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Summary

The topic of this thesis is data-analysis on images from two-dimensional elec-
trophoretic gels. Because of the complexity of these images, there are numerous
steps and approaches to such an analysis, and no “golden standard” has yet
been established on how to produce the desired output. In this thesis focus
is put on two essential fields concerning 2D-gel analysis; registration of im-
ages by segmentation and protein spot identification, and data-analysis on the
output of such a registration by multivariate methods. Image segmentation is
mainly concerned with the task of identifying individual protein spots in a gel-
image. This has generally been the natural starting point of all methods and
procedures developed since the introduction of 2D-gels in the mid-seventies,
simply because this best reproduces the results created by a human analyst,
who manually identify protein-spot entities. The amount of data produced in
a 2D-gel experiment can be quite large, especially in multiple gels where the
human analyst is dependent on additional statistical data-analytical tools to
produce results. Because of the correlated nature of most gel-data, analysis by
multivariate methods is natural choice, and are therefore adopted in this the-
sis. The goal of this thesis is to introduce the above mentioned procedures at
different stages in the analysis pipeline where they are not yet fully exploited,
rather than to improve already existing algorithms. In this way new insight
and ideas on how to handle data from 2D-gel experiments are achieved. The
thesis starts with a review of segmentation methodology, and introduces a se-
lected procedure used to identify protein spots throughout. Output from the
segmentation is then used to create a multivariate spot-filtering model, which
alms to separate protein spots from noise and artifacts often creating problems
in 2D-gel analysis. Lately the use of common spot boundaries in multiple gels
have been the method of choice when gels are analysed. How such boundaries
should be defined is an important subject of discussion, and thus a new method
for defining common boundaries based on the individual segmentation of each
gel is introduced. Segmentation may be a natural starting point when gels are
analysed, but it is not necessarily the most correct. Often the introduction of
fixed spot entities introduces restrictions to the data which cause problems at
later stages in the analysis. Analysing pixels from multiple gels directly has
no such restrictions, and it is shown in this thesis that the output of such an
analysis based on multivariate methods can produce very useful results. It can
also give insight to the data problematic to achieve with the spot boundary
approach. At last in the thesis an improved pixel-based approach is intro-
duced, where a less restricted segmentation is used to reduce and concentrate
the amount of data analysed, improving the final output.
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Chapter 1

Introduction

1.1 Background

The introduction of two-dimensional gel electrophoresis (2-DE) in the mid-
seventies was a major change in the field of protein research. Before this,
protein analysis was limited to the purification and investigation of, at best,
a handful of proteins at a time. The connection of these few proteins to the
larger biological system was ignored, simply because the means to study these
relationships were not available. The emergence of two-dimensional protein-
separations suddenly made it possible to look at thousands of proteins at the
same time. Visions for the new methodology were soon put forth. One would
now be able to estimate the number of proteins, made by any biological sys-
tem, and describe the molecular anatomy of this system on the level of protein
expression and modification patterns. Physiological states of whole cells could
be monitored, and medical diagnostics could be performed. Because of the
large amount of data produced from the 2-DE experiments, it was soon recog-
nised that users of 2-DE needed aid of analytical tools to perform an efficient
analysis, and in the late seventies the first computer based analysis systems
for 2D-gels emerged. The creators of these systems soon became aware of
the numerous challenges inherited in the complex protein patterns produced,
many of which, after 30 years of software development, still remains unsolved.
2-DE is today recognised as a valuable tool in protein research, but the task
of creating a fully automated and reliable computer software for identification,
quantification and comparison of proteins in 2D-gels is still far ahead. Most
researchers today recognise the limitation in both the gel methodology itself,
and the software-based methods used to analyse them. Recent studies have
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also questioned whether the task of identifying and quantifying all proteins in a
cell sample can be solved by 2-DE alone. Nevertheless, software solutions have
been developed which make the life of a 2-DE analyst easier. These solutions
are not fully automatic, but rather have the focus of improving visualisation
and collection of data from the gels, helping the analyst to recognise the sig-
nificant variations in the data, and make correct decisions based on these data.
Such an approach is also the starting point for this thesis, where the overall
task is to introduce new methods to improve the analysis of data from 2-DE.

1.2 Chapter outline

There are many steps involved in the analysis pipeline of 2D-gels, where each
step has several suggested solutions. To develop and improve solutions to all
these steps would be too much a task for this thesis. Thus a focus is put on
one crucial step in the analysis pipeline: the segmentation of 2-DE images.
Segmentation in 2-DE is concerned with identifying and separating proteins in
a gel-image, and provides a fundamental basis for data representation and the
final analysis. Another topic of this study is the use of multivariate methods
in relation to the output of the image segmentation. The nature of data in
2-DE, where many proteins are correlated, makes analysis by multivariate ap-
proaches a natural choice. The contents of this thesis will thus include image
segmentation in 2-DE, multivariate analysis of 2D-gels, and how multivariate
analysis can be used in combination with output from the segmentation step
to improve the overall analysis. The outline of the thesis is as follows: the
introduction chapter describes the general methodology of 2-DE, automatic
analysis of data from 2-DE, and comments on the current status of method
development in the scientific community today in relation to commercial soft-
ware. Focus is then put on the image segmentation part of the analysis. The
most common segmentation methods in 2-DE are reviewed, and a selected seg-
mentation pipeline used throughout the rest of this thesis is presented. Finally
in the introduction common multivariate methods are described briefly. Chap-
ter 2-5 contains the main work of this thesis, and each chapter is presented as
a scientific article. A short summary of these four chapters will be given at the
end of the introduction.

1.3 Creating gel images by 2-DE

Two dimensional polyacrylamide gel electrophoresis (2-D PAGE) is a method
introduced by O’Farrel [1] in 1975. The method described a new way to sep-
arate proteins from biological samples in two independent dimensions, and is
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still the method of choice for the majority of differential protein expression
studies. The basic principle for the technology is to separate the proteins in
each dimension using two independent high resolution properties: isoelectric
point (pl) and molecular mass (M,). Before separation all proteins must be
completely solubilized to break the interaction between proteins and to remove
non-protein components. After this, separation by isoelectric point is carried
out by a procedure called isoelectric focusing (IEF). A pH gradient is applied,
and the proteins are allowed to migrate in the first dimension until their net
charge is zero. The pH at which a protein has zero net charge is called the
isoelectric point or pl-value. Since proteins have different charges, they will
occupy different locations in the isoelectric dimension after the isoelectric fo-
cusing. However, several proteins also have similar p/-value, so the separation
on isoelectric focusing alone is not sufficient to identify individual proteins in
a sample under investigation. Thus a second orthogonal separation is applied,
based on each proteins molecular mass. In the second dimension protein mi-
gration is caused by applying a second electric field in the presence of sodium
dodecyl sulfate (SDS). When SDS is present, the electric field will cause the
proteins to migrate to positions in the second dimension proportional to their
molecular mass. Because few proteins have both identical pI and M, value,
it is possible to create a two dimensional map, where most individual proteins
are located with unique (pi, M,) coordinates. It should thus be possible to
identify most proteins in a biological sample by the described procedure.

It is, however, not sufficient that the proteins are separated. They must also be
made visible for analysis, either by a human analyst or a computer. Staining
procedures are applied to make the proteins contained in a gel visible for the
human eye. Common staining methods are silver staining, fluorescent staining
and Coomassie Blue. Radioactive labelling has also been used, especially in
the early years of 2-DE. The most widely used method is silver staining, and is
considered the “golden standard” for 2D-gels. All gels used in this thesis were
silver stained. After the staining process, the proteins in the gel will appear
as dark spots on a transparent surface. A single gel can include a few hundred
up to several thousands of spots depending on the sample analysed. In theory
each spot is supposed to represent one isolated protein specie. When the gel-
surface is viewed as a three-dimensional landscape, most protein spots will
resemble Gaussian shaped depressions. The reason for the Gaussian shape, is
that proteins are subject to a diffusion process during migration [2, 3.

After the creation of the original gels they are scanned to produce gel images.
When scanned, the transparent part of the gel-surface becomes white, and the
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Figure 1.1: (a): Gel image showing black protein spots on a white surface.
(b): Inverted image, where spots are white and the background dark. The
displayed image is one of the experimental gels used in chapter 3-5.
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proteins appear as black spots on the white surface, as shown in figure 1.1(a).
In gel-images the colours of the original gel are transferred to pixel intensities,
also called greyvalues or greytones. Greytone images (that is, each pixel is
associated with a single value, where black equals zero and white equals the
maximum value depending on scale and depth) are usually sufficient to de-
scribe the intensity variations in the gel. Thus protein spots appear in the
gel images as areas having pixel intensities approaching zero, while the back-
ground consist of pixels with intensities close to the maximum value. It is
often convenient to invert the images, so the spots appears as peaks in a land-
scape, while the background appears black with intensities close to zero. In
this thesis the latter image representation is preferred, meaning gel images will
appear as a landscape with protein spot peaks, unless stated otherwise. Both
representations are displayed in figure 1.1.

Different scanners produce different image resolutions. The gel images used in
this thesis have a resolution between 1500 and 2000 pixels in each direction,
and an 8 bit image depth, the latter meaning that each pixel can take an
intensity between 0 and 255. Several scanners may produce images with both
higher resolution and depth (12 or 16 bit), however, the current resolution
and depth used for gel images in this thesis were sufficient for our purposes.
Images of the size and depth presented are within the usual standards of gel
images generally used in 2-DE research. The transition to higher resolution
and depth, will also increase the computational time for analysis considerably,
while the gain in knowledge and conclusions are limited.

1.4 Analysing gel images from 2-DE
1.4.1 Aim of the gel-analysis

The goal of 2-DE is primarily to identify differentially expressed proteins. This
means that a 2-DE experiment usually includes several (multiple) gels. Mo-
tivation for such experiments is often to investigate differences in protein ex-
pression when comparing biological samples. For instance, such comparisons
can be made between cell samples from a healthy and sick patient to identify
proteins which are active during a disease, or several gels can be run on cell
samples undergoing some change or participating in a cell-cycle to investigate
which proteins that change in expression during the different stages. It thus
becomes important to discover proteins spots that have disappeared, appeared
or increased /decreased in size and intensity between the gels. The analysis and
identification of these differentially expressed proteins are usually performed
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by a human expert, comparing spots on different gels by visual inspection with
the aid of computer software.

1.4.2 Automation

The manual analysis and inspection of multiple gels are both time consuming
and subject to ambiguities. Identifying thousands of spots, finding matches
to each spot in several gels, and decide whether each spots intensity change
significantly is a tedious procedure when done manually. Results achieved
by a human observer are also difficult to reproduce because of the subjectivity
introduced. Results from Prehm et al. [4] show that human analysts only agree
on 60-90% of the spots identified on a single gel (depending on the complexity
of the spot pattern), indicating that this source of error is significant. Keeping
track of comparable spots in several gels are also difficult for a human observer,
especially when the number if gels become large.

It would be of great advantage if an automatic standard procedure could pro-
duce reliable results from a 2-DE experiment. The benefits on both speed,
reproducibility, and applicability would be considerable, and in the first years
after 2D-gels appeared in 1975, several hardware and software solutions trying
to automatise the gel analysis procedure were published [5-12]. These included
both single standing methods and more user friendly program packages. De-
spite the effort of finding a reliable automation procedure for analysing gels
from 2-DE, several challenges encountered in these early reports still remains
unsolved today. The most important ones are listed in the following section,
and possible solutions to several of these challenges are suggested in the articles
presented in chapter 2-5 in this thesis.

1.4.3 Challenges for automatic analysis

Reproducibility is an important issue in 2-DE. Two gels run from the same
sample should ideally produce two identical gels, with spots located at iden-
tical positions with equal size and intensity. Unfortunately, in reality this is
far from the case. Due to geometrical distortions the position and shape of
the spots are shifted between the gels subject to analysis. These distortion
can be applied both globally for the whole gel, and locally in specific regions.
Dowsey et al. [13] lists four main factors contributing to these distortion: Dif-
ferences in the structure of the media (the polyacrylamide net), characteristics
of the transporting solute (SDS), the solvent conditions and variations in the
electric field applied. The last factor is well described by the current leak-
age model published by Gustafsson et al. [14]. The above factors explains
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variations within the gel material itself and the chemical composition of the
material used in creating the gel. In addition variations are found depending
on which laboratory the gels are run in, the equipment and procedure used in
this laboratory and by which laboratory assistants that conducted the gel cre-
ation procedure. At last we also have biological variations among the samples.
Two cell samples from the same biological tissue do not necessarily produce
identical spots in the gel. A thorough discussion on the reproducibility and
the error sources present when creating 2D-gels are beyond the scope of this
thesis, and a good overview can be found in [15]. Nevertheless, all of the above
factors mean that great care must be taken when designing experiments in
2-DE to create reliable and conclusive results.

Other disturbing factors influencing the results from automatic 2-DE analysis
are the presence of noise, dust particles, fingerprints, cracks in the gel surface
and other artifacts not related to protein content. A human observer may in
most cases distinguish these artifacts from true protein spots, but to make a
computer perform the same separation is not trivial. It is often observed that
these unwanted artifacts are treated as proteins in the automatic analysis, thus
corrupting the final output. In addition proteins themselves can be sources of
artifacts, such as streaks and tails. Examples of common artifacts are shown
in figure 1.2. Streaks and tails are well handled by most analysis software.
A multivariate model for filtering other artifacts are developed in chapter 2.
Background intensity is another problem encountered in 2-DE. The background
intensity is not uniform, and usually increases with the density of spots in
a local area. This means that a simple threshold value is not sufficient to
separate pixels belonging to protein spots from background pixels, and more
sophisticated methods for background correction must be applied. The effect
of applying a single threshold to a region with large background variation is
shown in figure 1.3.

A different but serious challenge is the large difference in expression of proteins
analysed by 2-DE. The dynamic range between the smallest and the largest
concentrations of individual proteins can be up to 10° for cells and tissues and
as much as 102 in body fluids, as stated by [13, 16]. A normal image of a silver
stained gel has a maximum dynamic range of only 10%, which obviously creates
problems when proteins are to be identified and their concentrations calculated.
At the lower end of the dynamic range, many proteins are hardly visible in the
gel because of the small amount present in the sample. Extremely sensitive
algorithms are necessary to identify areas where these proteins are present, and
at the same time distinguish the signals caused by these faint protein spots
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Figure 1.2: Examples of disturbing factors influencing the results from 2-DE
analysis. (a): Fingerprints. (b): Dust and other small pollutions. (c). Crack
in the gel-surface. (d): Artifact not resulting from proteins. (e): Horizontally

directed streak.
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(b)

Figure 1.3: Effect of applying two different single thresholds to a gel-image with
non-uniform image background. (a): Threshold at 0.2. Spots in the region
with low background intensity are identified, but no separation is possible in
the region with high background intensity (b): Threshold at 0.5. Proteins in
the region with high background intensity are separated, but spots with lower
intensities are not detected. Pixel intensities are or on a 0-1 scale.
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(a)

Figure 1.4: Saturated spot with a “flat” uniform intensity surface. (a): Inten-
sity image. (b): Landscape representation.

from noise. At the other end of the dynamic range, there is the problem with
protein spot saturation. The image scanning device is capable of capturing
colour differences in the protein spots up to a certain point, where it can
no longer distinguish the darkest colours. This point becomes the saturation
value in the gel image, and is usually the maximum intensity value. Saturated
protein spots are characterised by a flat surface around the spot-centre with
uniform intensity equal to the maximum image greyvalue. All spots should
ideally display a Gaussian shape, however, because of the high concentration
of these proteins the image scanner are unable to detect the Gaussian peak,
and it is replaced by a uniform intensity surface as shown in figure 1.4. It
follows from this that it is impossible to determine the exact concentration of
all proteins from the spot intensity measures. It is thus more beneficial to look
for relative differences in protein spot intensities, or the presence/absence of
spots when analysing gels from 2-DE.

It should be noted that the direct pixel intensity conversions made by a scanner
are not linearly proportional to the protein concentrations. To achieve a scale
that is reflects the concentration (or absorbanse) of each protein, a logarithmic
or similar transformation of the image is necessary. But even with a logarithmic
transformation, the relationship between concentration and intensity is rarely
linear. One way to identify this relationship is to include reference proteins
with known concentration differences, and make adjustments according to the
changes in the spot intensities for these proteins. However, because of the
presented difficulties, the aim of a gel-analysis is often to identify relative
changes and presence/absence of protein spots rather than estimating the exact
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Figure 1.5: Complex spot region with several partly overlapping protein spots.

Table 1.1: Summary of results from Campostrini et al. [17]. Spot singlets are by far the
rarest specie when the total number of spots reach a few hundred.

Number of spots | Number of singlets
74 1%
639 32%
1500 27%
3000 10%

concentrations.

The large amount of spots present in a gel means that different proteins have
a tendency to occupy the same area on the gel surface. This leads to so-
called complex regions, where several partly overlapping spots create spot-
clusters which are very difficult to analyse. An example of such an area i
shown in figure 1.5. To identify individual protein boundaries in such regions
is a major challenge for automated spot identification software. Combined
with the poor reproducibility of 2D-gels, the consequences are that multiple
gels may show large variations in the number of identified spots and their
boundaries in the complex regions. This introduces large errors when spots are
compared automatically, with wrong estimates of both the total intensity of a
spot and the absence/presence of spots. Such errors have a large effect on the
final statistical analysis, and is described more thoroughly in chapter 4. Some
ways to circumvent the problem are topics of this thesis, and are presented in
chapter 4 and 5.
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Later studies [17, 18] have suggested that the problem regarding multiple spots
(spots consisting of more than one protein) is substantial. Results from one of
these studies are summarised in table 1.1. Table 1.1 shows that treating single
isolated proteins spots as consisting of only one protein is incorrect in most
cases. Most spots actually consist of two or more proteins, even if they appear
as singlets. When this is the case, 2-DE alone is not sufficient to identify all
proteins in a sample, and additional analysis tools are needed. One possibility
is to use Mass Spectrometry (MS) on each spot to resolve multiple proteins.
MS has been widely used for protein identification in the last years [16, 19].
These latter findings also suggests that the methods introduced in chapter 4
and 5, where gels are analysed without making assumptions on isolated spots,
are useful alternatives to the usual spot-volume approaches.

1.4.4 Commercial software

Several commercial software packages dealing with the automatic analysis of
gels from 2-DE exist on the market today. The ones found available pr. May
2007 are listed in table 1.2. The table is based on an overview published
by Marengo et al. [20] in 2005. The field of 2D-gel analysis today is greatly
dominated by commercial software packages. The main reasons for this is that
many of the methods used in these packages outperform methods published
in the literature, and that the whole analysis can be performed in a user-
friendly environment. Though the existence of such program packages has
made life easier for the general gel analyst who wants to identify the important
proteins in his or her experiment, it is the authors view that the domination
of these packages has some unfortunate consequences. Especially this is true
in the research field of method development. Since the software packages are
commercial, the included methods, routines and algorithms used to identify,
compare and analyse the 2D-gels are hidden from the user, and is thus not
attainable by the general researcher. This makes the development of a golden
standard for analysis very difficult. Since each program package uses its own
self-made pipeline of methods, with its own defined set of parameters for these
methods, the output of the analysis may differ significantly according to the
selected package [21]. Several studies have compared software packages [22—
26| with the aim to investigate which ones that perform best under different
conditions. Though such studies are of interest from a user point-of-view, the
black box approaches these software packages offer make it impossible for a
researcher to inspect in detail the methods used and to reproduce the results
on his/her own computer. Thus a systematic comparison of which methods
that perform best in the different stages of the analysis procedure has yet to be
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Table 1.2: List of commercial software packages available per May 2007.

Name Company
Delta 2D DECODON
GELLAB II+ Scanalytics
Melanie/ImageMaster 2D Platinum | GeneBio/GE Healthcare
Progenesis SameSpots Nonlinear Dynamics
Alpha GelFox 2D Alpha Innotech

established. A consequence of the diversity of approaches is that the variation
caused by the subjectivity factor among human analysts, is now replaced by a
just as serious ambiguity caused by the variation among software packages. In
spite of the existing differences, there are still some recognisable standard steps
in an automatic analysis pipeline. These steps are described more thoroughly
in the following chapter. A flow chart of a standard analysis pipeline is given
in figure 1.6.

1.4.5 Automated gel analysis pipeline

Pre-processing of the gel images is a natural first step in the analysis pipeline.
By pre-processing is here meant procedures that improve the general quality of
the image, with respect to enhancing the separation between protein spots and
other parts of the image. The most important step in the pre-processing stage
is usually noise removal and, if several gels are compared, normalisation of
intensity values over all gels. For general noise removal, smoothing masks are
applied to the image. These masks may represent both Gaussian, Polynomial
and Adaptive smoothing [27], and the degree of smoothing is adjusted by the
size of the smoothing mask or the number of successive smoothing iterations.
Lately more sophisticated denoising methods based on wavelets have also been
used to remove noise in gel images [28]. Spikes is a special type of single noise-
pixels with an extremely high intensity value compared to its neighbouring
pixels which is often seen in 2D-gel images. Such spikes are removed with a
median filter. How accurate the denoising procedure need to be to produce an
satisfactory image segmentation is dependent on the choice of segmentation
procedure.

If measuring protein concentrations is the goal of the analysis, a logarithmic
transformation is necessary (section 1.3.3), which is also regarded as a pre-
processing step.
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When an experiment consist of several gels, the intensity values have to be
adjusted on each gel in order for the gels to be comparable. The usual way to
correct the intensity values is to adjust for the total amount of staining colour
added to the image, which is regarded as identical to the total intensity of the
image (the sum of all pixel intensities). Normalisation is performed by dividing
each pixel intensity by the total image intensity. Normalising has the same
effect as calculating relative volumes and intensities in the data acquisition
and quantification step described later in this section.

The next step after pre-processing is image alignment. The goal of the align-
ment step is primarily to adjust for the geometric distortions described in
section 1.3.3, and is performed by warping and deforming the images in such
a way that each pixel at a specific position in one image, is comparable to all
pixels at an identical position in all other images. There are several routines,
both in commercial software and published in the literature that performs im-
age alignment [14,27,29-35|. Alignment procedures usually make use of some
pre-defined landmark spots which are used as anchors for an optimisation. The
optimisation problem is often formulated as minimising a correlation function
based on the corresponding pixel intensity differences between all images. Not
all reports perform image aligning before the rest of the steps in the analysis
pipeline. Sometimes the aligning is incorporated into the matching procedure
described later. In these cases the optimisation is based on pattern-similarities
between sets of protein spots, rather than the original greytone correspon-
dence in the image. There are in general several variations to both landmark
selecting and alignment optimisation reported. It is the authors opinion, espe-
cially after observing alignment results in commercial software, that satisfac-
tory alignments are produced. This step is thus not considered the bottleneck
in the analysis pipeline. Image alignments in this thesis are performed using
the commercial software SameSpots (Nonlinear Dynamics). Typical results
from the aligning step are illustrated in figure 1.7. It should also be mentioned
here that alignment should be performed after the normalisation step, because
warping of images my influence the total intensity in an image.

After the alignment, identification of isolated protein spots on each gel is car-
ried out. This procedure is also often referred to as segmentation. Segmenta-
tion of gel images is the foundation of much work in this thesis, and a lot of
effort was put into creating a reliable segmentation procedure. The details and
the development of this segmentation procedure are described in section 1.5.
For now it is sufficient to say that the spot identification step produces pro-
tein spots, each with a corresponding spot boundary. Each image segment



1.4 Analysing gel images from 2-DE 15

IDigitised gel-images
from scanner

Y

Preprocessing
Denoising
Normalisation

'

Aligning

'

Spot identification
segmentation

'

Spot matching

v

Statistical
Analysis

'

Identification of
interesting proteins

Figure 1.6: Flow chart of a general analysis pipeline. Sometimes the aligning
step is removed, and incorporated into the spot matching procedure.



