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André Kapelrud and Arne Brataas
Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

(Received 21 December 2016; revised manuscript received 6 April 2017; published 20 June 2017)

We theoretically consider the spin-wave mode- and wavelength-dependent enhancement of the Gilbert damping
in magnetic insulator–normal metal bilayers due to spin pumping as well as the enhancement’s relation to direct
and alternating inverse spin Hall voltages in the normal metal. In the long-wavelength limit, including long-range
dipole interactions, the ratio of the enhancement for transverse volume modes to that of the macrospin mode is
equal to two. With an out-of-plane magnetization, this ratio decreases with both an increasing surface anisotropic
energy and mode number. If the surface anisotropy induces a surface state, the enhancement can be an order of
magnitude larger than for the macrospin. With an in-plane magnetization, the induced dissipation enhancement
can be understood by mapping the anisotropy parameter to the out-of-plane case with anisotropy. For shorter
wavelengths, we compute the enhancement numerically and find good agreement with the analytical results in
the applicable limits. We also compute the induced direct- and alternating-current inverse spin Hall voltages and
relate these to the magnetic energy stored in the ferromagnet. Because the magnitude of the direct spin Hall
voltage is a measure of spin dissipation, it is directly proportional to the enhancement of Gilbert damping. The
alternating spin Hall voltage exhibits a similar in-plane wave-number dependence, and we demonstrate that it is
greatest for surface-localized modes.
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I. INTRODUCTION

In magnonics, one goal is to utilize spin-based systems for
interconnects and logic circuits [1]. In previous decades, the
focus was to gain control over these systems by exploiting
long-range dipole interactions in combination with geomet-
rical shaping. However, the complex nature of the nonlinear
magnetization dynamics persistently represents a challenge in
using geometrical shaping alone to realize a variety of desired
properties [1].

In magnonic systems, a unique class of materials consists
of magnetic insulators. Magnetic insulators are electrically
insulating, but localized magnetic moments couple to form
a long-range order. The prime example is yttrium iron garnet
(YIG). YIG is a complex crystal [2] in the Garnet family,
where Fe3+ ions at different sites in the unit cell contribute
to an overall ferrimagnetic ordering. What differentiates
YIG from other ferromagnetic (ferrimagnetic) systems is
its extremely low intrinsic damping. The Gilbert damping
parameter measured in YIG crystals is typically two orders
of magnitude smaller than that measured in conventional
metallic ferromagnets (Fe, Co, Ni, and alloys thereof).

The recent discovery that the spin waves in magnetic
insulators strongly couple to spin currents in adjacent normal
metals has reinvigorated the field of magnonics [3–12].
Although there are no mobile charge carriers in magnetic
insulators, spin currents flow via spin waves and can be
transferred to itinerant spin currents in normal metals via
spin transfer and spin pumping [13,14]. These interfacial
effects open new doors with respect to local excitation and
detection of spin waves in magnonic structures. Another key
element is that we can transfer knowledge from conventional
spintronics to magnonics, opening possibilities for novel
physics and technologies. Traditionally, spin-wave excitation
schemes have focused on the phenomenon of resonance or the
use of Ørsted fields from microstrip antennas.

A cornerstone for utilizing these systems is to establish a
good understanding of how the itinerant electrons in normal
metals couple across interfaces with spin-wave dynamics in
magnetic insulators. Good models for addressing uniform
(macrospin) magnetization that agrees well with experiments
have been previously developed [13–15]. We recently demon-
strated that for long-wavelength magnons the enhanced Gilbert
damping for the transverse volume modes is twice that of the
uniform mode, and for surface modes, the enhancement can be
more than ten times stronger. These results are consistent with
the theory of current-induced excitations of the magnetization
dynamics [16] because spin pumping and spin transfer are
related by Onsager reciprocity relations [17]. Moreover,
mode- and wave-vector-dependent spin pumping and spin Hall
voltages have been clearly observed experimentally [4].

In this paper, we extend our previous findings [18] in the
following four aspects. (i) We compute the influence of the
spin backflow on the enhanced spin dissipation. (ii) We also
compute the induced direct and alternating inverse spin Hall
voltages. We then relate these voltages to the enhanced Gilbert
damping and the relevant energies for the magnetization
dynamics. The induced voltages give additional information
about the spin-pumping process, which can also be directly
measured. (iii) We also provide additional information on
the effects of interfacial pinning of different types in various
field geometries. (iv) Finally, we explain in more detail how
the numerical analysis is conducted for a greater number of
in-plane wave numbers.

It was discovered [19–23] and later quantitatively explained
[13,15,24,25] that if a dynamic ferromagnetic material is put
in contact with a normal metal, the magnetization dynamics
will exert a torque on the spins of electrons in the immediate
vicinity of the magnet. This effect is known as spin pumping
(SP) [13,15,25]. As the electrons are carried away from the
ferromagnet-normal metal interface, the electrons spin with
respect to each other, causing an overall loss of angular
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momentum. The scattering formalism and a dynamic magnetic
susceptibility equivalently describe the resulting pumped spin
current [26,27]. The inverse effect, in which a spin-polarized
current can affect the magnetization of a ferromagnet, is called
spin-transfer torque (STT) [14,28,29].

The discovery that a precessing magnetization in magnetic
insulators [3], such as YIG, also pumps spins into an adjacent
metal layer was made possible by the fact that the mixing
conductance in YIG-normal metal systems is of such a size
that the extra dissipation of the magnetization due to the spin
pumping is of the same order of magnitude as the intrinsic
Gilbert damping. A consequence of this effect is that the
dissipation of the magnetization dynamics is enhanced relative
to that of a system in which the normal metal contact is
removed. The detection of the antiferromagnet-paramagnet
phase transition in CoO is a recent development of spin
pumping from YIG [30]. The CoO spacer layer is sandwiched
between YIG and a normal metal. Distinguishing the dynamics
in the antiferromagnet from the dynamics from the YIG-
normal metal system also requires a robust understanding of
the spin pumping properties of the YIG-normal metal bilayer
system.

This paper is organized in the following manner. Sec-
tion II presents the equation of motion for the magnetization
dynamics and the currents in the normal metal and the
appropriate boundary conditions, both for general nonlinear
excitations and in the fully linear response regime. In Sec. III,
we derive approximate solutions to the linearized problem,
demonstrating how the magnetization dissipation is enhanced
by the presence of an adjacent metal layer. Section IV presents
our numerical method and results. Finally, we summarize our
findings in Sec. V.

II. EQUATIONS OF MOTION

The equation of motion for the magnetization is given by
the Landau-Lifshitz-Gilbert equation [31] (presented here in
CGS units)

∂M
∂t

= −γ M × Heff + α

Ms

M × ∂M
∂t

, (1)

where γ = |gμB/h̄| is the magnitude of the gyromagnetic
ratio; g ≈ 2 is the Landé g-factor for the localized electrons
in the ferromagnetic insulator (FI), and α is the dimensionless
Gilbert damping parameter. In equilibrium, the magnitude of
the magnetization is assumed to be close to the saturation
magnetization Ms . The magnetization is directed along the z

axis in equilibrium. Out of equilibrium, we assume that we
have a small transverse dynamic magnetization component,
such that

M = M(r,t) = Ms + m(r,t) = Ms ẑ + m(r,t), (2)

where |m| � Ms and m · ẑ = 0. Furthermore, we assume that
the dynamic magnetization can be described by a plane wave
traveling along the in-plane ζ axis. In the (ξ,η,ζ ) coordinate
system (see Fig. 1), we have

m(r,t) = m(ξ,ζ,t) = mQ(ξ )ei(ωt−Qζ ), (3)

where ω is the harmonic angular frequency, Q is the in-plane
wave number, and mQ(ξ ) = XQ(ξ )x̂ + YQ(ξ )ŷ, where XQ and

(a) (b)

FIG. 1. (a) The coordinate system. ξ̂ is the film normal and ζ̂ is the
spin-wave propagation direction. ξηζ form a right-handed coordinate
system. The ẑ axis is the direction of the magnetization in equilibrium,
such that xy is the magnetization-precession plane. (b) The film stack
is in the normal direction.

