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Abstract: Physical activity monitoring algorithms are often developed using conditions that do not
represent real-life activities, not developed using the target population, or not labelled to a high
enough resolution to capture the true detail of human movement. We have designed a semi-structured
supervised laboratory-based activity protocol and an unsupervised free-living activity protocol and
recorded 20 older adults performing both protocols while wearing up to 12 body-worn sensors.
Subjects’ movements were recorded using synchronised cameras (≥25 fps), both deployed in a
laboratory environment to capture the in-lab portion of the protocol and a body-worn camera for
out-of-lab activities. Video labelling of the subjects’ movements was performed by five raters using
11 different category labels. The overall level of agreement was high (percentage of agreement
>90.05%, and Cohen’s Kappa, corrected kappa, Krippendorff’s alpha and Fleiss’ kappa >0.86). A total
of 43.92 h of activities were recorded, including 9.52 h of in-lab and 34.41 h of out-of-lab activities.
A total of 88.37% and 152.01% of planned transitions were recorded during the in-lab and out-of-lab
scenarios, respectively. This study has produced the most detailed dataset to date of inertial sensor
data, synchronised with high frame-rate (≥25 fps) video labelled data recorded in a free-living
environment from older adults living independently. This dataset is suitable for validation of existing
activity classification systems and development of new activity classification algorithms.
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1. Introduction

The share of people aged 65 years and over, among the world’s dependents, has doubled since
the mid-1960s, reaching 20% in 2015. Projections estimate that by 2050, older persons will account
for 36% of people in the dependent age group worldwide [1]. With this projected shift in population
demographics, increased demand will be placed on national health care services and budgets. The
classification and monitoring of human physical activities, using wearable technology, can improve
health assessment and monitoring systems and thus promote safer independent living and early
detection of health deterioration in this population.

Recent developments in integrated circuit design and specifically Micro Electro Mechanical
Systems (MEMS) technology has stimulated the advancement of ubiquitous body-worn inertial sensors,
facilitating the accurate measurement of body-segment kinematics. These MEMS-based inertial sensors
consist of a seismic mass suspended using supporting springs, etched into the silicon layer of miniature
integrated circuits. Movement of the mass is governed by the combination of Hook’s Law and Newton’s
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Second Law, with the displacement of the mass measured using differential capacitance, and is thus
proportional to the force applied resulting in a sensor capable of measuring acceleration due to
movement and gravity. Thus, body-worn MEMS-based inertial sensors have been used to develop
algorithms for both multi-location and single-location sensor systems for human physical activity
and behaviour recognition [2,3]. However, even with the advances in wearable technology, there are
several challenges related to accurately identifying aspects of human movement from body-worn
sensors, the central issue being the lack of a high quality gold-standard dataset for development and
validation of these algorithms.

The weak point in many validation and algorithm development studies is the selection and
circumstances related to the performance of the physical activities recorded. Often, datasets are
recorded in a laboratory setting, or in the person home-environment, with the researcher instructing
the subject to perform a sequence of specific postural transitions and movements, which can lead to
the movements being performed unnaturally. This behavioural change, due to an awareness of being
observed, is known as the Hawthorne effect [4,5]. Another negative aspect of many studies is that
young healthy subjects are recruited to perform the activities that are used in algorithm development,
where the target group is older adults. It is thus essential to include a population-specific subject group
during data harvesting that matches the target audience to avoid algorithm bias.

Supervised scripted protocols have traditionally been used to compile datasets of the quantity of
desired activities, with the participant fully in the knowledge of what is being recorded [6–9]. This is
otherwise referred to as a Standardized Protocol [10]. This type of protocol is suitable for compiling
the required dataset in a balanced way, but can suffer from the previously described Hawthorne
effect. A semi-structured supervised protocol, where participants are asked to perform a task while
an observer is present logging the activities, requires specific postures, transitions or movements, to
be performed in order to complete the task. This method will generate more representative activities
and postures, for example, while a subject is seated at a table, they can be instructed to “pick-up an
object from the floor” which is placed at a distance. This task will require sitting, sit-to-stand/walk
and walk/stand-to-sit transitions, walking, standing and bending down. Protocols of this nature have
previously been completed by, for example, Masse et al. [11,12], with 12 mobility-impaired stroke
patients and Grant et al. [13] with 10 adults. Task-based protocols of this nature will thus produce
more realistic activities.

Recently Lindemann et al. [10] provided recommendations for standardising validation
procedures when assessing the physical activity of older persons through monitoring of body postures.
Parameters to describe physical activity are related to body postures and movements, as characterised
by the FITT principle, which considers that physical activity can be measured by four main components,
Frequency, Intensity, Time and Type, where the Type of activity (i.e., the main body postures and
movements) are formed by: lying, sitting, standing, walking and body transitions.

A fully free-living unsupervised protocol is where participants perform their daily routine in
their own home environment, without a prescribed protocol or supervision from a study investigator.
However, implementing a fully free-living protocol is not feasible, as people perform a wide variety
of activities and in order to compile adequate data for each activity (e.g., lying), long monitoring
periods would be required. A compromise is to monitor activity in a natural setting, and to request
people to include certain tasks into their daily routine during a defined time period. This type
of protocol will produce more representative activities and postures, since the user is not directly
observed and is carrying out the protocol in their own home environment. Such protocols have been
used by Bao et al. [14] where subjects completed an “obstacle course” unsupervised, consisting of a
series of activities. However, subjects manually recorded the time they began and finished each task.
Doherty et al. [15] used body-worn cameras to record people’s unscripted movements in their daily
life. However, with a low frame-rate (one image every 1 to 3 s), the beginning and end of each posture
and activity cannot be labelled to a high accuracy.
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Even with improvements in protocol design, the methods of annotation of recorded datasets for
the development and validation of activity classification algorithms can be improved upon. Such
methods include self-report labelling [14]; direct human observation of the person’s movements
labelled in real-time on paper [16]; using a portable device (e.g., touch screen tablet) or laptop [17];
a combination of video recordings and reference inertial sensor [12]; or a previously validated
inertial sensor-based reference system [18] with the method of direct observation combined with
live annotation, as reported in [17] and employed in [18]. This last method suffers from human error
and inaccuracy due to attentive observation and a reported error of 1 to 3 s [17]. Video validation of
inertial sensor-based activity monitors has previously been performed by Taylor et al. [19] who used
video analysis to allocate four categories (standing, sitting, lying, and locomotion) in 1 s resolution;
Capela et al. [20] who used six categories (stand, sit, lie, walk, stairs, and small moves) in 1 s resolution;
and Aminian et al. [21] who used five categories and a resolution of 10 s. However, the video resolution
of these recordings is insufficient to validate various daily life activity transitions, where typically
higher resolutions of tens of frames per second is necessary [22].