16 Chapter 1. Introduction

Figure 1.7: Results from the image alignment in the analysis pipeline. The
arrows indicate how one image is transformed according to the reference, so all
pixels in the two images are directly comparable. Courtesy of Ellen Fargestad.
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Figure 1.8: Typical results from the image segmentation procedure.

produced by the spot identification procedure ideally represent a single pro-
tein. The image segments are the basis for the following quantification and
spot matching steps. Typical results after image segmentation are shown in
figure 1.8.

The data acquisition and quantification calculates data and values for each of
the image segments created in the segmentation procedure. Numerous vari-
ables and parameters can be calculated, the most usual being spot centre,
volume, mean or maximum intensity. The volume of the spot is sum of all
pixel intensities inside a spot boundary, while the optical density is the max-
imum intensity value within the same boundary. Relative volume and optical
density are often also used to account for the difference in total intensity on
each gel. When the relative values are used, the volume and intensity is divided
by the total intensity in the image, and thus produces relative amounts similar
to results from the normalisation procedure described earlier. Spot centres are
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usually placed at a spots centre of mass, using the following formula:

2w 2oy #l(@,y)
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(1.1)
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Here COM, and COM, are the centre of mass coordinate in vertical and
horizontal direction respectively, and I(x,y) is the pixel intensity at coordinate
(z,y). The sum is taken over all pixels constituting a protein spot. In general,
at this stage, any kind of parameters can be calculated based on the intensity
values of each spot, the shape of the spot boundary and the position and
orientation of the spot in the gel. Gaussian spot models [8,27,36] are also
common to create at this stage in the analysis pipeline. Based on the calculated
parameters, or the closeness to Gaussian shape, one can create spot filters,
giving a score indicating how close each spot segment actually resembles the
expected protein spot shape. Such filters are described and developed more
thoroughly in chapter 2.

Before the quantified values can be compared between spots in multiple gels,
corresponding spots have to be identified in all gels. The procedure of finding
corresponding spots is often referred to as spot matching. Several methods
for spot matching are described in the literature [9,11,27,29,32,37,38]. The
general solution to the spot matching step relies on using the similarity of ge-
ometrical features extracted from the gels under investigation. Usually these
features are point patterns, where each point represents the centre coordinates
for a single spot. Point Pattern matching (PPM) are then applied for map-
ping the geometric point patterns from the different gels on to each other,
minimising the influence of spot displacements. Performed in this way, the gel
alignment described above is sometimes inherent in the matching procedure.
However, due to difficulties in reproducing protein spot segments from gel
to gel, producing a complete match between gels segmented individually has
proved to be very difficult. Match tables including comparable spots from sev-
eral gels are thus subject to several errors which corrupts the final comparison
and statistical analysis [39,40]. The consequences of erroneous values in match
tables are described more thoroughly in chapter 4. Because of this, the impor-
tance of common spot boundaries has lately been stressed by both users and
producers by commercial software (DELTA-2D and Progenesis SameSpots).
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This issue has also been targeted earlier in the literature [41,42]. Common
spot boundaries means defining a single set of boundaries which are used on
all the gels in the analysis. Thus the match between the gels are always 100%.
For the common spot boundaries approach to work, it is crucial that the gels
are properly aligned before analysis. In chapter 3 a new method for defining
common spot boundaries is presented. Yet another approach to the matching
problem, is to perform analysis without making assumptions on spot bound-
aries at all. This idea has not been presented earlier in the 2-DE community,
and the results presented in chapter 4 and 5 show that this approach can be
very useful.

After all spots are identified and matches have been found between the exper-
imental gels, the significant differences in intensities can be investigated using
statistics or multivariate analysis. Common statistical measures like mean,
standard deviations and histograms can be calculated for a specific group of
spot matches, and used to remove spurious spots and decide whether the dif-
ferential expression between several groups of spots are significant. The signif-
icance is performed using confidence intervals and probability values. Because
of the large amount of data usually produced in 2-DE experiments, multivariate
analysis has also been common to results from 2D-gels |26, 35,43,44|. Both
factor analysis, heuristic clustering and chemometric methods like Principal
Component Analysis (PCA) and Partial Least Squares Regression (PLSR) can
be applied. A more thorough description of the applied chemometric methods
is given in section 1.6.

It should be noted that the presented steps for the analysis pipeline are based
on a general description. The nature of the methods, and the order in which
some of them are performed, may differ from system to system. Several systems
also use combinations of alignment, segmentation and matching iteratively to
achieve the desired output.

1.5 Segmentation and spot identification in 2-DE

Segmentation in 2-DE is generally referred to as the process of separating areas
in the image related to protein spots from image background, noise and other
artifacts not related to proteins. The segmentation procedure produces a set
of image segments consisting of connected neighbouring pixels enclosed by a
spot boundary. Ideally each image segment represents the spot of one single
and isolated protein.
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1.5.1 Spot identification and background intensity correction

It is important to distinguish between the process of spot identification and
background intensity correction. Non-uniform background intensity is often
regarded as the main reason why spots in gel-images can not be identified by
a single threshold. By single threshold is here meant labelling all pixels above
a certain intensity value as belonging to proteins, while all pixels below this
threshold is regarded as background. By subtracting the non-uniform back-
ground it is often believed that a single threshold on the new, background
corrected image will produce the desired protein spot shapes. Experience has
shown, however, that more sophisticated methods are necessary to reproduce
the circular protein spots that would be naturally identified by a human ob-
server. One should thus distinguish between the methods that aim to reproduce
the spot-shapes as viewed by a human observer, and methods that subtracts
background to produce more correct spot intensities for the final analysis. Im-
ages produced for segmentation purposes should not be viewed as reflecting
true intensity values, while the background subtracted images would generally
not be suitable for segmentation on their own. It is also a question whether the
background subtracted image actually reflect the true protein content of a pro-
tein spot area. This, of course, depends on both the source of the background
intensity and the procedure used for background estimation. If background
intensity is introduced e.g. during the scanning procedure, it would be cor-
rect to remove this intensity. However, background intensity may also results
from protein-content that is not properly concentrated into protein spots, but
distributed more evenly in areas around spots. The evidence of this is that
the background intensity are higher in areas where the density of protein spots
is large. To actually identify proteins in these local areas is too difficult in
both automatic and manual analysis, and areas like these should be regarded
as background and not included in the final analysis. It is, however, not clear
whether the actual protein spots in these areas are placed on top of the back-
ground or merged in the background as illustrated in figure 1.9. It is thus not
obvious whether a general background intensity correction gives more correct
spot-intensities in general. It should be mentioned that for the study intro-
duced in chapter 4 and 5, using background correction produced slightly better
results.

1.5.2 Challenges for segmentation in 2-DE

There are obstacles that makes the segmentation of 2-DE images a difficult
task. One important issue is the non-uniform background introduced in the
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Figure 1.9: Intensity distortions caused by image background (dotted line).
The spot to the left is placed on top of the background, and a correct spot-
intensity is obtained by subtracting the background. The spot on the left
is merged with the background. Performing background subtraction in this
situation will result in erroneously reduced spot intensities.

previous section. An even more challenging problem is the highly overlapping
spot clusters. As mentioned earlier, the number of overlapping spots in 2-DE is
quite large. Apart from the results in table 1.1, which states that even protein
spots that appear as singlets might actually be doublets or even triplets, the
number of protein spots with a high degree of visual overlap is substantial.
In highly overlapping spot-clusters similar to the one displayed in figure 1.5,
the challenge of resolving the individual spots becomes close to impossible.
Several methods to resolve overlapping spots have been proposed, and some of
them are included in the following overview. Spots that appear as shoulders of
larger spots, and have no distinct peak themselves, are especially problematic
as shown in figure 1.10.

One proposal to identify these shoulders is to model the larger spots by Gaus-
sian functions, and subtract the Gaussian model from the original image [5, 45].
This should reveal the hidden spots shoulders. This, however, touches upon
another problem in 2-DE spot-identification, namely that protein spots often
display considerable deviations from the ideal Gaussian shape [2,3,5]. This
goes for both flat-surfaced saturated spots, and regular intensity spots with a
non-elliptical or irregular contour. Subtracting a Gaussian modelled spot in
these cases would introduce unwanted artifacts to the analysis. The problem
of handling shoulders in overlapping proteins can be overcome by using a pixel
based analysis as the one presented in chapter 4 and 5. Artifacts and noise
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(a) (b)

Figure 1.10: (a): Small spot as a shoulder above a larger spot showing no
distinct peak.(b): The same spot in a replicate gel, but this time showing a
clear distinct peak.

not related to proteins also constitute a major problem in 2-DE segmentation.
Most segmentation routines are not able to distinguish artifacts resulting from
dust, fingerprints, cracks in the gel surfaces and other sources of pollutions
from true protein spots. The presence of such artifacts will certainly introduce
problems in the final protein spot analysis.

Generally a substantial number of methods and approaches have been sug-
gested in the literature to accomplish the segmentation task during the 30-
year existence of 2-DE. For spot identification, four types of approaches are
common: Stepwise threshold, second derivatives, image morphology and water-
sheds. These approaches are reviewed in the following chapters, together with
some basic methods for background intensity correction. Finally the selected
segmentation pipeline used in general throughout this book is presented.

1.5.3 Stepwise Threshold

As already mentioned a single threshold is not sufficient to separate protein
spots from background in 2-DE. The basic stepwise thresholding procedure |7,
9] compensates for this by considering thresholds at several intensity levels.
The idea is to begin at the lowest intensity level considered to be a possible
signal (protein spot), and collect pixels in connected areas at this level. After
this initial threshold, increasing intensity levels are gradually considered for
each connected area. At a certain intensity level the connected area may be
split into two or more connected areas. If so, these new areas may again be split
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at a yet higher intensity level. This procedure continues for each connected
area until no more splits are possible, or the areas created by the split does
not satisfy some pre-defined criteria. Such criteria can be based on size, shape
and maximum intensity of the area. When no more splits are identified or
accepted, the resulting image segment is defined as the area created in the
last split, and is said to constitute a protein spot. Slightly modified versions
of the stepwise thresholding approach has been presented. Cutler et al. [46]
turned the procedure upside down, starting at the highest intensity level and
working downwards. At each new intensity level, new pixels were added to the
connected areas defined at the previous level. In this way, instead of splitting
connected areas, the areas were allowed to grow and merge at each intensity
level until they met some specific criteria. Another, similar approach was
introduced by Tyson et al. [36]. Pixel intensities above a certain threshold
were classified as belonging to regions of major protein staining. These regions
were then allowed to grow, and pixels that could be found in a monotonically
decreasing path from these were assigned to the regions. The major advantage
of the stepwise threshold approach is its ability to resolve all potential intensity
variations into distinct connected areas. Its disadvantage is its sensitivity to
noise and artifacts, and some criteria is usually needed to accept or reject the
connected areas at the final stage. Another problem with this approach is its
inability to detect shoulders in overlapping protein spots which does not have
an distinct peak.

1.5.4 Second Derivatives

Another approach to identify protein-spots in a 2-DE images is the use of
second derivative filters [5,10,27,29,47]. The second derivative is defined in
the horizontal, x, and vertical, y, direction by the following formulae:

O?1(x,y)
0%z

*1(x,y)

=0, and 92y

=0 (1.3)

where I(x,y) is the intensity at image coordinate (z,y). In Appel et al. [27] the
zeros is replaced by a threshold in each direction, and the value of the derivative
at image coordinate (z,y), is taken as the minimum of the two calculated
values. When used on images, the second derivative is usually transformed
into filter masks which are used on each pixel on the image. The simplest
second derivative masks are shown for the horizontal and vertical direction in
figure 1.11.
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Figure 1.11: Masks used for calculating second derivatives in images. a):
Vertical direction. b): Horizontal direction.

When using second derivatives, the gel image is viewed as a landscape where
the protein spots are hills and peaks rising from the surrounding landscape con-
stituting the image background. The second derivatives zero crossings iden-
tifies the locations of the hill-slopes where the curvature of a peak changes
from concave to convex. In the convex region the sign of the second derivative
will be negative, and thus the pixels which have negative second derivative
are collected into connected regions and labelled as protein spots. The main
advantage of this approach is, because of the high sensitivity of the second
derivative, the ability to detect shoulders which are not detected by the step-
wise thresholding approach (figure 1.10). This sensitivity is exploited by Olson
et al. [47], who use the second derivative approach combined with the stepwise
threshold to achieve the desired segmentation. However, high sensitivity can
also become a drawback, because noise is also easily detected, and additional
methods are needed to separate the true protein spots from noisy features. To
compensate for this, it is common to perform some smoothing or denoising on
the images before segmentation, to reduce the impact of noise. Polynomial
smoothing [9,27,36] is widely used, but also Gaussian and adaptive smooth-
ing [27] have been suggested. Generally these smoothing templates have a ten-
dency to distort the original signal in such a way that segmentation becomes
difficult. Peaks are lowered, so weak spots can no longer be distinguished from
the background, and the degree of overlap in spot clusters increases, compli-
cating the resolution of such regions into individual spots. Based on this, more
sophisticated denoising methods, like wavelets [28], have been introduced which
do not distort the original signal two the same degree. It is generally agreed
that the second derivative approach is dependent on proper denoising methods
to perform satisfactorily. Another drawback with this approach is that the
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number of pixels in the convex area are generally much smaller than what is
normally said to constitute a protein spot. This is because the zero-crossing
of the second derivative is associated with the steepest part of a peaks slope,
rather than the beginning of a peak. Thus the second derivative approach
is sometimes combined with region growing methods [10] similar to those de-
scribed in the previous section to increase the number of pixels associated with
each spot.

1.5.5 Image Morphology

Image Morphology [48| is method for identifying features with a specific size
and shape in an image. The features are identified by constructing a structural
element with a size and shape similar to the features one wants to identify. This
structural element is then used on the image with an operation referred to as
“morphological opening”. The advantage of the morphological approach, is its
ability to identify other features than just protein spots. One such feature is
the previously mentioned streaks, which often causes problem in 2-DE analysis.
Streaks are identified by selecting a horizontal or vertical line of a certain length
as structural element, while spots are identified by a disk of a specified radius.
The size of the structural element should generally be chosen as the smallest
shape that will not fit into the structures of interest in the image. Morphology
has been used in 2-DE by [8,29,49-51|, for identification of protein spots or
streaks. The general procedure for morphological identification of protein spots
and streaks is as follows. The morphological opening of an image is the erosion
of the image with the structural element, followed by dilation with the same
structural element. Erosion and dilation are both fundamental morphological
operations, and consist of replacing each pixel value in the image with the
minimum and maximum value of its neighbourhood respectively. The size
and shape of the neighbourhood is decided by the structural element. The
effect of erosion and dilation on a binary image is illustrated in figure 1.12(b)
and 1.12(c) respectively.

When erosion and dilation are used successively in an image it is called opening,
which is illustrated in figure 1.12(d) for a binary image. Opening has a similar
effect on images with more than two greyvalues. The opening of a general
greyvalue image by a circular disk with a specified radius, can be viewed as a
“rolling ball” with the same radius rolling along the underside of the greytone
landscape. Depending on the radius, the ball will fit into certain structures, but
will be too large to fit into other structures. In the case of the disk, such features
are typically circular peaks (protein spots) with a radius smaller than the disk.
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(d)

Figure 1.12: Erosion, dilation and opening using a circular disk with radius of
five pixels as structural element. (a): Original image. (b): Result of erosion.
(c): Result of dilation. (d): Result of opening. It can be seen that structures
which do not fit into the structural element are removed, while other structures
remain intact when opening is performed.
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After closing is performed on each pixel in the original image, a new image is
created where the features the ball did not fit into are removed. What we are
really interested in, however, is the features which were removed by the rolling
ball, which we obtain by subtracting the opened image from the original image.
This operation is sometimes referred to as the top hat transform [51]. The
features that stand out from the uniform background in the subtracted image,
are identified as protein spots. The morphology operations are sensitive to
noise, but unlike the second derivative approach, noisy features which are part
of larger structures will not influence the output. This means that only noise
in areas between the larger structures show up in the final protein spot image,
and it is possible to separate the larger structures of interest (protein spots)
from the smaller ones (noise). This is done by successive opening and closing
of small disks, where the largest size of these disks determine the smallest
allowable size of a feature [49]. Larger features are not significantly affected
by this operation, while the smaller ones are removed. The results on a small
image during the different morphology operations are shown in figure 1.13.

The major problem with the morphology approach is resolving the individual
spots in overlapping spot clusters. In order to identify all areas in the image
consisting of proteins it is necessary to use a disk that is too large to identify
the smaller variations within the larger areas.

1.5.6 Watersheds

Watersheds have also been used in the segmentation of 2-DE images. When
using the watershed approach [2,38,52| the image is again viewed as a land-
scape, but this time each peak is a depression on the surface rather then an
elevation. The segmentation is based on first identifying all local minima in the
landscape, and find the catchment basins associated with each local minima.
The concept of a catchment basin can be described by visualising rain falling
over the landscape. As the rain is allowed to flow downhill in the landscape,
pools will emerge around the local minima. The water in each pool will be
collected from a specific area surrounding the local minima, and this area is
called a catchment basin. The boundary between several catchment basins
are called watersheds. For 2D-gels, each separated catchment basin is said to
represent an isolated protein spot. The main difference of this method to the
other three approaches, is that all pixels in the image are assigned to a catch-
ment basin, meaning that no pixels are initially said to represent non-protein
regions. This results in over-segmentation of the image (figure 1.14(b)), and
an additional filtering of the segments is necessary to identify the image seg-
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Figure 1.13: Results from applying morphological operations for spot identifi-
cation. (a): Original image.(b): Image after morphological opening with a line
and a disk as structural elements. (c): Binary image after thresholding of im-
age from (b). (d): Binary image after noise-removal with successive openings
and closings.
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Figure 1.14: Image segmentation by watershed. (a): Original image. (b):
Over-segmentation common in watersheds. Some additional thresholding an
merging of areas is required to produce the output used for further analysis.
Courtesy of Beata Walczak.

ments consisting of true protein spots. Usually this filtering is based on size
and intensity of each segment. The method will also have problems detecting
shoulders in overlapping spots, since no catchment basins will be recognised if
the spot does not have a distinct depression.

1.5.7 Other Methods and combinations

Two other segmentation methods are also mentioned here for completeness.
Garrels [6] identified peaks for each line during the scanning procedure of the
gel, and then combined the peak-areas on each line to form protein spots in
two dimensions. The peaks on each line were identified by a second deriva-
tive approach. The presented method is one of the earliest published in this
field, and one would not normally mix the image scanning procedure with
spot identification today. However, analysing images line-wise may have some
advantages, especially when it comes to detection of shoulders and overlap reso-
lution. Prehm et al. [4] used specially customised masks representing curvature
to identify protein spots. The masks used in these publication were specially
designed for the specific gel-images used, and usually an approach with more
general applicability is sought in the present segmentation of 2D-gels.

Several publications have combined the before mentioned approaches in differ-
ent ways to achieve a better output of the segmentation procedure. Conrad-
sen et al. [29] combine morphology and second derivatives, Olson et al. [47]
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combine stepwise threshold and second derivatives, Takahashi et al. [45] use a
morphology based approach with ring-operators combined with region growing
and pixel collection, Kim et al. [52] combine watersheds and stepwise thresh-
old, and recently Mannar et al. [50] has introduced and approach they claim
uses principles from morphology, watershed and pixel-collection. Combining
approaches can generally be useful, since each of the presented methods has
different strengths and weaknesses. This is also the approach chosen to build
a segmentation procedure used throughout this book.

1.5.8 Background intensity correction

Three methods for background intensity correction will be described in this sec-
tion: a histogram approach, propagation of local minima and polynomial fit.
The histogram approach takes the histogram of all pixel-intensities, and defines
the background intensity based on the peaks in this histogram. The estimated
background can be applied globally to the whole image [7,45], or locally to a
sub-region of the image [10]. In the latter case an histogram has to be con-
structed based on the pixels in each sub-image. Tyson et al. [36] used the ap-
proach of propagating local minima to estimate the intensity background. All
local minima are identified in the image, and each pixel in the image are associ-
ated with its closest minima. Thus the minima are propagated throughout the
whole image, creating local minima regions. After the propagation, there will
be discontinuities on the boundary between the local minima regions, which
are smeared out using a smoothing filter. The smoothed local minima image is
said to constitute the background intensity. Another popular way of estimating
background intensity is the use of polynomial functions [5,27,47]. The method
consist of fitting pixels constituting the background to a polynomial of some
degree, usually of order three or four. In this way the background intensity of
every pixel in the image is estimated using the coefficients from the polyno-
mial fit. The disadvantage of this approach is that it needs some pre-estimate
of what is considered as background pixels, which the polynomial coefficients
are calculated from. Fitting the polynomial to all pixels in the image usually
gives a too high estimate of the background. Because of this, background sub-
traction by a polynomial function is often performed after the segmentation
procedure. However, Lieber et al. [53| introduces a modified version of the
polynomial fit, which does not need any pre-assumptions on background or
foreground, and can be used directly on the original image. The method has
not previously been used on 2D-gels, and was designed to remove dominating
fluorescence from one-dimensional Raman spectra. The problems encountered
in the Raman spectra have many similarities with the background intensity
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problems in 2D-gels, so this method is adopted here for background intensity
corrections. The method is easy to extend to two-dimensional signals, how-
ever, the one dimensional approach is here kept, and the intensity correction
is performed line-by-line in both vertical and horizontal direction. The reason
for this is that the one-dimensional approach will also correct intensities in
streaks, which is not possible in the two-dimensional case. The basic idea of
the modified polynomial fit is as follows: A first polynomial approximation is
calculated based on all pixels in an image. This polynomial will, as already
mentioned, have too high values to represent the true background. The inten-
sities above the polynomial fit is therefore subtracted from the original image,
creating a second image. In this image the highest peaks are cut off, as shown
in figure 1.15(b). A new polynomial approximation is calculated based on the
second image. This polynomial will have lower values than the first fit, since
the approximation is based on data where the peaks have been removed. It
will also be closer to the true background. A third image is then constructed
by subtraction in the same manner as in the previous step. A third polyno-
mial can again be calculated based on this image. The process of fitting and
subtracting goes on in an iterative fashion, until the approximation becomes
stable, or a certain number of iterations has been reached. The polynomial fit
is shown for 1,10 and 50 iterations in figure 1.15(c). In this thesis a polynomial
of fourth degree and 50 iterations were found sufficient to produce the desired
background. It should at last be noted that one should be careful when per-
forming background intensity correction, since this may introduce unwanted
variations into the data as reported by Wheelock et al. [21].

