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We deduce the intrinsic conductivity properties of the ferroelectric domain walls around the topologically 

protected domain vortex cores in multiferroic YMnO3. This is achieved by performing a careful equivalent-circuit 

analysis of dielectric spectra measured in single-crystalline samples with different vortex densities. The conduc-

tivity contrast between the bulk domains and the less conducting domain boundaries is revealed to reach up to a 

factor 500 at room temperature, depending on sample preparation. Tunneling of localized defect charge carriers is 

the dominant charge-transport process in the domain walls that are depleted of mobile charge carriers. This work 

demonstrates that via equivalent-circuit analysis, dielectric spectroscopy can provide valuable information on the 

intrinsic charge-transport properties of ferroelectric domain walls, which is of high relevance for the design of 

new domain-wall-based microelectronic devices. 

 
 

The hexagonal manganites RMnO3 (R = Sc, Y, In, and 

Dy-Lu) form a unique group of multiferroics where a geomet-

rically-driven mechanism triggers improper ferroelectricity 

[1]. Additional interest in this material class arose from the 

reported occurrence of vortex-like ferroelectric domain pat-

terns [2,3,4]. Around the vortex cores, forming the centers of 

"cloverleaf" patterns of six domains, the polarization changes 

sign six times. These cores, evolving at a high-temperature 

structural transition [5], represent stable topological defects. 

Even strong electric fields only lead to a variation of ferroe-

lectric domain sizes in these materials, but are unable to com-

pletely eradicate unfavorable domains and to generate a 

mono-domain state [2,6]. Moreover, there is a strict coupling 

of ferroelectric and antiferromagnetic domain walls (DWs), 

the latter forming at much lower temperatures around 100 K 

[7]. 

Recently it was shown that these complex domain proper-

ties also may be of relevance from an application point of 

view: Conductive atomic-force microscopy (c-AFM) on 

ErMnO3 [4] and HoMnO3 [8] revealed that the conductance 

of the ferroelectric DWs is either enhanced or suppressed 

compared to the domains, being determined by the polariza-

tion orientation of the adjacent domains. As the DWs can be 

easily tuned by external fields, this opens the possibility of 

domain-boundary engineering and applications in microelec-

tronics using the nanoscale DWs instead of the domains 

themselves as active device elements [9,10,11,12,13]. The 

hexagonal manganites seem especially suited for this kind of 

functionality: Their DWs are robust and represent persistent 

interfaces as they are attached to the vortex cores, but within 

these constraints they can be moved by an external field thus 

enabling switching [4,12,13]. 

In general, insulating domain walls, also observed in vari-

ous other systems as SrMnO3 thin films [14] and 

(Ca,Sr)3Ti2O7 [15], have shifted into the focus of interest, due 

to their possible applications, e.g., as rewritable nanocapaci-

tors. The conductivity contrast between these DWs and the 

domains should be as high as possible. However, there is 

literally no data available that unambiguously proves the 

intrinsic nature of the reduced conductance and the mecha-

nisms behind the residual domain-wall currents have not been 

tackled. For example, c-AFM, applied in Refs. [4] and [8] to 

hexagonal manganites, relies on the formation of Schottky-

like barriers between the metallic tip and the semiconducting 

sample and thus essentially detects surface effects. Moreover, 

the current flow from the AFM tip to the bottom electrode 

leads to an ill-defined geometry. Thus, while the detected 

conductance variations of about one decade [4] or a factor of 

4 [16] in ErMnO3 and of 25% in HoMnO3 [8] provide strong 

indications for different conductivities of domains and walls, 

no unequivocal information on the absolute value of the con-

ductivity contrast is gathered. Recent photoemission electron-

microscopy experiments on ErMnO3 have demonstrated the 

intrinsic nature of the conductivity variation between domains 

and DWs [17] but this technique also does not provide abso-

lute values. These are fundamental problems that go beyond 

hexagonal manganites and also apply to functional ferroelec-

tric domain walls in other systems. 

