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Abstract 

A screening design is an experimental plan used for identifying the expectedly few active 

factors from potentially many. In this paper, we compare the performances of three experimental 

plans, a Plackett-Burman design, a minimum run resolution IV design and a definitive screening 

design, all with 12 and 13 runs, when they are used for screening and three out of six factors are 

active. The functional relationship between the response and the factors was allowed to be of two 

types, a second order model and a model with all main effects and interactions included.  D-

efficiencies for the designs ability to estimate parameters in such models were computed, but it 

turned out that these are not very informative for comparing the screening performances of the two-

level designs to the definitive screening design. The overall screening performance of the two-level 

designs was quite good, but there exist situations where the definitive screening design, allowing 

both screening and estimation of second order models in the same operation, has a reasonable high 

probability of being successful.  
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1. Introduction 

At the initial stage of an experimental investigation, there may be a large number of factors 

that potentially affect a response. In reality, though, it is most often found that only a small subset 

of these, typically two or three, maybe four are really important for describing the variation in the 

response values. The extraction of this subset of active factors is known as factor screening.  

Two-level designs are normally the preferred choice for screening purposes. These can be 

described as belonging to one of two classes, regular or nonregular. Regular designs are the 

factorial 2k  designs and their regular fractions denoted as 2k- p  designs and are widely used in 

industrial experimentation. Their properties and usefulness are nicely explained in several 

textbooks like Box et al. [1] and Montgomery [2].  

The nonregular designs are fractions of full 2k  designs that are not regular. Two-level Plackett-

Burman (PB) designs [3], with the number of runs 2kn  , are the most well-known two-level 

nonregular designs. As for the regular designs, contrast columns are orthogonal, and they can 

accommodate n-1 factors in n runs. Another class of nonregular two-level designs is the minimum 

run resolution IV (MinResIV) designs (Webb [4]) later discussed by Anderson and Whitcomb [5]. 

These designs can accommodate k factors in 2k runs, but factor columns are not in general 

orthogonal. 

Recently, Jones and Nachtsheim [6] introduced the definitive screening designs (DSDs). For 

k factors, these designs also require 2k runs or preferably 2k+1. They are three-level designs and 

as such, they allow the estimation of quadratic effects which is clearly impossible using two-level 

designs. 
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With several options for screening a set of factors, it may be unclear which design to choose. 

For instance, if some of the factors have quadratic effects, how will these affect the screening 

procedure if a two-level design is chosen? On the other hand, suppose that no factor has a quadratic 

effect. Will there then be any dramatic loss in the screening efficiency if a DSD is chosen? The 

motivation for this paper is to give some answers to these questions.  

  This paper is organized as follows. In Section 2 we will present some designs belonging to 

two of the respective classes mentioned and discuss their properties. In Section 3 we will give the 

background and motivation for our simulation study. The overall screening performances of the 

designs are given in Section 4 followed by discussion and concluding remarks in Section 5.  

2. Three designs and their properties  

To find some answers to our objective, we have chosen three designs where each of them 

allows screening of six factors in 12 runs. The designs are 6 columns from a PB design, a MinResIV 

design and a DSD all with 12 runs. Hence we are comparing two nonregular two-level designs, one 

with orthogonal design columns and one with not, with a three-level design.  

Nonregular orthogonal two-level designs have several advantages compared to the regular 

ones. One is their flexible run sizes, they apparently exist for all number of runs, 4n m , 3m  . 

Second, they have far better projection properties than the regular ones. Box and Tyssedal [7]  

defined projectivity of two-level designs as follows: A n k  design with n  runs and k  factors each 

at two levels is said to be of projectivity 𝑃 if the design contains a complete 2 p  

factorial in every possible subset of 𝑃 out of the 𝑘 factors, possibly with some points replicated. 

Projection properties thus concern the properties of a design when restricted to a subset of 𝑃 factors 
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which fit well into the intention of screening. While most orthogonal nonregular two-level designs 

are of projectivity 3P   in n-1 factors, regular two-level designs can only accommodate 
2

n
 factors 

in order to bear this property. A third advantage is that for most of the nonregular orthogonal two-

level designs, effects are only partial aliased and hence can be estimated from the data. It must be 

noted, however, that in order to take advantage of the partial aliasing, the number of interactions 

should be small. Their alias pattern may be rather complex, and as a result, their analysis is 

considered difficult by many practitioners. Several methods for analyzing orthogonal nonregular 

two-level designs exist, (Hamada and Wu [8], Box and Meyer [9], Tyssedal and Samset [10], 

Chipman et al. [11], Tyssedal and Niemi [12] to mention a few). Still, ways to analyze these designs 

need more research, especially in cases when the number of active factors exceeds the projectivity 

of the designs (Tyssedal and Hussain [13]).  