1.5.9 Comparing segmentation procedures

It would be a natural next step to compare the outputs of the different seg-
mentation approaches, and thus decide on a best solution. This has, however,
proved difficult for several reasons. First there is a great variability when it
comes to details and parameters in the different methods. For example, the
second derivative approach may work very well if a proper denoising has been
performed on the images, while other methods may perform satisfactory with-
out denoising. How should one then decide which one performs best? If a lot
of effort and parametrisation has to be put into the denoising method, it may
not be worth the effort, even if it produced slightly better results. The number
of parameters is an important issue. Methods with only a few intuitive param-
eters would be preferred, but at the same time methods with more parameters
might perform better if its parameters are correctly set. Then there is the is-
sue of the variability in the experimental material. Images from 2-DE can vary
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Figure 1.15: Iterative background correction from Lieber et al. [53]. (a): The
original signal and the first polynomial fit (dotted line). (b): The signal with
peaks removed, and the second polynomial fit. (c): The original signal, and
the polynomial after 1, 10 and 50 iterations. The solid line at the bottom is
the final estimate of the background.
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substantially between experiments and different laboratories. A method that
seems to perform well on one type of gel, may fail on other gels because of the
variability spot appearance, background and sources of noise. It is also diffi-
cult to evaluate the final performance, because the true resolution of all protein
spots on a gel is rarely known exactly. Because of the large variability in meth-
ods an approaches used to segment 2D-gels, both reported in the literature and
in commercial software, it would be a great advantage if one could decide upon
a more standardised procedure for segmentation and data-analysis. To accom-
plish this, one needs to compare the methods on an even basis, on data-sets
which comprise the variability in 2D-gels commonly encountered, a so-called
“ground truth” dataset. Unfortunately such ground truth data do not exist
for 2D-gels, and this, together with the other issues, is probably the reason
why a thorough study comparing the different methodologies has not yet been
published.

1.5.10 Selected segmentation pipeline

Despite of the difficulties in selecting the best image segmentation in 2-DE, the
following procedures were found sufficient to produce satisfactory segmentation
results in the following articles. Images illustrating the different steps in the
segmentation procedure are shown in figure 1.16.

To identify general areas in the image representing protein spots, image mor-
phology was found to be the most effective method, as presented by Skol-
nick [49]. Streaks in the image were also removed using the same morphology
approach, and the final morphological removal of small noisy features by suc-
cessive opening and closing was also applied. The only parameter needed for
this segmentation is the size of the disk used as structural element, and no
pre-processing was generally needed. Noise was generally removed by a me-
dian filter or polynomial smoothing prior to the spot identification, or by the
morphological post-processing step. Images after the morphology operation
are shown in figure 1.16(a). As can be seen from this image, morphology has
successfully managed to identify areas where protein spots are present. How-
ever, a considerable number of these areas contains overlapping and unresolved
spots, so an additional method is needed to separate the unresolved areas into
individual spots. One can generally say that morphology is effective in separat-
ing out regions in the image where protein spots are present, but fail to resolve
these regions into individual protein spots. Images created by morphology are
ideal starting points for the pixel-based method presented in chapter 4 and 5.

To resolve the individual proteins in the areas identified by morphology, the
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stepwise threshold of Vo et al. [9] was adopted. Each region is subjected to the
stepwise threshold starting at the lowest intensity in each region and working
up. The intensity is usually increased one unit at a time, but longer steps
can also be used to make the segmentation faster. As mentioned earlier, this
method is sensitive to noisy features. Especially if the intensity values of the
original image are used in the thresholding, several small, spurious and ill-
shaped spots are often produced, as displayed in figure 1.16(b). The smallest
spots can be removed by simple size requirement of an accepted region split,
but also another correction was designed to improve the appearance of the
resolved protein spots.

For each identified protein spot by the thresholding procedure, a window is
constructed around the image segment constituting the spot. The minimum
pixel intensity on this window is located, and all pixels inside the window higher
than this minimum value are assigned to the protein spot. One restriction
here is that pixels are not assigned if they belong to another protein spot.
This window approach may be similar to a method for spot-identification used
by the commercial software ImageMaster (GE Healthcare), as mentioned by
Mannar et al. [50]. The final image segments representing individual protein
spots are shown in figure 1.16(c).

1.6 Multivariate Analysis

As already mentioned, multivariate analysis is the method of choice in this
thesis for analysing the output from a segmentation procedure. In the following
common multivariate approaches are described shortly.

1.6.1 Principal Component Analysis - PCA

Principal Component Analysis (PCA) [54] is a way of decomposing a data
matrix X of samples and variables into principal components. This decompo-
sition is an effective way of representing data when the number of interesting
phenomena in the data are much smaller than the number of variables in X. In
such data most of the variables are highly correlated, and analysing the data
one variable at a time is not very efficient. Instead it is convenient to search
for directions in the data displaying high variability, and identify the original
variables which contribute to this variability. In this fashion all variables are
considered at the same time, which is the main point of doing multivariate anal-
ysis. The directions of main variability constitute the principal components,
and the decomposition of X is mathematically described as:
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Figure 1.16: Results from different steps in the selected segmentation pro-
cedure. (a): Segments after morphological operations. (b): Segments after
stepwise threshold of the larger segments in (a). (c): Final image segments.
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X =TPT+E (1.4)

where T and P are called scores and loadings, and together they represent the
principal components. E is the residual matrix, and consist of the variability in
X which is not explained by the principal components. Principal components
are orthogonal, and are subtracted from X one at a time, until the residual
matrix E only consist of normally distributed noise, indicating that there is
no interesting phenomena left to model in E. As this stage the number of
calculated components is usually much smaller than the original number of
variables. The loadings are calculated weights for each variable in each princi-
pal component, and represents the contribution or importance of a variable is
given in a component. The scores are the values each sample is assigned in the
new coordinate system resulting from the decomposition. The principal com-
ponents have only mathematical, and no physical interpretation in themselves,
but can still often be interpreted in relation to physical phenomena by looking
at plots of scores and loadings. Using score and loading-plots, relationship be-
tween samples and variables in the principal components are easily visualised.
PCA is unsupervised, meaning that only the maximum variation in X, and no
outside phenomena, guides the decomposition of X.

1.6.2 Partial Least Squares Regression - PLSR

Partial Least Squares Regression (PLSR) [54, 55] is closely related to PCA, and
also decomposed X into components, only this time they are called PLSR-
components. PLSR, however, is a supervised method, meaning the one or
several outside phenomena or variables, often called response factors or target
variables, guide the decomposition of X. Instead of looking for the maximum
variation in X alone, PLSR looks for the maximum variation in the covariance
matrix XTY. In other words PLSR looks for variations in X which is impor-
tant for explaining the variation in Y. In addition to the decomposition of X,
the decomposition of Y is given as

Y=TQT +F (1.5)

where Q and F are the loadings and residual matrix of Y respectively. PLSR
builds a linear regression model between X and Y based on the principal com-
ponents. Since each variable has a weight in each principal component, it is
also possible to associate a regression coefficient for each variable towards the
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response Y. This regression model can also be used for prediction purposes.
Once a PLSR model has been built based on a data set X of samples and vari-
ables, and one or several response factors Y for each sample, responses for new
samples can be predicted based on the calculated regression coefficients. The
only technical requirement is that the new samples have the same measured
variables in X as the data used to create the PLSR-model.

A special version of PLSR is called Discriminant PLSR (DPLSR) |54, 56],
where the response factor Y is of a specific discrete type, rather than the
continuous values used in normal PLSR. The response factor Y in DPLSR are
limited to ones and zeros, representing class membership. If a sample belongs
to a certain predefined class it is assigned a value one in Y, and the value zero
is assigned if the sample does not belong to this class. Thus the number of
responses in Y is equal to the number of considered classes, except for the case
of two classes, where only one Y-variable is necessary. Though the input in a
DPLSR regression model are discrete binary values, predicted values from the
model are continuous, and limits has to be decided to assign the prediction
outputs to the correct class. Thus the prediction part of DPLSR rather takes
the form of a classification.

1.6.3 Cross Validation

The predictive ability of regression model created by PLSR needs to be prop-
erly validated. The PLSR model itself is not able to assess whether the model
is useful for prediction or classification of future samples. The optimal predic-
tive ability of the model will often be subject to overfit, that is, information in
X which is only randomly correlated to Y, and not representing general ten-
dencies valid also outside the model-data, is used to assist in the prediction of
Y. Especially this is true for data with a large number of variables compared
to the number of samples. Some other method is needed to validate a models
predictive ability, and to select the optimal number of principal components
to use. The most obvious solution is to predict independent test samples not
used for modelling, but similar to the samples used in calibration model. The
predictive ability the model have on these test-samples gives an indication of
the global validity of the model. However, it is argued that using an inde-
pendent data-set only for testing is a waste of information and resources, and
rather than leaving this data out of the analysis, all data should be used for
modelling to create a better and more robust model. But how do we then
validate the model? To solve this the concept of cross-validation [54, 57| was
introduced. The principle of cross-validation is to use all available samples for
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both modelling and as independent test samples. To achieve this, a number
of sub-models is created. In sub-model is calculated based on a sub-set of all
the data, with a certain number of samples left out. The left out samples are
then predicted using the corresponding sub-model. In this way the left-out
samples are not used for modelling, and work as independent test-samples for
the model. This procedure is repeated, and new sub-models are created until
all samples have been left out at least once. The quality of the predictions
of the left-out samples is then interpreted as an estimate of the overall pre-
dictive ability of the model. A special version of this validation approach is
leave-one-out cross validation. Here only one sample is left out at a time, and
the sub-model is calculated based on all other samples. This is repeated for
all samples in the data-set.

The multivariate methods described above are commonly used on data from
chemical spectroscopy, where the have wide applications. Multivariate ap-
proaches have not to the same extent been used on images from 2-DE, though
a few publications exist [26,35,43,44]. The challenges inherent in data from
2-DE have many similarities with chemical spectra. Signals appear as peaks
standing out a not always uniform surface, and the height of the peaks is
related to amount of material analysed. The main difference is that images
from 2-DE are two-dimensional, while only one dimension is common in basic
spectroscopy. There, however, ways to circumvent this problem, for example
by unfolding the data which is described in chapter 4. The basic multivariate
approaches should thus be well suited to analyse gel-images in 2-DE.

1.6.4 Outline of scientific papers

The last four chapters is dedicated to the scientific papers produced during
this thesis. These articles summarise the research that has been done in the
fields described previously, and constitute the main body of this book. The
outline is as follows: As mentioned previously the presence of noise and arti-
facts not related to protein spots is an important concern when doing image
segmentation of 2D-gels. In chapter 2 a multivariate classification model is
developed, separating image segments consisting of protein spots fro image
segments resulting from other sources. The classification method is DPLSR.
The use of common spot boundaries has lately been introduced as a solution
to the serious problem of matching spots on several gels in 2-DE. However,
little has been said on how these common boundaries should be defined. In
chapter 3 this issue is addressed, and a method for assigning common spot
boundaries in multiple gels is suggested. Chapters 4 and 5 are both concerned
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with image segmentation. In chapter 4 an alternative way of analysing multiple
gels without using image segmentation is introduced. The method consist of
multivariate analysis on the pixel-level, and identification of significant areas
for protein variations in the gel. The last article in chapter 5 is much founded
on the work in chapter 4, where image segmentation is used in combination
with the pixel-based analysis to improve the visualisation and output from a
2-DE analysis.
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Abstract

Image segmentation plays an important role in the automatic analysis of pro-
tein spots in two-dimensional gel electrophoresis (2-DE). Using image segments
representing protein spots, the amount of protein in each segment can be quan-
tified, and corresponding segments can be matched and compared for multiple
gels. However, the common presence of image segments caused by noise and
unwanted artifacts highly disturb the analysis and comparison of the gels. Com-
mon sources of such artifacts are cracks in the gel surface, fingerprints, dust
and other pollutions. It would be advantageous to remove these unwanted
artifacts during or after the segmentation procedure. To achieve this task a
multivariate spot filtering model is developed using image segments from a gel
segmentation. Parameters in the model are based on texture, shape and inten-
sity measurements of the image segments. The model successfully managed to
separate segments caused by noise, artifacts and cracks from image segments
representing true protein spots. The classification method used is Discriminant
Partial Least Squares Regression (DPLSR).

2.1 Introduction

Ever since its introduction, two-dimensional gel electrophoresis (2-DE) [1] has
been the method of choice for separating, identifying and quantifying a large
number of proteins from a cell sample. Parallel to the development of gel
methodology, the search for a reliable automatic procedure to analyse the re-
sulting gels has been sought. The alternative to automatic procedures is man-
ual analysis by a human expert, which is both expensive and time consuming.

Several commercial packages for automatic or semi-automatic analysis of 2-DE
exist today [20]. Software packages usually include methods for segmentation,
alignment, quantification and matching of 2-DE images. Image segmentation
in 2-DE is separating the pixels in an image relating to protein spots from pixels
resulting from background, noise and unwanted artifacts, and is an important
step in the analysis procedure. The final result of a segmentation is usually a
binary image which separates the areas of interest (proteins), from areas not
interesting for the following quantification and matching. The advantage of
doing segmentation prior to spot matching, is to compare objects of interest
(protein spots) rather than the individual pixels in an image. However, for such
a comparison to be successful, a reliable segmentation has to be performed,
meaning that objects compared are reduced to single, isolated protein spots.

There are numerous ways to perform image segmentation. A good review of
methods used for 2-DE segmentation can be found in [13]. Despite the dif-
ferences, it is usually agreed that image segmentation should include methods
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Figure 2.1: Example of a noisy area in a gel including cracks and other artifacts.

for noise removal, background-correction and streak-removal to perform satis-
factorily. However, in several cases this is not sufficient to produce a reliable
segmentation. It is not uncommon for gels to be exposed to various degrees of
pollutions and distortions during their formation process. Common sources of
such distortions are dust, fingerprints, and cracks in the gel surface. The seg-
mentation procedure itself cannot distinguish between protein spots and such
distortions. Thus unwanted artifacts are interpreted as protein segments af-
ter the segmentation procedure is completed, and information that distinguish
these areas from protein spots are lost. A typical example of a noisy region
causing problems in the analysis is shown in figure 2.1.

One way to handle image segments not resulting from protein spots, is the use
of spot filtering methods between the segmentation step and the final analysis.
Spot filtering assigns each image segment a score, which describes how similar
a segment is to an ideal protein spot. A threshold is then applied to the scores,
and segments that deviate too much from the ideal spot can be removed. The
threshold value is often selected by a user, who has to decide whether the
goal is to remove spurious image segments, or to keep as many of the true
protein spot segments as possible. The drawback of selecting a low threshold, is
that spurious segments are still included among the proteins, while raising the
threshold might remove several of the true protein spots along with the spurious
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ones. It follows that the success of a spot filtering model depends on how well it
manages to separate the image segments in question. The authors were not able
to find any reports in the literature handling spot filtering explicitly, however
one article describes a filtering model as a part of a 2D-gel segmentation and
analysis procedure in general. Cutler et al. [46] use the method of pixel value
collection to collect contiguous pixel groups. These groups are then tested
against simple shape criteria, to verify if this pixel collection constitutes a
protein spot. The exact details of these criteria and how they are calculated
and evaluated are not mentioned in the article, apart from that they are based
on size, aspect ratio, compactness and spread. Spot filtering methods are also
used by some commercial software packages. Especially the Saliency parameter
introduced by ImageMaster (GE Healthcare) is of interest, which is a measure
based on the spot curvature as explained in their online user manual. The
Saliency score indicates how far an image segment “stands out” with respect to
its environment. Real spots generally have large saliencies while artifacts and
noise have low saliencies. Unfortunately, since ImageMaster is a commercial
software, there is no information on how this parameter is calculated, and
comparing it to other parameters thus becomes difficult. For that reason it
is not included here for comparison. PDQuest (Bio-Rad Laboratories) uses
the degree of Gaussian fit as a spot filtering measure. The idea of using the
Gaussian fit for spot filtering is based on the common assumption in 2-DE
that all protein spots have a Gaussian shape, and deviations from this shape
indicates that the image segment in question do not result from a protein spot.
The degree of Gaussian fit is included among the parameters used in this study.
An evaluation of whether this fit is a good classifier is left to the discussion
part of this paper.

Common for the few existing spot filtering methods is that only one parameter
is used, or at best, one at a time to assign a score to each image segment. In
this study a multivariate approach is presented using several parameters simul-
taneously based on texture, intensity and shape of the image segments. The
common important parameter variations with respect to the classifier are col-
lected in principal components, and a score is assigned to each segment using
Discriminant Partial Least Squares Regression [54,56] (DPLSR). The results
from this study indicate that such methods can be very useful for spot-filtering
in 2-DE, and the model presented successfully separates image segments result-
ing from several unwanted artifacts from segments consisting of true protein
spots.

The following steps are performed in this study: First two independent, noisy
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2D-gel images are subjected to a common image segmentation procedure. The
resulting image segments are then classified manually by a human expert to be-
long to one of several pre-defined classes, comprising different types of proteins
and artifacts. A set of parameters are then calculated for each image segment,
constituting a descriptor for this particular segment. To create a calibration
model, image segments from three of the classes are used to build a calibration
model. Then all image segments from the calibration gel and the independent
test gel are assigned a score based on this model. Finally the parameters are
evaluated and discussed.

2.2 DMaterials and methods
2.2.1 Gels

Two gels from independent 2-DE experiments are used in this study. Both
gels were kindly provided by the Norwegian Food Research Institute (MAT-
FORSK). The gels were silver-stained and scanned using an office scanner with
8-bit colour depth and a resolution of 240 dpi. A more detailed description of
the data are given in [58,59]. An image of each gel is shown in figure 2.2. It
should be noted that the presented gels represent a degree of noise and pol-
lution that is probably not acceptable for a protein identification in 2-DE in
general. However, these contaminated gels are selected by purpose to represent
several sources of noise and artifacts often seen to a lesser extent in 2D-gels,
and thus provide sufficient data material for the spot filtering model.

All program code for segmentation and analysis are written in Matlab version
7.2.0 (Mathworks).

2.2.2 Image Segmentation

Both images are pre-processed by polynomial smoothing [9] with a mask size of
13 pixels. Segmentation of images is then performed using image morphology
as described by [49, 51]. Streaks are removed using a line structural element of
31 pixels length, and image background estimated by using a circular disk with
a diameter of 25 pixels as structural element. After streaks and background are
subtracted from the original images, a single threshold is sufficient to identify
the features used for further analysis. Some of the identified features consist of
larger clusters of proteins and artifacts, which are resolved using a procedure
described by Vo et al [9] for splitting overlapping protein spots. This collection
of relatively simple steps is found sufficient to produce the image segments
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Figure 2.2: 2D-gels used in this study. (a): Calibration gel. (b): Test gel.
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necessary for this study. The resulting image segments are manually assigned
class membership, and used to build and validate the spot-filtering model.

2.2.3 Spot classes

The image segments from a 2D-gel segmentation procedure consist of protein
spots as well as artifacts and other unwanted effects. To account for the vari-
ability among the segments it is necessary to classify the segments according
to some predefined classes. Classes selected for this study are listed below. All
segments were manually assigned to one of the classes prior to the automatic
spot filtering. Examples of segments characteristic for each class are shown in
figure 2.3.

Noisy features

Typical image segments of this class result from fingerprints, dust and other
pollutions with an irregular and noisy surface texture. An example is shown
in figure 2.3(a).

Single protein spots

These are the ideal protein spot segments, consisting of a single isolated protein
spot (figure 2.3(b)).

Cracks

A typical segment caused by cracks in the gel surface is shown in figure 2.3(c).
Cracks in a gel can occur in any direction, however cracks oriented along a
vertical or horizontal direction are usually removed along with the streaks
during the segmentation procedure. Thus the cracks under consideration are
limited to the ones oriented diagonally in a gel image. Cracks do not necessarily
display a texture that distinguishes them from proteins, but their orientation
and deviation from the ideal circular shape should facilitate their separation
from protein spot segments.
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Figure 2.3: Examples of manually classified image segments. (a): Noisy feature
or artifact. (b): Isolated protein spot. (c): Crack in the gel surface. (d): Con-
taminated protein spot. (e): Overlapping protein spots. (f): Indistinguishable
artifact with surroundings. (g): Overlap between protein and artifact. (h):
Saturated protein spot.
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Contaminated protein spots

Image segments that clearly represent a protein spot, but at the same time con-
tain some contaminating artifact or irregular noisy surface. A typical example
is shown in figure 2.3(d).

Overlapping protein spots

Segments consisting of two or more overlapping protein spots (figure 2.3(e)).

Indistinguishable artifacts

There are image segments that could not be clearly distinguished from protein
spots based on the appearance of the image segment alone. The classification
of these segments is based on their position in the gel and the characteristics
of their local environment. An example is shown in figure 2.3(f). In this case
the decision is based on the fact that the image segment is located far away
from other proteins, and at a position in the gel where proteins are less likely
to occur.

Unclassified segments

An image segment where the human observer is unable to decide whether it is
caused by an artifact or a protein spot. Image segments from this class were
re-classified in a second round, where the human observer is forced to decide
whether the segment represents an artifact or a protein. Typical examples are
low intensity image segments located in regions where both protein spots and
artifacts are present.

Overlap between protein and artifact

Occasionally it is observed protein spots that overlap with artifacts. An ex-
ample is shown in figure 2.3(g).
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Saturated protein spots

This is a class of protein spot segments which has a significant number of
pixels above the saturation limit. These spots deviate from the ideal Gaussian
shape by displaying a flat surface instead of a peak. An example is shown in
figure 2.3(h).

2.2.4 Descriptors

For a human observer it is quite easy to distinguish between image segments
consisting of protein spots, and image segments caused by artifacts or cracks
in the gel-surface. To automatically reproduce the variability experienced by a
human observer, descriptors that represent these variations are necessary. We
have focused on descriptors related to the noisy surface texture of unwanted
artifacts, and descriptors that represent diagonal and elliptic shapes commonly
seen in segments caused by cracks in the gel-surface.

Texture parameters

For texture description several early spatial texture models from the literature
are considered |[60-63]. The Grey Level Difference Method (GLDM) described
in [61, 63| sufficiently describe the expected texture variations in this study.
A modified version of the GLDM is also presented to account for intensity
combinations of three pixels at a time in addition to the two-pixel interaction
described in the original GLDM. This modification significantly improves the
spot filtering model, as will be reported later in this study.

The original GLDM approach is based on calculating absolute intensity dif-
ferences between pairs of pixels for every pixel in the image segment under
consideration. If the two pixels are neighbouring pixels, the GLDM is said to
be of first order. Generally the GLDM is stated as follows:

Let I(z,y) be the image intensity at coordinates (z,y) in an image, where

I(x,y) is the digital image function. For a displacement given by 6 = (Az, Ay),
the intensity difference between two arbitrary pair of pixels can be written as

Is(z,y) =] I(z,y) — I(z + Az,y + Ay) | (2.1)
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In this study intensity differences between neighbouring pixels based on a 4-
connected neighbourhood are considered, meaning that the value of (Ax, Ay)
only can take the values (0,1) and (1,0). This leads to the following equation
for intensity differences in the horizontal direction:

Is(z,y) = I(z,y) — I(z + 1,y) | (2.2)

For the vertical direction the following equation applies:

Is(z,y) = I(z,y) = I(z,y + 1) | (2.3)

Based on the calculated intensity differences for all pixels in an image segment
by equation 2.2 and 2.3, a probability density function associated with each
segment can be constructed:

f(i]0) = P(Is(x,y) = 1) (2.4)

Here P is the probability that an intensity difference in an image segment takes
the value ¢. The probability density function is a vector with the same length as
all possible intensity differences (255 for 8-bit images). Each time an intensity
difference is calculated, a value of 1 is added to the corresponding position
in the vector, representing intensity difference i. After all differences have
been added, the vector is normalised by dividing each element in the vector
by the total number of calculated intensity differences. This normalised vector
is referred to as the probability density function. To account for directional
variations, the original GLDM calculated individual density functions for each
direction. In many texture applications this makes sense, however, in this
study there is no expected variations in texture according to direction. Thus
intensity differences for both horizontal and vertical direction are collected in
a single density function for each image segment.

