Lσi
Σ
dqz

Lδi
∆
dq

 (4)

qΣ
Cdqz =

[
qΣ
Cd qΣ

Cq qΣ
Cz

]>
,

φΣ
dqz =

[
φΣ
d φΣ

q φΣ
z

]>
,

q∆
CdqZ =

[
q∆
Cd q∆

Cq q∆
CZd

q∆
CZq

]>
,
φ∆
dq =

[
φ∆
d φ∆

q

]>
,

(5a)

vΣ
Cdqz =

[
vΣ
Cd vΣ

Cq vΣ
Cz

]>
,

iΣdqz =
[
iΣd iΣq iΣz

]>
,

v∆
CdqZ =

[
v∆
Cd v∆

Cq v∆
CZd

v∆
CZq

]>
,
i∆dq =

[
i∆d i∆q

]>
,

(5b)

The control vector u = [u1, . . . , um]> in (2) is in
turn represented by the five SSTI modulation indexes of
the SSTI MMC model of [8] as suggested in (6a), where
mΣ

dqz and m∆
dq are defined as in (6b).

u =

[
mΣ

dqz

m∆
dq

]
(6a)

mΣ
dqz =

[
mΣ
d mΣ

q mΣ
z

]>
,
m∆

dq =
[
m∆
d m∆

q

]> (6b)

Furthermore, the total stored energy in the system
under consideration; or what is the same, the Hamiltonian
function H(x), needs to be identified for the SSTI MMC
model using the formalism given in (3). For the system
under consideration, the energy storing devices are the
MMC inductances and capacitances. More precisely,
seven capacitances with a value of Cσ; i.e., one associ-
ated to each of the sum and difference voltages defined
in (5b), three inductances with value Lσ associated to
the circulating current vector, as well as two additional
inductances with value Lδ associated to the grid current
vector, both defined in (5b) as well. Taking into account
that the Hamiltonian function for a generic system with
one capacitance C and one inductance L can be defined
as 1

2(Cv2 +Li2), and that it can be further expressed as
1
2(C−1q2 + L−1φ2) using the charges-voltages and flux-
current relationships, the Hamiltonian function for the
system under study can therefore be expressed as in (3),
where x are the charges and fluxes of the SSTI MMC
previously defined in (4), and Q is the 12× 12 diagonal
matrix given in (7).

Q = diag(C−1
σ , . . . , C−1

σ︸ ︷︷ ︸
1×7

, L−1
σ , . . . , L−1

σ︸ ︷︷ ︸
1×3

, L−1
δ , L−1

δ︸ ︷︷ ︸
1×2

)

(7)



As can be seen from (2), it is necessary to further
determine the gradient of the Hamiltonian function; i.e.,
∇H(x), where ∇ is the operator represented by ∂/∂x.
Hence, by differentiating the Hamiltonian function with
respect to all the states, the vector ∇H(x) can be
expressed as in (8). Notice that this gives a vector
containing all the voltages and currents of the system,
as suggested by the second equality of this equation.

∇H (x) =

[
qΣ>
Cdqz

Cσ

q∆>
CdqZ

Cσ

φΣ>
dqz

Lσ

φ∆>
dq

Lδ

]>
(8)

=
[
vΣ>
Cdqz v∆>

CdqZ iΣ>
dqz i∆>

dq

]>
Having identified the gradient of the Hamiltonian as

the vector of voltages and currents of the system under
consideration, the vector E can be easily identified from
the SSTI MMC model of [8] as it represents all of the
elements that are not being multiplied by ∇H(x). This
leaves only the ac and dc sources (vGdq and vdc) of the
converter, as expressed in (9).

E =
[
01×9

1
2vdc −vGd −vGq

]>
(9)

Conversely, the rest of the system, represented by the
matrix (J0 +

∑m
i=1 Jiui −R), can be easily identified

from [8], as it the part of the dynamics that is being
multiplied by ∇H(x). Before assessing each of the
individual elements (R, J0 and Ji) the full matrix is
given in (10) for convenience.

It is possible to easily extract from (10) the dissipation
matrix R as in (11), from where it can be seen that the
dissipation elements are only associated to the currents
of the system, and that as expected R = R>.