An example of an orthogonal nonregular two-level design, the twelve run PB ( 12PB ) design, 

is given in Table 1. 

Table 1 about here 

The 12PB design has two nonisomorphic projections onto six factors (Lin and Draper [14]). 

One of the designs,  design 12PB (6.1), have no mirror image run (columns A to F in Table 1) while 

the other design, 12PB (6.2),  has two mirror image runs (for instance run 7 and 10 in columns A to 

E and G).  According to Wang and Wu [15], design 12PB (6.1) has higher efficiency than design 

12PB (6.2), and is therefore normally preferred when 6 columns are to be selected from a 12PB

design.  
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The MinResIV designs can accommodate k factors in 2k runs. Thereby they have very 

flexible run sizes but at the expense of the number of experimental factors allowed. Their runs 

consist of k mirror image pairs, and as a result, main effects and two-factor interactions are not 

aliased and thereby their name. This is one of the reasons for their attractiveness. However, not all 

main effect columns are orthogonal and they may thus be aliased with each other. The same applies 

to two-factor interaction columns. A six-factor MinResIV ( 12MinResIV ) design is given in Table 

2. The design is the one given in Design Expert.  

Table 2 about here 

Both the 12PB (6.1) and the 12MinResIV  designs are projectivity P=3 designs. While for the 

12PB design all projections onto three dimensions consist of a full 
32  design + a half fraction, the 

12MinResIV  design has two types of projections onto three dimensions. For more on projection 

properties of MinResIV  designs we refer to Hussain and Tyssedal [16].  

As already mentioned the 12 run DSD  12DSD is a three level design. Two-factor settings 

of zero is added to each column. With an additional center run added for all factors, the design 

given in Table 3, a 12DSD ,  projects onto a full 
23  in every two dimensions. DSDs have the same 

flexibility in run sizes and the same restriction on the number of experimental factors as the 

MinResIV designs, although one extra run is recommended. Main effect columns are not aliased 

with other main effect columns, with two-factor interaction columns or quadratic effect columns. 

The two-factor interaction columns, however, are aliased with each other and so are the quadratic 

effect columns. Two-factor interaction columns and quadratic effect columns are also aliased.  
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Table 3 about here 

 

3. Choice of models and motivational examples 

If the number of experimental factors exceeds half the number of runs, it is natural to use a 

nonregular orthogonal two-level design for screening.  If not, the choice may not be that obvious. 

Let us consider a screening situation with six experimental factors in 12 or 13 runs. Also assume 

that not more than three factors are active, a natural assumption considering the number of runs 

and factors.  

For some comparison between these designs we will now consider two types of models. One 

model, type 1, which is a full second order model in three factors.  

                               


2
3

1

33

1

0 i

i

iij

ji

iiji

i

i xxxxY                                        (1) 

and another model, type 2, consisting of main effects and interactions up to third order.  

                                 
3 3

0 123 1 2 3

1

i i ij i j

i i j

Y x x x x x x    
 

                                        (2) 

0  is the intercept, i , 
ij  and 

ijk  represent half the main effects, two-factor interactions, 

and three-factor interactions respectively while ii  represent the sizes of the quadratic terms.  The

  is an error term assumed normally distributed with mean 0 and variance 2 .  

A measure of the efficiency by which a design is able to estimate the parameters in the model, 

is the D-efficiency of the design matrix, X , defined as

1
t

D
p

eff
n


X X

, where p is the number of 

parameters, intercept included, and n is the number of runs. Table 4 gives us the Deff
 that can be 
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obtained for estimating the parameters in various models with three active factors using a 12PB

(6.1) design, a 12MinResIV design or a 12DSD  without and with an extra center run. 

 

Table 4 about here. 

 

Obviously, without adding a center run the 12DSD  is the only design that can estimate 

quadratic effects, but if three quadratic terms are present there will be nearly linear dependency 

among the effect columns, as shown by the low value for Deff , and MATLAB for instance, will 

leave out the column for the last quadratic term. For models without quadratic terms, the 12PB  (6.1) 

design has the highest D-efficiency, and we notice that by adding a center run, the Deff
is increased 

for models with quadratic terms and decreased for those without. The 12DSD is not a P=3 design, 

but we notice that it has the possibility to allow the estimation of three main effects and all their 

interactions if no quadratic term is in the model.  

As a motivational example, we performed a simulation study where these three designs 

with and without a center run were tested out on how well they were able to identify the correct 

subset of three active factors from the following two models, one of type 1 and the other of type 2.  

These two models thus represent two phenomena to be investigated with the three designs.  