After the density functions are constructed, a number of parameters can be
computed based on these functions. In this study the following five parameters
are calculated and used in the spot-filtering model. Here N is the number of
intensity levels in the images.
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Contrast:

N-1
CON =) i*f(i|9) (2.5)
i=0
Angular Second Moment:
N-1
ASM =" f(i] 6)? (2.6)
i=0
Entropy:
N-1
ENT = - f(i|8)log f(i| 6) (2.7)
i=0
Mean:
N-1
MEAN =Y " if(i|0) (2.8)
i=0
Inverse Difference Moment:
N—1 ,,.
_ xS 9)
IDM = Z:; 2 (2.9)

To improve the description of texture differences between image segments,
a model for capturing intensity differences for three pixels at a time is also
developed. The motivation for developing such a model is the observation
that certain constellations of three-pixel interactions are more favourable for
protein segments than for segments caused by noise and artifacts, as displayed
in figure 2.4.

No references describing such texture parameters have been found in the lit-
erature, so the extended GLDM is formulated in a similar notation as the
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Figure 2.4: Possible combinations of three pixels at a time, and the resulting
zero or high input in the modified GLDM model. Pixel greyvalues are shown
to the left, pixel intensity displayed as a graph in the middle, and the intensity
difference 7 in f(i | ) at the centre pixel are indicated to the right.
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original GLDM. For three arbitrary pixels with distances §; = (Ax1, Ay;) and
do = (Azg, Ays) from (z,y) the difference function is written as:

'[51»52 (I7y) :l [I(I + A‘rhy + Ayl) - I(I7y)] - [I(I7y) - I(x + AI27y + Ay?)] | (210)

Again only adjacent pixels in the 4-connected neighbourhood are considered.
In this case 41 = —J, and the equation reduces to

L5y 5,2, y) = U (x = Ly) = I(z,y)] = [[(z,y) = I(x + 1L,y)] | (2.11)

in the horizontal direction, and

L5y 5, (2, y) = U (2w, y = 1) = Iz, y)] = [[(z,y) — I(z,y +1)] | (2.12)

in the vertical direction.

The probability density function and the five resulting texture parameters were
calculated in the same manner as for the original GLDM, the only difference
being that the summations are carried out over the 2IN — 2 possible intensity
differences rather than N — 1. This gives a total of 10 texture parameters used
in the model, 5 from the original GLDM, and 5 for the extended version.

Shape parameters

Several artifacts not related to proteins can be distinguished based on the
shape of an image segment. This is especially true for cracks in the gel surface,
which often deviates from the circular shape inherited by protein spots, and
also by their diagonal orientation in the gel image. Image segments consisting
of several proteins may have similar shapes to such cracks, especially when the
proteins are located along streaks in the gel image. However, these streaks
are always oriented in the protein migration directions (horizontally and ver-
tically), distinguishing them from most cracks. It is concluded from these
observations that parameters taking both shape and orientation into account
will be useful classifiers.

To account for deviations from circular shape, the ratio between the longest
cross-section and the corresponding orthogonal cross-section is calculated. The
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longest cross-section is here defined as the longest 8-connected path between
any two boundary-pixels in a segment. A boundary pixel is a pixel situated
on the segment boundary, that is, it will have pixel neighbours not belonging
to its own image segment. Another requirement of the longest cross-section
is that the segments centre-pixel is included in the cross-section. The centre-
pixel is here defined as the image segments centre-of-gravity based on the pixel
intensities. After the longest cross-section is identified, its corresponding or-
thogonal 8-connected cross-section is calculated. The orthogonal cross-section
is identified as the 8-connected path between two boundary pixels having an-
gles (in radians) closest to § and —7 respectively. The angle in question is the
angle between the boundary pixel, the centre-pixel and direction of the longest
cross-section. The orthogonal cross-section is also required to pass through
the centre-pixel. The ratio of the orthogonal (shortest) length to the longest
cross-section is calculated and used as a parameter. For a perfect circular im-
age segments the distances of these two cross-sections will be equal, and the
ratio will be 1, while long thin image segments characteristic for cracks will
have values closer to 0, depending on the distortion from circularity. It should
be noted that, in theory, it is possible to have objects that deviate from cir-
cularity, but still have a ratio of 1. However, such objects are rarely seen in
2D-gels, and the described ratio (sometimes referred to as the Feret Ratio) is
found a suitable classifier for 2D-gel image segments.

The angle the longest cross-section makes with respect to the horizontal or
vertical direction in the gel-image is also a useful parameter, considering that
artifacts (especially cracks) have a diagonal orientation in the image. Thus the
smallest angle the cross-section makes with the horizontal or vertical image
axes is also used as a parameter. Angles are first calculated with respect to
the horizontal and vertical axes. The smallest of these two angles are then
identified and used as a parameter. It should be noted that this single param-
eter does not distinguish which of the axes the calculation is based upon. Only
the smallest angle is selected and compared later in the modelling stage.

Another parameter is calculated to account for variations in orientation. This
is the ratio of the cross section through the centre-pixel in the vertical and
horizontal direction to the overall longest cross-section calculated previously.
The choice of this parameter is motivated by the fact that diagonal image seg-
ments will necessarily have a direction of its longest cross-section that deviates
from the horizontal or vertical direction. If the image segment in question has
a long, thin shape, but with an orientation parallel to the horizontal or vertical
direction, its longest cross-section will be similar to the cross-section in the ver-
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tical or horizontal direction, and one of the calculated ratios will be close to 1.
If the longest cross-section has a diagonal orientation, but the image segment
in question has a circular shape, the length of all possible cross-sections will
be equal, and both ratios will equal 1. However, if the object is not circular,
and at the same time has a diagonal cross-section (which is typical for cracks),
none of the ratios will be close to 1 (see figure 2.5(c)). Using the maximum
of the two described ratios as a parameter will thus give an indication of both
shape and orientation. Again this parameter does not distinguish whether the
ratio is calculated with respect to the vertical or horizontal cross-section.

Finally it is convenient to combine the angle and orthogonal-to-maximum
cross-section ratio, which gives an indication of both shape and orientation.
Since diagonal, thin image segments have a low ratio value and a high angle
value, the product of the angle and the inverse ratio is also used as a parame-
ter. Parameters for shape and orientation used in this study are illustrated in
figure 2.5.

Gaussian fit

Gaussian approximations to protein spots are commonly used in 2-DE |8, 27,
36]. The idea of using the Gaussian fit as a parameter is based on the assump-
tion that all single, isolated protein spots should ideally display the shape of
a perfect Gaussian peak. Thus the degree of Gaussian fit would give an indi-
cation of whether an image segment consists of a protein or an artifact. The
Gaussian approximation is performed by fitting the following function to all
pixels constituting an image segment:

z—x,)? — )2
Glry) = Blry) + 1) exp(~ T2y (W) (a5
z y

Here G(z,y) is the Gaussian approximation at image coordinate (z,y), B(z,y)
is the background intensity at (z,y), (x., y.) is the coordinates of the centre-
pixel, and o, and o, control the spread of the Gaussian function independently
in horizontal and vertical direction. For deciding the optimal Gaussian fit, sum
of squares differences between the original pixel intensities (with background
subtracted) and the Gaussian approximation were minimised using the func-
tion Isqnonlin.m in the Matlab Optimisation toolbox (Mathworks). Maximum
Function Evaluations were set to 50000, and Maximum Iterations to 10000. To
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Figure 2.5: Tllustration of the shape parameters. (a): The longest cross-section
between two boundary pixels of an image segment and its orthogonal cross-
section. Both is required to go through the centre-pixel of the image segment.
(b): The smallest angle of the longest cross-section with respect to the horizon-
tal or vertical axes. In this case the shortest angle is the one to the vertical axis,
and is indicated by the arrows. (c): The horizontal and vertical cross-section
through the spot-centre.
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Table 2.1: Model parameters and abbreviations. “1” and “2” at the end of the
texture parameters indicate the original and modified GLDM model respec-
tively.

Abbreviation Description
SIZE Size in pixels
AVINT Average intensity
CON1, CON2 Contrast
ASM1, ASM2 Angular Second Moment
ENT1, ENT2 Entropy
MEAN1, MEAN2 Mean (texture)
IDM1, IDM2 Inverse Difference Moment
RATIO Ratio of orthogonal to the longest cross-section
ANGLE Minimum deviation of angle from horizontal or vertical
GAUSS Gaussian fit
RATAN Inverse ratio times angle
RATXY Maximum ratio to horizontal or vertical cross-section

make the Gaussian fit variable directly comparable between image segments of
different size, the total deviation from Gaussian fit is divided by the number of
pixels in the image segment. All parameters used for the spot-filtering model,
together with their abbreviations are given in table 2.1

2.2.5 Multivariate data analysis

Partial Least Squares Regression (PLSR) [54,55] is a common multivariate
method used to build a regression model between a data matrix X with sam-
ples and variables, and a response or variable of interest contained in matrix
Y. PLSR makes use of the same basic principle as the well known Principal
Component Analysis (PCA) [54], where the original data matrix is decomposed
into a set of latent variables (called principal components) and noise. Princi-
pal Components can be understood in terms of scores and loadings. Loadings
consist of the weights each original variable is given in each principal compo-
nent, while the scores are the coordinates the samples are assigned in the new
coordinate system defined by the principal components. The first principal
component points in the direction of the maximum variation in the original X
matrix. The information contained in the first component is then subtracted
from X, and the second component maximises the variation in the new X.
More components are calculated in the same manner, until there is no struc-
ture left in X, and the components start to model noise. Such a decomposition
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of X has several advantages. First the number of latent variables is usually
much smaller than the original number of variables. The latent variables are
also independent (orthogonal) which is rarely the case for the original vari-
ables. Finally correlations among the original variables are easily visualised
by plotting the resulting scores and loadings, making it easy to interpret re-
lationships within and between samples or variables. PLSR decomposes the
X matrix in a similar fashion, but in this case the decomposition is guided by
one or several variables of interest contained in Y. In PLSR it is the variation
in the covariance matrix XTY which is maximised for each PLSR-component.
The PLSR algorithm thus looks for variations in X that are relevant for the
prediction of response Y. A full description of PLSR and its algorithm is given
in the references [54, 55].

In this analysis a special version of PLSR, called Discriminant PLSR (DPLSR)
[54,56] is used. What separates DPLSR from regular PLSR is that the response
consist of logical ones and zeros (a sample either belongs to a group, or not),
while continuous response variables are common in regular PLSR. It must also
be noted that although the input values in DPLSR are discrete, its output, or
predicted values, are continuous.

To avoid overfit and measure the predictive ability, PLSR models are often
validated by a method called cross validation [54,57]. The model is checked by
leaving out samples from the calibration set, using them as temporarily test
samples. A PLSR model is calculated using the rest of the samples, and the
test samples are predicted using this sub-model. The procedure is repeated for
all samples in the model. In this way all samples work as independent test-
sets for the corresponding PLSR model. Based on the prediction accuracy of
the test samples, the optimal number of principal components can be decided,
reducing the risk of overfit. In this study a special version is used where only
one sample is left out at a time. This method is often referred to as leave-
one-out cross validation. In addition to cross validation the model can also be
validated with a totally independent test data-set. Both forms of validation
are used in this study.

2.2.6 Data set and Models

All image segments from the segmentation procedure were manually assigned
class membership according to the classes listed in section 2.2.3. A total of
1310 segments were assigned in the calibration gel, and 527 in the test gel.

Only image segments which belong to noisy features, cracks and isolated pro-
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tein spots are used to build the calibration model. This is because differences
between protein spots and artifacts are best described by these three classes.
A total of 709 image segments are selected for modelling, giving a calibration
matrix X of 709 samples and 17 descriptor parameters (or variables) for each
sample.

In this study there is only one, binary response variable y. A value of one
is assigned to segments belonging to noisy features and cracks, and zero is
assigned to isolated protein spot segments. This produces a y-vector of same
length as the number of samples (709). It should be noted that during the
modelling stage, segments caused by cracks and noisy features are treated as
belonging to the same class, because they are both assigned the same value in
y. Thus the model does not try to predict which of the twelve classes listed in
section 2.2.3 a segment belongs to, but merely whether it results from proteins
or is caused by some unwanted artifact.

2.3 Results

After using leave-one-out cross validation, five PLSR-components were found
to explain the significant variation in X with respect to the response factor
y. These components also explain 85% of the total variation in y and 82%
of the total variation in X, meaning that the original 17 variables have been
reduced to five PLSR-components, which explains the co-variance between X
and y. These five components were used to build the DPLSR model, and all
image segment (1310 from the calibration gel and 523 from test gel), are given
a predicted score based on this model. A score close to 1 indicates that the
image segment most likely results from noise or artifacts, whereas true proteins
will have scores close to 0. The performance of the DPLSR spot filtering model
is given in the next chapters for the different classes of image segments and
some other interesting subsets.

2.3.1 Classes used in the calibration model

The results of the classification are shown in table 2.2 for the calibration data
and in table 2.3 for the test data. There is an observed separation between
image segments caused by unwanted artifacts (including cracks) and image
segments consisting of isolated protein spots. This observation is valid both
for the calibration and the test data. Only 6-9% of the image segments have a
score in the uncertain interval 0.4-0.6, which also shows that the two groups are
well separated by the DPLSR model. Selecting a threshold of 0.6 remove over
90% of the unwanted artifacts for these classes, and only 1% of the true spots
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are lost. To avoid loosing true spots altogether, 70% of the artifacts can still
be removed by selecting a threshold of 0.8. The results are not significantly
different for the calibration data and independent test data. It is therefore
concluded that spot filtering using DPLSR successfully separates the selected
classes with the most distinct features.

Table 2.2: Model performance for calibration data. The numbers are per-
centages of image segments (samples) assigned a model-score in the interval
indicated to the left.

Class Noisy Features and Cracks Protein spots
Samples 306 399
Score: < 0.2 0.0 78.7
0.2-04 1.0 19.8
0.4-0.6 4.2 1.5
0.6 -0.8 22.5 0.0
> 0.8 72.2 0.0

Table 2.3: Test set performance for same classes as in table 2.2.

Class Noisy Features and Cracks Protein spots
Samples 219 135
Score: < (.2 0.0 74.1
0.2-04 1.8 20.7
0.4-0.6 5.5 3.7
0.6 -0.8 18.3 1.5
> 0.8 74.4 0.0

2.3.2 Other classes

The DPLSR spot filtering model was also used to assign scores to the image
segments belonging to the other classes listed in section 2.2.3 None of these
image segments were used to build the model, neither in the calibration nor in
the test gel. Calculated scores for these image segments are shown in table 2.4
and table 2.5 for the calibration and test gel respectively. It can be seen from
the tables that the model assigned low scores to most of the contaminated,
overlapping and saturated spots. The results are in accordance with the inten-
tion of the model, because these image segments contain protein information.
They can thus be kept for further analysis. A few of the saturated spots were
assigned higher scores, thus increasing the risk of removal after a threshold is
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Table 2.4: Model performance for other classes. Calibration gel

contam- Over- indistin- Unclassified  Overlap  Saturated
Class minated lapping guishable segments protein/ spots
spots spots artifacts artifact

Samples 130 73 142 186 21 82
Score: < 0.2 33.1 79.5 6.3 32.8 38.1 76.8
02-04 45.4 19.2 12.0 32.8 23.8 17.1
04-0.6 20.0 14 40.8 28.0 28.6 3.7
0.6-0.8 1.5 0.0 31.7 5.9 0.0 1.2
> 0.8 0.0 0.0 9.2 0.5 9.5 1.2

Table 2.5: Model performance for other classes. Test gel

contam- Over- indistin- Unclassified  Overlap  Saturated
Class minated lapping guishable segments protein/ spots
spots spots artifacts artifact

Samples 21 22 69 29 15 35
Score: < 0.2 38.1 50.0 29.0 55.2 33.3 65.7
02-04 38.1 22.7 21.7 13.8 13.3 25.7
04-0.6 19.0 22.7 26.1 17.2 33.3 5.7
0.6-0.8 0.0 4.5 18.8 13.8 6.7 0.0
> 0.8 4.8 0.0 4.3 0.0 13.3 2.9

Table 2.6: Model performance for Unclassified segments. Calibration gel.

Class Artifacts Proteins
Samples 76 102
Score: < 0.2 9.2 52.9
0.2-04 32.9 32.4
04-0.6 46.1 12.7
0.6 - 0.8 10.5 2.0
> 0.8 1.3 0.0

Table 2.7: Model performance for Unclassified segments. Test gel.

Class Artifacts  Proteins
Samples 7 15
Score: < 0.2 28.6 53.3
0.2-04 0.0 20.0
0.4-0.6 28.6 20.0
0.6 -0.8 42.9 6.7
> 0.8 0.0 0.0
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Table 2.8: Cracks and size variations for noisy features. Calibration data.

Size (pixels) | Less than 60 Between 60 and 250 Over 250 Cracks
Samples 158 96 33 19
Score: < 0.2 0.0 0.0 0.0 0.0
0.2-04 0.6 21 0.0 0.0
0.4-0.6 4.4 3.1 3.0 10.5
0.6 -0.8 24.1 27.1 3.0 21.1
> 0.8 70.9 67.7 93.9 68.4

Table 2.9: Cracks and size variations for noisy features. Test data.

Size (pixels) | Less than 60 Between 60 and 250 Over 250 Cracks
Samples 103 77 16 23
Score: < 0.2 0.0 0.0 0.0 0.0
0.2-04 1.0 1.3 12.5 0.0
0.4-0.6 4.9 6.5 6.3 4.3
0.6-0.8 16.5 19.5 12.5 26.1
> 0.8 7.7 72.7 68.8 70.0

Table 2.10: Overall performance. Calibration gel.

Class Artifacts Proteins
Samples 524 786
Score: < 0.2 3.1 67.7
0.2-04 8.6 25.3
04-0.6 20.2 6.2
0.6 - 0.8 23.3 0.6
> 0.8 44 .8 0.1

Table 2.11: Overall performance. Test gel.

Class Artifacts Proteins
Samples 295 228
Score: < 0.2 7.5 65.8
0.2-04 6.4 23.2
04-0.6 10.8 8.3
0.6 - 0.8 19.0 1.8
> 0.8 56.2 0.9
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applied. Saturated spots can ,on the other hand, be easily identified earlier
in the process by their high percentage of pixel intensities above the satura-
tion limit, and do not necessarily need to be subjected to the spot filtering
procedure.

No obvious separation is observed for the three remaining classes in this study,
which is as expected. The classes of overlapping proteins and artifacts could
naturally not be distinguished, which also goes for the unclassified segments,
where the human observer was not able to decide whether the image segment
contained a protein spot or an artifact. One would have preferred the class in-
distinguishable image segments to have higher scores similar to artifacts. But
considering the criteria for this class described in section 2.2.3, the results make
sense. The image segments of this class contain artifacts where the observer
used other criteria than the appearance of the segments themselves to classify
them. The classification was rather based on the surrounding environment and
position in the gel. Because such criteria are not used in the descriptor, one
does not expect the spot filtering model to handle these segments properly.
Creating parameters based on these criteria is not straightforward, since such
parameters are themselves based on results from the spot filtering model. One
way to deal with such problems is to calculate parameters based on segments
with high and low score assignments (above 0.8 and below 0.2 for instance).
Thus new parameters, for example the number of spots/artifacts in the neigh-
bourhood, can be used in a second re-classification of all segments, creating
new scores. This procedure is continued iteratively until stable results are
achieved.

The gels (especially the calibration gel) consist of a significant number of un-
classified image segments. These segments were reclassified in such a way that
the human observer, though uncertain, was forced to decide whether they con-
tained a protein or an artifact. The results of this second classification are
shown in table 2.6 and 2.7. (It should be noted that some of the unclassified
segments were found to contain overlap between artifact and possible protein.
These segments were kept out of second classification, and is the reason why
the numbers in table 2.6 and 2.7 don’t add up the numbers in column four
in table 2.4 and 2.5.) As can be seen from the tables, there is no conclusive
pattern for the two classes. Most segments tend to have lower values, indicat-
ing that they are mostly similar to protein spots, but the scores are far from
clear compared with results for the real protein spots in table 2.2 and 2.3. It
can thus be concluded that on image segments where the human observer was
uncertain, the spot filtering model also produced uncertain results.
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2.3.3 Size Variations and Cracks

The image segments containing noisy artifacts and cracks were divided into
sub-groups, investigating if the spot filtering model assigned similar values
to all types of artifacts. The image segments containing noisy features were
divided into three sub-groups depending on their size (in pixels). The group
limits were set at 60 and 250 pixels. The results are given in table 2.9 and 2.10.
Considering the results from both the calibration and the test gel there seems
to be little variation between the sub-groups. That is, cracks are discriminated
just as well as the noisy features. There is a deviation of the correspondence
between the percentages of the larger noisy features. However, it should be
noted that the number of samples for this sub-group is rather small for the
test-gel, and the score of a single segment will thus have a large influence on
the calculated percentages.

2.3.4 Overall performance

The overall performance of the spot filtering model is given in tables 2.10 and
2.11 for the calibration and test gel respectively. Here all classes of image
segments are assigned to either protein spots or artifacts. It is concluded
that the spot filtering model performs satisfactorily in removing most of the
noise and artifacts, and at the same time avoiding removal of true proteins.
Segmentation results for some critical areas in the gel before and after the
spot filtering model is applied is shown in figure 2.6. There is some variation
between the results from the calibration and test gel, which is expected because
there will always be some variation between different gels. However, the general
conclusions drawn from the calibration gel is also valid for the test gel.

2.3.5 Evaluation of parameters

Plots of scores and loadings for PLSR- component 1 versus PLSR-component
2 are shown in figure 2.7, and PLSR-component 2 versus PLSR-component 3
are shown in figure 2.8. Score and loading plots are a common way to visualise
results in multivariate analysis, and should be interpreted simultaneously to
investigate which variables in the loading plot contributes to the separation
of samples in the score plot. Variables with high absolute loadings are the
important variables, and have coordinates in the loading plot far away from
the origin, and in the same direction as the sample-separation in the score
plot. Less important variables are situated close to the origin, or in directions
orthogonal to the separation. As can be seen from the plots of the first two
components, there is a clear separation of two classes used in the calibration
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Figure 2.6: Results of image segmentation. (a): Before spot filtering. (b):
After spot filtering. The selected model threshold for removing image segments
was set to 0.4 in this case.
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model, especially along the first component. As can be seen from the corre-
sponding loading plot, the texture parameters dominate the first component,
while the other variables contribute less. It is thus concluded that the tex-
ture variables are most important in distinguishing noisy features from protein
spots, which is as expected. Plots of the second and third component reveal
another relationship. In these components parameters used to distinguish the
cracks dominate, while the texture parameters are clustered around the origin.
The artifacts resulting from cracks are highlighted with circles in figure 2.8(a),
confirming that this separation is dominant in the second and third component.

The Gaussian parameter contributes to the separation, especially in the second
and third component. It should thus be included in the model. However, a
separation based on the Gaussian fit alone will not be sufficient to separate
the image segments in this study. Deviations from Gaussian shape is quite
common for protein spots [2,3,5], so this result is not surprising. It is thus
concluded that spot filtering models are greatly improved by evaluating more
parameters than the Gaussian fit alone.

The loading plots also justify the inclusion of the modified GLDM texture
parameters and the angle times inverse ratio parameter. Most of the former
and also the latter contribute significantly to separation without being too
correlated to other parameters.

2.4 Discussion

Some suggested improvement is already mentioned in the previous chapter.
Here we discuss some aspects of the general validity of the multivariate model
presented in this paper.