YQ are complex functions. Note that m is independent of the η

coordinate due to translational invariance. The in-plane wave
number, Q, can be engineered by lateral dimensioning of the
sample in such a way as to induce standing waves in the film
plane [4,32].

Heff is the effective field, given as the functional derivative
of the free energy [31,33]

Heff(r,t) = − δU [M(r,t)]
δM(r,t)

= Hi + 2A

M2
s

∇2M(r,t)

+ 4π

∫ L
2

− L
2

dξ ′ Ĝxy(ξ − ξ ′)m(ξ ′,ζ,t), (4)

where Hi is the internal field, which is composed of the
applied external field and the static demagnetization field.
The direction of Hi defines the z axis (see Fig. 1). The
second term of Eq. (4) is the field, Hex , induced by the
exchange interaction (assuming cubic symmetry), where A is
the exchange stiffness parameter. The last term is the dynamic
field, hd (r,t), induced by dipole-dipole interactions, where
Ĝxy is the upper 2 × 2 part of the dipole-dipole tensorial
Green’s function Ĝξηζ in the magnetostatic approximation
(see Ref. [34]) rotated to the xyz coordinate system (see
Appendix for coordinate-transformation matrices) [35].

The effect of the dipolar interaction on the spin-wave
spectrum depends on the orientation of the internal field with
respect to both the interface normal of the thin film, ξ̂ , and the
in-plane spin-wave propagation direction, ζ̂ . Traditionally, the
three main configurations are the out-of-plane configuration
(θ = 0), in the forward volume magnetostatic wave (FVMSW)
geometry [see Fig. 2(a)]; the in-plane and parallel-to-ζ̂
configuration, in the backward volume magnetostatic wave
(BVMSW) geometry [see Fig. 2(b)]; and the in-plane and
perpendicular-to-ζ̂ configuration, in the magnetostatic surface
wave (MSSW) geometry [see Fig. 2(c)] [1,35–39]. Here,
the term “forward volume modes” denotes modes that have
positive group velocities for all values of QL, whereas
backward volume modes can have negative group velocities in
the range of QL, where both exchange and dipolar interactions
are significant. Volume modes are modes in which mQ(ξ ) is
distributed across the thickness of the entire film, whereas the
surface modes are localized more closely near an interface.
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FIG. 2. Laboratory field configurations, i.e., directions of ẑ (green arrow) in relation to film normal ξ̂ and the spin-wave propagation
direction ζ̂ , resulting in the different geometries: (a) FVMSW geometry, (b) BVMSW geometry, and (c) MSSW geometry.

A. Spin-pumping torque

We consider a ferromagnetic insulator (FI) in contact with
a normal metal (NM) (see Fig. 1). If the magnetization
in the FI close to the interface is precessing around the
effective field, electron spins in the NM reflected at the
interface will start to precess due to the local exchange
coupling to the magnetization in the FI. The reflected electrons
carry the angular momentum away from the interface, where
the spin information can get lost through dephasing of the
spins within a typical spin diffusion length lsf. This loss
of angular momentum manifests itself as an increased local
damping of the magnetization dynamics in the FI. The
magnetization dissipation due to the spin-pumping effect can
be taken into account by adding the local dissipation torque
[15],

τ sp = γ h̄2g⊥
2e2M2

s

δ

(
ξ − L

2

)
M(r,t) × ∂M(r,t)

∂t
, (5)

to the right-hand side (rhs) of Eq. (1). Here, g⊥ is the real part
of the spin-mixing conductance per area, and e is the electron
charge. We neglect the contribution from the imaginary part
of the mixing conductance, because this has been shown to
be significantly smaller than that of the real part, in addition
to affecting only the gyromagnetic ratio [15]. The spin-
current density pumped from the magnetization layer is thus
given by

j(s)
sp = − h̄2g⊥

2e2M2
s

[
M(r,t) × ∂M(r,t)

∂t

]
ξ=L/2

, (6)

in units of erg. Next, we will see how the spin pumping affects
the boundary conditions.

B. Spin-pumping boundary conditions

Following the procedure of Rado and Weertman [40], we
integrate Eq. (1) with the linear expansion of Eq. (2) over a
small pill-box volume straddling one of the interfaces of the FI.
Upon letting the pill box thickness tend to zero, only the sur-
face torques of the equation survive. Accounting for the
direction of the outward normal of the lid on the different
top and bottom interfaces, we arrive at the exchange-pumping
boundary condition(

2A

M2
s

M × ∂M
∂ξ

+ h̄2

2e2M2
s

g⊥M × ∂m
∂t

)
ξ=±L/2

= 0. (7)

There is no spin current pumped at the interface to the
insulating substrate; thus a similar derivation results in a
boundary condition that gives an unpinned magnetization,

∂M(r,t)
∂ξ

∣∣∣∣
ξ=−L/2

= 0. (8)

In the next section, we will generalize the boundary conditions
of Eq. (7) by also considering possible surface-anisotropy
energies.

1. Including surface anisotropy:

In the presence of surface anisotropy at an interface with
an easy-axis (EA) pointing along the direction n̂, the surface
free energy is

Us[M(r,t)] =
∫

dV Ks

[
1 −

(
M(r,t) · n̂

Ms

)2
]

δ(ξ − ξi),

(9)

where Ks is the surface-anisotropy energy density at the
interface, which is assumed to be constant; n̂ is the direction of
the anisotropy easy axis; and ξi is the transverse coordinate of
the interface. The contribution from the EA surface-anisotropy
energy to the effective field is determined by

Hs = −δUs[M(r,t)]
δM(r,t)

= 2Ks

M2
s

(M · n̂) δ(ξ − ξi)n̂.

However, if we have an easy-plane (EP) surface anisotropy
with n̂ being the direction of the hard axis, the effective field
is the same as that for the EA case, except for a change of sign
of Ks . We unify both cases by defining Ks > 0 to imply that
we have an EA surface anisotropy with its easy axis along n̂,
whereas Ks < 0 implies that we have an EP surface anisotropy
with its hard axis along n̂.

Following the approach from Sec. II B, the total bound-
ary condition, including exchange, pumping, and surface
anisotropy, becomes[

± 2A

M2
s

M × ∂M
∂ξ

− 2Ks

M2
s

(M · n̂)(M × n̂)

+ h̄2

2e2M2
s

g⊥M × ∂M
∂t

]
ξ=±L/2

= 0, (10)
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where the positive (negative) sign in front of the exchange term
indicates that the bulk FI is located below (above) the interface
coordinate.