 

2 3 3

2 2 2

1 1 2 3 1 1 2 1 2 32 0 5 0 5 1 5 1 5 2 3Y x .  x .  x x .  x x .  x x x xx εx                    (3) 

 3213231213212 5.15.15.05.02 xxxxxxxxxxxxY                    (4) 

The procedure was as follows 

1. For all given design matrices, X, all projections onto 3 factors were found.   
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2. Starting with the model in (3), a vector of response values was generated with each of the 6 

possible designs, 12 response values for designs without a center run and 13 response values 

for designs with a center run. The errors were generated as independent and identically 

normally distributed with mean 0 and variance 2  to be varied.    

3. For each projection from the 12DSD , a model of type 1 in the respective three factors was fitted 

to its generated response and similar for the 12DSD with a center run  12DSD cr . For each 

projection from the 12PB (6.1) and 12MinResIV designs, a model of type 2 in the respective three 

factors was fitted to their respective responses and similar when a center run was added.  

4. The mean square error, MSE = 

 
2

1

1

n

i i

i

ˆy - y

n p



 


, was calculated for each projection where p is the 

number of terms and iŷ   is the fitted response. 

5. The procedure was repeated 1000 times for each value of 
2 varying from 0.1 to 1 in steps of 

0.1, and the number of times the model with the correct subset of active factors had the smallest 

MSE for each design was recorded. We will call this the success frequency (SF). 

6. Steps 2-5 were then repeated using model (4).  

 

The results from our simulation study are given in Table 5. For each of the three designs, the 

screening is performed with and without a center run added. 

Table 5 about here 

 



9 

 

In order to evaluate if there is a difference in performances, we look at the number of 

successes in 1000 simulations and use a binomial distribution. For various success probabilities, 

we then have the following standard deviations as given in Table 6.  

 Table 6 about here 

Surprisingly, even though the chosen type 1 model, model (3),  had rather small first order 

effects compared to quadratic effects, the two level designs without a center run outperformed the 

12DSD  for variances greater than 0.4. The 12PB (6.1) design performed clearly the best and seemed 

to benefit from the extra center run as the variance increased while the 12MinResIV did not. Also 

for the chosen model of type 2, model (4), the 12PB (6.1) design performed the best. There was little 

difference between designs with and without a center run, and the two DSDs  were clearly inferior 

to the others.  

Now, consider a model given by  

   
2

3 3 3

1 2 3 0 i

1 1

vv v v
E

j ji i i i i i
ij ii

i i j ii i j i

vv v v
Y f v ,v ,v

l l l l
   

  

        
           

      
     

Each  1 2 3iv , i , ,  is assumed to take values on an interval [ iiv l , iiv l ]. Hence iv  is the midpoint 

of the interval and 2 il  is the length. Further let us assume that we are interested in investigating 

the function  1 2 3f v ,v ,v  and choose the three levels iiv l , iv  and iiv l  for each of the iv , 1 2 3i , ,

. With the transformation i i
i

i

v v
x

l


 , each ix , 1 2 3i , , ,  takes the values -1, 0 and 1.  Suppose instead 

that it was decided to investigate  1 2 3f v ,v ,v  in the region determined by [ i

2
i

l
v  , i3

2
i

l
v  ], 



10 

 

1 2 3i , , . The midpoints are now i
i

2
i

l
z v  . Using the standard transformations

i
i i

i

2
 =1,2,3i

l
v v

z , i
l

 
  
 

 , gives 
2

i
i i i i

l
v l z v ,

 
   

 
 and we get for  1 1,- iz ,  1 2 3i , , ,  that  

 
23 3 3

1 2 3 0 i

1 1

1 1 1 1

2 2 2 2
i ij i j ii i

i i j i

f z ,z ,z z z z z   
  

      
             

      
    

or: 

     
3 3 3 3 3 3

2i
1 2 3 0 i i

1 i j 1 12 4 4 2

ij ijii
ii i i j ij i j ii

i i i j i j i

f z ,z ,z z z z z z z
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    
     
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 
        

Similarly, we may arrive at a model of the form:  

   
3 3 3 3 3

123 123 123i
1 2 3 0 123 1 2 3

1 12 4 8 4 2 2

ij ij

i i i j ij i j

i i j i i j i j

f z ,z ,z z z z z z z z z
   

   
    

   
             

   
      

for a model of type 2. 

Hence for a model of type 1 we observe that changing the experimental region, keeping the 

variation width of each factor constant, only affects the intercept and the main effects. For a model 

of type 2, both intercept, main effects and two-factor interactions are affected. If also the variation 

width is changed, all terms may be affected.  