The aim of this study is to resolve previous shortcomings by compiling a comprehensive reference
dataset of representative activities from an older adult population that is suitable for the validation of
existing activity classification algorithms and allows for the development of new activity classification
algorithms using the harvested raw sensor data.

2. Materials and Methods

The aim of this study will be achieved in two steps: (1) develop and describe a comprehensive
flexible semi-structured supervised task-based protocol, and a free-living unsupervised task-based
protocol, where a wide range of representative activities and postures are included; and (2) compile
a representative reference dataset using a population of community dwelling older adults recorded
performing the developed protocols, while being monitored using high frame-rate video technology
of ≥25 fps (≤0.04 s resolution) and a selection of multiple, synchronised body-worn inertial sensors.

2.1. Subjects

A convenience sample of 20 older adult participants was recruited from a senior citizen centre
in the Trondheim area in Norway. As inclusion criteria, participants were required to: (1) be over
65 years of age; (2) be able to walk 100 m without walking aids; (3) accept oral instructions; and
(4) be living independently. A total of 5 male and 15 female were recruited, ranging in age from 68 to
90 years (76.4 ± 5.6 years), body mass from 56 to 93 kg (73.7 ± 11.4 kg), and height from 1.56 to 1.81 m
(1.67 ± 0.072 m). The Regional Committee on Ethics in Medical Research in Central Norway approved
the trial protocol and subjects provided written informed consent.

2.2. Sensor Set-Up

The choice of sensors and body locations was motivated by the potential for algorithm
development from popular activity monitoring device attachment locations [2,3] and existing large
datasets recorded from independent living older adults in previous projects, where detection of falls
and the assessment of fall risk was the focus (see Table 1 and Figure 1). These projects include the
FARSEEING project [23], the Generation 100 project [24], the PreventIT project [25] and the HUNT
population-based study [26]. Through developing accurate activity classification algorithms from
different body-worn sensor locations, used by the sensors in each project, a common output can be
obtained. This harmonises these datasets and allows for the development of fall-risk assessment
algorithms through a common physical activity output.
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Table 1. List of sensors and devices, attachment locations and company/institution.

Device ActivPAL3 uSense Axivity (AX3) Smartphone Samsung
Galaxy S3

ActiGraph
(GT3X+) Sensewear Shimmer3

Location Thigh Thigh, L5, Chest,
Feet Thigh, Upper Back L5 Waist Tricep Non-dominant

wrist

Size 35 × 53 × 7 (mm) 67 × 42 × 10 (mm) 23 × 32.5 × 7.6 (mm) 136.6 × 70.6 × 8.6 (mm) 46 × 33 × 15 (mm) 55 × 62 × 13 (mm) 51 × 34 × 14 (mm)

Weight 15 g 36 11 g 133 g 19 g 45.4 g 23.6 g

Sampling frequency 20 Hz 100 Hz ~100 Hz (variable) ~100 Hz (variable) 100 Hz 1–8 samples/min 204.8 Hz

Battery
life/Recording time >8 days 72 h

Memory for 14 days
continuous logging at

100 Hz
16 h 13 days @ 100 Hz 11.25 h

11.75 days @
10 Hz/4.6 days @
1 kHz (450 mAh)

Sensor 3D accelerometer
3D accelerometer,

gyroscope and
magnetometer

3D accelerometer
3D accelerometer,

gyroscope and
magnetometer

3D accelerometer
3D accelerometer,

GSR, Temperature,
proprietary

3D accelerometer,
gyroscope and
magnetometer

Measurement range ±2 g ±2 g, ±250◦/s,
±1200 µT ±8 g ±2 g ±6 g ±2 g ±8 g, ±1000◦/s,

±1900 µT

Company/Institution PAL Technologies
Ltd., Glasgow, UK

University of
Bologna, Italy

Axivity, Bath Lane,
Newcastle upon Tyne

NE4 5TF, UK

Samsung Electronics
Co., Ltd., Suwon,

South Korea

Actigraph, 49 East
Chase Street.

Pensacola,
FL 32502, USA

Temple Healthcare
Pty Ltd.,

Mittagong, NSW
2575, Australia

Shimmer, DCU
Alpha, Dublin 11,

Ireland
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using the following procedure (see flowchart Figure 2). First, the Compendium of Physical Activity 
by Ainsworth et al. [27] was consulted to identify individual postures and behaviours that occur in 
everyday life; Second, these postures and behaviours were combined to 41 independent categories 
(e.g., walking, sitting, standing, etc.); Third, activities related to sport and other confounding 
activities were excluded, resulting in a list of 11 individual posture and behaviours represented in 
Table 2 that are related to daily physical activity. Fourth, transitions between the 11 general postures 
and behaviours were defined, as presented in Table 3. Several transition types were not included as 
part of the protocol as they are either rare events (e.g., lie-to-picking and lie-to-leaning) or will not 
induce a meaningful transfer (e.g., picking-to-leaning, kneeling-to-picking, and kneeling-to-leaning). 
Two task-based protocols were then designed to collect a minimum sufficient number of the desired 
transitions, (1) a supervised semi-structured protocol and (2) a free-living unsupervised protocol. A 
more detailed breakdown of the desired quantity of general postures, transitions and behaviours for 
the supervised semi-structured protocol is described in Appendix A, Table A1, and the free-living 
protocol in Appendix B, Table A2. 

 
Figure 2. Flowchart depicting the selection of the 11 general postures and behaviours that are listed 
below in Table 2. 

Figure 1. The sensors configuration, where * indicates the sensors that will only be used in the
semi-structured protocol, and ** indicates the camera that will be attached for the out-of-lab activities.

2.3. Activity Selection

A list of activities that are commonly performed in everyday life by older adults was compiled
using the following procedure (see flowchart Figure 2). First, the Compendium of Physical Activity
by Ainsworth et al. [27] was consulted to identify individual postures and behaviours that occur in
everyday life; Second, these postures and behaviours were combined to 41 independent categories
(e.g., walking, sitting, standing, etc.); Third, activities related to sport and other confounding activities
were excluded, resulting in a list of 11 individual posture and behaviours represented in Table 2
that are related to daily physical activity. Fourth, transitions between the 11 general postures and
behaviours were defined, as presented in Table 3. Several transition types were not included as
part of the protocol as they are either rare events (e.g., lie-to-picking and lie-to-leaning) or will not
induce a meaningful transfer (e.g., picking-to-leaning, kneeling-to-picking, and kneeling-to-leaning).
Two task-based protocols were then designed to collect a minimum sufficient number of the desired
transitions, (1) a supervised semi-structured protocol and (2) a free-living unsupervised protocol.
A more detailed breakdown of the desired quantity of general postures, transitions and behaviours
for the supervised semi-structured protocol is described in Appendix A, Table A1, and the free-living
protocol in Appendix B, Table A2.
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Table 2. The general purpose categories.