R =



07×7 07×5

05×7

Rσ 0 0 0 0
0 Rσ 0 0 0
0 0 Rσ 0 0
0 0 0 Rδ 0
0 0 0 0 Rδ

 (11)

Moreover, the interconnection matrix J0 of the port-
Hamiltonian modelling formalism can be extracted from
(10), by identifying the non-resistive elements that are
being multiplied by the voltage and current variables,
without any participation from the control vector u, as
suggested in (2). From this procedure, J0 is identified as
the block diagonal 12 × 12 matrix associated to all the
cross-coupling terms of the SSTI MMC model dynamics,
as given in (12a), where JC0 is the upper block diagonal
sub-matrix given in (12b) corresponding to the capacitor

elements, whereas JL0 is the lower sub-matrix given in
(12c) which corresponds to the inductive elements.

J0 =

[
JC0 07×5

05×7 JL0

]
12×12

(12a)

JC0 = ω



0 2Cσ 0 0 0 0 0
−2Cσ 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 Cσ 0 0
0 0 0 −Cσ 0 0 0
0 0 0 0 0 0 3Cσ
0 0 0 0 0 −3Cσ 0


(12b)

JL0 = ω


0 2Lσ 0 0 0

−2Lσ 0 0 0 0
0 0 0 0 0
0 0 0 0 Lδ
0 0 0 −Lδ 0

 (12c)

Notice that J0 is skew-symmetric as required by the port-
Hamiltonian modelling formalism, since J0 = −J>0 ; or
equivalently, JC0 = −JC>0 and JL0 = −JL>0 .

Similarly, all the interconnection matrices Ji can be
extracted from (10). Notice that there are five of these
matrices, as there is one matrix for each of the m = 5
control variables defined in (16) and (6b). Furthermore,
by simple inspection of (10), it is possible to see that
all of the five Ji matrices have the structure represented
by (13a), as no control variables appear in the block
diagonal part of (10).

Ji =

[
07×7 JCi

JLi 05×5

]
, for i = 1 . . .m. (13a)

Notice that skew-symmetry is achieved if Ji = −J>i .
Furthermore, since the negative transpose matrix −J>i
can be defined as in (13b), it can be concluded by
equalizing (13a) with (13b) that Ji is skew-symmetric;
i.e., Ji = −J>i if the internal sub-matrices of Ji comply
with JCi = −JL>i .

−J>i =

[
07×7 −JLi
−JCi 05×5

]
, for i = 1 . . .m. (13b)

For the case i = 1, the interconnection matrix associated
to first control variable u1 = mΣ

d is extracted from (10),
resulting in the two sub-matrices given in (14a).

JC
1︷ ︸︸ ︷

0 0 1 0 0
0 0 0 0 0
1
2 0 0 0 0
0 0 0 1

4 0
0 0 0 0 −1

4
0 0 0 1

4 0
0 0 0 0 1

4


;

JL
1︷ ︸︸ ︷

0 0 −1
4 0 0 0 0

0 0 0 0 0 0 0
−1

8 0 0 0 0 0 0
0 0 0 −1

8 0 −1
8 0

0 0 0 0 1
8 0 −1

8

 (14a)
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It can be seen that JC1 6= −JL>1 , or similarly that
J1 6= −J>1 . In addition, it is possible to observe as well
that they are not skew-symmetric due to the different
values of the gains in both sub-matrices, despite having
the desired signs. Moreover, identical observations can be
made for the rest of the control related interconnection
(sub-)matrices J2, J3, J4, and J5, which are respectively
associated to u2 = mΣ

q , u3 = mΣ
z , u4 = m∆

d and
u5 = m∆

q , given in (14b), (14c), (14d) and (14e), re-
spectively. Therefore, it can be concluded that none of the
five control-related interconnection matrices Ji are skew-
symmetric. Since skew-symmetry of these matrices is a
requirement for a port-Hamiltonian representation, the
SSTI MMC model of [8] is not directly suited for such

formalism without additional mathematical manipulation.