C. Linearization

We linearize the equation of motion using Eq. (2) with
respect to the dynamic magnetization m. The linearized
equation of motion for the bulk magnetization, Eq. (1),
becomes [35]{
i

ω

ωM

(
α −1
1 α

)
+ 1

[
ωH

ωM

+ 8π
γ 2A

ω2
M

(
Q2 − d2

dξ 2

)]}
mQ(ξ )

=
∫ L

2

− L
2

dξ ′ Ĝxy(ξ − ξ ′)mQ(ξ ′), (11)

where ωH ≡ γHi , ωM ≡ 4πγMs , and 1 = (1 0
0 1).

Next, we linearize the boundary conditions of Eq. (10).
We choose the anisotropy axis to be perpendicular to the film
plane, n̂ = ξ̂ , which in the xyz coordinate system is given by
ξ̂ xyz = (sin θ,0, cos θ ), where θ is the angle between the z axis
and the film normal (see Fig. 1). The finite surface anisotropy
forces the magnetization to be either perpendicular or coplanar
with the film surface so that θ = 0,π/2,π . Linearizing to first
order in the dynamic magnetization, we arrive at the linearized
boundary conditions for the top interface:(

L
∂

∂ξ
+ i

ω

ωM

ρ + d cos(2θ )

)
mQ,x(ξ )|ξ= L

2
= 0, (12a)(

L
∂

∂ξ
+ i

ω

ωM

ρ + d cos2(θ )

)
mQ,y(ξ )|ξ= L

2
= 0, (12b)

where d ≡ LKs/A is the dimensionless surface-pinning pa-
rameter that relates the exchange to the surface anisotropy and
the film thickness and ρ ≡ ωMLh̄2g⊥/4Ae2 is a dimensionless
constant relating the exchange stiffness and the spin-mixing
conductance.

D. Spin accumulation in NM and spin backflow

The pumped spin current induces a spin accumulation,
μ(s) = μ(s)ŝ, in the normal metal. Here, ŝ is the spin-
polarization axis, and μ(s) = (μ↑ − μ↓)/2 is half of the
difference between chemical potentials for spin-up and spin-
down electrons in the NM.

As the spin accumulation is a direct consequence of the
spin dynamics in the FI [see Eq. (6)], the spin accumulation
cannot change faster than the magnetization dynamics at the
interface. Thus, assuming that spin-flip processes in the NM
are must faster than the typical precession frequency of the
magnetization in the FI [25], we can neglect the precession of
the spin accumulation around the applied field and any decay
in the NM. With this assumption, the spin-diffusion equation
∂μ(s)

∂t
= D∇2μ(s) − μ(s)

τsf
, where D is the spin-diffusion constant,

and τsf is the material-specific average spin-flip relaxation
time, becomes

μ(s) ≈ l2
sf∇2μ(s), (13)

where lsf ≡ √
τsfD is the average spin-flip relaxation length.

The spin accumulation results in a backflowing spin-current
density, given by

j(s)
bf (L/2) = h̄g⊥

e2M2
s

[M(r,t) × (M(r,t) × μ(s)(r,t))]ξ=L/2,

(14)

where the positive sign indicates flow from the NM into the
FI. This spin current creates an additional spin-transfer torque
on the magnetization at the interface:

τ bf = −γ h̄g⊥
e2M2

s

δ

(
ξ − L

2

)
M(r,t) × (M(r,t) × μ(s)). (15)

Because the spin accumulation is a direct result of the
pumped spin current, it must have the same orientation as
the M(r,t) × ∂tM(r,t) term in Eq. (5). That term is comprised
of two orthogonal components: the first-order term Ms ẑ × ṁ,
in the xy plane, and the second-order term m × ṁ, oriented
along ẑ. Because the magnetization is a real quantity, care
must be taken when evaluating the second-order term. Using
Eq. (3), the second-order pumped spin current is proportional
to

Re{m} × ∂tRe{m}|ξ=L/2

= e−2Im{ω}tRe{ω}ẑ[ImXQReYQ − ReXQImYQ],

(16)

which is a decaying direct-current (DC) term. This is in
contrast to the first-order term, which is an alternating-current
(AC) term. Thus we write the spin accumulation as

μ(s) = μ
(s)
AC(ẑ × m̂t ) + μ

(s)
DCẑ, (17)

where we have used the shorthand notation mt = ṁ(ξ = L/2),
such that m̂t = mt /|mt |, which in general is not parallel to
m but guaranteed to lie in the xy plane. Inserting Eq. (17)
into Eq. (13) gives one equation each for the AC and DC
components of the spin accumulation,

∂2μ
(s)
j

∂ξ 2
= l−2

sf,jμ
(s)
j , (18)

where j denotes either the AC or DC case and lsf,DC =
lsf while lsf,AC = lsf(1 + l2

sfQ
2)−1/2 because mt ∝ exp(i(ωt −

Qζ )). Equation (18) can be solved by demanding spin-current
conservation at the NM boundaries: at the free surface of
the NM, there can be no crossing spin current; thus the ξ

component of the spin-current density must vanish there,
∂ξμ

(s)
j |ξ=L/2+d = 0. Similarly, by applying conservation of

angular momentum at the FI-NM interface, the net spin-current
density crossing the interface, due to spin pumping and
backflow, must equal the spin current in the NM layer, giving[

− h̄2g⊥
2e2M2

s

M × ∂M
∂t

+ h̄g⊥
e2M2

s

M × (M × μ(s))

]
ξ=L/2

= − h̄σ

2e2
∂ξμ

(s)|ξ=L/2, (19)
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TABLE I. Typical values for the parameters used in the calcula-
tions [6,7,11,42,43].

Parameter Value Unit

A 3.66 × 10−7 erg cm−1

α 3 × 10−4 –
Ks 0.05 erg cm−2

g⊥ 8.18 × 1022 cm−1 s−1

γ 1.76 × 107 G−1 s−1

4πMs 1750 G
σ 8.45 × 1016 s−1

d 50 nm
lsf 7.7 nm
� 0.1 –

where σ is the conductivity of the NM. Using these boundary
conditions, we recover the solutions (see, e.g., Refs. [25,41])

μ
(s)
j = μ

(s)
j,0

sinh
(
l−1
sf,j [ξ − (L/2 + d)]

)
sinh

(− d
lsf,j

) , (20)

where μ
(s)
j,0 is time dependent and depends on the ζ coordinate

only in the AC case. We find that the AC and DC spin
accumulations μ

(s)
j,0 are given by

μ
(s)
AC,0 = − h̄

2

mt

Ms

[
1 + σ

2g⊥lsf,AC
coth

(
d

lsf,AC

)]−1

, (21)

μ
(s)
DC,0 = − lsfh̄

σM2
s

g̃⊥ tanh

(
d

lsf

)
ẑ · [m × ṁ]ξ=L/2, (22)

where g̃⊥ is a renormalized mixing conductance, which is
given by

g̃⊥ = g⊥

{
1 −

[
1 + σ

2g⊥lsf,AC
coth

(
d

lsf,AC

)]−1
}

. (23)

This scaling of g⊥ occurring in the DC spin accumulation
originates from the second-order spin backflow due to the AC
spin accumulation that is generated in the normal metal.