The model managed to produce good results for both the calibration gel and the
independent test gel used in this study. Though the two gels are from different
biological samples, they also display many similarities. They were both silver-
stained, and have approximately the same resolution in size and depth. Gels
scanned at higher resolutions, and stained by other methods may perform less
favourable when submitted to this particular spot filtering model. The ideal
spot filtering model would account for all possible noise and artifact variations
for all possible gels at multiple resolutions and differing staining methods.
To achieve this, a large database of so called “ground truth” 2D-gels will be
necessary, comprising example gels of the different variations. Unfortunately,
such a database does not exist, and the performance of the model may thus
be poor when samples from other gels are used . For instance image segments
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Figure 2.7: Plots of scores and loadings. (a): Scores of the first (horizontal) and
second (vertical) principal component. Artifacts and protein spots are marked
by crosses and dots respectively. It is a clear separation between the two classes.
(b): Loading plot of the first two components. Parameter abbreviations are
taken from table 2.1.
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Figure 2.8: (a):

Score plot of the second (horizontal) and third (vertical)

principal component. Image segments resulting from cracks are marked with

circles, and are mostly separated from the other samples.

All other image

segments, both protein and artifacts, are marked by crosses (b): Loading plot
of the second and third component. Parameter abbreviations are taken from

table 2.1.
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produced from a higher resolution gels may have different texture properties,
and thus the presented model will not be valid for these data. However, it is
always possible to build local models, representing gels created with a specific
procedure at a particular laboratory. For biologist using only gels produced by
this equipment, a local spot filtering model can be a useful additional tool to
clean the gels from spurious spots and noise, improving the output from the
final data analysis.

2.5 Concluding remarks

The multivariate spot filtering model introduced performed successfully in sep-
arating image segments resulting from noisy artifacts and cracks, from image
segments consisting of protein spots. The concept of evaluating image segments
after the segmentation procedure is in general a useful method for reducing the
number of unwanted artifacts in 2D-gels.
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Abstract

The benefits of defining common spot boundaries when several gels from 2-DE
are compared and analysed have lately been stressed by both commercial soft-
ware producers and users of this software. Though the importance of common
spot boundaries is clearly stated, few reports exist that target this issue explic-
itly. In this study a method for defining common spots boundaries is developed,
called the spot density method. The method consists of the following steps:
Segmentation and spot identification on each individual gel, transferring the
spot centre coordinates for all gels onto a single new gel, collecting spot-centres
clustered together in the new gel and finally assigning pixels and new spot
boundaries based on the spots in each cluster. The method is compared to a
synthetic gel approach, and validated by visual inspection of three representa-
tive areas in the gels. The gel images need to be aligned prior to segmentation
and spot identification, but the method can be used regardless of the choice of
segmentation procedure. This makes the method an easy extension to existing
methods for spot identification and matching. Conclusions based on the visual
inspection are that the spot density method identifies both partly overlapping
spots and low intensity spots better than the synthetic gel approach.

3.1 Introduction

Ever since the first attempts to create a fully automated analysis in 2-DE,
the task of finding corresponding protein spots between different gels has been
a major challenge. The usual approach has been to identify protein spots on
each gel individually, followed by an algorithm or method to find corresponding
spots in all individual gels [9-13,27,37,47|. These methods, commonly referred
to as spot matching methods, often use a master or reference gel, which all other
gels are compared to. After all spots are matched, the volume and intensity of
the corresponding spots can be compared, and proteins differentially expressed
can be highlighted.

Spot matching procedures usually make use of a spots position on a gel, to-
gether with its local neighbourhood to determine the most likely match. How-
ever, several problems arise when this approach is used. Global and local
perturbations in the analysed gels complicate the matching procedure signifi-
cantly. This is especially true in regions where a large number of protein spots
are present, resulting in partly merged protein clusters. Two highly overlapping
spots might appear as a single spot in one gel, but are detected as separated
spots in another gel. An example of such a situation is shown in figure 3.1,
where images and spot boundaries are produced using the commercial software
ImageMaster 2D Platinum Version 6.01 (GE Healthcare).
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Figure 3.1: Comparable areas from six of analysed gels. Spot boundaries for
each gel are defined using the software ImageMaster. Finding complete spot
matches across all gels are extremely challenging.
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Individual spot boundaries for a corresponding area in six different gels are
displayed for a highly clustered region. As can be seen from the figure, it is
impossible to find a satisfactory match between all six sub-images. Situations
similar to this usually result in the insertion of missing values in the final spot
volume data table, leading to serious errors in the following data analysis. The
pitfalls of erroneously estimated spot volumes and inserted missing values are
lately well described by Feergestad et al. [64]. The number of spots containing
a missing value in a match set can be quite large, as shown in a recent study by
Grove et al. [40]. It was found that as much as 80% of the spots collected in the
match table for analysis are subject to missing values. The number of missing
values also escalates with the number of gels compared and analysed. Using
a high number of replicate gels does not necessarily produce better results,
because of the poor reproducibility of spot boundaries in each individual gel.

One natural way to address this problem is to define a common set of spot
boundaries for all gels. The advantages of this approach has lately been stressed
by several commercial software packages, especially Progenesis SameSpots (Non-
linear Dynamics) and Delta-2D (DECODON). The view that common spot
boundaries are a better approach to the matching problem is also shared by
the authors of this paper. When spots are compared between gels, a protein
not present on a particular gel will have a volume or intensity close to zero
inside the common boundary, corresponding to a true missing value in the
spot matching approach. The immediate advantage with this approach is, of
course, that matches are always accurate, because all boundaries are identical
and represent the same area in all gels. However, for this assumption to be
useful, all gels need to be properly aligned before the boundaries are identified
and spots compared. Fortunately there exist alignment procedures, both in
commercial software and published in the literature [13,14,29,31, 32, 35| that
satisfy this assumption, meaning it is possible to warp and transform all images
subject to analysis such that the spots compared occupy the same areas in all
gels. The next issue will then be how to define the common spot boundaries.
Luhn et al. [41] use the concept of a synthetic gel, which is a gel image created
by combining pixel intensities from all gels used in the analysis. This is the
approach used by the software Delta-2D. A pixel intensity in the synthetic gel
is calculated by a weighted average over the corresponding pixel intensities in
the individual gels. The synthetic gel is then subject to a spot identification
(or segmentation) procedure, and the boundaries identified in the synthetic gel
are used for all gels.

To use a synthetic gel image to calculate common spot boundaries is easy
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and straightforward, but also has some disadvantages. First the boundaries
for all gels are based on the segmentation of only one (synthetic) gel. The
segmentation of a single gel is almost always subject to errors, and these errors
are thus propagated to all gels. Secondly, including spots present on all gels
result in an increased number of spots in the synthetic gel, introducing more
clusters and merged spots. Thus two spots clearly separated and isolated in
individual gels, might be identified as a single spot in the synthetic gel. At last
noise and other artifacts not related to proteins are usually present in at least
some of the analysed gels. Since the synthetic image comprise information
from all gels, these artifacts will also be present in the synthetic image, and
are thus also propagated to all gels. It should be mentioned that the impact
of the last problem can be reduced by adjusting the pixel weights in each gel
during the synthetic gel creation.

In this study we present an alternative approach to define common spot bound-
aries in a set of 2D-gels subjected to analysis. Instead of using a single synthetic
gel for defining the spot boundaries, information from spot boundaries in all
gels are used. Spot boundaries are first defined individually for each gel as for
the traditional spot matching approach. However, instead of trying to match
the produced spot segments, the spot boundaries from each gel are combined to
produce a common set of spot boundaries for all gels. The method presented
is compared to the synthetic image approach, and validated here by visual
inspection of three representative spot clusters from a set of silver stained 2D-
gels. Visual results from the full gels are not shown in this article because of
resolution capabilities, but can be downloaded as supplementary material.

3.2 DMaterials and methods
3.2.1 2D-gels

The gels used in this study include 7 Norwegian Red dual-purpose bulls from
a performance test station (GENO-Breeding and Al Association) slaughtered
at approximately 13 months of age/450 kg live weight in 2004. Muscle samples
from the Longissimus dorsi were collected one, two, three, six and ten hours
after slaughter, giving a total of 35 gels used in the experiment. The samples
were immediately frozen in liquid nitrogen, and proteins were extracted in
TES buffer (10 mM Tris (pH 7.6), 1 mM EDTA and 0.25 M sucrose) and
analysed by 2-DE.The analytical gels were stained by silver staining. The 2-
DE gels were then scanned using an office scanner (Epson Expression 1680 Pro,
Epson) with 8-bit colour depth and a resolution of 240-dpi. To remove spikes
and noise, all gel images were filtered using a median filter of size 3 pixels in
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both directions. Gel alignment was performed using the commercial software
TT900 S2S (Nonlinear Dynamics Ltd.; www.nonlinear.com). Unless stated
otherwise, all program code are written in Matlab version 7.2.0 (Mathworks).

The selected image regions used for visual validation are displayed in figure 3.2,
and the spot clusters within the boundaries in figure 3.2(b) to 3.2(d) are the
focus for visual inspection. The spot cluster shown in figure 3.2(b) is also
visible in figure 3.1.

3.2.2 Spot Identification

In the following description it is assumed that all images are inverted, that is,
the image background is dark, and the spots appear as light peaks rising from
the background.

To define common spot boundaries by our approach, a method is first needed
to identify protein spots on each individual gel. This task is performed using
image segmentation procedures. The goal of image segmentation in 2-DE is to
separate the background and noisy areas in the gel-images from areas resulting
from protein content, and to divide the latter areas into as many individual
protein spots as possible. Because of the many subtle variations within 2D-
gels, this is not a trivial task, and several methods and approaches are reported
in the literature. (See [13] for a good overview of these approaches). Here a
three-step procedure is adopted, all based on previously reported ideas. First
all areas in the image resulting from protein spots are identified. Streaks are
also removed at this stage. Though streaks are caused by the presence of
proteins, they are not useful for protein identification and quantification, and
should be removed. Each of the identified protein spot areas will normally
include several spots, especially in clustered spot-regions, so these areas are
further resolved into individual protein spots. Finally boundaries of small
spots are redefined. A more detailed description of each step is given below.
To visualise each step in the procedure, sub-images are shown for the different
stages in figure 3.2 and 3.3.

The first step (streak removal and identification of protein spot areas) is per-
formed using image morphology. Image morphology is an effective segmen-
tation method, and is performed by successively dilating and eroding images
with structural elements similar to the features in the image one wants to keep
or remove. The use of morphology in 2-DE and for images in general is well
described by Skolnick [49] and Sternberg [48]. The selected structural element
for streak removal is a line 61 pixels in length, and for identification of protein
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Figure 3.2: Areas in the gel used for visual validation of the presented method.
Figure (b), (c) and (d) are the highlighted areas marked 1, 2 and 3 in the larger
image. Figure (a), (c) and (d) also display the boundary for clusters selected

for visual validation.
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Figure 3.3: (a): Boundaries after resolving the partly overlapping spot cluster
in figure 3.2(d). (b): Redefined spot boundaries.

spot areas a circular disk with a radius of 20 pixels is chosen. After dilating
and eroding the gel-image with these structural elements, a single threshold is
sufficient to highlight the spot areas. The final threshold value is set to 0.025
for image intensity values between 0 and 1. The identified spot areas after mor-
phology are shown for the sub-images in figure 3.2. As can be seen from this
figure, most of the identified areas consist of several protein spots, especially
in the clustered regions. These regions also include overlapping spots, so some
method is needed to resolve these areas into individual spots, which is the sec-
ond step of the spot identification procedure. Except for a proposed method
to identify individual spots in highly saturated areas [65], no studies have been
found addressing the challenge of overlapping spot clusters explicitly. However,
several methods for resolving overlapping spots have been reported together
with general segmentation procedures [7,9,45,47|. Here we have adopted an
approach based on a method used by Cutler et al. [46] to identify the individual
spots in overlapping spot clusters. The method is only dependent on the image
grey values, and uses no derivatives. Identification of isolated spots is achieved
in a method called pixel value collection, and is performed by examining the
image at each of its intensity planes, starting from the highest intensity values
and working down. At each level the contour of the image is analysed, and
adjacent pixels are collected as the protein spots grow from the highest to the
lowest intensity value. A spot stops growing when its shape and size no longer
satisfy some predefined protein spot criteria, and the spot boundary is defined
at this level. In our study this method is used to identify individual spots in the
clusters defined by the morphology approach. The method is also modified to
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work the other way around, that is, starting at low levels and working towards
higher levels. Merged areas are split, until no more splits are possible, and the
boundary is defined as the level where the last split happened. No criteria are
defined for accepting spots after a split, other than that it should consist of
at least 5 pixels. If one of the spots after a split consists of less than 5 pixels,
the split is rejected, and the boundary is defined at the level where the last
split appeared. The individual spot boundaries after resolution are shown in
figure 3.3(a).

The chosen method for resolving spot-clusters is quite noise-sensitive, meaning
that irregular or noisy spot surfaces results in spurious spots with shape and
spot-boundaries that differ from the ideal shape. This is especially true for
small spots with size less than 30-40 pixels. Apart from disregarding noisy
segments with size less than 5 pixels during the resolution procedure, accepted
image segments with size less than 100 pixels were subject to an additional
procedure to redefine the spot boundaries. To refinement method is based on
constructing a window around the spot in question, and defines a threshold
used inside the window based on the intensity values situated on this window.
This is an approach similar to the one presumably used by the commercial
software ImageMaster as mentioned by [50], and works as follows. The lowest
intensity value inside the original spot boundaries is first identified. Secondly
the mean of all intensity values situated on the window boundary below this
lowest value is used as a new threshold. The spot is then redefined as consisting
of all pixels inside the window higher than the new threshold. Spots in the sub-
image after running the refining method is shown in figure 3.3(b). In this study
a window-size of 2 pixels outside the original spot pixel-coordinates is used.
Finally, to correct for irregular boundaries, all spot shapes are smoothed by
morphology using disks with radii of 1 and 2 pixels successively as described
by Skolnick [49]. After the individual spot shapes are defined within each
cluster, the 4-connected boundary is identified, and the spot-centre coordinate
is calculated using the geometric mean.

Sometimes more sophisticated methods for spot identification are used by com-
mercial software packages. In many circumstances these software packages out-
perform the methods mentioned above. However, since the software is com-
mercial, their methods and algorithms are not published, and the results are
thus difficult to reproduce. The method for finding common spot-boundaries,
which is the main topic in this study is not restricted to the choice of segmen-
tation method. Generally any method for spot identification can be selected,
as long as it provides a spot boundary and spot-centre coordinates for each
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spot.

3.2.3 Defining common spot boundaries

After all individual spot boundaries and the spot centre coordinates have been
defined for all gels, common spot boundaries are calculated by the following
procedure. First a spot density image is constructed based on the spot centre
coordinates of all spots in all images. From the density image, spots are selected
based on the clustering of spot centres, and a common boundary is assigned to
each cluster of centres based on image pixels from the individual protein spots.

The spot density image is constructed by adding spot-centres from all images
used in the analysis onto a new image. The image has the same size as the
analysed images, and starts with only zero values. If a spot centre in one of the
images is found at coordinates (z,y), an intensity value of one is added at coor-
dinates (z,y) in the spot density image. All spot centres are thus accumulated
in the new image by raising the intensity value in the spot density image by
one at (x,y) each time a spot centre appears at this set of coordinates. If, for
example, three spots from different gels have identical spot centre coordinates,
the intensity value will be three in the spot density image at this coordinate.
The idea is that spots appearing in several (or all) images will have similar
spot centre coordinates. These spot-centres are clustered together as shown
for the example image in Figure 3.4(a). The spot density image for this area
is shown in Figure 3.4(b), where dark pixels indicate that several spots share
this particular spot-centre.

Spot centres clustered together can be collected, and new spot boundaries are
constructed by combining the spot boundaries from all spots belonging to a
cluster. The collection of spot-centre belonging to comparable spots is guided
by two parameters. The first parameter decides how close two spot-centres
must be to belong to the same cluster, and depend on the resolution of the
image, expected spot size, and precision of the alignment method. Another
parameter is the number of spots necessary for the cluster to be included as a
final spot. Most gels are subjected to noise and spurious image segments not
related to proteins, and these segments should not be included among the final
spot boundaries. These segments are, however, not present repeatedly in all
the gels, and the centre of these segments will usually turn up as isolated single
spot-centres in the spot density image. Protein spots subjected to analysis are,
on the contrary, present in many gels with similar spot-centre. Thus a cluster
with many spot-centres close together indicates the presence of a significant
protein spot, while few isolated spot-centre indicates the presence of noise and
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Figure 3.4: (a): Peak centre identified after the segmentation procedure has

been performed on each gel individually. (b):

cepted clusters of spot centres.

Spot density image. (c): Ac-
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structures inherited from only one or a small number of the gels. Since one
want to accumulate information common for most of the gels, a threshold is
useful to decide whether a cluster should be included in the final model or
not. After the significant clusters are identified, the spots in each cluster are
combined to decide the common spot boundary for each cluster. The common
pixels (and boundary) are assigned in the following way:

1. The spot pixels from the original segmentation for each spot in all clusters
are collected.

2. The average size (in pixels) over all spots in each cluster is calculated.

3. All clusters are sorted in an ascending order according to their average
size.

4. For each cluster pixels are assigned as the union of all pixels belonging
to the spots constituting the cluster. The cluster with the lowest average
size is assigned first, followed by all clusters in ascending order.

5. For each time new pixels are assigned a check is performed if the pixels
are not already assigned to another cluster. Pixels assigned to another
cluster are not assigned to the cluster in question.

6. Finally boundary pixels closer to another cluster-centre (that is, the av-
erage of the centres constituting a cluster) than the cluster-centre in
question are discarded.

After pixels are assigned to all clusters in the spot density image, the spot
boundary for each cluster is identified as described previously. This new
boundary will then constitute a common spot boundary used for all gels in
the analysis.

3.2.4 Selected parameters

In the present study the two parameters mentioned in the last section are
determined manually. All spot centres separated by one pixel or less in the
spot density image are said to belong to the same spot, and all spot-centres
connected in this way constitutes a final spot for which the common spot
boundary needs to be decided. This means that all spot-centres connected
within the 24-neighbourhood of each spot are said to belong to the same final
spot. The spot-centres are collected using the algorithm presented by [10].
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The second threshold parameter concerning the minimum acceptable size of
a spot-centre cluster is set to five, meaning that a spot must appear in at
least five gel-images to be assigned a common boundary. Otherwise the cluster
is regarded as noise and omitted from the final set of spot boundaries. The
significant spot-clusters for the example image are outlined in figure 3.4(c).
The two selected parameters are found to work well for this study, but can
easily be changed depending on the circumstances and size of the experiment.

3.2.5 Synthetic Gel

To validate the results of the presented method, the sub-images were compared
with the synthetic gel approach described by Luhn et al. [41]. This is also
the approach used by the commercial software Delta-2D. The synthetic gel
approach creates an image based on weighted pixel intensity averages from all
gels. The synthetic image has the same appearance and size as a real gel, and
should include all important spots present in all gels. The intensity of each
pixel in the synthetic image is calculated by the following formula

oy = iz (Willi@ ) Li(x, y))
Lon(®,9) = S5 T y)

(3.1)

where Iy, is the synthetic image, I; is an arbitrary gel image in the analysis
and n is the total number of gel images. The weights w;([;(z,y)) are defined
by the function

’LUZ((I) = max — @ (32)

where g4z 1S the maximum intensity value in the image and a is an arbitrary
intensity value.

The resulting synthetic image is subjected to the spot identification procedure,
and the resulting spot boundaries of the synthetic image are used as common
boundaries for all gels.

The results using the synthetic gel approach are compared to the spot density
approach, and validated by visual inspection of three randomly selected spot-
clusters.
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3.3 Results and discussion

Three different areas in the image are analysed using both the synthetic gel
and the spot density approach. The analysed areas are displayed within the
frames in figure 3.2. Results from the full gels can be downloaded as supple-
mentary material. Validation of results in this study is thus qualitative, and
visual inspection decides whether the resulting common spot boundaries are
sensible and reproduce the impression of spot appearances when gels are anal-
ysed manually. The validation areas are all selected where spot identification
and definition of spot boundaries are challenging, including highly overlapping
spots in complex regions of the gel. Results produced in these regions are thus
considered representative for the gel as a whole.

The resulting common boundaries are displayed for the three different areas
in figure 3.5 using the spot density approach and the synthetic gel approach.
The synthetic gel is the underlying image in all figures. Some observations are
immediately evident when inspecting figure 3.5. Though the main boundary
features are the same, the spot density approach produces a higher number of
segments than the synthetic gel approach, and each segment covers a larger
area in the gel. The latter observation is expected, since each spot consist of
a union of the pixels from the original spot identification. The increase in the
total number of spots is mostly due to the ability for the spot density method
to identify weak spots or spots partly overlapping with larger spots or each
other, which the segmentation of the synthetic gel fails to register. Spot num-
ber 1 and 2 in figure 3.5(b) are good examples of this situation. The presence
of spot number 5 in figure 3.5(d) is more uncertain, and it cannot be concluded
from the synthetic image whether the inclusion of this spot is justified. How-
ever, inspection of the individual gels, as shown in figure 3.6, leaves no doubt
about a spot in this region. This is a good example of an advantage of the
spot density method to the synthetic gel approach. Introducing all spots in the
synthetic gel increases the degree of overlap, which complicates the detection
of isolated protein spots. Small spots close to larger spots separated in many of
the individual gels tend to merge in the synthetic gel, and weak protein spots
present in only a few gels tend to have intensity towards zero, resulting in a
failed detection of these spots. Because the spot density approach uses infor-
mation from the individual gel segmentation, spots only need to be identified
in some of the gels (five in this case) to be detected.

In some cases the increased number of spots may be caused by a misalignment
of the individual gels. The result of this is that identical proteins are detected
at different positions in the various gels, and registered as independent spots
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(f)

Figure 3.5: Results from the spot density method, (b), (d) and (f) compared
with the results using the synthetic image approach, (a), (c) and (e).
images displayed are the calculated synthetic images. The spots pointed to by

arrows are explained in the text.

The



86 Chapter 3. Common Spot Boundaries

(a) (b) (c)

Figure 3.6: Three individual gel images of the area in figure 3.2(c). The images
clearly show the presence of a spot at the end of the arrow, confirming that
this spot should be included in the final boundary image, as shown in figure
3.5(d) for spot number 5.

in the common boundary image. One possible example of this situation is
spot cluster number 6 in figure 3.5(c) and 3.5(d). Theoretically, this problem
should cause more spots to be detected using both approaches. However, this
particular case seems to be handled better by the synthetic gel, where only one
boundary is detected. It should be noted that some of the individual gels have
more than one spot detected in this area (results not shown), so whether the
possible over-segmentation is the result of misalignment, or is actual due to the
presence of several individual weak spots cannot be concluded with certainty.

The strange boundary of spot number 4 in figure 3.5(d) is the result of a
streak which was not removed in two gels during the first spot identification
procedure. Because this streak is present in at least one of the spots in this
cluster, it is also included within the final common boundary. In this case
the synthetic image performs better, and the streak is not included, though
a weak spot (number 3 in figure 3.5(c)) is identified at the end of the streak.
One way to avoid this situation in the spot density approach is to be more
selective to pixels included in the final spot. In this study the union of all
pixels for all spots in one cluster are included. However, a threshold can be
defined, demanding that a pixel is present in more than one of the individual
spots to be included within the final spot.