Thus, new and unambiguous insight into the local 

transport behavior is highly desirable. Interestingly, bulk 

dielectric spectroscopy is able to reveal information about the 

electrical properties of different regions in heterogeneous 

samples, even without any efforts to sense the behavior of 

specific sample regions by using microscopic contact geome-

tries [18,19]. In the present work, we have employed dielec-

tric spectroscopy to YMnO3, probably the most studied hex-

agonal manganite, to determine the actual conductivity con-

trast between bulk (i.e., the domains) and domain boundaries 

with reduced conductance. There are several previous dielec-

tric studies of this compound (e.g., [20,21,22,23]). Their 

results are inconsistent, which points to a strong influence of 

non-intrinsic effects and a considerable sample dependence of 

the dominant dielectric properties. We investigate two single 

crystals, measured as grown or subjected to different cooling 
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rates after annealing above the structural phase transition 

(Tc  1260 K [5]), leading to distinct vortex densities [24,25].  

Single crystals of YMnO3 were grown by the flux method 

(sample 1) and the floating-zone technique (sample 2) [5]. 

Their geometry is roughly plate-like with the c axis vertical to 

the surface (sample 1: area 4.7 mm2, thickness 0.3 mm; sam-

ple 2: 2.4 mm2, 0.4 mm). Sample 1 was measured as grown 

and after annealing in N2 gas at 1400 K (well above Tc [5]), 

followed by cooling with 1 K/min down to 900 K to generate 

a defined vortex density (denoted as sample 1a) [24,25]. 

Sample 2 was annealed at 1420 K and cooled with 10 K/min. 

For the dielectric measurements, contacts of silver paint or 

sputtered platinum were applied to opposite faces of the crys-

tals, ensuring an electrical field direction parallel to c. The 

dielectric constant ' and conductivity ' were determined 

using a frequency-response analyzer (Novocontrol Alpha-A 

Analyzer). Sample cooling and heating were achieved by a 

closed-cycle refrigerator and a home-made oven, with the 

sample in vacuum. For the determination of the vortex densi-

ty, piezo-response force microscopy (PFM) was performed at 

room temperature [4]. 

Figure 1 shows ε'(T) and '(T) of sample 1 at various fre-

quencies between 10 and 600 K. '(T) [Fig. 1(a)] exhibits a 

peak reaching "colossal" [18] values up to 104. Its left flanks 

shift with frequency, signifying a relaxational process, and the 

overall behavior resembles that of so-called relaxor ferroelec-

trics [26,27]. However, one should be aware that the well-

known non-intrinsic Maxwell-Wagner (MW) relaxations 

arising in heterogeneous samples, in special cases can also 

mimic relaxor-ferroelectric behavior [18,28,29]. The low-

temperature flanks of the ε'(T) peaks seem to be composed of 

two consecutive steps indicating a large relaxor-like and an 

additional relaxation process with smaller amplitude, termed 

in the following relaxation 2 (at higher temperatures) and 1 

(at lower temperatures), respectively. Relaxation steps are 

usually accompanied by peaks in the dielectric loss ε", which 

is proportional to '/. In '(T) [Fig. 1(b)], only the smaller 

relaxation 1 is revealed by a peak. It only shows up as a 

shoulder (e.g., at about 200 K for the 1 Hz curve) due to the 

superposition by the non-zero conductivity of the semicon-

ducting sample, which strongly increases with temperature.  

The larger relaxor-like mode 2 most likely is of MW type, 

arising from a so-called surface-barrier layer capacitor 

(SBLC) at the sample surface [18,30]. The missing ' peak 

for this relaxation indicates similar conductance of the SBLC 

and the bulk [29]. Peaks in ε'(T) have previously been ob-

served in two other reports of the dielectric response of 

YMnO3 [21,22], however, at different temperatures and with 

different amplitudes, which speaks against an intrinsic origin. 

In addition, during our measurements at 300 K < T < 600 K, 

involving several heating/cooling cycles, at the first heating 

run the peak occurred at significantly higher temperature than 

at the subsequent runs [inset of Fig. 1(a)]. A change of oxy-

gen stoichiometry at the sample surface seems a reasonable 

explanation for this phenomenon while it is unlikely that the 

stoichiometry of the whole sample changes at these relatively 

moderate temperatures [22]. Schottky diodes forming when 

metallic electrodes are applied to semiconducting samples are 

also often found to lead to MW relaxations [18,31,32]. To 

check for this possibility, we have performed measurements 

with different contact types [18]. They revealed only minor 

deviations [cf. squares and solid line in Fig. 1(a)] indicating 

that Schottky-diode formation only plays a minor role in our 

sample. Adem et al. [23] recently reported a stronger influ-

ence of contact material on the giant relaxation mode found 

by them in YMnO3, again pointing to the non-intrinsic and 

irreproducible nature of this surface-related spectral feature. 