General Postures and Behaviours Category

walking upright activity
shuffling upright activity

stairs (ascending) upright activity
stairs (descending) upright activity

standing upright posture
transition postural transition

sitting non-upright posture
lying non-upright posture

leaning non-upright posture
picking non-upright posture
kneeling non-upright posture

Table 3. Matrix of transfers between non-upright static postures and from non-upright static posture to
an upright posture or upright activity. Transitions in grey were deemed unnecessary to include in the
protocol as they are either rare events or will not induce a meaningful transfer.

Standing Sitting Lying Kneeling * Object
Picking

Leaning to
Each Side Stepping

Standing stand-to-sit stand-to-lie stand-to-
kneeling *

stand-to-pick
off the floor

stand-to-
leaning

stand-to-
stepping

Sitting sit-to-stand sit-to-lie sit-to-
kneeling *

sitting pick off
the floor

sit-to-
leaning * sit-to-stepping

Lying lie-to-stand lie-to-sit lie-to-
kneeling * lie-to-picking lie-to-leaning lie-to-stepping

Kneeling * kneeling-
to-stand * kneeling-to-sit * kneeling-

to-lie *
kneeling-to-

picking
kneeling-to-

leaning
kneeling-to-
stepping *

Object
picking

pick off the
floor-to-stand

pick off the
floor sitting

pick object
then lie

picking-to-
kneeling

picking-to-
leaning

pick off the
floor-to-stepping

Leaning to
each side

leaning to
each

side-to-stand

lean (forward,
left and right)

sitting *
leaning-to-lie leaning-to-kneeling leaning-to-

picking
leaning-to-
stepping

Stepping stepping-to-
stand stepping-to-sit stepping-

to-lie
stepping-to-
kneeling *

pick an
object-to-stepping

stepping-to
leaning

* indicates that this transfer/posture is only relevant for the in-lab protocol due to its difficult nature.

2.4. Supervised Semi-Structured Protocol

The semi-structured protocol was performed in a smart-home environment in the Usability
Laboratory at the Faculty of Medicine at the Norwegian University of Science and Technology,
Trondheim, Norway. This laboratory consists of three rooms plus an observation room. The three
rooms contained different types of furniture and ceiling-mounted cameras, which are monitored and
controlled from the observation room (see Figure 3). MultiCam Studio and Camtasia Studio screen
software was used to control and capture the camera feeds from the smart-home environment. The
resulting video was recorded at 25 fps at a resolution of 768 pixels × 576 pixels in an AVI file format.

The subjects were instructed to perform the task-based protocol described in Table 4, where the
instruction set is presented in Appendix C, Table A3. A synchronisation handshake was performed
in view of the cameras prior to sensor attachment. The handshake consisted of a series of static and
dynamic movements of the sensors which were evident in the root-sum-of-squares accelerometer
signal. Through identifying the maximum correlation between the square wave outputs from the
static/dynamic video data, synchronisation between the cameras and the raw sensors’ signals is
achieved. The sensors were then fitted to the participants in the configuration described in Figure 1.
Once all sensors were attached, the supervised semi-structured protocol was performed by the
participant, guided by one of the study investigators. Prior to completion of the stair climbing
tasks, a GoPro1 Hero3+ camera was attached to the chest of the participant using a GoPro ChestyTM

harness (GoPro, Inc., San Mateo, CA, USA). A second synchronisation handshake, consisting of
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standing, lying and jumping was performed, allowing for synchronisation between the GoPro camera,
the raw sensor’s signals and the Usability Laboratory cameras. This also constituted the transition to
the out-of-lab scenario. The study investigator then instructed the participant on completing the stair
climbing task. Following this the sensors attached to the feet were removed and the participants were
provided with a taxi and returned home to perform the free-living protocol unsupervised, see Table 5.
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Table 4. The semi-structured supervised task-based protocol.

Semi-Structured Protocol

Stand-to-sit-to-stand at a table
Stand-to-sit-to-stand on a soft chair

Sit-to-kneel-to-sit
Stand-to-lie-to-stand
Lying-to-sit-to-lying

Stand-to-kneel-to-stand
Stand-to-pick an object off the floor-to-stand

Stand-to-lean to pick an object off a table forward-to-stand
Stand-to-sit, while sitting, pick an object off the floor forward-to-stand

Stand-to-sit, while sitting, pick an object off the floor right-to-stand
Stand-to-sit, while sitting, pick an object off the floor left-to-stand

Stand-to-sit at a table-to-walk-to-pick an object off the floor-to-sit-to-stand
Lying-to-walk-to-pick an object off the floor-to-lying

Sitting on a soft chair-to-walk-to-pick an object off the floor-to-walk-to-sit
Stand-to-move objects from one table to another

Stand-to-walk(normal)-to-stand
Stand-to-walk(fast)-to-stand

Stand-to-walk(slow)-to-stand
Stand-to-ascend stairs-to-stand-to-descend stairs
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Table 5. The free-living unsupervised task-based protocol.

Free-Living Protocol

Sit at a table and write a letter/list or read
Sit on an armchair watch TV/video, or read a magazine

Sit on a low stool or toilet seat (lid down clothes on, simulation only)
Lie on a bed, clothes on

Get in and out of a car or sit on a bed
Prepare and consume a drink or food while standing

Set a table for dinner or move from one counter to another many times (up to 10) (shuffling)
Simulate unloading a washing machine for 10 s or prepare a fireplace

Pick an object off the floor then replace or tie/untie shoe laces
Climbing and descending stairs or walking up and down an inclined path

Remove clothes from washing machine and hang on clothes rack or remove rubbish from bin and dispose
Sit and prepare and eat something