Now suppose we changed the region such that each variable is moved a quarter of the 

interval length to the right. Then, accordingly to the development above, in variables taking the 

values -1, 0 and 1, we get the following models for the responses 1Y  and 2Y . 

2 2 2

1 1 2 3 1 1 2 1 2 32 3 35 5 3 25 3 75 5 1 5 1 5 2 3*Y . . x .  x  x x .  x .  x x εx x xx x               (5) 

             321323121321

*

2 225.125.225.2125.4 xxxxxxxxxxxxY              (6) 

Repeating our simulation study we get the results in Table 7.  

Table 7. about here 
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The role is now changed. The 12DSD outperforms the two-level designs, even though it is 

the main effects and not the quadratic terms that have been increased in (5) and no quadratic effect 

is included in (6).   

  Now in such an investigation the results will depend on how well the correct model 

separates from the others. The cause of the bad performance with model 4 using 12DSD , is that 

without noise there are three other models with three active factors having a smaller MSE than the 

correct one. For model 5 and 6, it is the 12DSD  that is superior in separating the correct model 

from the others. This example illustrates that the best screening design to be used in a given 

situation is not the one giving the largest Deff
 of the projection onto the right factors, even a design 

with Deff
=0 for such a projection may work fine. Rather it is the chosen experimental region and 

the variation width of each factor that determines the success.   

4. Test of overall performances of the designs 
 

As we have seen, for models of type 1 and type 2 the regression coefficients, after the factors 

levels have been transformed to take the values -1, 0 and 1, will depend on our experimental region 

and the variation width of the factors and this will again affect the screening efficiency of the 

designs. To get a better impression of the overall performance of each of the designs, we performed 

a simulation study again with 1000 simulations, but for each simulation we now randomly draw 

each coefficient uniformly from an interval. The constant term was held fixed at 2. The interval [-

1, 1] was chosen to represent small values, and the interval [-3, 3] to represent large values. For a 

model of type 1 the four test cases to be investigated are:  

1. All coefficients are drawn uniformly from the interval [-1, 1]. 
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2. Coefficients in front of linear and product terms are drawn uniformly from the interval [-3, 3] 

and coefficients in front of quadratic terms from the interval [-1, 1]. 

3. Coefficients in front of linear and product terms are drawn uniformly from the interval [-1, 1] 

and coefficients in front of quadratic terms from the interval [-3, 3]. 

4. All coefficients are drawn uniformly from the interval [-3, 3]. 

The results are summarized in Tables 8 to 11 

Table 8 about here 

 

Table 9 about here 

 

Table 10 about here 

 

Table 11 about here 

First of all, we notice that adding a center run did not seem to affect the procedures much except 

for the case with small coefficients in front of linear and product terms and large coefficients in 

front of quadratic terms, where the performance of the two-level designs is clearly worse when a 

center run is added. Now since the coefficients in front of the terms are chosen in a low/high 

manner, one way to summarize the results is to define two factors 1F  and 2F  where 1F  represents 

the size of the coefficients in front of linear and product terms and 2F  represents the size of the 

terms in front of the quadratic terms. If we, as a response, take the amount of noise for which the 

SF exceeds 900 and only use designs without center runs, we get the results in Table 12. 

Table 12 about here 

 

From Table 12 it seems like it is the size of coefficients in front of the main effects and product 

terms that determines how efficient the screening is. The size of the terms in front of the quadratic 

terms has little effect. Also from the averages, the overall performance of the two-level designs is 

clearly better than for the 12DSD  design and the 12PB (6.1) design comes out the best.  
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The same simulation study was also performed for the model of type 2. The four test cases 

were:  

1. All coefficients are drawn uniformly from the interval [-1, 1]. 

2. Coefficients in front of linear terms are drawn uniformly from the interval [-3, 3] and 

coefficients in front of product terms from the interval [-1, 1]. 

3. Coefficients in front of linear terms are drawn uniformly from the interval [-1, 1] and 

coefficients in front of product terms from the interval [-3, 3]. 

4. All coefficients are drawn uniformly from the interval [-3, 3]. 

Tables 13-16 summarize the results.  

Table 13 about here 

 

Table 14 about here 

 

Table 15 about here 

 

Table 16 about here 

 

The difference between the performance of the designs with and without center run is now 

almost negligible in all cases. The 12PB (6.1) design also now came out the best, but the differences 

between the performances of the two two-level designs are rather small. The performance of the 

12DSD  is now considerably worse than for the two-level designs, and the sizes of the terms 

obviously matters. It is beneficial with large terms in front of the linear terms while large terms in 

front of the product terms appear to have a negative effect on the SF for the 12DSD .     