In contrast to relaxation 2, we found the spectral features 

linked to relaxation 1 to be well reproducible in subsequent 

cooling and heating runs. We ascribe it to a MW relaxation 

caused by internal barrier layer capacitors (IBLCs) [33] aris-

ing from those parts of the ferroelectric DWs with low con-

ductivity (the conducting parts of the DWs, also detected in 

[4], should not contribute to the dielectric properties).  
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FIG. 1 (color online). Temperature dependence of (a) ' and (b) ' of 

sample 1 with silver-paint contacts measured for various frequencies 

under cooling (open symbols). The solid line in (a) shows ε'(T) at 

1 Hz for the same sample, using sputtered platinum contacts. The 

dotted line in (a) roughly indicates the separation of relaxations 1 

and 2 showing up at low and high temperatures, respectively. The 

two horizontal dashed lines in (a) indicate the capacitances (divided 

by the empty capacitance C0) of the two insulating regions used for 

the fits of the frequency-dependent data (Fig. 2). The closed circles 

in (a) represent ε'bulk as resulting from these fits; the corresponding 

dashed line is a guide for the eyes. The closed circles in (b) show the 

bulk dc conductivity as determined from the fits. The line in (b) is a 

fit of bulk with the Arrhenius law [cf. Fig. 3(b)]. The inset in (a) 

shows ε'(T) at 1 Hz, measured at the first heating run and the subse-

quent cooling run. 

 

 

Generally, thin layers within a sample, having lower con-

ductivity than the bulk, act like capacitors (SBLCs or IBLCs) 

and lead to a MW relaxation and the typical signatures of 
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relaxation processes, a step in ε'(T,) and a peak in ε"(T,). 

Possible causes are Schottky diodes or non-stoichiometric 

surface layers (SBLCs) and grain boundaries or other IBLCs. 

The static limit of the dielectric constant, εs,MW, observed at 

low frequencies [for ε'() plots] or high temperatures [for 

ε'(T)], is artificially enhanced compared to the bulk dielectric 

constant ε'bulk by a factor given by the ratio of the sample 

thickness d and overall layer thickness Dl, i.e., εs,MW  d/Dl 

[18] (note that Dl is the summed-up, effective DW thickness 

and not the real thickness of a single DW). This is strictly 

valid if making the reasonable assumption that the intrinsic ' 
of the charge-carrier-depleted layers is of the same order as 

for the bulk. As d/Dl can become very large, this explains the 

apparently colossal values of ε' arising from surface effects in 

some materials [18,31,32,33] and in the present case of relax-

ation 2.  
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FIG. 2 (color online). (a) ' and (b) ' spectra of sample 1. The solid 

lines in (a) and (b) are fits using the equivalent circuit indicated in 

frame (a) (see text), simultaneously performed for ε'() and '(). 

The dotted line in (b) connects the shoulders arising from relaxation 

1. 

 

 

To obtain quantitative information, we have analyzed the 

frequency dependence of the measured dielectric properties as 

shown for sample 1 in Fig. 2. Here in ε'() [Fig. 2(a)] two 

successive steps are observed corresponding to relaxations 2 

(at low frequencies) and 1 (high frequencies). The shoulders 

revealed in '() [connected by the dotted line in Fig. 2(b)] 

arise from relaxation 1. At low temperatures and high fre-

quencies, the bulk properties dominate the data (e.g., for 

300 K above about 3 kHz) as the insulating thin layers, acting 

like lossy capacitors, become shortened [18,31]. For the bulk 

dielectric constant, ε'bulk  20 is found. The bulk conductivity 

shows a nearly frequency-independent region signifying dc 

conductivity dc, followed by a power-law increase indicating 

hopping conductivity [18,34]. 

The lines in Fig. 2 are fits using the equivalent circuit 

shown in Fig. 2(a). The SBLCs and IBLCs, schematically 

indicated in Fig. 3(a), are both modeled by parallel RC cir-

cuits (C2||G2 and C1||G1, respectively, with G the conductanc-

es) [18,31,33]. For the bulk part of the sample, a capacitor 

accounting for the intrinsic ε'bulk, a resistor for dc, and an 

element with a frequency-dependent conductivity 
s   with s < 1 is used [18,31]. The latter corre-

sponds to Jonscher's universal dielectric response [35] cover-

ing the mentioned increase of '() due to hopping transport. 