Clean mirror or clean a window
Wash and dry hands
Sit at a table and read

2.5. Free-Living Unsupervised Protocol

The participants were instructed to perform the free-living tasks, see Table 5, in their own chosen
order in their home environment. The free-living unsupervised tasks were recorded using a body-worn
camera, GoPro Hero3+ camera (GoPro, Inc., San Mateo, CA, USA) with a 64 GB SanDisk Ultra XC
I micro SD card, worn at the chest, attached using a harness (GoPro ChestyTM). Video files were
recorded at 29.97 fps at 1280 pixels × 720 pixels in an MP4 format in 20-min lengths. The GoPro
camera was pointed towards the feet as illustrated in Figure 4. This camera angle was chosen as it
provides a view of both the subject’s lower extremities and the local environment simultaneously, thus
allowing for convenient identification of the type of activity and the orientation of the body relative
to the surroundings. The sensors and the GoPro camera were collected in the evening by a project
co-worker, after the GoPro camera had stopped recording and the participant had removed the sensors.
The camera and sensors’ data were downloaded to a computer in their respective raw data formats,
using a USB interface, for later off-line data processing and analysis using MATLAB (The MathWorks
Inc., Natick, MA, USA).
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2.6. Pre-Processing and Video Annotation

The video files from the Usability Laboratory were split into files of maximum 20 min in
length, using VideoPad by NCH Software (NCH Software, Inc., Greenwood Village, CO, USA) to
make them compatible with the video annotation software. The videos obtained by both the wall
mounted and the body-worn camera were then converted into an AVI file format with a resolution of
640 pixels × 360 pixels using a the Apple Cinepak codec, maintaining a frame rate of 25 fps and 30 fps,
respectively. The videos were annotated using the Anvil software package [28]. It offers multi-layered
annotation based on a user-defined coding scheme. An activity track was created where the 11 general
postures and behaviours in Table 2 could be inserted (see example in Figure 5).
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Figure 5. Screenprint of the Anvile software. The general postures and behaviors are visualized as
boxes/rectangles on parallel tracks along a horizontal timeline. An exported frame-by-frame output
was used for analysis.

Four raters individually labelled the videos of in-lab activities and five labelled the out-of-lab
activity videos. Raters were instructed to label the activities described in Table 2, using a set of
definitions, and not allow any space between any elements in the activity track. In addition, an
“undefined” category was introduced that occurred when the rater could not determine what activity
the person was performing, if the camera view became blocked, or the lighting was poor. The labelling
took place in a swipe-card secured PC laboratory at the Faculty of Neuroscience at St. Olav’s Hospital.
One 20 min in-lab and one out-of-lab video were randomly chosen to test for the inter-rater reliability
of the four and five raters, respectively. The statistics for the inter-rater reliability were Category
Agreement percentage [29], Cohen’s kappa [29], corrected kappa, Krippendorff’s alpha [30] and
Fleiss’s kappa.

For all video labelled data, the following statistics were recorded for both the in-lab and free-living
protocols: the quantity of activities, the maximum bout length, minimum bout length, average bout
length, the standard deviation, the total time and the percentage of the overall activity time.
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3. Results

3.1. In-Lab Scenario

3.1.1. Inter-Rater Reliability

The overall level of agreement was high for the in-lab video coding, with the percentage of
agreement at 90.85% and Cohen’s kappa, corrected kappa, Krippendorff’s alpha and Fleiss’s kappa all
over 0.86, see Table 6.

Table 6. Inter-rater reliability statistics for the in-lab scenario.

Inter-Rater Reliability Statistics Average Maximum Minimum

Category agreement (%) 90.85 92.34 89.03
Cohen’s kappa 0.88 0.90 0.86

Corrected kappa 0.90 0.91 0.87
Krippendorff’s alpha 0.88 0.90 0.86

Fleiss’s (overall) kappa = 0.8809, kappa error = 0.0011, kappa C.I. (95%) = 0.8803, 0.8815, Perfect
agreement, z = 794.76, p < 0.001 (p = 1.0 × 10−21), Reject null hypothesis: observed agreement is
not accidental.

3.1.2. Activities

A total of 9.521 h of in-lab activities were recorded using the semi-structured protocol (see Table 7)
The activity standing was the most commonly performed activity (34.01%) followed by sitting (23.67%),
transition (18.31%), walking (13.02%), shuffling (6.10%) and lying (4.09%). The activities of kneeling,
picking and leaning accounted for less than 1% of all activities recorded (0.79%).

Table 7. Summary of the in-lab activities, excluding Undefined, Static, Dynamic, Shake and Jumping.

Activities Quantity Maximum
Bout (s)

Minimum
Bout (s)

Average
Bout (s)

Standard
Deviation (s) Total (s) Total (%)

Standing 1618 296.897 0.033 7.21 16.35 11,658 34.01%
Sitting 885 267.364 0.033 9.17 20.13 8113 23.67%

transition 2692 13.233 0.234 2.33 1.40 6278 18.31%
Walking 780 23.52 0.04 5.72 3.17 4463 13.02%
Shuffling 1112 36.266 0.033 1.88 2.20 2091 6.10%

Lying 232 113.232 0.133 6.05 9.84 1403 4.09%
Kneeling 56 33.84 0.067 2.39 4.99 134 0.39%
Picking 427 2.767 0.0329 0.23 0.29 99 0.29%
Leaning 78 2.567 0.033 0.51 0.57 40 0.12%

Total (s) 34,276.76
Total (h) 9.521

3.1.3. Transitions

A total of 2640 transitions were planned for the in-lab scenario, however, 2677 transitions were
recorded in total. Of the 2677 transitions recorded, 2333 were part of the protocol, while the remaining
344 were not. Thus 88.37% of planned transitions were recorded (Table 8). Out of the 22 types of
transitions that were part of the protocol, 13 produced fewer transitions (range from −63.33% to
−1.58% fewer), while nine produced more (range from 36.67% to 1.11%). A total of 18 transitions that
were not part of the protocol were also performed.
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Table 8. In-lab transitions, the recorded transitions, the difference and the percentage difference.