JC
2︷ ︸︸ ︷

0 0 0 0 0
0 0 1 0 0
0 1

2 0 0 0
0 0 0 0 1

4
0 0 0 1

4 0
0 0 0 0 −1

4
0 0 0 1

4 0



JL
2︷ ︸︸ ︷

0 0 0 0 0 0 0
0 0 −1

4 0 0 0 0
0 −1

8 0 0 0 0 0
0 0 0 0 −1

8 0 −1
8

0 0 0 −1
8 0 1

8 0

 (14b)

JC
3︷ ︸︸ ︷

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1

2 0
0 0 0 0 1

2
0 0 0 0 0
0 0 0 0 0



JL
3︷ ︸︸ ︷

−1
4 0 0 0 0 0 0
0 −1

4 0 0 0 0 0
0 0 −1

4 0 0 0 0
0 0 0 −1

4 0 0 0
0 0 0 0 −1

4 0 0

 (14c)



JC
4︷ ︸︸ ︷

0 0 0 1
4 0

0 0 0 0 1
4

0 0 0 1
4 0

1
2 0 1 0 0
0 1

2 0 0 0
1
2 0 0 0 0
0 1

2 0 0 0



JL
4︷ ︸︸ ︷

0 0 0 −1
8 0 −1

8 0
0 0 0 0 −1

8 0 −1
8

0 0 0 −1
8 0 0 0

−1
8 0 −1

4 0 0 0 0
0 −1

8 0 0 0 0 0

 (14d)

JC
5︷ ︸︸ ︷

0 0 0 0 −1
4

0 0 0 1
4 0

0 0 0 0 1
4

0 1
2 0 0 0

−1
2 0 1 0 0
0 −1

2 0 0 0
1
2 0 0 0 0



JL
5︷ ︸︸ ︷

0 0 0 0 1
8 0 −1

8
0 0 0 −1

8 0 1
8 0

0 0 0 0 −1
8 0 0

0 −1
8 0 0 0 0 0

1
8 0 −1

4 0 0 0 0

 (14e)

IV. PROPOSED MATHEMATICAL MANIPULATIONS

FOR PORT-HAMILTONIAN MMC MODELLING WITH

SKEW-SYMMETRIC MATRICES

A. Pattern identifications and proposed modifications

In order to overcome the obstacle introduced by
the lack of skew-symmetry of the control-related inter-
connection matrices J0 for expressing the SSTI MMC
model in a port-Hamiltonian framework, the following
methodology is proposed.

1) Change of variables associated to the zero-
sequence: The proposed change consists on defining
new zero-sequence related control and state variables
m̂Σ
z = 2mΣ

z , îΣz = 2iΣz and v̂Σ
Cz = 2vΣ

Cz .

This change of variables will modify the structure of
(10) by adding an additional gain of 1

2 to any component
that was previously being multiplied by any of the
original zero-sequence variables. This change will result
in a matrix where the 1

4 gains associated to the grid
currents i∆dq corresponding to the eleventh and twelfth
column of the upper-right sub-matrix of (10), will be
half of the gain associated to the circulating current 1

2 ,
found in the eighth, ninth and tenth column of the upper-
right sub-matrix of (10). Notice that the only exception
of the above described effect occurs when two zero
sequence variables multiply each other, as is the case for
the element on the third row and tenth column of (10),
as the new insertion index m̂Σ

z will be multiplying the
new definition of the zero-sequence circulating current
îΣz .

Moreover, this same change of variables will make
the gain 1

8 common to all the elements of the lower-
left sub-matrix of (10). Notice that the here too, one
exception can be found which is also caused when two

zero sequence variables multiply each other, as is the
case of the element in the tenth row and third column of
(10), where the new insertion index m̂Σ

z is multiplying
the new definition of the zero-sequence voltage sum v̂Σ

Cz .

2) Change of variables associated to the system
parameters: This second change of variable aims at
simplifying the resulting gains, and consists of conve-
niently redefining the system capacitances, inductances
and resistances. More precisely, it is proposed to use
Ĉσ = 2Cσ, Ĉσz = Cσ, L̂σ = 8Lσ, R̂σ = 8Rσ,
L̂σz = 4Lσ, R̂σz = 4Rσ, L̂δ = 8Lδ and L̂δ = Rδ.
Notice that the parameters Ĉσz , L̂σz and R̂σz , which
are those associated to the zero-sequence dynamics, are
different from their counterparts.