Notably, perfect fits of the complete data set are possible with 

temperature-independent capacitors C1 and C2 [horizontal 

dashed lines in Fig. 1(a)] as usually found for SBLCs and 

IBLCs [18,31,32,33]. ε'bulk(T) as resulting from the fits is 

included in Fig. 1(a) (closed circles). It varies between about 

15 and 35. Obviously, this equivalent-circuit approach pro-

vides a good description of our data without assuming contri-

butions from segmental DW oscillations found in some ca-

nonical ferroelectrics [36]. 
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FIG. 3 (color online). (a) Schematic sample cross section (not to 

scale) indicating bulk, SBLC, and IBLC regions, where the IBLCs 

arise from the DWs (this picture is somewhat oversimplified as only 

part of the DWs have low conductivity [4]). (b) Arrhenius represen-

tation of the bulk dc conductivity and apparent layer conductivities 

(conductances multiplied by the bulk geometry-factor d/A) of sample 

1 as obtained from the fits shown in Fig. 2. (c) Bulk dc conductivity 

and true layer conductivities calculated as described in the text. (d) 

Same as (c) but using a representation that linearizes (T) for varia-

ble range hopping. The solid lines in (b), (c), and (d) are linear fits; 

the dashed lines are guides to the eye. 

 

 

In the following, we deduce the intrinsic conductivities of 

the DWs and SBLCs from the fit results. Figure 3(b) shows 

the apparent conductivities obtained from the fits, which 

correspond to the conductances of the equivalent circuit mul-

tiplied by the bulk geometry factor d/A (A: sample area). 

However, only for the bulk this represents the intrinsic con-
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ductivity bulk. The latter is also included in Fig. 1(b) reveal-

ing the typical behavior for MW relaxations [18,37,38]. bulk 

follows the Arrhenius law with an activation energy of 

0.36 eV. The same value was also found at the highest fre-

quencies and lowest temperatures investigated in Ref. [21], 

where obviously the intrinsic bulk response was detected. 

Figure 3(b) reveals that the layer conductances cross the bulk 

curve at high temperatures. Such behavior can cause an ap-

parent relaxor-ferroelectric signature in ε'(T,) as indeed 

observed in Fig. 1 [18,29]. 

In contrast to the bulk, for the layers the quantity Gd/A 

plotted in Fig. 3(b) only represents the apparent conductivity 

because their overall thickness Dl is smaller than the sample 

thickness d. To calculate the intrinsic layer conductivities 

SBLC and IBLC, Gd/A shown in Fig. 3(b) has to be divided 

by d/Dl. This ratio can be estimated from our fit results if 

considering the mentioned enhancement of εs,MW of the corre-

sponding MW relaxation, which is determined by the ratio of 

sample and overall layer thickness, i.e., ls Dd
bulkMW,  . 

This relation is valid if making the reasonable assumption of 

homogeneity of ' all over the sample. Using an average value 

of ε'bulk  20 and the εs,MW values obtained from the fits, this 

ratio is about 33 for the IBLCs and 830 for the SBLCs. The 

intrinsic layer conductivities calculated using these values are 

shown in Fig. 3(c), together with bulk. SBLC is by about 2 - 4 

decades lower thanbulk. Of special interest is the result for 

IBLC revealing that, at room temperature, the conductivity of 

the insulating DWs is by more than two decades lower than 

for the bulk (bulk/IBLC  190). Thus the conductivity contrast 

is significantly stronger than the conductance ratios obtained 

for two related hexagonal manganites from c-AFM measure-

ments [4,8], which do not reveal absolute values of the con-

ductivities. It should be noted that the obtained DW conduc-

tivity is a representative value of the insulating parts of the 

DWs and our results do not exclude conductivity variations in 

dependence of polarization orientation as detected in [4] and 

[8]. 

Figure 3(c) demonstrates clear deviations of IBLC(T) from 

thermally activated behavior. Instead it follows 

IBLC ~ exp[-(T0/T)1/4], as predicted for variable range hop-

ping [Fig. 3(d)] pointing to phonon-assisted tunneling of 

Anderson-localized electrons or holes [39]. In Ref. [16], for 

ErMnO3 it was explicitly demonstrated that the insulating 

DWs are depleted from mobile charge carriers (holes). From 

our results we conclude that the charge transport in these 

DWs is dominated by tunneling of the remaining localized 

charge carriers. Interestingly, recent electron-energy loss 

spectroscopy and density-functional theory calculations sug-

gest charge transport via minority charge carriers (electrons) 

for the insulating DWs at sufficiently large voltage [40]. Their 

localized nature and small carrier density of about 0.1 per Mn 

ion is well consistent with the occurrence of hopping charge 

transport as found in the present work. 