Transitions Planned Transitions Recorded Transitions Difference % Difference

Standing-transition-sitting 380 374 −6 −1.58%
Sitting-transition-standing 380 309 −71 −18.68%
Sitting-transition-picking 180 182 2 1.11%
Picking-transition-sitting 180 164 −16 −8.89%

Walking-transition-picking 180 166 −14 −7.78%
Shuffling-transition-picking 7 n/a
Standing-transition-picking 60 66 6 10.00%
Picking-transition-walking 180 142 −38 −21.11%
Picking-transition-shuffling 32 n/a
Picking-transition-standing 60 82 22 36.67%
Sitting-transition-walking 120 150 30 25.00%
Sitting-transition-shuffling 45 n/a
Walking-transition-sitting 120 99 −21 −17.50%
Shuffling-transition-sitting 55 n/a

Sitting-transition-lying 60 76 16 26.67%
Lying-transition-sitting 60 66 6 10.00%

Lying-transition-walking 60 74 14 23.33%
Lying-transition-shuffling 17 n/a
Walking-transition-lying 60 33 −27 −45.00%
Shuffling-transition-lying 49 n/a
Standing-transition-leaning 60 65 5 8.33%
Walking-transition-leaning 7 n/a
Sitting-transition-leaning 3 n/a

Shuffling-transition-leaning 1 n/a
Leaning-transition-standing 60 65 5 8.33%
Leaning-transition-walking 7 n/a
Leaning-transition-sitting 3 n/a
Leaning-transition-leaning 2 n/a
Leaning-transition-shuffling 1 n/a
Standing-transition-lying 100 62 −38 −38.00%
Lying-transition-standing 100 51 −49 −49.00%
Sitting-transition-kneeling 60 30 −30 −50.00%
Kneeling-transition-sitting 60 22 −38 −63.33%
Kneeling-transition-standing 60 30 −30 −50.00%
Kneeling-transition-shuffling 4 n/a
Standing-transition-kneeling 60 25 −35 −58.33%

Sitting-transition-sitting 85 n/a
Lying-transition-lying 12 n/a

Standing-transition-standing 8 n/a
Picking-transition-picking 6 n/a

Total 2640 2677 37

3.2. Out-of-Lab Scenario

3.2.1. Inter-Rater Reliability

The overall level of agreement was high for the out-of-lab video labelling, with the percentage of
agreement at 90.05% with Cohen’s Kappa, corrected kappa, Krippendorff’s alpha and Fleiss’s kappa
all over 0.86 (see Table 9).

Fleiss’s (overall) kappa = 0.8615, kappa error = 0.0009, kappa C.I. (95%) = 0.8611, 0.8620, Perfect
agreement, z = 915.08, p < 0.001 (p = 1.0 × 10−21), Reject null hypothesis: observed agreement is
not accidental.
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Table 9. Inter-rater reliability statistics for the out-of-lab scenario.

Inter-Rater Reliability Statistics Average Maximum Minimum

Category agreement (%) 90.05 93.31 87.93
Cohen’s kappa 0.86 0.91 0.83

Corrected kappa 0.89 0.93 0.87
Krippendorff’s alpha 0.86 0.91 0.83

3.2.2. Activities

A total of 34.408 h of out-of-lab activities were recorded using the free-living protocol and the
stair-climbing task at the end of the semi-structured protocol (see Table 10). The activity sitting was
the most commonly performed activity (48.09%) followed by standing (22.17%), walking (14.22%),
transition (5.12%), shuffling (4.67%), leaning (2.32%) and lying (1.33%). The activities of stair climbing,
picking and kneeling accounted for 2.09% all activities recorded in the out-of-lab scenario.

Table 10. A summary of the out-of-lab activities, excluding Undefined, Static, Dynamic, Shake and
Jumping, which were used for synchronisation.

Activities Quantity Maximum
Bout (s)

Minimum
Bout (s)

Average
Bout (s)

Standard
Deviation (s)

Total
(s)

Total
(%)

Sitting 576 2075.6 0.04 103.42 221.04 59568 48.09%
Standing 4837 388.52 0 5.68 12.26 27458 22.17%
Walking 2926 163.6 0.28 6.02 9.91 17617 14.22%

Transition 3454 35.76 0.24 1.84 1.64 6346 5.12%
Shuffling 4290 20 0.04 1.35 1.31 5780 4.67%
Leaning 1233 67 0.0399 2.33 5.31 2870 2.32%

Lying 14 583.8 3.48 117.48 144.54 1645 1.33%
Stairs (ascending) 152 20.24 1.32 7.10 3.17 1079 0.87%

Stairs (descending) 120 17.48 1.1599 6.67 3.24 801 0.65%
Picking 306 29.84 0.033 2.25 4.10 688 0.56%

Kneeling 2 14.04 5.4 9.72 6.11 19 0.02%

Total (s) 123,870.130
Total (h) 34.408

3.2.3. Transitions

A total of 1080 transitions were planned as part of the free-living protocol, however
3442 transitions were recorded (see Table 11). In total, 16 transitions were planned as part of the
protocol, 10 produced fewer transitions (range from −100% to −4.17% fewer), with one transition not
being completed at all, “lying-transition-standing”, while six produced more (range from 290% to 70%
more). A total of 37 transitions that were not part of the protocol were also performed.

Table 11. Activity-Transition-Activity quantity.

Transitions Planned Transitions Recorded Transitions Difference % Difference

Standing-transition-leaning 100 271 171 171%
Standing-transition-lying 20 1 −19 −95.0%

Standing-transition-sitting 120 30 −90 −75.0%
Standing-transition-picking 40 68 28 70.0%
Sitting-transition-standing 120 37 −83 −69.17%
Sitting-transition-walking 120 115 −5 −4.17%
Sitting-transition-leaning 152 n/a

Sitting-transition-lying 20 8 −12 −60.0%
Sitting-transition-shuffling 39 n/a

Sitting-transition-sitting 187 n/a
Lying-transition-sitting 20 9 −11 −55.0%

Lying-transition-walking 20 4 −16 −80.0%
Lying-transition-standing 20 0 −20 −100.0%
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Table 11. Cont.

Transitions Planned Transitions Recorded Transitions Difference % Difference

Leaning-transition-standing 80 312 232 290.0%
Leaning-transition-walking 100 241 141 141.0%
Leaning-transition-sitting 151 n/a

Leaning-transition-shuffling 286 n/a
Leaning-transition-leaning 174 n/a
Picking-transition-standing 40 83 43 107.5%
Walking-transition-sitting 120 74 −46 −38.33%
Walking-transition-leaning 100 325 225 225.0%

Walking-transition-lying 20 3 −17 −85.0%
Shuffling-transition-leaning 264 n/a
Shuffling-transition-sitting 104 n/a

Shuffling-transition-picking 91 n/a
Picking-transition-shuffling 86 n/a
Walking-transition-picking 80 n/a
Picking-transition-walking 74 n/a
Leaning-transition-picking 29 n/a
Picking-transition-leaning 26 n/a

Leaning-transition-undefined 25 n/a
Picking-transition-picking 19 n/a

Undefined-transition-leaning 17 n/a
Sitting-transition-picking 11 n/a
Picking-transition-sitting 8 n/a

Picking-transition-undefined 7 n/a
Undefined-transition-picking 5 n/a
Sitting-transition-undefined 4 n/a