3) Per unit system definition: Finally, a per unit
system is adopted with the aim of normalizing all of
the gains. This is particularly useful to address the issue
of the grid currents having half the gain values of the
circulating current, as consequence of the first variable
change proposed. This is done by properly selecting the
the base of the apparent power as SB = 3VB · I∆B =
VBdc · IBdc, where VB and I∆B are the ac-side base
voltage and current base values and VBdc and IBdc are
their dc-side counterparts. By further defining VBdc as
2VB and the circulating current base IΣB as 1

3IBdc, it is
possible to obtain the expression of IΣB as a function of
I∆B as: IΣB = 1

2I∆B . By using this last relationship,
it is possible to normalize most of the terms in the
upper-right side of (10), by using iΣpu

dqz = iΣdqz/IΣB ,
and i

∆pu
dq = i∆dq/I∆B . Similarly, a voltage sum base

VΣB defined as 4VB can be used to normalize the
voltages as vΣpu

Cdq = vΣ
Cdq/VΣB , v̂Σpu

Cz = v̂Σ
Cz/VΣB and

v
∆pu
Cdq = v∆

Cdq/VΣB .

In addition, since VΣB = 4VB = 4ZBI∆B =
8ZBIΣB = ZΣBIΣB = ωb8LBIΣB = ωbLΣBIΣB , it is
also possible to define R̂pu

σ = R̂σ/ZΣB , L̂pu
σ = L̂σ/LΣB ,

R̂σz/ZΣB and L̂pu
σz = L̂σ/LΣB . Finally, given that IΣB =

I∆B/2 = VBωbCB/2 = VΣBωbCb/8 = VΣBωbCΣB ,
the capacitors can be defined using per unit notation as
Ĉ

pu
σ = Ĉσ/CΣB and Ĉpu

σz = Ĉσz/CΣB .

B. Port-Hamiltonian modelling with the proposed
changes

Applying the proposed changes leads to a new port-
Hamiltonian representation which is presented in this
section. However, due to the implementation of the
proposed variable changes, it is necessary to redefine the
elements in (2). First, the new state variable vector x is
given in (15), where the new per unit expressions of the
charges and fluxes are defined based on the new per unit



expressions of the voltages, currents and their associated
parameters.

x =



qΣpu
Cdq

q̂
Σpu
Cz

q
∆pu
CdqZ

φ
Σpu
dq

φ̂
Σpu
z

φ
∆pu
dq


=



Ĉpu
σ v

Σpu
Cdq

Ĉ
pu
σz v̂

Σpu
Cz

Ĉ
pu
σ v

∆pu
CdqZ

L̂
pu
σ i

Σpu
dq

L̂
pu
σz î

Σpu
z

L̂
pu
δ i

∆pu
dq


(15)

In addition, the control vector u is now expressed as:

u =
[
mΣ>

dq m̂Σ
z m∆>

dq

]>
(16)

The energy stored in the system; or what is the same,
the Hamiltonian function has still the structure given in
(3) yet with x defined as in (15) and Q as in (17a), with
QC and QL the upper and lower diagonal sub-matrices
respectively defined in (17b) and (17c).

Q =

 QC
7×7 07×5

05×7 QL
5×5

 (17a)

QC = diag(Ĉpu−1
σ , Ĉpu−1

σ , Ĉpu−1
σz , Ĉpu−1

σ , ..., Ĉpu−1
σ︸ ︷︷ ︸

1×4

)

(17b)

QL = diag(L̂pu
σ , L̂

pu
σ , L̂

pu
σz, L̂

pu
δ , L̂

pu
δ ) (17c)

Furthermore, the gradient of the Hamiltonian function
∇H(x) is obtained by taking the partial derivatives of
H(x) with respect to each of the state variables, resulting
in (18). As indicated by the second equality in (18),
∇H(x) represents the voltage and current vectors in
the new per unit representation.

∇H (x) =

[
q

Σpu>
Cdq

Ĉ
pu
σ

q̂
Σpu
Cz

Ĉ
pu
σz

q
∆pu>
CdqZ

Ĉ
pu
σ

φ
Σpu>
dq

L̂
pu
σ

φ̂
Σpu
z

L̂
pu
σz

φ
∆pu>
dq

L̂
pu
δ

]>
=
[
v

Σpu>
Cdq v̂

Σpu
Cz v

∆pu>
CdqZ i

Σpu>
dq î

Σpu
z i

∆pu>
dq

]>
(18)

The vector E representing the sources of the converter
is now defined using per unit representation as in (19),
where vGpu

dq = vGdq/VB and vdc,pu = vdc/VBdc.