As shown before [24,25], annealing hexagonal manganites 

above Tc and subsequent cooling with different rates leads to 

well-defined vortex densities which depend on cooling rate. 

The right part of Fig. 4 presents PFM images of the annealed 

samples 1a and 2, exhibiting the typical domain patterns 

[2,4,24]. A vortex density v of about 4104/mm2 is deduced 

for sample 1a, while sample 2 has significantly higher v of 

about 1.5106/mm2. The dielectric properties of these samples 

also reveal the presence of two relaxation processes, which 

were interpreted and analyzed in the same way as for sample 

1 [29]. The obtained intrinsic conductivities are shown in Fig. 

4. For the annealed sample 1a, the bulk conductivity at room 

temperature is by more than two decades higher than for the 

as-grown state of this sample and a lower energy barrier of 

0.26 eV is found. Most interestingly, we obtain a conductivity 

contrast between bulk and insulating DWs of about 500 at 

room temperature, even higher than in the untempered sam-

ple. In marked contrast, while sample 2 exhibits a bulk con-

ductivity and energy barrier of similar order as for the untem-

pered sample 1, it seems to have a much smaller conductivity 

contrast of about 1.3 only at room temperature. Different 

annealing/cooling cycles obviously have a pronounced effect 

on the MW relaxations in YMnO3 [29] pointing to marked 

variations of bulk and DW conductivity. Moreover, the dif-

ferent crystal-growth procedure of sample 2 may also play a 

role for its different behavior. Further work is necessary to 

systematically investigate the dependence of the intrinsic 

conductivities in the hexagonal manganites on sample history. 
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FIG. 4 (color online). Bulk dc conductivity and true layer conduc-

tivities of the annealed samples 1a (a) and 2 (b), deduced from the 

equivalent-circuit analysis as described in the text. The solid lines in 

both frames are linear fits; the dashed lines are guides to the eye. At 

the right side of the figures, PFM images of the ab sample surfaces 

are shown. 
 

 

In summary, we have measured the dielectric properties of 

single-crystalline YMnO3 and performed a detailed equiva-

lent-circuit analysis of the obtained spectra. From this, we 

were able to determine absolute values of the conductivity of 

the ferroelectric DWs with suppressed conductance and of the 
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conductivity contrast between the domains and DWs. For the 

latter, we find values up to 500 at room temperature and 

indications for a strong dependence on the thermal history 

and crystal-growth procedure of the samples. The charge 

transport in the insulating DWs is dominated by the tunneling 

of localized charge carriers. These results demonstrate that 

dielectric spectroscopy can disclose the intrinsic conductivity 

properties of ferroelectric DWs, which is prerequisite for the 

development of new domain-wall-based nanotechnology. 
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1. Non-intrinsic relaxor behavior 
 

Here we explain in more detail how the relaxor behavior 

observed for relaxation 2 in the as-grown sample 1 of YMnO3 

can arise from non-intrinsic effects. These considerations are 

based on Refs. [16] and [26] of the main paper. As mentioned 

in the main text, Maxwell-Wagner (MW) relaxations can be 

caused by the existence of thin insulating layers within the 

sample or at its surface, termed internal barrier layer capacitors 

(IBLCs) or surface barrier layer capacitors (SBLCs), respec-

tively. Possible origins were discussed in the main text (see 

also Ref. 16). As mentioned there, then the sample can be de-

scribed by a parallel RC circuit for the layers (with Rl and Cl 

for the layer resistance and capacitance, respectively), con-

nected in series to the bulk sample [Fig. S1(a)]. 

For simplicity reasons, here we assume that there is only 

one type of insulating layers instead of the two layers arising 

from IBLCs and SBLCs in the actual YMnO3 samples. As dis-

cussed in the main text, we ascribe the relaxor-like MW relax-

ation to the SBLCs and, thus, the quantities G2 and C2 assigned 

to the SBLCs in the main paper are related to Rl and Cl via 

Rl = 1/G2 and Cl = C2. Moreover, we neglect here the s   

contribution from hopping conductivity to the bulk response, 

i.e., the sample is modeled by a simple parallel circuit of Rb and 

Cb [Fig. S1(a)]. Without these assumptions, the formulae de-

scribing the equivalent circuit become exceedingly complex 

while the general conclusions are the same. 