One of the referee suggested to test more situations, and mentioned especially cases with a 

certain mix of positive and negative coefficients like negative linear terms and positive quadratic 
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terms for instance. We therefore performed another simulation study where the responses where 

generated from a model of type 1 with the following four test cases.  

1. All coefficients are drawn uniformly from the interval [-3, 0].  

2. Coefficients in front of linear and product terms are drawn uniformly from the interval [-3, 

0] and coefficients in front of quadratic terms from the interval [0, 3]. 

3 Coefficients in front of linear and product terms are drawn uniformly from the interval [0, 

3] and coefficients in front of quadratic terms from the interval [-3, 0] 

       4.    All coefficients are drawn uniformly from the interval [0, 3]. 

 

   The simulation study is closely related to the one reported in Table 11. The difference is 

that in Table 11 all coefficients were uniformly drawn from [-3, 3]. As expected, case 1 and 

case 4 gave almost identical SFs and so did case 2 and case 3. For the 12DSD  we found only 

small differences between the four cases and all SFs were well within the uncertainty range 

when compared with the SFs in Table 11. The same conclusion also applies to the two level 

designs except that adding a center run had some small negative impact on the SFs for the 12PB

(6.1) design in the cases 2 and 3. 

We then changed case 2 and case 3 such that product terms had the same signs as the 

quadratic terms. Again the conclusions were exactly the same. 

We also tried out how a mix of coefficients affected the SFs when the response values were 

generated from a model of type 2. The four tested cases were  

1.  All coefficients are drawn uniformly from the interval [-3, 0].  
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2. Coefficients in front of linear terms are drawn uniformly from the interval [-3, 0] and 

coefficients in front of product terms from the interval [0, 3]. 

3. Coefficients in front of linear terms are drawn uniformly from from the interval [0, 3] 

and coefficients in front of product terms from the interval [-3, 0]. 

4.  All coefficients are drawn uniformly from the interval [0, 3]. 

 

Also in this situation cases 1 and 4 gave almost identical SFs and so did the two other cases. 

Except for a few cases the obtained SFs were well within the uncertainty ranges for the numbers 

in Table 16. Identical signs seem to have a small positive effect on the overall performance of 

the DSDs, while for the two-level designs opposite signs have a small positive effect.  

4. Discussion and Concluding remarks 

Although our investigation is limited, it illustrates several concerns to be aware of when comes 

to screening. Screening is about finding the subset of factors that really explains most of the 

variation in the data. A design’s ability to extract out this subset of factors from possibly many 

should not be confused with its ability to estimate the possible effects of the factors in this subset. 

In our simulations, the two-level designs had an overall better screening performance than the 

12DSD design even if the true response was a second order function for which their Deff
= 0 for 

estimating all the model coefficients. Therefore, in choosing a screening design one should 

carefully consider what the goal is. Is it just to extract the subset of active factors and then follow 

up with a closer investigation of the relationship between the response and the factors afterwards, 

or is the purpose to do both things at once?  In the first case, the two-level designs seem to perform 

the best. However, if the response is a second order model, our simulations show that doing both 
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things at once has a reasonable probability of success if the variance of the response values is low. 

If that is not the case, and especially for a type 2 model, one may easily end up with the wrong 

subset of active factors, and the existing possibility to estimate quadratic effects may be of little 

value. We also noticed that adding a center run did not improve the overall screening performance 

of the three types of design. In fact for a model with quadratic terms the SFs were lowered in some 

cases for the two-level designs. However, it improves the estimation efficiency of the 12DSD  if the 

response has quadratic terms, and should be added for the 12DSD  if both screening and estimation 

is considered simultaneously.  

The 12PB (6.1) design came out best in our simulation study. It performed a little better than the 

 MinResIV12 design and in the comparison between the two-level designs, the screening 

performances were reasonably consistent with the Deff
of the projections.  It may be argued that in 

our way of analysis, we did not take into account some of the attractive properties of the MinResIV

designs and the DSDs, especially that main effects can be estimated unbiased from two-factor 

interactions and for the DSDs also unbiased from quadratic effects. Also, it is well demonstrated, 

for instance Wolters and Bingham [17], that the “correct model” is not necessarily the one with the 

lowest MSE, but that it is normally among the ones with the lowest MSE. Hence our reported 

success frequencies may, and especially for the 12MinResIV and the 12DSD  designs, be a little 

pessimistic. Nevertheless, whatever method of analysis that is used and set of assumed active 

factors that is obtained, if there exist a different subset of factors that produces a lower MSE, it will 

normally cause some ambiguity which often has to be solved by follow-up experiments.  