E = ωb2
[
01×9 vdc,pu −vGd,pu −vGq,pu

]>
(19)

The matrix that is being multiplied by the gradient of
the Hamiltonian represented by (J0 +

∑m
i=1 Jiui −R)

is given in (20) for the system with the proposed mod-
ifications. From this matrix it is possible to first extract

the dissipation matrix R as given in (21).

R = ωb



07×7 07×5

05×7

R̂
pu
σ 0 0 0 0

0 R̂
pu
σ 0 0 0

0 0 R̂
pu
σz 0 0

0 0 0 R̂pu
δ 0

0 0 0 0 R̂
pu
δ


(21)

Similarly, the interconnection matrix J0 can also be
extracted from (20), yielding in a similar structure as
in (12) yet with the sub-matrices JC0 and JL0 defined as
in (22).

JC0 = ω



0 2Ĉ
pu
σ 0 0 0 0 0

−2Ĉpu
σ 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 Ĉ
pu
σ 0 0

0 0 0 −Ĉpu
σ 0 0 0

0 0 0 0 0 0 3Ĉpu
σ

0 0 0 0 0 −3Ĉpu
σ 0


(22a)

JL0 = ω


0 2L̂

pu
σ 0 0 0

−2L̂pu
σ 0 0 0 0

0 0 0 0 0

0 0 0 0 L̂pu
δ

0 0 0 −L̂pu
δ 0

 (22b)

Notice that here too J0 is skew-symmetric as JC0 =
−JC>0 and JL0 = −JL>0 .

Finally, all the m = 5 control related interconnection
matrices Ji under the proposed variable change are
here extracted from (20). Each of these matrices can be
represented as in (13a), where the internal submatrices
are given in (23). Notice that under the proposed variable
change, JCi = −JLi for i = 1, ..., 5, implying that
skew-symmetry is achieved for all the interconnection
matrices.

JC
1︷ ︸︸ ︷

ωb



0 0 1 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 −1
0 0 0 1 0
0 0 0 0 1

;

JL
1︷ ︸︸ ︷

ωb


0 0 −1 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 −1 0 −1 0
0 0 0 0 1 0 −1

 (23a)



(
J0 +

m∑
i=1

Jiui −R
)

= . . . (20)

ωb



0 Ĉpu
σ 2ωpu 0 0 0 0 0 m̂Σ

z 0 mΣ
d m∆

d −m∆
q

−Ĉpu
σ 2ωpu 0 0 0 0 0 0 0 m̂Σ

z mΣ
q m∆

q m∆
d

0 0 0 0 0 0 0 mΣ
d mΣ

q

m̂Σ
z

2
m∆
d m∆

q

0 0 0 0 Ĉpu
σ ωpu 0 0 m∆

d m∆
q m∆

d mΣ
d +m̂Σ

z mΣ
q

0 0 0 −Ĉpu
σ ωpu 0 0 0 −m∆

q m∆
d m∆

q mΣ
q m̂Σ

z −mΣ
d

0 0 0 0 0 0 Ĉ
pu
σ 3ωpu m∆

d −m∆
q 0 mΣ

d −mΣ
q

0 0 0 0 0 −Ĉpu
σ 3ωpu 0 m∆

q m∆
d 0 mΣ

q mΣ
d

−m̂Σ
z 0 −mΣ

d −m∆
d m∆

q −m∆
d −m∆

q −R̂pu
σ L̂

pu
σ 2ωpu 0 0 0

0 −m̂Σ
z −mΣ

q −m∆
q −m∆

d m∆
q −m∆

d −L̂pu
σ 2ωpu −R̂pu

σ 0 0 0

−mΣ
d −mΣ

q −m̂
Σ
z

2
−m∆

d −m∆
q 0 0 0 0 −R̂pu

σz 0 0

−m∆
d −m∆

q −m∆
d −mΣ

d −m̂Σ
z −mΣ

q −mΣ
d −mΣ

q 0 0 0 −R̂pu
δ L̂

pu
δ ωpu

m∆
q −m∆

d −m∆
q −mΣ

q mΣ
d −m̂Σ

z mΣ
q −mΣ

d 0 0 0 −L̂pu
δ ωpu −R̂pu

δ



JC
2︷ ︸︸ ︷

ωb



0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 0 −1
0 0 0 1 0

;