The total admittance (complex conductance) of a single RC 

circuit is Y = G + iC, with the conductance G = 1/R and 

 =  2. The circuit shown in Fig. S1(a) has a total admittance 

of [16] 
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(Here the indices "l" and "b" stand for "layer" and "bulk", re-

spectively.) Resolving this into real and imaginary part and cal-

culating the capacitance via C'tot = G"tot/ leads to [16]: 
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As noted, e.g., in Ref. [16], this formally results in exactly the 

same frequency dependence as for a Debye relaxation with 

some additional loss contribution due to dc conductivity. Such 

non-intrinsic relaxational response is commonly termed Max-

well-Wagner relaxation. 
 

 
FIG. S1. (a) Simplified equivalent circuit for a heterogeneous sample 

consisting of a bulk and a layer contribution. (b) Schematic plot of the 

frequency dependence of the dielectric constant for a conventional 

MW relaxation. (c) Schematic plot of the temperature dependence. 

The horizontal solid line indicates a temperature independent s,MW as 

expected for this case. 

 

 

Here we are interested in the capacitance for   0, Cs,MW, 

which in YMnO3 shows an increase with decreasing tempera-

ture, typical for relaxor ferroelectrics [solid line in Fig. S2(a)]. 

From Eq. (S1), one obtains [16]: 
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From Cs,MW the static dielectric constant s,MW of the MW re-

laxation can be calculated via s,MW = Cs,MW/C0 where C0 is the 

empty capacitance deduced from the sample geometry. 

 

 
FIG. S2. (a) Temperature dependence of ' as measured at different 

frequencies [same data as shown in Fig. 1(a)]. The closed circles show 

the intrinsic bulk dielectric constant as deduced from the fits shown in 

Fig. 2; the corresponding dashed line is a guide for the eyes. The solid 

line indicates s,MW(T). (b) Temperature dependence of the bulk con-

ductivity and the apparent layer conductivity arising from the SBLCs 

(conductance multiplied by the bulk geometry factor d/A) of sample 1 

as obtained from the fits shown in Fig. 2 [cf. Fig. 3(b), where the same 

data are shown in Arrhenius representation]. The solid line represents 

an Arrhenius fit (see main paper). The dashed line is a guide for the 

eyes. 

 

 

In the simplest and most common case, the overall conduct-

ance of the insulating layers is much lower and their capaci-

tance is much higher than that of the bulk sample, i.e., Gl « Gb 

and Cl » Cb. According to Eq. (S2), the static capacitance is 

then given by Cs,MW = Cl and s,MW = Cl/C0. For this scenario, 

obviously the layer properties completely dominate the de-

tected dielectric response at low frequencies or high tempera-

tures [Figs. S1(b) or (c), respectively] [16]. In contrast, at high 

frequencies or low temperatures, the response is dominated by 

the bulk properties because, with increasing frequency (or de-

creasing temperature), the layer RC-circuit becomes succes-

sively shorted [16].  

The layer capacitance Cl (and thus Cs,MW) usually is tem-

perature independent. For example, in depletion layers of 

Schottky diodes the dielectric constant is determined by the 

nearly temperature-independent ionic and electronic polariza-

bility. The same is valid for a non-stoichiometric surface layer 

as considered here for the large relaxation 2 observed in 

YMnO3 (see main text). Therefore, for most MW relaxations 

the temperature dependence of ' follows the behavior indi-

cated in Fig. S1(c), with a nearly temperature-independent 

s,MW (horizontal solid line) and no indication of relaxor-ferro-

electric behavior (for examples, see Refs. [16,28,29]). 