Adding both the spin-pumping and the backflow torques
to Eq. (1) and repeating the linearization procedure from
Sec. II C, we find that the AC spin accumulation renormalizes
the pure spin-mixing conductance. Thus the addition of the
backflow torque can be accounted for by replacing g⊥ with g̃⊥
in the boundary conditions of Eq. (12), making the boundary
conditions Q-dependent in the process.

Using the values from Table I, which are based on typical
values for a YIG-Pt bilayer system, we obtain g̃⊥/g⊥ ∼
0.4 for QL � 1, whereas g̃⊥/g⊥ → 1 for large values of
QL. Thus AC backflow is significant for long-wavelength
modes and should be considered when estimating g⊥ from
the linewidth broadening in ferromagnetic resonance (FMR)
experiments [11].

E. Inverse spin Hall effect

The inverse spin Hall effect (ISHE) converts a spin
current in the NM to an electric potential through the
spin-orbit coupling in the NM. For a spin current in the ξ̂

direction, the ISHE electric field in the NM layer is EISHE =
−e−1�〈(∂ξμ

(s)) × ξ̂〉ξ , where � is the dimensionless spin-
Hall angle, and 〈·〉ξ is a spatial average across the NM layer,
i.e., for ξ ∈ (L/2,L/2 + d). Using the previously calculated
spin accumulation, we find that the AC electric field is

EAC
ISHE = − �

h̄

2deMs

[
1 + σ

2g⊥lsf,AC
coth

(
d

lsf,AC

)]−1

× [−η̂(−mt,y cos θ cos φ + mt,x sin φ)

+ ζ̂ (−mt,x cos φ − mt,y cos θ sin φ)], (24)

where

mt,i = −[ImωRemi + ReωImmi]ξ=L/2, (25)

and i = x,y. For BVMSW (θ = π/2,φ = 0) modes, the AC
field points along ζ̂ , whereas for MSSW (θ = φ = π/2)
modes, it points along η̂ (i.e., in plane, but transverse to ζ ;
see Fig. 1). Notice that for both BVMSW and MSSW mode
geometries, only the x component of mt contributes to the
field. In contrast, for FVMSW (θ = 0) modes, the field points
somewhere in the ηζ plane, depending on the ratio of mt,x

to mt,y .
Similarly to the AC field, the DC ISHE electric field is given

by

EDC
ISHE = �

μ
(s)
DC,0

de
sin θ (η̂ cos φ − ζ̂ sin φ), (26)

which is perpendicular to the AC electric field and zero for the
FVMSW mode geometry.

The total time-averaged energy in the ferromagnet Etotal

(see, Morgenthaler [44]) is given by

〈Etotal〉T =
∫

ferrite
Re

[
−iπ

ω∗

ωM

(m × m∗)ẑ
]

dV, (27)

where the integral is taken over the volume of the ferromagnet.
Because the DC ISHE field is in-plane, the voltage mea-

sured per unit distance along the field direction, �̂ = η̂ cos φ −
ζ̂ sin φ, can be used to construct an estimate of the mode
efficiency. Taking the one-period time average of Eq. (26)
using Eq. (22) and normalizing it by Eq. (27) divided by the
in-plane surface area, A, we find an amplitude-independent
measure of the DC ISHE:

εDC =
〈
e�̂ · EDC

ISHE

〉
T

〈Etotal〉T /A

= −2γ�
lsfh̄

dσMs

g̃⊥ tanh

(
d

lsf

)
sin θ

×
Re

[−i ω∗
ωM

(m × m∗)ẑ
]
ξ=L/2∫ L/2

−L/2 Re
[−i ω∗

ωM
(m × m∗)ẑ

]
dξ

, (28)

given in units of cm, and where {·}∗ denotes complex
conjugation.

Similarly, the AC ISHE electric field, being time-varying,
will contribute a power density that, when normalized by the

214413-5



ANDRÉ KAPELRUD AND ARNE BRATAAS PHYSICAL REVIEW B 95, 214413 (2017)

power density in the ferromagnet, becomes

εAC =
〈
σ
(
EAC

ISHE

)2〉
T

Re{ω}
2πAL

〈Etotal〉T

= πσ

Re{ω}
(

�h̄

2deMs

)2[
1 + σ

2g⊥lsf,AC
coth

(
d

lsf,AC

)]−2

× |mt,x |2 + cos2 θ |mt,y |2
1
L

∫ L/2
−L/2 Re

[−i ω∗
ωM

(m × m∗)ẑ
]
dξ

. (29)

To be able to calculate explicit realizations of the mode-
dependent equations (28) and (29), one will need to first
calculate the dispersion relation and mode profiles in the
ferromagnet.

III. SPIN-PUMPING THEORY FOR TRAVELLING
SPIN WAVES

Because the linearized boundary conditions [see Eqs. (12)]
explicitly depend on the eigenfrequency ω, we cannot apply the
method of expansion in the set of pure exchange spin waves,
as was performed by Kalinikos and Slavin [35]. Instead, we
analyze and solve the system directly for small values of QL,
whereas the dipole-dipole regime of QL ∼ 1 is explored using
numerical computations in Sec. IV.

A. Long-wavelength magnetostatic modes

When QL � 1, Eq. (11) is simplified to{(
sin2 θ 0

0 0

)
+ i

ω

ωM

(
α −1
1 α

)
+ 1

[
ωH

ωM

− 8π
γ 2A

ω2
M

d2

dξ 2

]}
· mQ(ξ ) = 0, (30)

where the first-order matrix term describes the dipole-induced
shape anisotropy and stems from Ĝxy (see Ref. [35]). We make
the ansatz that the magnetization vector in Eq. (3) is composed
of plane waves, e.g., mQ(ξ ) ∝ eikξ . Inserting this ansatz into
Eq. (30) produces the dispersion relation(

ω

ωM

)2

=
(

ωH

ωM

+ λ2
exk

2 + iα
ω

ωM

)
×

(
ωH

ωM

+ λ2
exk

2 + sin2 θ + iα
ω

ωM

)
, (31)

where λex ≡
√

8πγ 2A/ω2
M is the exchange length. Keeping

only terms to first order in the small parameter α, we
arrive at

ω(k)

ωM

= ±
√(

ωH

ωM

+ λ2
exk

2

)(
ωH

ωM

+ λ2
exk

2 + sin2 θ

)

+ iα

(
ωH

ωM

+ λ2
exk

2 + sin2 θ

2

)
. (32)

The boundary conditions in Eq. (12) depend explicitly on
ω and k and give another equation k = k(ω) to be solved
simultaneously with Eq. (32). However, in the absence of spin

pumping, i.e., when the spin-mixing conductance vanishes,
g⊥ → 0, it is sufficient to insert the constant k solutions
from the boundary conditions into Eq. (32) to find the
eigenfrequencies.