Finally, as showed in Section 3, the choice of the best screening design in a given situations 

also depend on where in the experimental region the experiment is performed and what levels that 

are chosen for the experimental factors.  
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Tables 

Table 1: The twelve run PB ( 12PB ) design  

Runs A B C D E F G H I J K 

1 1 1 -1 1 1 1 -1 -1 -1 1 -1 

2 -1 1 1 -1 1 1 1 -1 -1 -1 1 

3 1 -1 1 1 -1 1 1 1 -1 -1 -1 

4 -1 1 -1 1 1 -1 1 1 1 -1 -1 

5 -1 -1 1 -1 1 1 -1 1 1 1 -1 

6 -1 -1 -1 1 -1 1 1 -1 1 1 1 

7 1 -1 -1 -1 1 -1 1 1 -1 1 1 

8 1 1 -1 -1 -1 1 -1 1 1 -1 1 

9 1 1 1 -1 -1 -1 1 -1 1 1 -1 

10 -1 1 1 1 -1 -1 -1 1 -1 1 1 

11 1 -1 1 1 1 -1 -1 -1 1 -1 1 

12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

 

Table 2: The MinResIV12 design for 6 factors  

Runs A B C D E F 

1 -1 1 -1 -1 -1 -1 

2 1 -1 1 1 1 1 

3 -1 -1 1 -1 -1 1 

4 1 1 -1 1 1 -1 

5 -1 -1 1 1 1 -1 

6 1 1 -1 -1 -1 1 

7 -1 -1 -1 -1 1 1 

8 1 1 1 1 -1 -1 

9 1 -1 -1 1 -1 -1 

10 -1 1 1 -1 1 1 

11 1 -1 1 -1 1 -1 

12 -1 1 -1 1 -1 1 
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Table 3: The 12 run definitive screening design  12DSD for six factors 

Runs A B C D E F 

1 0 1 -1 -1 -1 -1 

2 0 -1 1 1 1 1 

3 1 0 -1 1 1 -1 

4 -1 0 1 -1 -1 1 

5 -1 -1 0 1 -1 -1 

6 1 1 0 -1 1 1 

7 -1 1 1 0 1 -1 

8 1 -1 -1 0 -1 1 

9 1 -1 1 -1 0 -1 

10 -1 1 -1 1 0 1 

11 1 1 1 1 -1 0 

12 -1 -1 -1 -1 1 0 

 

Table 4: D-efficiencies of various models with 3 active factors using a 12PB (6.1)design, a

12MinResIV design and a 12DSD  without and with (cr) an extra center run    

                                                     D-efficiencies 

Effects / Designs PB12(6.1) 
PB12(6.1) 

cr 
MinResIV12 

MinResIV12 

cr 
DSD12 DSD12 cr 

𝑥1, 𝑥2, 𝑥3 100 94.17 92.77-97.04 87.36-91.44 87.21 82.14 

𝑥1, 𝑥2, 𝑥3, 𝑥12 97.67 91.61 91.98-97.67 86.44-91.61 82.66 77.53 

𝑥1, 𝑥2, 𝑥3, 𝑥12, 𝑥13 96.15 89.94 90.48-96.15 84.85-90.08 78.89 73.82 

𝑥1, 𝑥2, 𝑥3, 𝑥12, 𝑥13, 𝑥23 95.07 88.77 88.90-95.07 83.23-88.89 75.04 70.06 

𝑥1, 𝑥2, 𝑥3, 𝑥12, 𝑥13, 𝑥23, 𝑥123 94.28 88.00 87.73-94.28 81.99-88.00 69.36 64.67 

𝑥1, 𝑥2, 𝑥3, 𝑥12, 𝑥13, 𝑥23, 𝑥1
2 0 64.73 0 61.04-64.73 57.47 56.83 

𝑥1, 𝑥2, 𝑥3, 𝑥12, 𝑥13, 𝑥23, 𝑥1
2, 𝑥2

2 0 0 0 0 45.24 48.27 

𝑥1, 𝑥2, 𝑥3, 𝑥12, 𝑥13, 𝑥23, 𝑥1
2, 𝑥2

2, 𝑥3
2 0 0 0 0 1.54 42.35 

𝑥1, 𝑥2, 𝑥3, 𝑥1
2 0 56.1567 0 52.88-54.84 60.39 60.46 

𝑥1, 𝑥2, 𝑥3, 𝑥1
2, 𝑥2

2 0 0 0 0 46.95 49.14 

𝑥1, 𝑥2, 𝑥3, 𝑥1
2, 𝑥2

2, 𝑥3
2 0 0 0 0 38.86 42.29 
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Table 5: The SFs of the three types of designs without and with a center run (cr), varying the 

noise 
2 from 0.1 to 1. Responses are generated with model (3) and model (4) 

SFs of the designs when the responses are generated with model (3) 