However, if one of the conditions Gl « Gb and Cl » Cb no 

longer is valid, the situation is more complex. This becomes 

immediately obvious from Eq. (S2): Bulk and layer conductiv-

ity usually have semiconducting temperature characteristics 

and thus Gb and Gl are strongly temperature dependent. If the 

conditions Gl « Gb or Cl » Cb are invalid, this can lead to con-

siderable temperature dependence of Cs,MW and s,MW. As re-

vealed by the upper dashed line in Fig. 1(a) of the main paper 

and in Fig. S2(a), Cl » Cb is always fulfilled for the SBLC re-

laxation in YMnO3: This dashed line indicates Cl/C0 while the 

closed circles show 'bulk = Cb/C0, i.e., Cl is by about three dec-

ades larger than Cb. However, the condition Gl « Gb is not ful-

filled in the whole temperature range: Figure S2(b) compares 

the bulk dc conductivity bulk = Gbd/A (d: sample thickness, 

A: sample area) with the apparent SBLC conductivity Gld/A 

as obtained from the fits shown in Fig. 2. Obviously both 

curves cross. In the temperature region around 350 K, Gb is by 

about a factor 20 larger than Gl. Thus, Gl « Gb is approximately 

fulfilled and the detected high ' values of the order of 104 are 

to a large extent dominated by the SBLCs. However, above 

about 350 K, both conductances approach each other and be-

come equal at about 490 K. There Cl » Cb and Gl  Gb is valid 

and Eq. (S2) results in Cs,MW = Cc/4, predicting a considerable 

reduction with increasing temperature. Moreover, for 

T > 490 K, Gl becomes even larger than Gb, finally exceeding 

it by about one decade at 600 K [Figure S2(b)]. For further in-

creasing temperatures, in Eq. (S2) finally the condition Gl » Gb 

will dominate over the relation Cl » Cb (the conductances are 

squared in the denominator). Then Cs,MW = Cb is expected, i.e., 

the static capacitance (and s,MW = Cs,MW/C0) becomes even 

more reduced with increasing temperature. This explains the 

observed relaxor-like decrease of s,MW with increasing temper-

ature above about 350 K as revealed in Figs. 1(a) and S2(a). 

One may note that, at 490 K, s,MW is actually reduced 

(compared to Cl/C0; upper dashed line) by more than the pre-

dicted factor of four in Fig. S2(a). We ascribe this to the sim-

plified equivalent circuit used here [Fig. S1(a)], which neglects 

the presence of the IBLC relaxation and the s conductivity 

contribution for the bulk. Indeed, as demonstrated in the main 

paper, the experimental data can be well fitted with the com-

plete circuit using a Cl that is temperature independent over the 

whole temperature range. 

In summary, the observed strongly temperature-dependent 

static dielectric constant of YMnO3, apparently resembling re-

laxor-ferroelectric behavior, can be explained by an equivalent 

circuit leading to a MW relaxation. Within this scenario, the 

temperature dependence of s,MW arises from the crossing of 

the conductances Gb(T) and Gl(T) revealed in Fig. S2(b) and 

Fig. 3(b). It should be noted that the conductivity of the SBLCs 

of course is much lower than that of the bulk at all temperatures 
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as revealed in Fig. 3(c) of the main paper. However, these lay-

ers obviously are relatively thin and therefore their conduct-

ance exceeds that of the bulk, at least at high temperatures [Fig. 

S2(b)]. 

 

 

2. Dielectric properties of samples 1a and 2 
 

Figure S3 shows the temperature dependence of ' (a) and 

the frequency dependence of ' (b) and of ' (c) of sample 1a. 

Two relaxation processes are clearly revealed. The correspond-

ing results for sample 2 are shown in Fig. S4. Here the smaller 

relaxation shows up as weak smeared-out step at the onset of 

the large relaxation step 2. The lines in Figs. S3(b) and (c) and 

S4(b) and (c) are fits with the equivalent circuit as described 

for sample 1 in the main text. The obtained intrinsic conduc-

tivities are shown in Fig. 4 of the main paper. Of course, one 

should be aware that the quantification of the DW conductivity 

as shown in Fig. 4 is based on an assignment of the MW relax-

ations in samples 1a and 2, analogous to that used for sample 

1. 

 
 

 
 

FIG. S3. Temperature dependence of ' (a) and frequency dependence 

of ' (b) and of ' (c) of sample 1a with silver-paint contacts. The solid 

lines in (b) and (c) show fits using the equivalent circuit indicated in 

the inset of Fig. 2(a). 

 
 

FIG. S4. Temperature dependence of ' (a) and frequency dependence 

of ' (b) and of ' (c) of sample 2 with silver-paint contacts. The solid 

lines in (b) and (c) show fits using the equivalent circuit indicated in 

the inset of Fig. 2(a). 
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