Undefined-transition-shuffling 3 n/a
Undefined-transition-sitting 3 n/a

Shuffling-transition-shuffling 2 n/a
Shuffling-transition-lying 2 n/a

Picking-transition-kneeling 2 n/a
Undefined-transition-walking 2 n/a

Stairs (ascending)-transition-leaning 1 n/a
Leaning-transition-stairs (ascending) 1 n/a
Stairs (ascending)-transition-picking 1 n/a

Shuffling-transition-undefined 1 n/a
Lying-transition-shuffling 1 n/a

Kneeling-transition-walking 1 n/a
Kneeling-transition-standing 1 n/a

Stairs (descending)-transition-picking 1 n/a

Total 1080 3442

3.3. In-Lab and Out-of-Lab Activities

A total of 43.93 h of video annotation activity data were recorded (see Table 12). The activity
sitting was the activity performed most often (42.8%), followed by standing (24.73%), walking
(13.96%), transitions (7.98%), shuffling (4.98%) lying (1.93%) and leaning (1.84%). The activities of stair
climbing, picking and kneeling account for less than 2% of the overall activity (1.78%). Considering
the most common activities of sitting, standing, lying and walking (including stair ascending and
stair descending) account for 84.61% of all activities recorded. However, the remaining activities of
transitions, shuffling, leaning, picking and kneeling do still constitute a relevant proportion of activities
(15.39%) which are often overlooked in activity classification systems.
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Table 12. Summary of the in-lab and out-of-lab activities, excluding Undefined, Static, Dynamic, Shake
and Jumping.

Activities Quantity Maximum
Bout (s)

Minimum
Bout (s)

Average
Bout (s)

Standard
Deviation (s)

Total
(s)

Total
(%)

Sitting 1461 2075.6 0.033 46.33 147.01 67,681 42.80%
Standing 6455 388.52 0.033 6.06 13.42 39,116 24.73%
Walking 3706 163.6 0.04 5.96 8.93 22,079.7 13.96%

Transition 6146 35.76 0.234 2.05 1.56 12,623.8 7.98%
Shuffling 5402 36.266 0.033 1.46 1.55 7870.8 4.98%

Lying 246 583.8 0.133 12.39 43.23 3047.8 1.93%
Leaning 1311 67 0.033 2.22 5.17 2909.3 1.84%

Stairs (ascending) 152 20.24 1.32 7.10 3.17 1078.5 0.68%
Stairs (descending) 120 17.48 1.1599 6.67 3.24 800.6 0.51%

Picking 733 29.84 0.0329 1.07 2.84 786.4 0.50%
Kneeling 58 33.84 0.067 2.63 5.15 153 0.10%

Total (s) 158,146.9
Total (h) 43.9297

4. Discussion

We have compiled a comprehensive dataset of representative activities from an independently
living, older adult population recorded using two task-based protocols in a laboratory setting and a
free-living setting in the participants’ home environment. This dataset is suitable for the validation
of existing activity classification algorithms and will allow for the development of new activity
classification algorithms using the harvested raw inertial sensor data.

A strength of the dataset is that it resulted from two protocols, a semi-structured protocol and a
free-living protocol. The semi-structured protocol is designed for a laboratory setting where activities
are performed under supervision; a protocol of this nature offers a compromise between achieving
the desired number of planned activities and transitions with the trade-off that these are performed
under supervised conditions and thus not performed as naturally as possible. The free-living protocol
is designed for a person’s own home environment, where activities are performed without any
supervision; a protocol of this nature prioritises the quality of the activities over the quantity of
activities, ensuring that activities are performed as naturally as possible. This design makes it suitable
to compare the performance of existing and new algorithms developed in an in-lab setting for an
out-of-lab application.

We used video data as the gold standard for classifying activities, with labelling of the subjects’
movements performed by five raters. For both the in-lab and out-of-lab video data, the overall level
of agreement was high (percentage of agreement at 90.85% and 90.05%, respectively). The Cohen’s
Kappa, corrected kappa, Krippendorff’s alpha and Fleiss’ kappa were all over 0.86 for both the in-lab
and out-of-lab videos for the chosen activity categories, thus demonstrating that the raters successfully
labelled the video data with a high level of agreement.

A total of 43.93 h of activities were recorded, including 9.52 h of in-lab activities and 34.41 h
of out-of-lab activities. Standing was the most commonly performed activity in the in-lab scenario
(34.01%), ahead of sitting (23.67%), while the opposite was true for the out-of-lab scenario, with
sitting performed more often in the out-of-lab scenario (48.09%) than standing (22.17%). In the in-lab
scenario, transitions were performed 18.31% of the time, whereas for the out-of-lab scenario, they
were performed less often (5.12%). The effect of the semi-structured protocol can be clearly seen
in the increased amount of transition time in the in-lab scenario due to the intensive nature of the
semi-structured protocol.

The quantity of walking in both scenarios was approximately equal, 13.02% for the in-lab scenario
and 14.22% for the out-of-lab scenario. There were more shuffling episodes in the in-lab scenario (6.1%)
than in the out-of-lab scenario (4.67%), being 23.44% higher in the in-lab scenario. However, both
were relatively low in both scenarios and were the fifth most common activity. Lying was much more



Sensors 2017, 17, 559 15 of 29

frequent in the in-lab scenario (4.09%) than in the out-of-lab scenario (1.33%), however this can be
expected as the out-of-lab recording did not include any overnight recording, and any lying activity
was motivated by the influence of both protocols. The difference between the percentages of activities
performed between the in-lab scenario and the out-of-lab scenario can be attributed to the influence of
the semi-structured protocol and the free-living protocol. In the semi-structured protocol, participants
were instructed to perform tasks which incorporated specific activities, while in the presence of a
study investigator. In the out-of-lab scenario, participants were only requested to incorporate specific
tasks as part of a free-living protocol and were not in the presence of a study investigator. They could
thus choose to perform these tasks how they wished or not at all. In addition, the semi-structured
protocol incorporated 19 different tasks to be completed three times, whereas the free-living protocol
incorporated 15 tasks to be completed only once.

The activities performed during the free-living protocol are less susceptible to the Hawthorn
effect [4,5] due to the unsupervised nature of the protocol; in addition, since the participants are
performing the protocol in their own home and thus a familiar environment, this results in a more
natural pattern of distribution of activities and performance quality. Ultimately, the application of
physical activity classification algorithms is in a free-living setting. If a high accuracy can be obtained
using video-validated data harvested in an in-field setting, more accurate algorithms can be developed.