     
2  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

12DSD  1000 1000 999 976 874 781 656 571 487 376 

12DSD cr  1000 1000 998 974 903 770 658 551 480 400 

 12PB 6 1.  1000 1000 1000 1000 992 976 944 871 832 754 

 12 6PB r1 c.  1000 1000 1000 1000 998 991 958 918 885 822 

12MinResIV  1000 1000 998 978 920 868 794 711 646 627 

12MinResIV cr  995 872 814 702 674 616 561 547 482 444 

SFs of the designs when the responses are generated with model (4) 

     
2  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

12DSD  0 28 63 91 114 126 130 130 152 139 

12DSD cr  0 27 62 84 109 116 140 117 120 140 

 12PB 6 1.  1000 1000 997 983 935 852 735 634 564 513 

 12 6PB r1 c.  1000 1000 999 983 931 833 745 644 572 495 

12MinResIV  1000 999 976 883 728 664 498 447 383 326 

12MinResIV cr  1000 1000 973 850 743 618 509 476 413 356 

 

Table 6: Standard deviations for various counted numbers 

Probability 0.99 0.95 0.85 0.75 0.65 0.55 0.50 

Standard deviation 3.1 6.9 11.3 13.7 15.1 15.7 15.8 
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Table 7: The SFs of the three types of designs without and with a center run (cr), varying the noise 
2 from 0 to 2.4 in steps of 0.2 when the region is changed. Responses are generated with model 

(5) and model (6) 

SFs of the designs when the responses are generated with model (5) 

     
2  0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 

12DSD  1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 997 995 988 

12DSD cr  1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 995 993 

 12PB 6 1.  1000 1000 1000 1000 1000 1000 1000 996 990 974 965 923 888 

 12 6PB r1 c.  1000 1000 1000 1000 1000 1000 999 999 994 988 954 927 886 

12MinResIV  1000 1000 1000 1000 1000 1000 996 991 965 927 886 850 790 

12MinResIV cr  1000 1000 1000 1000 1000 999 996 984 957 920 862 829 782 

 

SFs of the designs when the responses are generated with model (6) 

     
2  0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 

12DSD  1000 1000 1000 1000 1000 1000 996 982 949 921 893 813 722 

12DSD cr  1000 1000 1000 1000 1000 999 998 980 950 917 858 800 735 

 12PB 6 1.  1000 1000 997 952 804 664 521 462 350 313 291 269 264 

 12 6PB r1 c.  1000 1000 999 948 830 670 544 432 403 345 287 263 279 

12MinResIV  1000 1000 1000 973 911 818 719 628 547 493 452 418 355 

12MinResIV cr  1000 1000 1000 976 916 812 691 645 550 491 419 385 340 

 

 

Table 8: The SFs for each of the three types of designs without and with a center run (cr), varying 

the noise 
2 from 0.1 to 1. All coefficients are drawn uniformly from the interval [-1, 1] 

 
Overall performance of all six designs when responses are generated with a model of type 1. Case 1 

     
2  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

12DSD  870 771 677 566 501 465 378 330 278 256 

12DSD cr  876 771 669 577 504 446 356 330 293 266 

 12PB 6 1.  997 984 927 854 757 639 528 446 406 336 

 12 6PB r1 c.  991 973 930 838 731 662 520 475 375 318 

12MinResIV  991 947 888 791 720 627 519 496 364 313 

12MinResIV cr  981 928 862 801 684 614 524 445 379 313 
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Table 9: The SFs of the three types of designs without and with center run (cr), varying the noise 
2 from 0.1 to 1. Coefficients in front of linear and product terms are drawn uniformly from the 

interval [-3, 3] and coefficients in front of quadratic terms from the interval [-1, 1] 

 
Overall performance of all six designs when responses are generated with a model of type 1. Case 2 

     
2  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

12DSD  960 936 887 835 803 784 742 710 695 676 

12DSD cr  956 938 880 824 816 794 740 720 665 628 

 12PB 6 1.  1000 1000 997 992 988 983 960 956 949 915 

 12 6PB r1 c.  998 999 996 992 987 977 960 967 944 905 

12MinResIV  1000 998 993 975 961 953 942 903 900 864 

12MinResIV cr  994 994 992 970 962 953 928 912 894 848 

 

Table 10: The SFs of the three types of designs without and with a center run (cr), varying the noise 
2 from 0.1 to 1.0. Coefficients in front of linear and product terms are drawn uniformly from the 

interval [-1, 1] and coefficients in front of quadratic terms from the interval [-3, 3] 

 
Overall performance of all six designs when responses are generated with a model of type 1. Case 3 