Images of spot boundaries for full gels, both using synthetic gel and the ap-
proach presented in this study can be downloaded as supplementary material.
Some results regarding the total number of spots identified in these gels are
of interest, and are thus mentioned here. The number of spots in each gel
identified by the procedure outlined in section 3.2.2, are normally distributed
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from 826 to 1539 with a mean of 1118 for the 35 gels analysed. The number of
spots identified in the synthetic gel using the same approach is only 644, clearly
indicating that information has been lost when going from the 35 original gels
to a single synthetic gel. The final number of spots identified by the approach
presented here is 1316, which is more in accordance the number of spots in
each individual gel.

The validation in this study is qualitative rather then quantitative. The areas
selected for closer inspection should be representative for the gel as a whole, and
the conclusions drawn from these areas valid in the task of defining common
spot boundaries in general. Because results in 2-DE are often influenced by
subjective visual inspection, and spot boundaries often defined with heavy
user interaction, which measures are difficult to quantify, the visual qualitative
validation is preferred to the quantitative approach.

At last in this study some of the choices made according to the pixel assignment
procedure in section 3.2.3 need to be pointed out and explained. The reason for
sorting the clusters in ascending order is to avoid the domination of larger spots.
A large spot from one of the individual gels might consist of several, possibly
overlapping protein spots. Overlapping protein spots are often regarded as a
single protein spot in some gels, but split into several isolated spots in other
gels. If the splits are similar in a substantial number of gels (at least five
in this study), they should be included in the final boundary image. This is
achieved by assigning pixels to the clusters with the lowest average size first.
An example of final boundaries using sorted and unsorted clusters are shown
in figure 3.7. The final step in Section 3.2.3 is included to avoid spots with
discontinuous pixels in the final image. The presence of small spots in the
vicinity of larger spots, might split the latter so pixels are no longer connected,
or create small spots as holes in the larger spots. An example of a hole is
shown in figure 3.7. To avoid this situation, pixels closer to the centre of the
smaller spot are removed in the larger spot.

Generally the authors feel the presented spot density approach offers an im-
proved alternative to existing methods for defining common spot boundaries.
The spot density approach improved the identification of spots only present in
a few of the gels, overlapping spots and small spots in the vicinity of larger
spots compared to the synthetic gel approach. The method can also be used
with any segmentation procedure, and has only two (or possibly three) param-
eters that need to be defined by a user. These depend on the resolution of
the image, the number of gels in the experiment and the precision of the gel
alignment. It is believed that when implemented in a user friendly environ-
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Figure 3.7: (a): Consequence of not sorting the spots in ascending order. The
small spot in the upper left corner of figure 3.7(c) is completely dominated by
its larger neighbour. (b): Consequence of omitting the last step in the pixel
assignment procedure. The small spot creates a hole in the larger spot. (c):
Final result when using both sorting and the last pixel assignment step.

ment, the method will simplify and improve the identification and comparison
of protein spots in a multiple gel experiment.
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Figure 3.8: Supplementary figure. Spot boundaries identified using the syn-
thetic gel approach.



Figure 3.9: Supplementary figure. Spot boundaries identified using the com-
mon spot boundary approach.
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Abstract

A novel approach for revealing patterns of proteome variation among series of
2D electrophoresis gel images is presented. The approach utilizes images align-
ment to ensure that each pixel represents the same information across all gels.
Gel images are normalised and background corrected before they are unfolded
to 1D pixel vectors which are subjected to multivariate data modelling. In-
formation resulting from this data analysis is then refolded back to the image
domain for visualisation and interpretation. The method is rapid and suit-
able for automatic routines applied after the gel alignment. The approach is
compared with spot volume analysis to illustrate how this approach can solve
persistent problems like mismatch of protein spots, erroneous missing values
and failure to detect variation in overlapping proteins. The method may also
detect variations on the contour of saturated proteins. The approach is given
the name Pixel based analysis of Multiple images for identification of Changes
(PMC). The method can be used for multiple images in general. Effects of
pre-treatment of the images on the method is discussed.

4.1 Introduction

Two-dimensional gel electrophoresis (2-DE) is an important technique in pro-
teome research, and a large number of proteins can be separated by this tech-
nique. However, there are presently major difficulties in the subsequent anal-
ysis of the resulting gel images. Traditionally, data from 2-DE are analysed
by identifying spot boundaries for each protein spot in each gel, matching the
spots from each gel to a reference gel, and comparing the calculated spot vol-
umes between all gels. Ideally, one would like each spot to represent only one
single protein. This could be achieved if 2-DE were performed on samples with
a small number of well-separated proteins. However, 2-DE is commonly used
to reveal changes in proteome patterns of samples consisting of a large num-
ber of unknown proteins. Such complex samples result in images with a high
number of overlapping protein spots. Thus, the simple assumption that one
spot always represents only one protein is not valid. Campostrini et al. [17]
found that with lmg of total protein applied on 2-DE and at least 1000 spots
visualized, the spot singlets were in the minority, rarely exceeding 30% of all
the spots analysed. The remaining spots were envelopes of two or more pro-
teins. Similar results were also found in a theoretical study of 2-D images in
general [18]. If an envelope of several proteins is identified as one spot, and the
various proteins in this envelope respond differently to the experimental design
parameters, it may be difficult or impossible to detect the effects by spot vol-
ume analysis. Based on the high number of overlapping proteins appearing on
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2-DE images, new data analytical methods which can detect variability within
envelopes of overlapping proteins are needed.

Tabulating protein spot volumes to a numerical data table for subsequent
data analysis also involves the risk of imposing errors in the data. The most
critical step is to define the boundaries between overlapping proteins. For
overlapping proteins the decision of spot boundaries may be different from
one gel to another. If the spot boundaries are set for one gel at a time, as
is traditionally done, serious errors may be introduced into the data. For
overlapping protein spots the program may set different boundaries between
the spots in different samples which may result in missing values of a spot
despite its present on the gel. Grove et al. [40] investigated technical replicates
of silver stained 2-DE gels. Using state-of-the-art 2-DE software, they found
missing values for as much as 40% of the spot volumes in the data table, and
as much as 80% of the variables contained one or several missing values. A
closer inspection of the results revealed that the appearance of missing values
was not consistent with the presence or absence of proteins for any of these
variables. When viewing only a small subsection of the gel containing just a
few samples, one is visually able to distinguish between missing values arising
from mismatches of proteins and truly absent proteins. However, for the whole
gel consisting of hundreds of proteins, methods which distinguish between the
true absence of a protein and volume detection failure are needed.

The use of difference gel electrophoresis (DIGE) makes the spot detection and
matching more reliable than traditional 2-DE systems. By the DIGE approach,
three samples are run simultaneously. The matching of protein spots within
gels run simultaneously will then be perfect, but the matching between gels is
still a challenge. An alternative to defining the spot boundaries for each gel
separately is to define common spot boundaries for all samples in the experi-
ment after an alignment of the gel images. This approach avoids the missing
value problem, but the challenges in distinguishing effects of overlapping pro-
teins within envelopes of several proteins are not solved. Considering the high
number of overlapping proteins expected in 2-DE, this is an important concern.

The approach of aligning the gel pattern followed by multivariate data analysis
of the digitalised scan for identification of changes in protein patter was first
performed for 1D electrophoresis gels at As campus, Norway in 1990 [66]. To
correct for migration problems, three spots being present in most tracks on
the gel were identified and used for adjusting migration variation, and when
absent their position could be set by viewing neighbour samples on the gel
plate. Adjustment for background staining, which increased gradually from the
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top to the bottom of the gels was performed by subtracting a linear function
for each track. The data of each sample were viewed as a 1D vector where
the amounts of different more or less overlapping proteins are seen as peak
height in a line plot. Multivariate data analytical tools could then be used to
reveal significantly changes among the proteins. The approach was inspired by
Dr. Harald Martens pioneer work on multivariate analysis in chromatography
and spectroscopy [54,67]. The 1D representation of the proteome pattern
and spectroscopic data share common challenges with respect to both overlap
issues and pre-treatment due to vertical shift problems. The proteome pattern
introduces a new dimension of a horizontal shift problem which needs to be
solved, and this has later received increasing attention in proteomics as well as
in other areas like spectroscopy [56,68|. For the 1D gels, significant variation
in the proteome pattern was detected even for overlapping proteins [66]. These
variations were discovered in a gel-region with relatively sparse information.
An extension of this approach to 2D image data is now feasible due to the
existence of improved tools for aligning 2-DE images to ensure that each pixel
represent the same information across all gel images.

Here we present a 2D approach of pixel based analysis of multiple images where
the resulting patterns from unfolded multivariate data analysis are refolded
back to the 2D image domain for visualisation and identification of changes.
The method requires alignment and background correction of images before
analysis. Analysis of 2-DE images on the level of pixels by unfolding the images
to 1D pixel vectors was also presented by Schultz et al. [35] for classification
purposes, but the information was not traced back to the image domain for
identification of changes in the proteome pattern.

The approach presented here is given the name Pixel based analysis of Multiple
images for identification of Changes (PMC). The method was first presented
on the conference "From Proteome to Genome" in Sienna, Italy, September
2006. In the present rapport the results of the PMC approach are thoroughly
presented and compared with standard methods using spot volume analyses.
Proper alignment and background correction are necessary to produce satisfac-
tory results from PMC. Thus a description of the alignment process is included,
and influences on the results due to different choices of background correction
are also considered. The purpose of the present paper is to present the PMC
approach for analysing 2-DE and compare the result of such methods with spot
volume analysis.
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4.2 Material and methods

4.2.1 Animal samples

The samples used to illustrate the method are taken from meat science where
proteins are extracted in a time series after slaughter for seven animals to
study changes in the proteome pattern after death. The study includes 7
Norwegian Red bulls (Bos taurus L.) (breed for both meat and milk) from a
performance test station (GENO-Breeding and AI Association) slaughtered at
approximately 13 months of age/450 kg live weight in 2004. The animals are
given the numbers; 4363, 4366, 4368, 4370, 4389, 4391, and 4407. Samples
from the longissimus dorsi muscle were collected one, two, three, six and ten
hours after slaughter (denoted hl, h2, h3, h6, and h10, respectively). The
samples were immediately frozen in liquid nitrogen. Proteins were extracted
in TES buffer (10 mM Tris (pH 7.6), 1 mM EDTA and 0.25 M sucrose) and
analysed by 2 DE as described previously [59], where gels are stained by silver
staining [69]. The whole time series of one animal was run simultaneously in
one batch as the focus of the present study was changes in proteome pattern
occurring along the time series after death. The different animals were run as
different batches. Thus, the effect of animal is confounded by batch variation.

4.2.2 Image analysis

Image alignment

For the PMC approach, the 2 DE images were aligned by the program TT900
S2S (Nonlinear Dynamics) using the gel image from animal 4370 analysed
three hours after slaughter (h3) as reference. By this alignment method each
gel image is aligned towards a reference. An initial anchor was manually set
on a protein that could easily be identified on both images. Based on this,
the software automatically suggested a large number of additional, spatially
distributed anchors. After a visual inspection of these anchors and removal of
unwanted anchors, the resulting anchors were used for automatic alignment.
A further fine tuning of the alignment was performed by adding anchors man-
ually. Pre-treatment, unfolding and analysis of the unfolded gel images were
performed using Matlab version 7.3 (Mathworks).
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Pretreatment of images

Pre-treatment of the gel images was performed by normalisation to adjust the
pixel intensity to a constant protein amount and by background correction
to remove effects of streaks and background staining. The normalisation was
performed by dividing each image by the total intensity of the image, followed
by rescaling to a common 0-1 scale for all images. For background correction
we compare two approaches based on different principles. A method consisting
of repeatedly fitting polynomial curves to a signal was adopted from Lieber et
al. [53] originally created to subtract fluorescence background in Raman spec-
tra. Raman spectra are 1D signals. Here we have adapted the method to 2D
images by applying the algorithm in a line-by-line fashion in both horizontal
and vertical direction. The method basically consists of first fitting a polyno-
mial curve of some degree to a signal values. The signals above the polynomial
curve are removed and a new approximation is performed. The method is re-
peated until convergence or till the number of iterations has reached a certain
point resulting in polynomial curves following the lower boundary of the peak
intensity. When the function is applied sequentially in vertical and horizontal
direction of the images, the highest value of the polynomial curves is used to
construct a background image. The degree of polynomial order will affect the
flexibility to follow the curvature of the raw data. In the present study we used
a polynomial degree of 4. The algorithm is intuitively simple and involves only
one parameter.

Another approach of background-correction was performed by the Penalised
Asymmetric Least Squares (PALS) approach extended to the data on the 2D
grid [70,71]. By this approach, image background is approximated using dif-
ferent, i.e. asymmetric, weighting of data points, and it is constructed from the
tensor product of B-splines [72]. Its smoothness is controlled by the penalty
terms, representing differences on neighbouring coefficients of the tensor prod-
ucts.

4.2.3 Spot volume analysis

Spot volume analysis was performed using Image Master 2D Platinum Version
6.01 (GE Healthcare), where the boundaries around the spots were defined for
each gel separately. Spot volume analysis was also conducted by the software
SameSpot (Nonlinear Dynamics) where common boundaries are set across all
images.
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4.2.4 Multivariate data analysis

The 1D pixel vectors of the unfolded images were first analysed by the multi-
variate data analysis method Principal Component Analysis (PCA) [54] after
mean centring of the data [56]. PCA is an unsupervised, explorative method
which transforms the 1D pixel data into new variables called principal compo-
nents (PCs). The PCs are constructed to account for, in decreasing order, as
much variance across the unfolded images as possible. The first few PCs will
cover the majority of the variability in the original data. Each PC is defined
as a linear combination of the original variables. The PCs can also be viewed
as linear combinations of the samples. Thus, the PCA is bilinear having one
vector related to each sample (called scores), and one vector related to each
variable (called loadings). Plots of scores for the samples and plot of loadings
for the variables give a visual impression into the main variability of the data.
The loadings were refolded back to the 2D image domain for visualization. The
data were mean centred prior to PCA and PLSR.

To relate the variation in the proteome pattern across the gel images to the
experimental design parameter "time after slaughter", we used the multivari-
ate linear regression modelling technique Partial Least Squares Regression
(PLSR) [54-56]. PLSR is, like PCA, a bilinear method, where new variables
(PLSR components), are generated as linear combinations of both samples
and variables. PLSR thereby benefits from data reduction principles similar
to PCA. By PLSR we obtain PLSR components which maximize the covari-
ance between two blocks of data. By considering two blocks of data, PLSR
is a supervised method in the sense that PLSR components are calculated by
relating the vectorised gel images as regressor variables to a set of response
variables or to the experimental design factor.

For validation of the regression, the analysis was repeated leaving out one of
the samples at a time in a cross-validation routine, with a subsequent predic-
tion of the response variables in the omitted sample from its gel image pixels.
This gives a series of estimated regression coefficients. To test for significant
changes among different pixels, the variability of the perturbed regression co-
efficients was used to estimate their significance using the Jack-knife method
adapted to bilinear analysis [73|. A t-test is then performed on the different es-
timates of the regression coefficients from the various cross validation segments.
The t-test is performed to test whether or not the regression coefficients are
significantly different from zero. Pixels with regression coefficients that vary
depending on the individual samples included in the models can thereby be
excluded, and only pixels with stable regression coefficients are regarded as
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significant.

In some situations one may have very small regression coefficients close to zero
which happen to be stable over the perturbed regression coefficients and there-
fore turn out as significant by the Jack-knife method. For the 2-DE images,
where a large part of the pixels are in regions without any protein spots, this is
a potential problem. When the number of variables is large, such unreasonable
significance results can add up to a large number. To avoid erroneous signif-
icance of very low regression coefficients we therefore restricted the standard
deviation of the perturbed regression coefficients to have a minimum value.
This is described generally for t-tests by Allison et al. [74] and adapted to
Jack-knife significance tests for bilinear regression methods by Gidskehaug et
al. [75]. In the present study, the estimated variance of each pixel across cross-
validation segments is weighted with one tenth of the mean variance across
pixels.

Finally, we used the spatial location of the significant pixels as an extra visual
validation of the selection of significant regression coefficients. When the 2-DE
image is unfolded and analysed, all spatial information is excluded from the
modelling. The spatial information can therefore be used for validation of the
results when refolded back to an image, as regression coefficients reflecting sig-
nificant variation in protein spots will occur as a large number of concentrated
pixels on top of the protein spot.

4.2.5 Data compression and reduction

The gel images analysed consist of approximately 3.3 million pixels, which
gives 3.3 million variables per sample when analysed at the level of pixels.
This creates challenges with respect to the data capacity, as well as for the
significance testing. First, we removed 50 pixels around the gel boundary, as
this area was noisy. Furthermore, we reduced the resolution of the images by a
factor 0.5 via bicubic interpolation. This resulted in a total of 187 165 variables
per sample for the whole gel. For visualisation of changes in proteome pattern
we also conducted analysis of a sub region of the gel consisting of 254 x 399
pixels without data reduction.

Large data sets may cause memory problems if analysed directly, but the anal-
ysis is simplified by acknowledging that all possible variation between the avail-
able samples is kept in the scores from a PCA. There is no need to calculate
187 165 PLS components, because only 34 components hold any information
when 35 samples are available. Similarly, the multivariate regression may be
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performed using the matrix of 34 PCA score-vectors as input instead of the
187 165 variables of the original data. The regression coefficients and the PLS-
loadings are subsequently inflated by multiplication with the original PCA-
loadings. With this method, the data capacity is only limited by the capacity
to run the PCA.

4.3 Results and discussion

4.3.1 Pixel based analysis of multiple images for identification of
important features

Image alignment

The alignment of the gel image was controlled by plotting lines across different
images as illustrated for a subsection of the gel in figure 4.1(a). Figure 4.1(b)
shows changes in expression for a protein spot between two different gels (h3
and h10 for animal 4370). The line drawn vertically in 4.1(a) is plotted for time
series h1-h10 for animal 4370 in figure 4.1(c) and for h3 across all animals (or
batches) in figure 4.1(d). The images were inverted after unfolding to allow
the black pixels on the white background to appear as positive peaks when
unfolded. When comparing images within the same batch (figure 4.1(c)) after
alignment, all peaks were nicely positioned on top of each other meaning that
pixels should be directly comparable across all gels. Figure 4.1(d) also illus-
trates differences in migration across batches. The protein envelope marked 1
is better resolved in one gel compared with the others. This is a typical batch
to batch variation arising in 2-DE due to different migration times, and it is
a challenge inherited in 2-DE analyses. The problem of migration differences
in 2-DE makes it necessary to apply quality control, and only gels relatively
similar in migration are recommended for further data analysis, regardless of
the choice of data analytical tools. For the present material the gel images
were acceptably homogenous across different batches, and the gel alignment as
such performed well both within and between batches.

A gradual intensity decrease with time after slaughter for protein number 2
is evident for both the 3D representation in figure 4.1(b) and the unfolded
representation in figure 4.1(c). The most important benefit of unfolding is
the 1D representation of the information obtained for each image. For the
whole experiment this gives a data table where the rows constitute different
gels or samples, and the columns represent pixels. Standard multivariate data
analytical tools can then be used to analyse differences between the samples.
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Figure 4.1: (a): A sub-image of the gel 4370-h3. The selected region is the
highlighted frame in figure 2(a). (b): 3D representation for spot number 2 in
(a), shown for h3 (upper figure) and h10 (lower figure). (c): The vertical line in
(a) displayed as a spectrum section for animal 4370 at different times (h1-h10)
after slaughter. (d): The same spectrum as (c¢), but now shown for different
animals (batches) at time h3. Migration differences are clearly evident for peak
number 1.
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A closer inspection of the 1D representation in figure 4.1(c) and 4.1(d) reveals
baseline variation among the samples resulting from non-uniform background
intensity in the gels. Thus, before unfolding and subsequent data analysis,
normalisation and background correction are necessary.

Normalisation and background correction

A number of different approaches can be conducted for normalisation and back-
ground correction of 2-DE images. This choice of pre-treatment can affect the
output and modify the proteome patterns identified. This is true for the PMC,
as it is for any data analytical tool used to analyse the 2 DE images [21]. The
normalisation chosen for the present study produces the same total intensity
for each image. The rational behind this choice is that proteins are loaded on
the gel on an equal protein basis. If also the streaks and background colour on
the gel are proteins which has not been focused into spots, this normalisation
should adjust the gels to an equal protein basis. A support for this normali-
sation approach is that background streaks may frequently be seen along the
tracks of heavily stained proteins, and general background colours are typically
observed in areas of the gels with abundance of proteins. However, if there are
major variations in staining intensity across the gels, a number of proteins
might not show up on weakly stained gels despite its presence in the samples.
This would result in fewer spots in some gels compared with other gels. In such
situations adjustment to a constant staining intensity would imply unreason-
able elevation of proteins on gels where few proteins are present. This would
be a problem for any data analysis conduced. Again the recommendation is to
apply quality control of the gels images and only samples with relatively simi-
lar staining intensities should be analysed together. For the present material,
the staining intensity was relatively similar from one gel to another.

Results from two different background corrections are shown in figure 4.2 for
gel 4370-h3, where the raw data image are shown in figure 4.2(a), the back-
ground image estimated by 1D polynomial fit is shown in figure 4.2(b), and
the background image estimated by the PALS approach adapted to 2D-grids
is shown in figure 4.2(d). The background images are subtracted from the
raw gel images, giving the resulting background subtracted images shown in
figures 4.2(c) and 4.2(e).

The two different principles for background correction produce different re-
sults. The background image obtained by the line-wise polynomial fit is able
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Figure 4.2: (a): Gel image 4370-h3 after normalisation and prior to back-
ground correction. (b): Background image estimated by 1D polynomial fit.
(c): Resulting background subtracted image using background from (b). (d):
Background image estimated by the PALS-approach. (e): Resulting back-
ground subtracted image using background from (d).

to identify the streaks running across the images in horizontal and vertical
direction, in addition to the more smooth background staining present over
larger regions in the gel (figure 4.2(b)). These streaks are not captured by the
PALS approach(figure 4.2(d)). The reason for this is that the polynomial fit
is applied in a line-by-line fashion ,while the PALS background is estimated
simultaneously for the whole image.

When evaluating the model-explained variance of the response using cross-
validated PLSR, as shown in figure 4.3, the images corrected by the 1D polyno-
mial fit performed somewhat better than the images corrected by PALS. Both
performed considerably better than images analysed without background cor-
rection. Obtained results using different background corrections are expected
to vary, depending on the nature and level of the background. The presence
of streaks can give erroneous impact on proteins of interest, and in these cases
an algorithm which effectively corrects for the intensity elevations caused by
streaks would be preferred. For the present data streak correction seems to be
appropriate, and in the following text results from the images corrected by the
1D polynomial fit is presented. Comments will be given to results on images
analysed without background correction and images corrected by the PALS
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Figure 4.3: Percentage explained variance for the response variable (time af-
ter slaughter) using different background corrections. The measure gives an
indication of how well the different models perform. (The models are created
using a logyo transformation of time as response). The reason for this is to
improve the linear relationship between the data and the response)

algorithm when necessary.

Multivariate analysis

To obtain insight into the main variability of the 2-DE images, unsupervised
PCA [54, 56] is performed on the unfolded 1D representation of the gel images.
As can be seen from figure 4.4(a), sample scores from the first, most important
PC increase gradually with time after slaughter for all animals. The first
PC thus reflects variations related to protein changes in the time course after
slaughter which is consistent for all animals, even though there are individual
differences between the batches. There are differences between the animals,
as seen by comparing the profiles in 4.4(a), however this effect can not be
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distinguished from batch effects as the animals were run in separate batches.

Sample scores are also shown for the first component for supervised PLSR in
figure 4.4(b). Here the unfolded image pixels are used as regressor variables
and logyg of time as response. The reason for the logarithmic transformation
is to improve the linear relationship between the regressor variables and the
response. The results from PLSR are similar to those from PCA.