Different wave vectors can give the same eigenfrequency.
It turns out that this is possible when ω(k) = ω(iκ), which has
a nontrivial solution relating κ to k:

λ2
exκ

2 = sin2 θ + λ2
exk

2 + 2
ωH

ωM

± i2αω(k)/ωM. (33)

With these findings, a general form of the magnetization
is

mQ(ξ ) =
(

1
r(k)

){[
C1 cos

[
k

(
ξ + L

2

)]
+ C2 sin

[
k

(
ξ + L

2

)]}
+

(
1

r(iκ)

)
×

{
C3 cosh

[
κ

(
ξ + L

2

)]
+ C4 sinh

(
κ

(
ξ + L

2

)]}
, (34)

where {Ci} are complex coefficients to be determined from
the boundary conditions, and where κ = κ(k) is given by
Eq. (33). The ratio between the transverse components of
the magnetization, r(k) = YQ/XQ, is determined from the
bulk equation of motion [see Eq. (30)] and is in linearized
form,

r(k)=−
α sin2 θ ± 2i

√(
ωH

ωM
+ λ2

exk
2
)(

ωH

ωM
+ λ2

exk
2 + sin2 θ

)
2
(

ωH

ωM
+ λ2

exk
2
) ,

(35)

implying elliptical polarization of mQ when θ �= 0.
Inserting Eq. (34) into Eq. (8) only leads to a solution when

k = 0, such that C2 = C4 = 0 in the general case. By solving
Eq. (12b) for C3, we find

C3

C1
= −

ωH

ωM
+ λ2

exk
2 + sin2 θ + iα ω

ωM

ωH

ωM
− λ2

exκ
2 + sin2 θ + iα ω

ωM

×
(
i ω

ωM
ρ̃ + d cos2 θ

)
cos(kL) − kL sin(kL)(

i ω
ωM

ρ̃ + d cos2 θ
)

cosh(κL) + κL sinh(κL)
,

(36)

where ρ̃ ≡ ρ|g⊥→g̃⊥ is the pumping parameter altered by
the AC spin backflow from the NM (see Sec. II D). C1 is
chosen to be the free parameter that parameterizes the dynamic
magnetization amplitude, which can be determined given a
particular excitation scheme. The linearization of Eq. (36) with
respect to α is straightforward, but the expression is lengthy;
we will therefore not show it here.

Inserting the ansatz with C2 = C4 = 0 and C3 given by
Eq. (36) into Eq. (12a) gives the second equation for k and ω

[the first is Eq. (32)]. In the general case, the number of terms
in this equation is very large; thus we describe it as

f (k,ω,α,ρ̃) = 0, (37)
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i.e., an equation that depends on the wave vector k, fre-
quency ω, Gilbert damping constant α, and the spin-pumping
parameter ρ̃.

Because both the bulk and interface-induced dissipation are
weak, α � 1, ρ̃ � 1, the wave vector is only slightly perturbed
with respect to a system without dissipation, i.e., k → k + δk

where λexδk � 1. It is therefore sufficient to expand f up to
first order in these small quantities:

f (k,ω,0,0) + (ρ̃)
∂f

∂ρ̃

∣∣∣∣
0

+ α
∂f

∂α

∣∣∣∣
0

+ (λexδk)
∂f

∂(λexδk)

∣∣∣∣
0

≈ 0,

(38)

where the sub-index 0 means evaluation in a system without
dissipation, i.e., when (α,ρ̃,δk) = (0,0,0). By solving the sys-
tem of equations in the absence of dissipation, f (k,ω,0,0) = 0,
the dissipation-induced change in the wave vector δk is given
by

δk ≈ −
ρ̃

∂ f

∂ρ̃

∣∣
0 + α

∂f

∂α

∣∣
0

λex
∂ f

∂(λexδk)

∣∣
0

. (39)

In turn, this change in the wave vector should be inserted
into the dispersion relation of Eq. (31) to find the dissipation.
Inspecting Eq. (31), we note that δk-induced additional terms
proportional to ω are of the form (k + δk)2 − k2 ≈ 2kδk,
which renormalize the Gilbert-damping term iα ω

ωM
. Thus,

in Eq. (39), there are terms proportional to the frequency in
both terms in the numerator. We extract these terms ∝ i ω

ωM
by

differentiating with respect to ω and define the renormalization
of the Gilbert damping, i.e., α → α + �α, from spin pumping
as

�α = i2λexkωM∂ω(λexδk|α=0)

i2λexkωM∂ω(λexδk|ρ̃=0) − 1
, (40)

where ∂ω represents the derivative with respect to ω and k is the
solution to the zeroth-order equation. Note that in performing
a further local analysis around some point k0 in the k space of
Eq. (37), a series expansion of f around k0 must be performed
before evaluating Eqs. (39) and (40).

Equation (40) is generally valid, except when d = 0 and
kL → 0, which we discuss below. In the following section, we
will determine explicit solutions of the zeroth-order equation
for some key cases, and map out the spin-wave dispersion
relations and dissipation in the process.

B. No surface anisotropy (d = 0)

Let us first investigate the case of a vanishing surface
anisotropy. In this case, the zeroth-order expansion of Eq. (37)
has a simple form and is independent of the magnetization
angle θ . The equation to determine k is given by

kL tan(kL) = 0, (41)

with solutions k = nπ/L, where n ∈ Z. Similarly, the expres-
sion for δk is greatly simplified, δkn = i ω

ωM

ρ̃

nπ

λex
L

, n �= 0, such
that the mode-dependent Gilbert damping is

�αn = 2ρ̃

(
λex

L

)2

, n �= 0 . (42)

For the macrospin mode, when n = 0, the linear expansion in
δk becomes insufficient. This is because kL tan(kL) ∼ (kL)2

for kL → 0; thus we must expand the function f to second
order in the deviation δk around kL = 0. For d = 0, we find
that the boundary condition becomes δk2L2 = i ω

ωM
ρ̃λ2

ex, and
when inserted into Eq. (31), it immediately gives

�α0 = ρ̃

(
λex

L

)2

= 1

2
�αn, (43)

which is the macrospin renormalization factor found in
Ref. [15]. Using a different approach, our results in this
section reproduce our previous result that the renormalization
of the Gilbert damping for standing waves is twice the
renormalization of the Gilbert damping of the macrospin [18].
Next, we will obtain analytical results beyond the description
in Ref. [18] for the enhancement of the Gilbert damping in the
presence of surface anisotropy.

C. Including surface anisotropy (d �= 0)

In the presence of surface anisotropy, the out-of-plane and
in-plane field configurations must be treated separately. This
distinction is because the boundary condition (37) has different
forms for the two configurations in this scenario.

1. Out-of-plane magnetization

When the magnetization is out of plane, i.e., θ = 0, the
spin-wave excitations are circular and have a high degree
of symmetry. A simplification in this geometry is that the
coefficient C3 = 0. In the absence of dissipation, the boundary
condition (37) determining the wave vectors becomes

kL tan(kL) = d. (44)

Let us consider the effects of the two different anisotropies in
this geometry.

a. Easy-axis surface anisotropy (d > 0). When d ∼ 1 or
larger, the solutions of Eq. (44) are displaced from the
zeros of tan(kL), i.e., the solutions we found in the case of
no surface anisotropy, and towards the upper poles located
at kuL = (2n + 1)π/2, where n = 0,1,2, . . .. We therefore
expand f in Eq. (37) [and thus also in Eq. (44)] into a Laurent
series around the poles from the first negative order up to the
first positive order in kL to solve the boundary condition for
kL, giving

kL ≈ λex

L

3(1 + d) + 2(kuL)2 −
√

12(kuL)2 + 9(1 + d)2

2kuL
.