The difference between the planned transitions and the recorded transitions in both protocols
can be attributed to the manner in which participants were able to perform the tasks. For the
semi-structured protocol the investigators planned the tasks to include specific activities. Thus,
the task “Stand-sit-stand at a table” was planned to consist of stand-transition-sit-transition-stand.
However, this task could have required the participant to adjust their body to position themselves
to sit on the chair placed at a table. This positioning of the body, for descent into a sitting position, could
have required some shuffling, which is also supported by the finding that more shuffling was
performed in the in-lab setting. Thus, this task could have consisted of stand-shuffle-transition-
sit-transition-shuffle-stand, for example, and thus shuffling-transition-sit and sit-transition-shuffling
may have been recorded instead of stand-transition-sit and sit-transition-stand.

The analysis of the difference between the planned transitions and the recorded transitions
provides an insight into modifications required that would produce a more balanced dataset of
activities, which can be efficiently accumulated as part of a semi-structured protocol.

This dataset is a valuable resource for the development of new physical activity classification
algorithms given the level of detail used in the annotation and the fact that a lower limit was placed
on the amount of rarely observed activities, e.g., lying and transitions. Thus, if this dataset is used
as part of a machine learning approach, transitions from a wide spectrum of physical activity will be
used and thus more robust algorithms can be developed. However, a limitation of this study is that
the dataset is not balanced. In order to create a dataset ideally suited to the development of an activity
classification algorithm, using a machine learning approach, a dataset with an equal amount of each
activity is preferred, thus eliminating any classification bias. This is referred to as a balanced dataset
in the work by Guiry et al. [31]. Even if the dataset created here can be described as unbalanced, it
does more closely reflect the proportion of activities that would occur in a real world setting, given the
nature of the free-living protocol, in that the participants were unsupervised for 78.32% of the time,
and were only given guidelines on which tasks to perform, not how and when. Future studies could
incorporate a higher frequency of certain tasks to increase the number of transitions and activities to
achieve a more balanced dataset; other techniques include using synthetic minority over-sampling [32]
to artificially increase the minority classes in the dataset, or simply removing data from the dataset to
create a balanced sub-set.

A strength of the current dataset is that actual older adults performed the protocols. This has not
always been the case for other studies, despite being aimed at developing algorithms for classifying
activities and for assessing features of movement behaviour in older adults. We included older
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home-dwelling adults who were independent in mobility only. Thus, this dataset is likely less suitable
for analysis of algorithms for older adults that are dependent in daily life activities.

To the best of our knowledge, this study is the first to generate a dataset of inertial sensor data
using a free-living protocol in an unsupervised setting, using high frame-rate video recording to label
participants’ movements, producing a dataset annotated at 25 frames per second recorded from older
adults. This will allow activity classification algorithms with inertial sensor data to be filtered up to
12.5 Hz (Nyquist–Shannon sampling theorem) if a window width of one frame is desired. Since the
typical frequency of body motion is often below 10 Hz [33], with 99% of body motion energy contained
below 15 Hz, the developed algorithms will almost entirely capture the details of human movement,
thus alleviating the measurement error that is often a feature of existing activity classification devices,
since these datasets are often labelled with a resolution of approximately 1 s (1 Hz) or even coarser.
Thus if the measurement range of an activity classification system is within the same error range as
the parameter of interest in the research question, these existing algorithms and systems will not be
adequately sensitive.

Given the design of the semi-structured supervised protocol and the free-living unsupervised
protocol, a wide variety of transitions, postures and activities has been generated in a way that is as
natural as possible due to the task-based nature of the trial protocols. It is difficult to generate the
required number of activities that a study requires in order to obtain a completely balanced dataset that
consists of an adequately high number of all transitions and activities. However, in order to generate
activities that are performed as naturally as possible, a study of this type should include a protocol
that is as close as possible to real-life situations.

5. Conclusions

In conclusion, we have described the development and collection of a dataset that is suitable for
validation of existing, and development of new, activity classification algorithms. The strengths of
the dataset include that it consists of both a semi-structured and free-living protocol, and that it has
involved older adults as participants. Furthermore, this study has produced the most detailed dataset
of inertial sensor data to date, synchronised with high frame-rate (>25 fps) video-labelled data and
includes a wide variety of activities recorded from older adults living independently. This dataset
will be suitable for validation of existing activity classification systems and the development of new
activity classification algorithms capable of classification at up to 25 Hz. Researchers are also invited to
collaborate with the consortium on specific research questions and get access to the full dataset. The
authors will consider each proposal for collaboration. Development and validation of algorithms using
the dataset will allow for a better understanding of the accuracy of existing algorithms and has the
potential to remove the measurement inaccuracy in existing academic activity classification algorithms
caused by low-resolution labelling of the contributing datasets.
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Appendix A

Table A1. Postures, transitions and behaviours for the supervised semi-structured protocol for each task on a per subject basis and for a total of 20 subjects, assuming
each task is repeated 3 times.

Per 20 Subjects 380 380 100 100 60 60 60 60 60 60

Per Subject 19 19 5 5 3 3 3 3 3 3

Repeat Sit-to-Stand Stand-to-Sit Stand-to-Lie Lie-to-Stand Sit-to-Lie Lie-to-Sit Stand-to-Kneel Kneel-to-Stand Stand-to-Lean Lean-to-Stand

Stand-sit-stand at a table 3 3 3
Stand-sit-stand on a soft chair 3 3 3

Sit-kneel-sit 3
Stand-lie-stand 3 3 3

Sit-lie-sit 3 1 1 3 3
Stand-kneel-stand 3 3 3

Stand-pick and object off the
floor-stand 3

Stand and lean to pick and object of
a table forward-stand 3 3 3

Stand-sit, while sitting, pick an
object off the floor forward, stand 3 3 3

Stand-sit, while sitting, pick an
object off the floor right stand 3 3 3

Stand-sit, while sitting, pick an
object off the floor left, stand 3 3 3

Stand-sit at a table-walk-pick an
object-sit-stand 3 3 3

Stand-lie-walk-pick an
object-lie-stand 3 1 1

Sit on a soft chair-walk-pick an
object-walk-sit 3 1 1

Stand-move objects from one table
to the other 3

Stand-walk(normal)-stand 3
Stand-walk(fast)-stand 3

Stand-walk(slow)-stand 3
Stand-climb

stairs-stand-descend-stairs 3
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Table A1. Cont.