Figure 4.4(c) and figure 4.4(d) show loading plots of the pixels from PCA and
PLSR respectively, where the first principal component is refolded back to the
original 2D image domain. Black pixels on the 2D loading image are negatively
related to the scores and reflect pixels corresponding to a decrease in intensity
as time after slaughter increases, while white pixels increase in intensity with
time. The similarities between the unsupervised and the supervised method
confirm that the main variations in the present data do reflect variation related
to time after slaughter. For protein envelope number 1 in figure 4.4 the load-
ing images reveal different relations to the time after slaughter of the various
protein spots within this envelope. As an example the horizontal lines drawn
through these envelopes shifts from black (decrease with time) to white (in-
crease with time). In both loading images the protein spots numbered 2 and
3 are dark, indicating that the pixels are negatively correlated to time after
slaughter, meaning this spot will decrease in intensity as time increases. The
mean intensity over all animals for protein spot number 3 from figure 4.4 for
time h1, h3 and h6 are shown in figure 4.5(a). The cross section indicated in
figure 4.5(a) is plotted for all times (h1-h10) in figure 4.5(b). Again each line
is calculated as the mean of all animals, and the decrease with time is clearly
visible. The flat curvatures on the top of the peak in two of the lines also
illustrate the challenge of saturated protein spots in silver stained gels. Due
to the saturation challenge, the largest differences among the samples are not
necessary seen in the centre of the protein spot, but closer to the boundary as
illustrated by a 1D loading plot of this cross-section from PCA in figure 4.5(c).

The decreases and increases observed in the time course after slaughter are
interpreted relatively as both the application of proteins on the gel, and the
subsequent analysis of the gel images are performed on an equal protein ba-
sis. Thus, the results show that protein spots number 2 and 3 constitute a
successively smaller proportion of the total amount of protein in the sample
as time after slaughter increases. Similarly, the proteins showing an increase
constitute a successively larger proportion of the total amount of the proteins
in the extract.
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Figure 4.4: (a): PCA-scores from first principal component for each animal
(batch) plotted as a function of time. (b): PLSR-scores from first PLSR-
component for each animal. It can be seen that the PLSR-scores are similar to
the PCA-scores. (c): Loadings from PCA refolded back to the image domain.
Dark regions decrease in intensity with time, while white regions increase in
intensity with time. (d): Loadings from PLSR refolded back to the image
domain.
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Mean images for spot number 3 in figure 4.4 for 1, 3 and
6 hours after slaughter (top to bottom). (b):

Line plot for the cross-section

marked in (a) for mean over each time. (c): Loadings from PCA for the same
line-segment as in (b), indicating the saturation effect. The most important
variations are detected around the spot-centre, but closer to the boundary.
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Figure 4.6: Significant pixels displayed on top a synthetic image, created by
taking the average over all gels. Pixels negatively correlated with time are
coloured blue, and positively correlated pixels are coloured red.

The first component from the PLSR model is found to be most significant with
respect to the response variable (time after slaughter). Regression coefficients
for each pixel are thus estimated based on this PLSR component, and signif-
icant pixels are identified by the Jack-knifing procedure explained previously.
To highlight areas in the image containing important variations with respect
to time, significant pixels identified by Jack-knifing are plotted on top of a
constructed average image of all samples in figure 4.6. Pixels negatively corre-
lated to time are coloured blue, and positively correlated pixels are displayed
in red. The pattern of significant protein changes are similar for both images
background corrected by PALS and images with no background correction, the
most pronounced difference being the occurrence of significant regions outside
protein spots, especially for the images where background correction is not
applied. A high number of spots are found to change significantly, which is
expected, because the protein-balance of meat changes dramatically in the first
hours after slaughter.

The significant pixels tend to cluster in regions on top of or close to protein
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spots. Sometimes these regions cover entire spots, while in other cases only
smaller parts of the spots are covered. This may be understood in terms of two
phenomena: 1) The highest-density spots usually display the well-understood
technical problem of saturation around their maximum; a phenomenon ex-
pected to stop pixels near the spot-centre from appearing as significant. 2)
More interestingly, significant pixels near the periphery of some spots may in-
dicate the presence of partially unresolved proteins. A closer view of protein
number 1, 4 and 5 from figure 4.6 is enhanced in figure 4.7 and figure 4.8.
Significant pixels are displayed on top of image 4370-h3 in figure 4.7(a) where
protein spot number 6 is seen as a shoulder to another, larger protein spot.
By plotting the horizontal cross section in figure 4.7(a) for average images of
each time (hl-h5 in figure 4.7(c)) a gradual increase in intensity with time is
observed for this shoulder. Similarly, there is a gradual decrease with time for
the left neighbouring protein coloured blue in figure 4.7(a). The pixels’ regres-
sion coefficients are thus negative for the large protein to the left, but switches
to positive values for protein number 6 (figure 4.7(d). The centre-pixel for
protein number 6 marked by an arrow in figure 4.7(a). is plotted as a function
of time in figure 4.7(e) showing a gradual increase in intensity up to 6 hours.

Protein envelope 4 from figure 4.6 is another example where the PMC approach
has revealed significant changes in small shoulders of larger proteins, as seen in
figure 4.8. PMC are also able to detect significant changes on the boundary of
saturated proteins as illustrated for protein spot number 5 from figure 4.6, also
displayed in figure 4.8. Silver staining of proteins in 2-DE is sensible, enabling
detection of large numbers of proteins, but silver staining also suffer from a low
dynamic range, leading to severe saturation problems. The amount of protein
in a spot is however, not only manifested as the intensity at the spot-centre,
but also by the width of the spot of which protein spot number 3 in figure 4.5
is a typical example. Despite saturation in the central part of a protein spot
it is possible, by using the PMC approach, to detect significant variation on
shoulders and close to boundaries of larger protein spots. This will of course
depend on how severe the saturation problem is, but the PMC approach has
the general ability to reveal significant variability in complex areas consisting
of overlapping proteins and highlight significant changes closer to the boundary
of saturated protein spots, which is not always feasible in other programs for
2-DE analysis.
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Figure 4.7: (a): Protein complex number 1 in figure 4.6. Significant pixels are
displayed in blue and red for a decrease and increase in intensity with time
respectively. (b): 3D view of the same protein complex as in (a). (c): Plot
of the horizontal cross-section from (a) for each time. Each curve is averaged
over each batch. (d): Regression coefficients for the same cross-section as in
(c). (e): The intensity of the centre-pixel marked by an arrow in (a) plotted
for each time. A gradual increase with time up to 6 hours is observed, which
is in accordance with the positive regression coefficient of this pixel.
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4.3.2 Analysis by spot volume

For comparison, the same sub-image as highlighted in Figure 2(a) is analysed
by two different spot volume approaches; one where spot boundaries are set for
each gel individually, and one where spot volume analysis is conducted using
common spot boundaries across all samples.

Sub-images of 2-DE gels are shown in figure 4.9 for six of the 35 gels included in
the present study. The images are from animal 4363, 4366, and 4370 observed
three hours (h3) and ten hours (h10) after slaughter. Gel image 4366-h10
are used as reference gel for spot matching between multiple gel images. Fig-
ure 4.9(a) shows results from the analysis where spot boundaries are defined for
each gel individually followed by spot matching. The spots with green bound-
aries indicate protein spots where a match could be found in the reference gel,
while the red boundaries indicate spots that could not be matched to any spot
on the reference gel. As is seen in the figure, a large number of spots failed
to be matched to a protein spot on the reference gel. By comparing protein
envelope number 1 for gel image 4366-h3 to the corresponding envelope in the
reference image (4366-h10) one can see that this envelope of proteins is split
into three spots on image 4366-h3, whereas only two spots are recognised on the
reference image. In this situation there is no way to perform correct matching
of these spots, and consequently the software failed to match any of the pro-
teins in this envelope resulting in missing values in the spot volume data table.
When viewing this protein envelope on gel image 4363-h10, another problem is
encountered which is even more difficult to detect. Here two protein spots are
identified on image 4363-h10, as was also observed in the reference image, and
apparently the matching of these spots is successfully performed. However, the
spot boundaries are set differently in these two images, resulting in incorrect
estimates of the spot volumes for both proteins identified. When viewing the
whole gel consisting of hundreds of proteins, such errors are extremely difficult
to detect.

Another important problem is also revealed for protein spot number 2 in fig-
ure 4.9. This protein is absent in the reference gel, resulting in failure to
detect it on the other gels. If a mixture of the samples is run as a reference
gel, one could expect protein spot number 2 to be detected when present, and
absent when truly absent. However, from the spot volume table, we could not
distinguish the true absence of proteins with the erroneous missing values as
observed for image 4366-h3 for protein spot number 1. Thus, the conventional
protein spot lists do not give a clear answer to the presence or absence of
protein spots, which is a major concern in the analysis of gels from 2-DE.
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Figure 4.8: (a),(c) and (e): Protein envelope number 4 from figure 4.6. (b),(d)

and (f): Protein number 5 from figure 4.6.
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Figure 4.9: (a): Results from analysis where spot boundaries are defined in-
dividually for each gel. The software used is ImageMaster (GE Healthcare).

(b): Results from analysis using common spot boundaries. The software used
is Progenesis SameSpots (Nonlinear Dynamics).
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If missing values in a spot volume table are treated in the subsequent data
analysis as unknown, the information about presence vs. absence of proteins
is lost for all proteins. If the missing values are instead replaced by zeros one
would introduce major errors to the data in situations where the missing values
result from misdetection rather than from the absence of proteins. As all spot
volumes on a 2-DE gel are positive values, erroneous insertion of the value
zero, the most extreme value on the scale, gives strong false impacts on the
results. Instead of inserting zeros when a protein is not detected it is generally
more correct to treat them as unknown by inserting missing values. However,
this will lead to a data table with a very high number of missing values, which
gives major challenges for the subsequent data analysis [39,40|. The approach
presented in the present paper, where the 2-DE images are aligned, unfolded
and analysed at the level of pixels provides a novel approach to deal with this
challenge.

When spot volume analysis is performed using common boundaries for all sam-
ples, the resulting spot pattern (figure 4.9(b)) results in a data table without
missing values. However, for envelopes of several proteins, (1, 4 and 5 in fig-
ure 4.9(b)), the spot volume analysis is not able to detect differences. Thus,
the PMC approach was also superior to the spot volume method based on
defining common boundaries for each spot, as it enables identification of vari-
ations within envelopes of overlapping proteins, and detects changes close to
the boundary of saturated spots.

4.3.3 Visual aspect

The present study has shown that viewing and analysing the images as 1D
vectors of pixels, rather than as lists of spot volume, gives novel insight into the
proteome which can not be achieved by spot volume analysis. The results from
the multivariate analysis performed at the level of pixels gives images in the
same 2D domain as the original gel images, assisting with the interpretation of
the results. The reliable co-variation patterns among a long series of individual
gel images can thus be represented in terms of a few PC images and score plots.
The researcher can thus trace the results at all levels, viewing each individual
sample as well as viewing the variability across all samples. One can switch
from windows focusing closely on one or a few protein spots of interest to an
overall view of the results.

When analysing the 2-DE images at the pixel level, all information on the spa-
tial location of the spots are excluded when performing the multivariate data
analysis. The ability to identify significant changes in proteins while strongly
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overlapping with other proteins was possible as the pixels were analysed in-
dependently of each other. Furthermore, as the spatial information was not
used during the modelling, it can be used as a visual validation of the selected
pixels.

Using pixel loadings and clusters of significant pixels is an easy way for the
biologist to visualize areas in the image containing important protein varia-
tion. By overlaying the significance image on the original image (figure 4.6)
it is immediately evident where to start looking for proteins that change in
concentration. When analysing protein spot segments in the traditional way,
the analyst usually has to validate and edit numerous protein spot segments,
most of which are not significant, and the analysis will be highly dependent
on the quality of the segmentation procedure. Spot segments should ideally
consist of single, isolated proteins for the spot volume analysis to be performed
correctly. However, highly overlapping protein spots are often considered as
single segments. If only one of the overlapping proteins varies, or if the varia-
tion in content for both proteins differs amongst several gels, an analysis based
on them being a single entity might not be able to detect this difference. When
performing the analysis at the level of pixels, significant differences in highly
overlapping protein clusters and spot "shoulders" are also detected. Several
areas marked as significant consist of only parts of protein clusters, and some
areas even appear as parts of what seem to be single protein spots. These
results are, however, not surprising when one considers the findings of Cam-
postrini et al. [17] concluding that most of the proteins in a gel are at least
doublets or triplets. Thus, what appears as partially significant changes in a
single protein might actually reflect two different proteins where only one is
displaying significant variation. Taking the overlap challenge into considera-
tion, the approach described here is a better way to view the 2-DE images
than traditional analysis of protein spots. It offers an immediate and intuitive
view of changes of the image, which are not restricted by pre-defined spot
boundaries. The highlighted areas, especially those areas where many signif-
icant pixels cluster together, should then be subject to further investigation
and protein identification.

4.3.4 Further development

A large number of pixels in the gel image reflect background with no protein
spot information. Being more selective in which pixels to analyse may both
reduce the noise in the data as well as contribute to data reduction. Most
of the pixels in a gel image reflect only background, and are not related to
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protein spot information. Including these regions is likely to introduce noise
in the analysis. Rye et al. [76] show that using image segmentation prior to
the multivariate analysis to select pixels of interest is a useful way to reduce
the amount of data without losing important information. Their segmentation
procedure constructs an image mask, which can be used on all gels to highlight
areas in the image related to proteins.

4.3.5 Interpretation of the findings

The present study has revealed major changes in the proteome pattern in the
time course after slaughter where some proteins decrease in relative intensity
and other increase. Further studies of identification of the significantly changes
proteins and the interpretation of the findings will be given elsewhere.

4.4 Conclusion

Analysing 2-DE images at the level of individual pixels, by unfolding each gel
image and then refolding the results back to 2D images for visualization, pro-
vides a strong novel tool for detecting variation in proteomes, even in overlap-
ping, and it may detect significant changes in the border of saturated protein
spots. The analysis is based on tools for analysing multivariate data. The
method gives a visual insight into the results where all samples can be viewed
simultaneously. When implemented in user-friendly software, such a modelling
approach will be rapid and easy for the biologist to execute. Novel insights
into the results of 2-DE, which can not be obtained by traditional spot volume
analysis, are then possible.
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Abstract

An improved pixel-based approach for analysing 2-DE images is presented. The
key feature of the method is to create a mask based on all gels in the experiment
using image morphology, followed by multivariate analysis on the pixel level.
The method reduces the impact of noise and background by identifying regions
in the image where protein spots are present, but make no assumption on
individual spot boundaries for isolated spots. This makes it possible to detect
significant changes in complex regions, and visualise these changes over multiple
gels in an easy way. False missing values and spot volumes caused by imposing
erroneous spot boundaries are thus circumvented. The approach presented
gives improved pixel-based information from the gels, and is also an alternative
to existing methods for data-reduction, significance testing and visualisation of
2-DE data. Results are compared with software using a common spot boundary
approach on an experiment consisting of 35 full size gel images. Gel alignment
is required before analysis.

5.1 Introduction

The use of two-dimensional gel electrophoresis (2-DE) is an important tech-
nique in proteome research. However, the analyses of such gels are both expen-
sive and time-consuming, and due to the complex nature of 2-DE data, there
are risks of imposing errors to such data when transferred to a table for subse-
quent analysis. The multivariate nature of data from 2-DE makes analysis by
multivariate approaches a natural choice |20, 26, 35,43, 44, 77|. Presentation of
the results in an easily accessible way is also a challenge when a large number
of proteins are found to be relevant. Procedures which are rapid, gives the best
possible representation of the information on the gel, perform multivariate data
analysis, and present the results to the analyst in a simple and convenient way
are therefore needed.

Data from 2-DE is traditionally analysed by identifying spot boundaries for
each gel separately. The spots from each gel are then matched to the spots on a
reference or master gel. However, serious problems occur when one is unable to
perform such a match, and missing values are introduced to the data table. A
missing value might be due to the absence of a spot on the gel, or failure to find
matching protein spots. Introducing a missing value is a correct choice in the
first case, but will lead to serious challenges in the second case [39, 40, 64]. One
way to overcome the problem of missing values is to use a common set of spot
boundaries for all gels. This has lately been the method of choice for popular
commercial gel-analysis packages such as Progenesis SameSpots (Nonlinear
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Dynamics) and Delta-2D (DECODON). Defining common spot boundaries are
commonly performed by the use of a synthetic gel, calculated as a weighted
average of the pixel intensities of all gels analysed [41]. Though this solves
the missing value problem by having a complete boundary correspondence
between gels, the difficult task of defining boundaries for each individual spot
in the gel still has to be performed. Identifying such boundaries is a major
challenge in the case of overlapping protein spots. If two overlapping spots are
confined within the same spot boundary, significant changes in these spots may
not be detected if they respond differently to a response variable or a design
factor. The use of image segmentation to define individual spot boundaries
always produces image segments consisting of two or more overlapping protein
spots. Especially this would be true for a synthetic gel, where spots from
several individual gels are introduced to the same gel prior to segmentation.
According to a late study by Campostrini et al. [17], the number of multiple
spots can be quite large in a 2-DE experiment.

One way to overcome both the missing value problem and the challenge over-
lapping protein spots, is to use the pixel-values from the image directly in the
analysis, as done by Faergestad et al. [64]. When using the pixel values, no
assumptions are made on spot-entities, and every pixel in the sample gel will
have a corresponding pixel in the reference gel. Both the common spot bound-
ary and the pixel-based approach rely on the images to be properly aligned
before analysis.

In the pixel-based approach, unwanted background variation outside the pro-
tein spots are not removed prior to the analysis, making it sensitive to noise
and artefacts in the gel not related to protein content. When analysing such
data, unwanted artefacts or cracks in the gel surface might show up as impor-
tant sources of variation. An analysis using common spot boundaries do not
suffer from this problem, because a proper spot detection routine will remove
sources of unwanted variation prior to the data analysis. It should be noted
that if the segmentation procedure is not carried out properly, unwanted arte-
facts can be introduced to the synthetic gel and cause problems to the final
segmentation when common spot boundaries are used.

A pixel-based approach offer several advantages as shown by Faergestad et
al. [64]. However, when this approach is used on the entire gel, large regions
in the gel with no information are included in the analysis. In a general 2-DE
experiment most regions in a gel are known a priori not to display any signifi-
cant changes. Especially this is true for image background, which occupies the
larger part of a 2D-gel. Leaving such regions out of the analysis is advanta-
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geous with respect to both data reduction and interpretability, while the risk
of removing important variations is minimal. Introducing image segmentation
in 2-DE, the image background is removed prior to analysis. However, image
segmentation in 2-DE is also concerned with identifying spot boundaries for
all individual protein spots in a gel. The regions defined by these boundaries
are then used for further analysis. This approach makes sense if the goal of
the experiment is to identify all existing proteins in a cell sample, it may not
be efficient for comparative studies with a large number of gels. Realising that
the majority of protein spot do not change significantly in most experiments
with multiple gels, resolution and identification of all individual spots should
be unnecessary. Considering the findings of Campostrini et al. [17], it is also
questionable whether a full resolution of all individual spots is feasible by im-
age analysis alone. While the identification of regions in a gel where protein
spots are present can be performed without too much effort (for example by
image morphology), the resolution of these regions into isolated spots is te-
dious and almost always subject to errors. This applies to the common spot
boundary approach, as well as for the individual segmentation of each gel in
spot matching procedures. In such circumstances alternative approaches, like
the pixel-based approach, may utilize the data from multiple gels better. In
this study a method is presented which utilises the advantages of the pixel-
based approach, while simultaneously constrain the analysis to protein spot
regions without the necessity of individual spot boundaries. The problematic
spot identification procedure is circumvented, and the identification of signifi-
cant changes performed directly on the protein spot regions created by image
morphology. Significant pixels are identified by multivariate analysis, and col-
lected into significant features where they cluster together. These features may
resemble protein spots, clusters of spots and parts and shoulders of overlapping
spots. The important aspect is that significant features are identified without
imposing the constraint of individual boundaries representing isolated proteins.
Highlighted significant features are easily visualised by a user, and can be se-
lected for further investigation. The method is compared with results from
common commercial software. While the analysis In Fergestad et al. [64] was
restricted to a smaller sub-image, the improved pixel-based method presented
here make it possible to analyse full size images with no scale reduction.
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5.2 Materials and methods
5.2.1 2D-Gels

Gel images are prepared from samples of muscles of 7 Norwegian Red dual-
purpose bulls collected 1, 2, 3, 6 and 10 hours after slaughter. The materials
are described in more detail elsewhere [64].

5.2.2 Image segmentation

In the following description it is assumed that images are inverted, that is, the
image background is dark, and the spots appear as light peaks rising from the
background. This gives a zero baseline and positive protein spots intensity val-
ues, which is convenient for this analysis. Unless stated otherwise, all program
code in this study is written in Matlab version 7.2.0 (Mathworks).

To make the pixel grey values in each image comparable, all images need to be
normalised and aligned properly. Alignment was performed using the commer-
cial software TT900 S2S (Nonlinear Dynamics). Details of the image alignment
are given by Faergestad et al. [64]. The images were then normalised by di-
viding each image with the total intensity of this image. Uniform background
was removed by subtracting from each image its minimum intensity value. A
typical normalised and aligned gel is shown in figure 5.1. A sub image of this
gel is also selected (figure 5.2(a)) to better illustrate the steps in the analysis
procedure. A flow chart of all the steps involved in the analysis is shown in
figure 5.3.

To identify regions in the image related to proteins spots, segmentation by im-
age morphology is performed on all 35 images. It should be noted at this stage
that the pixel-based method introduced can be used with any spot identifica-
tion procedure, as long as all regions consisting of protein spots are identified.
No assumptions on individual spot boundaries are made within these regions.
Other procedures or segmentation outputs from commercial 2-DE software can
also be used to produce the regions used in this study. Each of the 35 images
in the experiment is processed in the following way: Single spikes are removed
using a median filter of size 3. The images are then corrected for streaks
and non-uniform background by image morphology. Image morphology is per-
formed by successively dilating and eroding images with structural elements
similar to the features in the image one wants to keep or remove. The use of
morphology in 2-DE and for images in general is well described by Skolnick [49]
and Sternberg [48]. The selected structural element for streak identification is
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Figure 5.1: One of the gels used in the experiment. The frame indicates the
sub-image used to illustrate the steps in the rest of the analysis.
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Figure 5.2: Sub-images illustrating the different steps in the analysis proce-
dure. (a): Normalised image. (b): Boundaries for protein spot areas after
segmentation by image morphology. (c): Mask based on all gels. (d): Masked
images.

a line 61 pixels in length, and for protein spot regions a circle with a diameter
of 40 pixels is chosen. After performing these morphology operations, a single
threshold is sufficient to identify the spot regions in the resulting image. The
threshold value is set to 0.025 for images with intensity values between 0 and
1. The resulting protein spot regions in the selected sub-image are shown in
figure 5.2(b). Note that the goal at this stage is purely to find areas in the
image were protein spots are present. Any assumptions on the individual spot
boundaries in each area or merged spots are not considered.

The identified spot regions produce a binary image for each gel, where 1 de-
notes areas with protein spots, and 0 denotes image background and other
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Figure 5.3: Flow chart showing the steps in the analysis procedure.
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Figure 5.4: Mask used on all gels in full size.

artefacts. To select the protein spot areas used for analysis, it is important
that information present in all gels is considered. Based on the union of all
pixels representing protein spot areas in each individual gel, a mask is created.
This means that if a pixel has value 1 in only one of the binary images, it will
be included in the mask. New images are created by applying the resulting
mask to each aligned and normalised gel image. The mask for the area occu-
pied by the sub-image is shown in figure 5.2(c) and the resulting new image,
with background and noise blanked out, is shown in figure 5.2(d). The mask
for the full gel is shown in figure 5.4.