(45)

Using this result and the Laurent-series expansion for f in
Eqs. (39) and (40), we find the Gilbert-damping renormaliza-
tion term (α → α + �α

(oop)
EA,n ) and the ratio between the modes

�α
(oop)
EA,n

�α0
≈ 3(3(1 + d) + 2(kuL)2 −

√
12(kuL)2 + 9(1 + d)2)

× (
√

4(kuL)2 + 3(1 + d)2 − √
3(1 + d))

2(kuL)2
√

4(kuL)2 + 3(1 + d)2
. (46)

This ratio is plotted in Fig. 3 for n � 5. We see that the
ratio vanishes for large values of d. For small values of the
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FIG. 3. The ratio of enhanced Gilbert damping �αEA,n/�α0 in
a system with easy-axis surface anisotropy vs the enhanced Gilbert
damping of macrospin modes in systems with no surface anisotropy as
a function of surface-anisotropy energy. n refers to the mode number,
where n = 0 is the uniformlike mode. The dashed line represents the
ratio �αn/�α0 in the case of no surface anisotropy [see Eq. (42)].

anisotropy energy d, the approximate ratio exceeds the exact
result of the ratio we found in the limiting case of no surface
anisotropy [see Eq. (42)]. For moderate values of d ∼ 5,
the expansion around the upper poles is sufficient, but only
for the first few modes. This implies that moderate-strength
easy-axis surface anisotropy quenches spin pumping for the
lowest excited modes but does not affect modes with higher
transverse exchange energy.

b. Easy-plane surface anisotropy (d < 0). Easy-plane sur-
face anisotropy is represented by a negative surface anisotropy
d in Eq. (44). In this case, the boundary condition must
be treated separately for the uniformlike (n = 0) mode
and the higher excitations. When |d| > 1, we can obtain
a solution by expanding along the imaginary axis of kL.
This corresponds to expressing the boundary condition in the
form −ikL tanh(ikL) = −|d|, with the asymptotic behavior
kL ≈ −i|d|. Using the asymptotic form of the boundary
condition in Eq. (39) and calculating the renormalization
of the Gilbert damping using Eq. (40), we find that the
renormalization is α → α + �α

(oop)
EP,0 , where

�α
(oop)
EP,0

�α0
= 2|d|. (47)

Thus the Gilbert damping of the lowest mode is much enhanced
by increasing the surface anisotropy. The surface-anisotropy
mode is localized at the surface because it decays from the
spin-active interface and into the film. Because the effective
volume of the mode is reduced, spin pumping more strongly
causes dissipation out of the mode and into the normal metal.

For the higher modes (n > 0), the negative term on the
rhs of Eq. (44) forces the kL solutions closer to the negative,
lower poles of tan(kL), located at k(l)

n L = (2n − 1)π/2, where
n = 1, 2, 3, . . .. We repeat the procedure used for the EA case
by expanding f into a Laurent series around these lower poles,

FIG. 4. Plot of �α
(oop)
EP,n /�α0. The dashed line represents the ratio

�αn/�α0 in the case of no surface anisotropy [see Eq. (42)].

arriving at

kL ≈
3(1 − |d|) + 2

(
k(l)
n L

)2 +
√

12
(
k

(l)
n L

)2 + 9(1 − |d|)2

2k
(l)
n L

.

(48)

Using this relation and the new lower-pole Laurent expansion
for f , Eqs. (39) and (40) give us the renormalization of the
Gilbert damping (α → α + �α

(oop)
EP,n ) and the ratio

�α
(oop)
EP,n

�α0
≈ 3(3(1 − |d|) + 2(kuL)2

+
√

12(kuL)2 + 9(1 − |d|)2)

× (
√

4(kuL)2 + 3(1 − |d|)2 + √
3(1 − |d|))

2(kuL)2
√

4(kuL)2 + 3(1 − |d|)2
.

(49)

This ratio is plotted in Fig. 4 from n = 1 up to n = 5. We see
that the ratio vanishes for large values of |d|. Similar to the
case of EA surface anisotropy, the approximation breaks down
for large n and/or small values of |d|.

Whereas the n = 0 mode exhibits a strong spin-pumping
enhanced dissipation in this field configuration, the DC ISHE
field vanishes when θ = 0 [see Eq. (26)]. This is one of the
reasons why this configuration is seldom used in experiments.
However, this configuration can lead to a significant AC ISHE,
and a similar AC signal was recently detected [12]. Because of
the strong dissipation enhancement, the EP surface anisotropy
induced localized mode in perpendicular magnetization geom-
etry could be important in future experimental work.

2. In-plane magnetization

We will now complete the discussion of the spin-pumping
enhanced Gilbert damping by treating the case in which the
magnetization is in plane (θ = π/2). For such systems, the
coefficient C3 �= 0, and the zeroth-order expansion of Eq. (37)
becomes

kL tan kL = −
d
(
(λexk)2 + ωH

ωM

)√
1 + (λexk)2 + 2 ωH

ωM√
1 + (λexk)2 + 2 ωH

ωM

(
1 + 2(λexk)2 + 2 ωH

ωM

) − d λex
L

(
1 + (λexk)2 + ωH

ωM

)
coth

(
L
λex

√
1 + (λexk)2 + 2 ωH

ωM

) . (50)
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For typical film thicknesses, of some hundred nanometers, we
have L/λex � 1 and (λexk)2 � 1 for the lowest eigenmodes.
Thus we take the asymptotic coth ∼ 1 and neglect the (λexk)2

terms, ridding the rhs of Eq. (50) of any k dependence.
Equation (50) now becomes similar to the out-of-plane case,

kL tan(kL) = deff, (51)

where

deff = −
d ωH

ωM

√
1 + 2 ωH

ωM(
1 + 2 ωH

ωM

)3/2 − d λex
L

(
1 + ωH

ωM

) . (52)

deff is positive if d < 0 and negative for d > 0 up to a critical
value dλex/L = λexKs/A = (1 + 2 ωH

ωM
)3/2

/(1 + ωH

ωM
), where

the denominator becomes zero. For negative d, |deff| < |d|,
whereas for positive d, |deff| is initially smaller than that of
|d| but quickly approaches the critical value. With the value
Ks from Table I, we have |deff| < |d|, independent of the
sign of d.

With this relation, we can calculate an approximate Gilbert
damping renormalization in both the EA and EP cases using the
EP and EA relations, respectively, obtained in the out-of-plane
configuration. Thus

�α
ip
EA,0 ≈ �α

oop
EP,0|d→deff = 2|deff|, (53)

�α
ip
EA,n ≈ �α

oop
EP,n|d→deff , (54)

�α
ip
EP,n ≈ �α

oop
EA,n|d→deff . (55)

To summarize this section regarding the enhancement of
Gilbert damping, we see that the enhancement can be very
strong for the surface modes because their effective sizes are
smaller than the thickness of the film. For all other modes,
the enhancement decreases with increasing magnitude of the
surface-anisotropy energy.

IV. NUMERICAL CALCULATIONS

The first step in the numerical method is to approximate
the equation of motion of Eq. (11) into by finite-size matrix
eigenvalue problem. We discretize the transverse coordinate
ξ on the interval [−L/2,L/2] into N points labeled by
j = 1, 2, . . . ,N , and characterize the transverse discrete solu-
tions of the dynamic magnetization vectors mQ by (mx,j ,my,j )
of size 2N .