JL
2︷ ︸︸ ︷

ωb


0 0 0 0 0 0 0
0 0 −1 0 0 0 0
0 −1 0 0 0 0 0
0 0 0 0 −1 0 −1
0 0 0 −1 0 1 0

 (23b)

JC
3︷ ︸︸ ︷

ωb



1 0 0 0 0
0 1 0 0 0
0 0 1/2 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

;

JL
3︷ ︸︸ ︷

ωb


−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 −1/2 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 0 0


(23c)

JC
4︷ ︸︸ ︷

ωb



0 0 0 1 0
0 0 0 0 1
0 0 0 1 0
1 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 1 0 0 0

;

JL
4︷ ︸︸ ︷

ωb


0 0 0 −1 0 −1 0
0 0 0 0 −1 0 −1
0 0 0 −1 0 0 0
−1 0 −1 0 0 0 0
0 −1 0 0 0 0 0

 (23d)

JC
5︷ ︸︸ ︷

ωb



0 0 0 0 −1
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
−1 0 1 0 0
0 −1 0 0 0
1 0 0 0 0

;

JL
5︷ ︸︸ ︷

ωb


0 0 0 0 1 0 −1
0 0 0 −1 0 1 0
0 0 0 0 −1 0 0
0 −1 0 0 0 0 0
1 0 −1 0 0 0 0


(23e)

V. MODEL VALIDATION VIA TIME-DOMAIN

SIMULATIONS

To validate the port-Hamiltonian modelling approach
including the proposed variable changes, results from
time-domain simulation of the following three different
models will be shown and discussed in this section.

1) The port-Hamiltonian SSTI Model: including the
proposed variable changes discussed in section IV and
represented by the equations (15)-(20), considered to be
the main contribution of this paper. Simulations result
obtained with this model are identified in the legend by
a ? symbol as a superscript for each variable.

2) The SSTI MMC model proposed in [8]: used as the
starting point for the derivations of the port-Hamiltonian
representation. This modelling approach was briefly re-
called in section II-C and its derivation is based on Fig.
2. This model will be identified in the legend by “REF ”.



TABLE II. NOMINAL VALUES & PARAMETERS

U1n 380[kV] Rf 0.3429[Ω] ki∆ 21.4000
fn 50[Hz] Lf 62.92[mH] kiΣ 21.8750
vdc 775.67[kV] Rσ 0.6017[Ω] kpΣ 1.1141
Cσ 21.1619[µF ] Lσ 30.64[mH] kp∆ 2.6010

3) The AAM of a three-phase MMC: where each arm
is represented by a controlled voltage source and where
the internal arm voltage dynamics is represented by an
equivalent arm capacitance as indicated in the lower right
part of Fig. 1 [9], [10], [11]. This model includes non-
linear effects except for the switching operations and the
dynamics of the sub-module capacitor voltage balancing
algorithm, as discussed in 2. Since this model is well-
established for analysis and simulation of MMCs and has
been previously verified in comparison to experimental
results [9], [10], it will be used as a benchmark reference
for verifying both the validity of port-hamiltonain MMC
model, as well as the SSTI of [8]. Simulation results
obtained with this model are identified in the legend by
“AAM”.

The models are all simulated in Matlab/Simulink with
the SimPowerSystem toolbox. Furthermore, all simula-
tions are based on the MMC HVDC single-terminal
configuration shown in 1, with the parameters given
in Table II under the well known Circulating Current
Suppression Control (CCSC) technique described in [22]
and standard SRRF vector control for the grid current,
similarly to what was presented in [8], and shown in Fig.
3. For comparing the models, it should be considered
that the “AAM” model is a conventional time-domain
simulation model of a three-phase MMC, while the SSTI
model from [8] (“REF ”) as well as the port-Hamiltonian
formulation here presented both represent the MMC
dynamics by variables transformed into a set of SRRFs.
Nonetheless, comparison of transient and steady-state
response is simpler when the variables have SSTI repre-
sentation. Thus, in most cases, the results obtained from
the reference model are transformed into the appropriate
SRRFs to ease the comparison. However, the results
from the SSTI models can also be transformed to the
stationary phase coordinates, although this would imply
comparison of signals with sinusoidal or multi-frequency
oscillations in steady-state. All results are plotted in per
unit quantities. To excite the MMC dynamics in the
different models, the ac-side active power reference is
reduced from 0.62 p.u. to −0.62 p.u. at t = 0.02s.