It should be noted at this stage that the median filtering, streak and spot
identification in step 3 in figure 5.3 is done merely to assist the segmentation.
The new intensity values resulting from the operations performed are not used
in the analysis. The analysis can be performed on the intensity values directly
as they appear after the aligning and normalisation step, but only using the
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pixels specified by the mask in step 4.

5.2.3 Background intensity subtraction

The morphology operations described in the previous chapter manages to iden-
tify protein spot areas successfully. However, the image intensities in the re-
sulting images are generally altered too much, and one should be precocious in
using them for analysis. Instead it is preferred to use the original image inten-
sities. The original images usually still have background intensities not related
to proteins, which would be advantageous to subtract before the analysis on the
pixel level. For this background intensity subtraction, a method introduced by
Lieber et al. [53] is adopted. The method was originally used to remove domi-
nating fluorescence in one-dimensional Raman spectroscopy. The basic idea of
this method is first to fit the original signal to a polynomial of some degree.
The polynomial fit is then subtracted from the original signal, to create a new
signal more similar to the background and with the highest peaks removed. A
polynomial of the same degree is then fitted to this new signal, giving a second
estimation of the background, which is again subtracted. This procedure goes
on in an iterative fashion, until the estimate of the background becomes sta-
ble, or a certain number of iterations are reached. For this study a 4th degree
polynomial and 50 iterations were found sufficient to produce the desired re-
sults. The method was originally introduced for one-dimensional signals, but
is easily extendable two 2D-images. However, in this case the one-dimensional
approach was preferred, because of the possibility to correct background in
streaks. Streaks are not considered as background if the 2D-approach is cho-
sen. The polynomial was thus fitted in the described fashion line-by-line in
both vertical and horizontal direction, producing two background images. A
final background intensity image was produced by selecting the highest values
for each pixel in the two images. A typical background image is shown in
figure 5.5(b).

5.2.4 Analysis by software using common spot boundaries

Results from the pixel-based approach are compared with results using the
commercial software Progenesis SameSpots (Nonlinear Dynamics). Analysis
by SameSpots is based the use of common spot boundaries, that is, spot
boundaries are defined commonly for all gels and the spots compared between
gels have identical boundaries in all gels. In SameSpots no parameters are
necessary to perform spot identification. All 35 gels analysed were grouped
according to the time response, and significant spots identified by Analysis of
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(a) (b)

Figure 5.5: (a): Original image. (b): Estimated background image.

Variance (ANOVA) at 95% significance level.

5.2.5 Multivariate analysis

Principal component analysis (PCA) [54] is a well known multivariate analysis
method where a data matrix X is decomposed into a set of latent variables
(called principal components) and noise. Principal Components can be under-
stood in terms of scores and loadings. Loadings consist of the weights each
original variable is given in each principal component, while the scores are the
coordinates the samples are assigned in the new coordinate system consisting of
the principal components. In this study the matrix X consists of the 35 exper-
imental gels as samples, while the intensities of the 672 948 pixels constituting
the mask makes up the variables for each sample, giving an X-matrix of size 35
X 672 948. The first principal component maximises the variation in the orig-
inal X-matrix. After the calculation of the first component, the information
contained in this component is subtracted from X, and the second component
maximises the variation in this new X. New components are calculated in the
same manner, until there is no structure left in X, and the components start
to model noise. Such a decomposition of X has several advantages. First the
number of latent variables is usually much smaller than the original number
of variables. The latent variables are also independent (orthogonal) which is
rarely the case for the original variables. Finally relationships between samples
and variables are easily visualised by plotting the resulting scores and loadings.

Partial Least Squares Regression (PLSR) is another common multivariate
method closely related to PCA, and is used to build a regression model between
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a data-matrix X with samples and variables, and a matrix Y with responses or
design factors. In PLSR the data matrix X is decomposed in a similar fashion
as PCA. However, in this case the decomposition is guided by one or several
responses of interest contained in matrix Y. In PLSR it is the variation in
the covariance matrix XTY which is maximised for each PLSR-component.
The PLSR algorithm thus looks for variations in X that are relevant for the
prediction of response Y. A full description of PLSR and its algorithm is given
in |54, 55].

Because of the large number of variables with respect to the number of samples
in this study, there is a chance of over-fitting the data when using PLSR. To
avoid overfit PLSR models are often validated by a method called cross vali-
dation [54,57]. In cross validation the PLSR-model is checked by leaving out
a number of samples from the calibration set, and using them as temporarily
test samples. The PLSR model is re-calculated using the remaining samples,
and the left-out samples are predicted using the new model. This procedure is
repeated, leaving out a different sub-set for each new model. A special version
of this procedure is the leave-one-out cross validation, where only one sample
is left out at a time, and the procedure is continued until all samples have
been left out once. In this way all samples work as independent test-sets for
the corresponding PLSR sub-model based on the remaining samples. Cross
validation is an established way of validating the number of significant compo-
nents in a PLSR-model, and avoiding the problem of over-fitting by including
noisy components. Another advantage of using cross-validation, is that a set of
regression coefficients for each variable (in this case the pixels are the variables)
are calculated for each sub-model. This introduces the possibility to identify
significant variables (pixels) based on the stability of the regression coefficient
over the different sub-models using simple statistical tests.

All pixels identified by the mask are compared and analysed using the mul-
tivariate methods described above. To apply the multivariate methods, the
gels need to be unfolded prior to the analysis. Analysing unfolded gels in this
way has many applications and advantages, and is described thoroughly by
Faergestad et al. [64]. PCA is used to identify the most important variations
in the data in general, and PLSR is used to find the variations in the data
best correlated to the response variable which is time after slaughter. PCA
is thus an unsupervised method for looking at variations in the data, while
PLSR is supervised by the response variable. Significant pixels are identified
by performing a t-test on the regression coefficients from a PLSR leave-one-
out cross validation. To validate the importance of applying a mask, the same
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multivariate methods are applied to unmasked images as they appear on step
2 in figure 5.3.

When comparing results from the masked dataset to the unmasked, it is nec-
essary to reduce the size of the images. The unmasked images, consisting of
approximately 3 million pixels, are too large to be handled by Matlab, whereas
the masked images are reduced to 672 948 pixels. For the comparison both
the segmented and the un-segmented images were reduced by one half in each
direction using the function "imresize" in Matlab with interpolation option
"bicubic".

The data matrix X for the reduced unmasked image contains 749 490 pixels
(variables) for each of the 35 samples The reduced masked image contains only
168 185 pixels. The response variable Y constitutes time after slaughter for the
35 samples, and is thus a vector of the same length as the number of samples.

5.3 Results
5.3.1 Multivariate analysis

All data matrices were mean-centred and standardized by dividing each vari-
able (pixel) with its standard deviation across all samples. When standardising
each variable, all pixels are given the same impact on the multivariate model.
The scores for the first two principal components from a PCA are plotted for
all 35 samples in figure 5.6. As can be seen from the figure, there is consid-
erable variation between the 7 animals with respect to the response variable
(hours after slaughter). However, there is a general tendency for the response
variable to increase along the first component. This tendency becomes clearer
when considering figure 5.7(a) where the average score over all seven animals
for each response are plotted for the first two components. From this figure
a linear dependence between the response and the first two components can
clearly be seen. PCA was also performed on the unmasked data, and the re-
sults for average scores are shown in figure 5.7(b). In this case the pattern is
more complex, and the nice and simple correspondence between the first two
components and the response variable is lost. It can thus be concluded that
sources of variation in the data not related to the response variable have been
removed in the morphology procedure, which was as intended.

Figure 5.8shows the explained Y variance with respect to the number of com-
ponents used in a PLSR for four different models. In the PLSR-model, the
response variable (time after slaughter) is used as a target variable in the
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decomposition of the data matrix as explained in the previous section. Ex-
plained Y-variance is an important measure of the performance of a PLSR
model. A high percentage of explained Y variance indicates that variations in
the response Y have been captured by the model, while a low percentage indi-
cates that the model has failed to do so. Naturally one seeks to maximise the
explained Y -variance, without over-fitting the data. To avoid over-fit, all com-
ponents in the PLSR-models are validated using leave one out cross validation.
A summary of results are given in table 5.1.

Several interesting conclusions can be drawn when considering figure 5.8 and
table 5.1. It is immediately clear that a model performs poorly when neither
background correction nor a mask is applied. The background corrected data
performs similarly in the first component for both masked and unmasked data,
however the explained Y variance increases for the masked data when more
components are used, which is not the case for the unmasked data. It is also
interesting to observe that the masked data where no background intensity
correction is performed also performs better than the unmasked background
corrected data if more than one component are considered. The difference in
performance between the two masked models (with and without background
correction) is marginal, at least in the latter components. The interpretation
of this must be that the background intensity correction and the identification
of spot regions perform similar tasks, which is to remove unwanted sources of
variations not related to protein spots. The morphology procedure does this by
removing pixels not related to protein spots, while the background correction
changes the image intensity values outside the protein spots to reduce their
influence on the model. Performing background correction will, however, also
alter the intensity values of the protein spots analysed. Whether this is desired
or not, depends on if the proteins are placed on top of the background, or if they
are merged with the background. In the first case background correction would
be appropriate, while in the latter case background correction would alter
protein spot intensities erroneously. For these data, background correction gave
a marginally higher explained Y variance for the masked data, however the
difference is too small to draw a general conclusion. At this point it should be
considered whether applying a mask gives any benefits compared to performing
an analysis on unmasked images. Figure 5.8 shows that results are poor using
unmasked images directly in the analysis, but improve considerably when a
mask is applied. Background correction makes analysis on unmasked images
possible, but has only a marginal effect on the masked images. It can thus be
concluded that applying a mask makes analysis possible without background
correction, which is not possible when analysing unmasked images. When
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Table 5.1: Summary of results for five models. Masked data are pixels selected
by the morphology procedure. The data in the table are from the reduced
images (one half in each direction) unless stated otherwise.

Pixels Explained Y Significant
analysed (first component) pixels

Masked 168 185 19% 25 670
data

Masked
data with
background 168 185 23% 26 654

correction

Masked
data with
background 672 948 23% 106 185

correction
(not reduced)

Unmasked
data with 749 490 24% 70 920
background
correction

Unmasked 749 490 4% 23 368
data
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looking at table 5.1, it is evident that background correction and applying a
mask give similar results with respect to the Y variance, however the number
of significant pixels used in the two models are very different. The masked
data need about 1/3 of the significant pixels used for the unmasked model to
achieve a similar explained Y variance. Faergestad et al. [64] also addressed
the issue of too many significant pixels, especially in regions constituting image
background where no protein spots are expected to be present. They solved
this problem by using a cut-off on the regression coefficients. When performing
data-reduction by image-segmentation, no such cut-off is needed, because the
background has already been removed. Thus applying a mask offer the same
degree of explanation as Feergestad et al. [64], but using far less input variables.
Finally it should be noted that the conclusions above where all drawn based on
the reduced images. However, as shown in table 5.1, the explained Y-variance
is identical for the reduced and original images in the case for masked data.
This was generally true for all the masked models (results not shown). It
is concluded that information drawn from the reduced images is transferable
to the images using all pixels. Analysis on full, unmasked images were not
possible because of storage problems due to the large number of pixels to be
analysed (approximately 3 million).

5.3.2 Significant areas

An important step in the presented analysis is the identification of significant
pixels with respect to the response variable (time after slaughter). The data se-
lected for this analysis are the masked and background-corrected images, since
this dataset gave the best performance with respect to explained Y-variance
and for visualisation purposes. Significant pixels where identified using a two-
sided t-test on the regression coefficients from the 35 sub-models from the cross
validation. The significance cut-off value was set at 0.05. Because the number
of significant pixels is quite large, a high number of false positives are expected.
This creates a problem if all pixels (variables) are independent, because it is
not possible to decide for sure whether a variable is a true or false positive.
However, in gel images it is expected that a pixel will generally be correlated
with its neighbouring pixels. If one pixel belongs to a certain protein spot, it
is expected that this protein will be correlated with other pixels belonging to
this spot. This means we can make assumptions on significant areas in the
gel by identifying areas where significant pixels cluster together, as shown in
figure 5.9(c).

Another observation is that several of the areas marked as significant have
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Figure 5.9: Significant pixels highlighted in black. (a): Full size image. (b):
Sub-image. (c): Significant areas indicated on top of the sub-image in fig-
ure 5.2(a).
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pixels with stable, but very small, regression coefficients, meaning that the
maximum intensity difference over all images in this area is very small com-
pared to the total intensity range. Such small variations are not visible to the
eye, and are of minor interest to the analyst. The number of significant features
in the images can thus be reduced by requiring that they have a certain size
(in connected pixels) and a minimum intensity span over all images. In this
study the minimum size were set to 5 pixels, and the minimum intensity span
to 0.07 (on a zero-to-one scale), but these parameters can be changed accord-
ing to the circumstances. A total of 277 significant features were identified to
satisfy the criteria stated above. These features are highlighted (in black) in
figure 5.9(a) for the sub-image, and figure 5.9(b) for the full image. Significant
areas indicated on top of the original image are shown in figure 5.9(c) for the
sub-image. Three selected areas are displayed with marked cross-section in
figure 5.10 to figure 5.12, to show that the identified features truly represent
protein variations with respect to time after slaughter.

An advantage of not using fixed individual spot boundaries in the analysis is the
ability to detect significant variations in spot-shoulders in highly overlapping
proteins. These variations are often lost when boundaries are applied. The
individual boundaries are often not able to separate multiple spots, and will
thus treat multiple spots as single entities. Because weak spot shoulders are
often dominated by larger, un-significant variations in the rest of the cluster,
the variations due to the weaker spot is lost. Using a pixel-based approach
increases the ability to discover such variations. Three examples are shown in
figure 5.13 to figure 5.15.

5.3.3 Comparison with software using common spot boundaries

The significant regions displayed in figure 5.10 to 5.15 are also analysed by
the commercial software Progenesis SameSpots (Nonlinear Dynamics). Results
using SameSpots on these regions are shown in figure 5.16, where a-f correspond
to the regions in figure 5.10 to 5.15 respectively. SameSpots performs similar
to the pixel-based analysis for the spots in figure 5.10 and 5.12. Both of
these spots are identified as significant by SameSpots. SameSpots is not able
to identify a spot representing the exact region of figure 5.11, but the spot
highlighted in figure 5.16(b) is the closest significant match and has a similar
profile. The three spots to the left in figure 5.16(b) are not found significant,
however the spot to the lower right is significant. This spot is not detected
by the pixel-based approach, where it is interpreted as a streak and thus not
included in the mask of analysed pixels. Only pixels included in the mask
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Figure 5.10: Closer inspection of significant pixel cluster. (a),(b) and (c) are
average images of the spot taken 1, 6 and 10 hours after slaughter respectively.
(d) is the cross-section shown in (c¢) displayed as a curve for each of the five
time averages. This single significant spot clearly increases in intensity with
time.
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Figure 5.11: Closer inspection of significant pixel cluster. (a),(b) and (c) are
average images of the spot taken 1, 6 and 10 hours after slaughter respectively.
(d) is the cross-section shown in (c) displayed as a curve for each of the five
time averages. The marked region increases with time, while the neighbouring
spot remains constant.
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Figure 5.12: Closer inspection of significant pixel cluster. (a),(b) and (c) are
average images of the spot taken 1, 6 and 10 hours after slaughter respectively.
(d) is the cross-section shown in (c) displayed as a curve for each of the five
time averages. This spot displays a decrease in intensity with time.
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Figure 5.13: Closer inspection of significant pixel cluster. (a),(b) and (c) are
average images of the spot taken 1, 6 and 10 hours after slaughter respectively.
(d) is the cross-section shown in (c) displayed as a curve for each of the five
time averages. The horizontal lines indicate the boundary of the area marked
as significant. Typical example of a shoulder decreasing in intensity with time,
while its larger neighbour remains constant.
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Figure 5.14: Closer inspection of significant pixel cluster. (a),(b) and (c) are
average images of the spot taken 1, 6 and 10 hours after slaughter respectively.
(d) is the cross-section shown in (c¢) displayed as a curve for each of the five
time averages. The horizontal lines indicate the boundary of the area marked
as significant. Part of a larger spot complex increasing significantly with time.
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Figure 5.15: Closer inspection of significant pixel cluster. (a),(b) and (c) are
average images of the spot taken 1, 6 and 10 hours after slaughter respectively.
(d) is the cross-section shown in (c) displayed as a curve for each of the five
time averages. The horizontal lines indicate the boundary of the area marked
as significant. Weak overlapping region where only one of the spots changes
significantly.
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are subjected to analyses as described previously. A spot corresponding to
the significant shoulder in figure 5.13 is highlighted in figure 5.16(d). The
spot shows significant variation, however SameSpots is not able to distinguish
the shoulder from the larger neighbouring spot, resulting in wrongly estimated
spot volumes. In such situations the pixel based approach is preferred, because
of the ability to target significant regions more directly. Another situation
where the pixel-based method performs better is the one shown in figure 5.14
and 5.16(e). The complex region is not resolved properly by SameSpots, and
several spots are located within the same boundary. The whole region does not
display enough significant variation to be detected by SameSpots. The pixel-
based approach does not consider such boundaries in complex regions, and thus
smaller local variations within these regions are more easily detected. This is
also true for the region in figure 5.15 and 5.16(f). SameSpots located a spot
corresponding to this region, however this spot is not found to be significant.
The spot boundary found by SameSpots is substantially different from the
one identified by the pixel-based approach, and is probably the reason for
this discrepancy. The result is again a failure to detect a protein displaying
significant variation.

Defining boundaries for individual spots has some advantages in regions where
several neighbouring spots are significant, as shown in figure 5.17. In such situ-
ation more information is achieved if the larger significant region is resolved into
components resembling protein spots (figure 5.17(b)). However, a resolution of
such regions can always be performed after the significant pixels are identified.
It would thus be possible to concentrate the effort of defining isolated protein
spot entities to regions which display significant variations, without the need
to define spot boundaries in other parts of the gel. It should also be noted that
the significant shoulder pointed to by an arrow in figure 5.17(a) is not detected
by SameSpots.

A total of 155 spots are identified as significant by SameSpots using ANOVA
on each spot with at a 95% significance level. This is fewer than for the pixel-
based approach, however, a direct comparison is difficult because the spot
boundaries defined by SameSpots are very different to the boundaries created
by significant regions in the pixel-based approach. 119 of the 155 significant
spots from SameSpots have corresponding significant regions in the pixel-based
approach. Some variations between the results are expected, because ANOVA
is different test than the multivariate regression analysis. Other inconsistencies
are due to removed streaks (described previously) and small, low intensity spots
not detected during the morphology identification of spot regions.
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Figure 5.16: Significant regions from figure 5.10 to 5.15 analysed by the soft-
ware Progenesis SameSpots. The regions a-f corresponds to figure 5.10 to 5.15
respectively.
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Figure 5.17: (a): A complex region with several neighbouring significant spots
analysed by the pixel-based approach. The regions within the boundaries
are identified as significant. (b): The same region analysed by Progenesis
SameSpots. The significant shoulder pointed to by an arrow in (a) is not
detected by SameSpots.

5.4 Discussion

Doing data reduction by image morphology, followed by multivariate analysis
on the selected pixels has several advantages. First there is the data reduction
potential. Considering the large amount of pixels in gel-images (almost 3
million in this case) some way of reducing or organising the data is usually
needed to perform the analysis. Creating spot-lists is one common way of
doing this, limiting the comparison analysis to a maximum of a few thousand
spots rather than millions of pixels. However, as described previously, spot-lists
inherit the pitfall of missing values and wrongly estimated spot volumes caused
by the uncertainties in the boundaries of the spot segments. Another way of
doing data reduction is to reduce the image size by replacing several pixels
with their average or interpolated value. This makes the images smaller in size,
but there is the risk of losing information. Noise and unwanted artifacts in the
images are also propagated to the reduced images. Data reduction by applying
a mask makes it possible to be considerable more selective in what information
to keep, and what to throw away. It is a natural assumption that important
sources of variation in the image are limited to areas where protein-spots are
found. By performing image morphology or other segmentation procedures,
background, noise and artefacts disturbing the analysis can be removed, and
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focus can be put on the areas where proteins are present. Because most of the
gel image is unrelated to proteins, the amount of pixels after the segmentation is
sufficiently reduced, so no average or interpolation is needed for the remaining
pixels. In this study only 672 948 of the original 2 999 620 pixels were selected
after morphology, making analysis possible without image reduction, and at the
same time improving interpretability by removing undesired variations in the
data. There is, of course, also the risk of losing information when performing
segmentation. However, most gel segmentation procedures today performs
satisfactorily when it comes to identifying areas in the image including proteins.
The 2-DE segmentation challenge today is to isolate the individual proteins in
these areas. When doing analysis on the pixel level, isolation of individual
protein spots is not necessary. By using the union of all pixels as identified
by the segmentation of each individual gel, the risk of leaving out important
areas is also reduced. Identifying protein spot regions prior to analysis also
gives improved multivariate models. Figure 5.7 and 5.8, together with the
results in table 5.1 clearly show the importance by applying a mask. Reducing
the data amount in this way makes it possible to emphasise the important
variations in the data, improving the interpretability and highlight significant
areas in the image.

Another advantage of doing analysis on the pixel level is the possibility to eas-
ily visualise significant areas, as shown in figure 5.9. Highlighting significant
pixels in this way makes it a very intuitive indication from a user point-of-view
where to look for important protein variations. By not focusing on specific im-
age segments in spot-lists, it is also possible to highlight important sub-areas
in unresolved spots. When using spot-lists, these segments (if unresolved) are
wrongly treated as single entities, introducing serious errors when compared
between the gels. Merged protein spots are generally a major challenge in au-
tomatic 2-DE analysis, and until this problem is properly handled, we consider
the visualisation of significant pixels to be a valuable alternative to spot-lists
when viewing significant sources of protein spot variation in 2-DE.

5.5 Concluding remarks

The authors find the approach of identifying spot regions by image morphology,
followed by multivariate analysis on resulting pixels a useful alternative to
existing methods in the areas of data-reduction, interpretability, significance
testing and visualisation of 2-DE data.
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Concluding remarks

In the previous chapters several new models and approaches were introduced
based on image segmentation in combination with multivariate analysis. Hope-
fully the reader has the same feeling as the author that the presented methods
introduce ways to look at data from 2D-gels which can improve the inter-
pretability and output of the final analysis. In a way this thesis follows the last
years course of 2D-gel analysis in general. First the traditional spot-model is
considered, and a method for filtering the output of such a model is introduced.
The common spot boundary approach has lately gained popularity compared
with the previously much used spot-matching procedures, and a new method
for assigning such boundaries is presented. Both of these projects has the pro-
tein spot model as a basis. Last in this thesis the pixel-based methods are
introduced, moving away from the necessity of defining spot boundaries before
analysis. This last approach has not been explored much, neither in the liter-
ature nor by commercial software. Results from the pixel-based approach are
promising, and it should be worthwhile to develop these ideas further. Finally
it should be mentioned that it is doubtful whether the total protein content of
a cell sample can be determined by using 2D-gel technology alone. Probably it
must be used in conjunction with other methods, for example MS-technology,
to completely fulfil the task of identifying, quantifying and measuring changes
of all proteins in an organism.
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