We approximate the second-order derivative arising from
the exchange interaction using a nth-order central difference
method. For the n − 2 discretized points next to the boundaries,
we also use nth-order methods, using forward (backward)
difference schemes for the lower (upper) film boundary. This
strategy avoids the introduction of “ghost” points outside the
interval [−L/2,L/2] to satisfy the boundary conditions.

Thus the total operator acting on the magnetization on
the left-hand side of Eq. (11) becomes a sparse 2N × 2N

matrix operator. On the right-hand side of Eq. (11), we also
represent the convolution integral as a 2N × 2N dense matrix
operator, where each row is weighted according to the extended
integration formulas for closed integrals to nth order [45]. The
four N × N subblocks of this integration operator correspond

to the four tensor elements of Ĝxy . In the final discrete form,
we obtained a 2N × 2N ω-dependent matrix.

Next, the four boundary conditions (at the left and right
boundaries for the two components, mx and my) are used to
reduce the number of equations to 2N − 4. This is performed
by algebraically solving the discretized boundary conditions
with respect to the boundary points, i.e., by determining mi

where i ∈ {1,N,N + 1,2N} in terms of the magnetizations at
the interior points.

Finally, each (2N − 4) × (2N − 4) matrix is separated into
two parts: a term independent of the frequency ω and a term
proportional to ω. The dipole interaction causes the eigenvalue
problem to be non-Hermitian and therefore computationally
more demanding than a generalized eigenvalue problem. We
find the dispersion relation and magnetization vectors by
solving this eigenvalue problem. The resulting eigenvectors
are used to find the magnetization at the boundary by back-
substitution into the equations for the boundary conditions.

We are interested in finding the mode and wave-vector
dependence of the spin-pumping enhanced Gilbert damping.
To obtain this information numerically, we perform two
independent calculations of the (complex) eigenvalues. First,
we calculate the complex eigenvalues ωd when there is no
spin pumping, but dissipation occurs via the conventional
bulk Gilbert damping. Second, we calculate the complex
eigenvalues ωsp when spin pumping is active at the FI-NM
interface but there is no bulk Gilbert damping. A mode-
and wave-vector-dependent measure of the effective enhanced
Gilbert damping enhancement is then given by

�α = α
Imωsp

Imωd
. (56)

To ensure that we treat the same modes in the two independent
calculations, we check the convergence of the relative differ-
ence in the real part of the eigenvalues. Table I lists the values
for the different system parameters that are used throughout
this section.

Let us first discuss the renormalization of the Gilbert
damping when there is no surface anisotropy. We will present
the numerical results for the three main geometries described
in Sec. I and compare the results to the analytical results of
Sec. III A.

A. FVMSW (θ = 0)

Figure 5 shows the wave-vector dependent renormalization
of the Gilbert damping �α due to spin pumping at the FI-NM
interface in the FVMSW geometry. In this geometry, waves
traveling along ±ζ̂ have the same symmetry; thus each line
is doubly degenerate and corresponds to two waves of ±ω.
The “spikes” in the figure are due to degeneracies, i.e., mode
crossings, and upon inspection, these spikes can be observed
in the dispersion relation.

1. Easy-axis surface anisotropy (ξ̂ easy axis)

Figure 6 shows �αEA for the FVMSW geometry with an EA
surface anisotropy at the spin-active interface. As predicted in
Sec. III C 1a, all modes exhibit a decreased �α compared with
those in Eqs. (43) and (42). For small QL and the chosen
value of Ks (see Table I), the first four modes match the
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FIG. 5. �α vs wave vector for the FVMSW geometry of the
four smallest eigenvalues. (Top inset) Magnitudes of eigenvectors
(in arbitrary units) across the film at QL = 10. (Bottom inset)
Dispersion relation in the dipole-dipole active regime.

analytical result of Eq. (46), which is consistent with the plot
in Fig. 3. For even higher excited modes, the effect of the
EA surface anisotropy becomes weaker due to the increase in
transverse exchange energy. These modes (not shown in the
figure) approach the value of �αn.

2. Easy-plane surface anisotropy (ξ̂ hard axis)

Figure 7 shows �αEP for the FVMSW geometry with an
EP surface anisotropy. We see that the mode corresponding to
n = 0 has been promoted to a surface mode with a large �α,
which for small values of QL matches Eq. (47). For the higher
excited modes, we observe a decrease in �α compared to the
case with no surface anisotropy.

B. BVMSW (θ = π/2 and φ = 0)

Figure 8 shows the QL-dependent renormalization of the
Gilbert damping due to spin pumping at the FI-NM interface
in the BVMSW geometry. We see that the enhancement �α

FIG. 6. �αEA vs wave vector for the FVMSW geometry showing
the four smallest eigenvalues. The horizontal dashed lines indicate
solutions of Eq. (46). (Left inset) Magnitudes of eigenvectors (in
arbitrary units) across the film at QL = 5. (Right inset) Dispersion
relation in the dipole-dipole active regime.

(a)
(b)

(c)

FIG. 7. (a) �αEP vs wave vector for the FVMSW geometry,
showing the four smallest eigenvalues. The dashed lines represent
the analytic solutions from Sec. III C 1b. (b) Dispersion relation
in the dipole-dipole active regime. (c) Magnitude of eigenvectors
(in arbitrary units) across the film at QL = 5.

agrees with the analytic limits in Eqs. (43) and (42) for small
values of QL. For large values of QL, we are in the strong
exchange regime, in which the in-plane exchange energy
becomes large compared to all other energy contributions. This
in-plane exchange stiffness effectively quenches the coupling
to the normal metal layer, causing �α → 0 for large values
of QL.

Although Fig. 8 only appears to show the three first
eigenvalues and eigenvectors, it actually contains double
this amount. Because ẑ is parallel to the wave-propagation
direction ζ̂ in this geometry, there is no change in dipolar
energies, regardless of whether the wave travels in the +ζ̂

direction or in the −ζ̂ direction; thus, the Gilbert damping
is enhanced equally in both wave directions. A slight offset
from this configuration, taking either θ < π/2 or φ �= 0, would
result in a splitting of each line in Fig. 8 into two distinct lines.

Including surface anisotropy

Figure 9 shows both the EA and the EP surface-anisotropy
calculations in the BVMSW geometry. In the case of an EA

FIG. 8. �α vs wave vector for the BVMSW geometry (θ = π/2
and φ = 0) with Ks = 0, plotted for the four smallest eigenvalues.
(Left inset) Magnitudes of normalized eigenvectors across the film at
QL = 5. (Right inset) Dispersion relation in the dipole-dipole active
regime.
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(a) (b)

FIG. 9. (a) Dispersion relation vs wave vector for the BVMSW geometry (θ = π/2, φ = 0) for the four lowest eigenvalues in the case of
EA surface anisotropy. (b) Dispersion relation in the case of EP surface anisotropy. In both figures, the horizontal dashed lines mark the value
of �αn in the case of no surface anisotropy.

surface anisotropy, the mode corresponding to n = 0 gets
promoted to a surface mode, similarly to the case in which
there is EP surface anisotropy in the FVMSW geometry. The
increase in �α is much smaller for the same magnitude of
Ks , as explained in detail in Sec. III C. The higher modes,
corresponding to n > 0, exhibit increased quenching of the
Gilbert damping enhancement. In the case of EP surface
anisotropy, all modes exhibit quenched Gilbert damping
enhancement.