     
2  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

12DSD  866 781 667 573 522 430 400 336 300 242 

12DSD cr  875 789 654 585 504 432 401 328 307 260 

 12PB 6 1.  995 977 931 843 736 645 530 472 395 302 

 12 6PB r1 c.  923 885 837 740 641 573 495 409 327 285 

12MinResIV  987 949 897 798 724 616 535 448 399 363 

12MinResIV cr  889 840 792 707 631 563 465 426 352 349 

 

Table 11: The SFs of the three types of designs without and with a center run (cr), varying the noise 
2 from 0.1 to 1. All coefficients are drawn uniformly from the interval [-3,3] 

 
Overall performance of all six designs when responses are generated with a model of type 1. Case 4 

     
2  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

12DSD  956 919 867 842 788 778 713 693 659 657 

12DSD cr  956 920 878 844 805 779 721 710 654 647 

 12PB 6 1.  1000 999 998 996 996 978 974 950 930 896 

 12 6PB r1 c.  994 994 997 986 984 977 962 936 922 901 

12MinResIV  998 993 987 970 955 951 934 903 890 876 

12MinResIV cr  988 979 967 957 956 937 909 871 845 843 
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Table 12: A 22  design showing the effect of four combinations of effect sizes. 1F  represents 

the size of the coefficients in front of linear and product terms and 2F  represents the size of  

the terms in front of the quadratic terms 

1F  2F  12DSD  12PB (6.1) MinResIV12 

- -         0 0.3 0.2 

+ -        0.2 1.0 0.9 

- +         0 0.3 0.2 

+ +        0.2 0.9 0.7 

  Ave.: 0.1 Ave.: 0.625 Ave.: 0.50 

 

Table 13: The SFs of the three types of designs without and with a center run (cr), varying the noise 
2 from 0.1 to 1.0. All coefficients are drawn uniformly from the interval [-1, 1] 

 
Overall performance of all six designs when responses are generated with a model of type 2. Case 1 

     
2  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

12DSD  491 442 439 357 341 290 259 237 223 173 

12DSD cr  495 451 436 346 303 303 249 220 227 172 

 12PB 6 1.  996 980 931 860 757 693 572 493 426 372 

 12 6PB r1 c.  993 983 928 880 790 673 591 500 436 407 

12MinResIV  997 969 911 835 746 647 597 509 448 368 

12MinResIV cr  992 950 897 843 731 684 601 519 427 407 

 

Table 14: The SFs of the three types of designs without and with a center run (cr), varying the noise 
2 from 0.1 to 1.0. Coefficients in front of linear terms are drawn uniformly from [-3, 3] and 

coefficients in front of product terms from the interval [-1, 1] 

 
Overall performance of all six designs when responses are generated with a model of type 2. Case 2 

     
2  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

12DSD  785 776 746 717 680 670 646 633 616 561 

12DSD cr  779 780 762 732 646 678 662 645 600 571 

 12PB 6 1.  1000 995 976 960 910 871 822 788 730 642 

 12 6PB r1 c.  999 995 982 955 927 884 832 776 724 654 

12MinResIV  996 985 974 938 900 851 833 781 753 672 

12MinResIV cr  997 987 976 935 901 856 812 787 739 673 
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Table 15: The SFs of the three types of designs without and with a center run (cr), varying the noise 
2 from 0.1 to 1. Coefficients in front of linear terms are drawn uniformly from [-1, 1] and 

coefficients in front of product terms from the interval [-3, 3] 

 
Overall performance of all six designs when responses are generated with a model of type 2. Case 3 

     
2  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

12DSD  185 182 133 144 119 97 93 83 90 86 

12DSD cr  183 176 143 140 125 97 85 79 78 84 

 12PB 6 1.  1000 1000 993 994 989 970 970 947 917 886 

 12 6PB r1 c.  1000 1000 995 993 990 975 971 947 905 900 

12MinResIV  999 993 991 974 970 944 921 902 853 827 

12MinResIV cr  1000 997 992 984 967 945 944 916 851 847 

 

Table 16: The SFs of the three types of designs without and with a center run (cr), varying the noise 
2 from 0.1 to 1.0. All coefficients are drawn uniformly from the interval [-3,3] 

Overall performance of all six designs when responses are generated with a model of type 2. Case 4 

     
2  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

12DSD  542 528 486 492 471 436 404 400 396 404 

12DSD cr  536 522 483 489 466 471 421 420 401 390 

 12PB 6 1.  1000 1000 998 996 986 976 967 943 920 913 

 12 6PB r1 c.  1000 1000 997 996 985 974 965 943 939 922 

12MinResIV  999 998 990 983 960 946 926 908 911 878 

12MinResIV cr  999 995 990 982 969 958 952 910 906 887 

 

 

 