The dynamics of the voltage sum vΣ
Cdqz for the above

described case scenario are illustrated in Fig. 4. More
precisely, the dq components of the voltage sum are
given in the upper plot, while the zero-sequence is given
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Fig. 3. Circulating Current Suppression Control (CCSC) and
standard SRRF grid current vector control

in the lower one. From Fig. 4, it can be seen how the
variables calculated with the AAM-MMC as well as the
REF model are overlapping those calculated with the
port-Hamiltonian model derived in this paper. This is true
both under transient and steady-state conditions.
Notice that the steady-state value of vΣ

Cz changes with
respect to each of the reference steps, as only the CCSC
is implemented assuming no regulation of the capacitive
energy stored in the MMC. Furthermore, the non-zero
steady-state values of vΣ

Cdq reflect the 2ω oscillations
that this variable has in the stationary abc reference
frame.
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Fig. 4. Voltage sum

Similarly, the dynamics of the energy difference
v∆
Cdqz are depicted in Fig. 5. More precisely, the upper

figure is illustrating the dq components behaviour of this
variable under the above described case scenario while
the lower figure does the same for the zero-sequence. In
terms of accuracy, both of the sub-figures show how the
proposed port-Hamiltonian modelling approach with the
proposed changes accurately captures the behaviour of



both the SSTI MMC model of [8] as well as the AAM-
MMC model. Notice that the comparison associated
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Fig. 5. Voltage difference

to v∆
Cz has been done in a SSTP framework, instead

of its equivalent SSTI version v∆
CZ [8]. This is done

for simplicity, as the dynamics of the virtual system
used to create v∆

CZ do not directly exist in the AAM-
MMC model. However, for the sake of completeness,
the dynamics of v∆

CZ obtained with the derived port-
Hamiltonian representation, as well as with the SSTI
model of [8] are depicted in Fig. 6, where it can be
confirmed that both the v∆

CZd
and v∆

CZq
sub-variables

reach a constant value in steady-state operation.
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The dynamics of the circulating currents iΣdqz are
shown in Fig. 7, where the upper sub-figure depicts
the dynamics of the dq components while the lower
figure shows the zero-sequence components. From the
figure it can be also concluded that the derived port-
Hamiltonian representation of the MMC including the
proposed change of variables accurately replicates the
dynamic behaviour of the reference model.

Finally, the dynamics of the dq components of the
grid current are shown in Fig. 8. It is possible to see that
for this variable the reference SSTI model, the AAM and
the derived port-Hamiltonian representation of the MMC
are practically overlapping.
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VI. CONCLUSION

This paper presents a reformulation of the state-space
representation of the averaged model of the Modular
Multilevel Converter (MMC) such that it is suitable
for the generalized Hamiltonian formalism. The port-
Hamiltonian modelling approach provides a natural start-
ing point for non-linear control design methods, such
as Passivity-based control techniques, aiming to design
globally asymptotically stable controllers. Furthermore, it
usually requires a dynamic system representation of the
system under study with constant variables in steady-
state; i.e., with an equilibrium point as opposed to
an equilibrium orbit. Unfortunately, the well-established
continuous MMC model able to capture the averaged
dynamics of the converter and widely used for control
design, has oscillatory variables in steady-state and is
not suited for the intended mathematical formalism.
Therefore, this study is based on the recently proposed
steady-state time-invariant (SSTI) model of the MMC,
which is able to replicate the averaged dynamics of the
converter while preserving its non-linear structure.

An attempt to directly formulate the SSTI MMC
model in a port-Hamiltonian framework is first carried
out to identify the limitations of the SSTI MMC model
for this application. It was found that the interconnection
matrices associated to the control did not comply with
the required skew-symmetry property of the mathemat-



ical formalism under consideration. Therefore, several
variable changes were proposed, including a per-unit
notation system, in order to reformulate the system into
an equivalent one with skew-symmetric interconnection
matrices. Finally, this equivalent model is expressed
under the port-Hamiltonian framework and validated via
time-domain simulations with respect to both the SSTI
MMC model used as a starting point for the derivation,
as well as with the well-established averaged model of
the converter.
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