C. MSSW (θ = φ = π/2)

Figure 10 shows the QL-dependent renormalization of the
Gilbert damping due to spin pumping at the FI-NM interface
in the MSSW geometry. The computed eigenvalues agree with
Eqs. (43) and (42) for small values of QL. We see in the inset of
Fig. 10 that in this geometry, the macrospinlike mode behaves
as predicted by Damon and Eshbach [36], Eshbach and Damon
[37], cutting through the dispersion relations of the higher
excited modes for increasing values of QL in the dipole-dipole
regime. A prominent feature of this geometry is the manner
in which the modes with different signs of Re{ω} behave

differently due to the dipole-dipole interaction. This is because
the internal field direction (ẑ) is not parallel to the direction of
travel (ζ̂ ) of the spin wave. Hence, changing the sign of ω is
equivalent to inverting the externally applied field, changing
the xyz coordinate system in Fig. 1 from a right-handed
coordinate system to a left-handed system. In the middle
of the dipole regime, the lack of symmetry with respect to
propagation direction has different effects on the eigenvectors;
e.g., in the dipole-dipole active region the modes with positive
or negative Re{ω} experience an increased or decreased
magnitude of the dynamic magnetization, depending on the
value of QL, as shown in Figs. 10(e) and 10(f). This magnitude
difference creates different renormalizations of the Gilbert
damping, as the plot of �α(±) in Figs. 10(b) and 10(c) shows.

Including surface anisotropy

Figure 11 shows �α computed for modes in the MSSW
geometry with EA and EP surface anisotropies. We can clearly
see that for small QL an exponentially localized mode exists
in the EA case, and as predicted in Sec. III C, all the lowest-
energy modes have spin pumping quenched by EP surface

(a)

(b)

(c)

(d)

(e)

FIG. 10. Gilbert damping renormalization in the MSSW geometry. Subplots (a) and (b) show Gilbert damping renormalization �α

for modes with positive (negative) Re{ω}. The horizontal dashed lines represent the analytical values �α0 and �αn for small QL.
(c) Dispersion relation vs wave vector for the MSSW geometry (θ = φ = π/2) for the four smallest eigenvalues, colored pairwise in ±ω.
Subplot (d) [(e)] shows the magnitude of normalized eigenvectors (in arbitrary units) at QL = 3 across the film modes with positive [(negative)]
Re{ω}.
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(a)

(b)

(c)

(d)

FIG. 11. (a) and (b) Gilbert damping renormalization from spin pumping in the MSSW geometry (θ = φ = π/2) for modes with
positive (negative) Re{ω} in the case of EA surface anisotropy. The four smallest eigenvalues are colored pairwise in ±ω across the plots.
(c) and (d) show the Gilbert damping renormalization in the case of EP surface anisotropy.

anisotropy. This is similar to the corresponding case in the
BVMSW geometry.

D. AC and DC ISHE

Figure 12 shows the DC and AC ISHE measures for the
BVMSW geometry corresponding to the data represented in
Fig. 8. In this geometry, the angular term, sin θ , in Eq. (28)
is to equal one, ensuring that the DC measure is nonzero.
This is not the case for all geometries because the DC electric
field vanishes in the FVMSW geometry. The mode-dependent
DC ISHE measure exhibits the same QL-dependence as
the spectrum of the Gilbert damping enhancement in all
geometries where sin θ �= 0. We have already presented the
renormalization of the Gilbert damping in the most general
cases above. Therefore we restrict ourselves to presenting
the simple case of the BVMSW geometry with no surface
anisotropy here.

The AC ISHE measure plotted in Fig. 12 exhibits a similar
QL dependence to the Gilbert damping renormalization (and
hence the DC ISHE measure), but with a slight variation
in the spectrum towards higher values of QL. Note that

(a)

(b)

FIG. 12. ISHE as a function of in-plane wave vector in the
BVMSW geometry with Ks = 0. (a) AC ISHE measure of Eq. (28)
and (b) DC ISHE measure of Eq. (28).

because Eq. (24) is nonzero for all values of θ , the AC effect
should be detectable in the FVMSW geometry. By comparing
the computed renormalization of the Gilbert damping for
the different geometries in the previous subsections, we see
that the strong renormalization of the n = 0 induced surface
mode that occurs in the FVMSW geometry with easy-plane
surface anisotropy (see Sec. IV A2 and Fig. 7) can have a
proportionally strong AC ISHE signal in the normal metal.

V. CONCLUSION

In conclusion, we have presented analytical and numerical
results for the spin-pumping-induced Gilbert damping and
direct- and alternating terms of the inverse spin-Hall effect.
In addition to the measures of the magnitudes of the DC and
AC ISHE, the effective Gilbert damping constants strongly
depend on the modes through the wave numbers of the excited
eigenvectors.

In the long-wavelength limit with no substantial surface
anisotropy, the spectrum is comprised of standing-wave
volume modes and a uniformlike (macrospin) mode. These
results are consistent with our previous findings [18]: in
the long-wavelength limit, the ratio between the enhanced
Gilbert damping for the higher volume modes and that of
the macrospin mode is equal to two. When there is significant
surface anisotropy, the uniform mode can be altered to become
a pure localized surface mode (in the out-of-plane geometry
and with EP surface anisotropy), a blend between a uniform
mode and a localized mode (in-plane geometries and EA
surface anisotropy), or quenched uniform modes (out-of-plane
field configuration and EA surface anisotropy, or in-plane
field configuration and EP surface anisotropy). The effective
Gilbert damping is strongly enhanced for the surface modes
but decreases with increasing surface-anisotropy energies for
all the other modes.

The presented measures for both the AC and DC inverse
spin-Hall effects are strongly correlated with the spin-pumping
renormalization of the Gilbert damping, with the DC effect
exhibiting the same QL dependency, whereas the AC effect
exhibits a slighthly different variation for higher values of
QL. Because the AC effect is nonzero in both in-plane and
out-of-plane geometries and because both EP and EA surface
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anisotropies induce surface-localized waves at the spin-active
interface, the AC ISHE can be potentially large for these
modes.
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APPENDIX: COORDINATE TRANSFORMS

The transformation for vectors from ξηζ to xyz coordinates
(see Fig. 1) is given by an affine transformation matrix T , so
that

f(xyz) = T · f(ξηζ ),

for some arbitrary vector f. Tensor-vector products are trans-
formed by inserting a unity tensor I = T−1T between the
tensor and vector and by left multiplication by the tensor T,
such that the tensor transforms as TĜT−1 for some tensor Ĝ
written in the ξηζ basis.

T is given by the concatenated rotation matrices T = R2 ·
R1, where R1 is a rotation φ around the ξ axis, and R2 is a
rotation θ − π

2 around the new η axis/y axis. Hence

R1 =
⎛⎝1 0 0

0 cos φ − sin φ

0 sin φ cos φ

⎞⎠, (A1)

R2 =
⎛⎝sin θ 0 − cos θ

0 1 0
cos θ 0 sin θ

⎞⎠, (A2)

such that

T =
⎛⎝sin θ − cos θ sin φ − cos θ cos φ

0 cos φ − sin φ

cos θ sin θ sin φ sin θ cos φ

⎞⎠. (A3)

This transformation matrix consists of orthogonal transfor-
mations; thus the inverse transformation, which transforms
xyz → ξηζ , is just the transpose, T−1 = TT .
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