Per 20 Subjects 540 540 180 180 120 120 60 60 0 0

Per Subject 27 27 9 9 6 6 3 3 0 0

Stand-to-Walk Walk-to-Stand Sitting-to-Picking Picking-to-Sitting Sit-to-Walk Walk-to-Sit Lie-to-Walk Walk-to-Lie Walk-to-Kneel Kneel-to-Walk

Stand-sit-stand at a table
Stand-sit-stand on a soft chair

Sit-kneel-sit
Stand-lie-stand

Sit-lie-sit
Stand-kneel-stand

Stand-pick and object off the floor-stand
Stand and lean to pick and object of a table

forward-stand
Stand-sit, while sitting, pick an object off the floor

forward, stand 3 3

Stand-sit, while sitting, pick an object off the floor
right stand 3 3

Stand-sit, while sitting, pick an object off the floor
left, stand 3 3

Stand-sit at a table-walk-pick an object-sit-stand 3 3 3 3
Stand-lie-walk-pick an object-lie-stand 3 3

Sit on a soft chair-walk-pick an object-walk-sit 3 3
Stand-move objects from one table to the other 3 3

Stand-walk(normal)-stand 6 6
Stand-walk(fast)-stand 6 6

Stand-walk(slow)-stand 6 6
Stand-climb stairs-stand-descend-stairs 3 3
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Table A1. Cont.

Per Subject 9 9 3 3 0 0

Per 20 Subjects 180 180 60 60 0 0

Walking-to-Picking Picking-to-Walking Stand-to-Picking Picking-to-Stand Lean-to-Walk Walk-to-Lean

Stand-sit-stand at a table
Stand-sit-stand on a soft chair

Sit-kneel-sit
Stand-lie-stand

Sit-lie-sit
Stand-kneel-stand

Stand-pick and object off the floor-stand 3 3
Stand and lean to pick and object of a table

forward-stand
Stand-sit, while sitting, pick an object off the

floor forward, stand
Stand-sit, while sitting, pick an object off the

floor right stand
Stand-sit, while sitting, pick an object off the

floor left, stand
Stand-sit at a table-walk-pick an object-sit-stand 3 3

Stand-lie-walk-pick an object-lie-stand 3 3
Sit on a soft chair-walk-pick an object-walk-sit 3 3
Stand-move objects from one table to the other

Stand-walk(normal)-stand
Stand-walk(fast)-stand

Stand-walk(slow)-stand
Stand-climb stairs-stand-descend-stairs



Sensors 2017, 17, 559 20 of 29

Table A1. Cont.

Per 20 Subjects 60 60 60 60 60 60 60

Per Subject 3 3 3 3 3 3 3

Sit-to-Kneel Kneel-to-Sit Climb Stairs-to-Stand Descend
Stairs-to-Stand

Stand-to-Climb
Stairs

Stand-to-Descend
Stairs Shuffling

Stand-sit-stand at a table
Stand-sit-stand on a soft chair

Sit-kneel-sit 3 3
Stand-lie-stand

Sit-lie-sit
Stand-kneel-stand

Stand-pick an object off the floor-stand
Stand and lean to pick and object of a table

forward-stand
Stand-sit, while sitting, pick an object off the

floor forward, stand
Stand-sit, while sitting, pick an object off the

floor right stand
Stand-sit, while sitting, pick an object off the

floor left, stand
Stand-sit at a table-walk-pick an object-sit-stand

Stand-lie-walk-pick an object-lie-stand
Sit on a soft chair-walk-pick an object-walk-sit
Stand-move objects from one table to the other 3

Stand-walk(normal)-stand
Stand-walk(fast)-stand

Stand-walk(slow)-stand
Stand-climb stairs-stand-descend-stairs 3 3 3 3
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Table A1. Cont.

Per 20 Subjects 1080 540 180 120 240 240 780 60 60

Per Subject 54 27 9 6 12 12 39 3 3

Standing Sitting Lying Kneeling Squat Down Posture
(Object Picking

Leaning Posture
to Each Side Walking Ascending-Stairs Descend-Stairs

Stand-sit-stand at a table 3 3 3
Stand-sit-stand on a soft chair 3 3 3

Sit-kneel-sit 3 3
Stand-lie-stand 3 3

Sit-lie-sit 3 3 3
Stand-kneel-stand 3 3

Stand-pick an object off the floor-stand 3 3 6
Stand and lean to pick and object of a table

forward-stand 3 3

Stand-sit, while sitting, pick an object off the
floor forward, stand 3 3 3

Stand-sit, while sitting, pick an object off the
floor right stand 3 3 3

Stand-sit, while sitting, pick an object off the
floor left, stand 3 3 3

Stand-sit at a table-walk-pick an
object-sit-stand 3 3 3 3

Stand-lie-walk-pick an object-lie-stand 3 3 3 3
Sit on a soft chair-walk-pick an object-walk-sit 3 3 3 3
Stand-move objects from one table to the other 3 3

Stand-walk(normal)-stand 3 3
Stand-walk(fast)-stand 3 3

Stand-walk(slow)-stand 3 3
Stand-climb stairs-stand-descend-stairs 3 6 3 3
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Appendix B

Table A2. Postures, transitions and behaviours for the free-living protocol for each task on a per subject basis and for a total of 20 subjects, assuming each task is
repeated once.

Per 20 Subjects 120 120 20 20 20 20 100 100 60 60

Per Subject 6 6 1 1 1 1 5 5 3 3

Repeat Sit-to-Stand Stand-to-Sit Stand-to-Lie Lie-to-Stand Sit-to-Lie Lie-to-Sit Stand-to-Lean Lean-to-Stand Stand-to-Walk Walk-to-Stand

Sit at a table and write a letter/
list or read 1 1 1

Sit on an armchair watch TV, video or
read a magazine 1 1 1

Sit on a low stool or toilet seat (lid
down clothes on, simulation only) 1 1 1

Lie on a bed, clothes on (CBF10) 1 1 1 1 1
Get in and out of a car (CBF10) or

sitting on a bed 1 1 1

Prepare and consume a drink or food
while standing 1 1 1

Set a table for dinner or move from one
counter to another many times (up to

10) (shuffling)
1 1 1

Simulate unloading a washing machine
for 10 s or preparing a fireplace 1 1 1

Pick an object of the floor/replace or tie
or untie shoe laces 1

Climbing and descending stairs or
walking up and down an inclined path 1

Remove clothes from washing machine
and hang on clothes rack or remove

rubbish from bin and dispose
1 1 1

Sit and prepare and eat something 1 1 1
Clean mirror or clean a window 1 1 1 1 1

Wash and dry hands 1 1 1 1 1
Sit at a table and read 1 1 1



Sensors 2017, 17, 559 23 of 29

Table A2. Cont.

Per 20 Subjects 120 120 20 20 40 40 100 100

Per Subject 6 6 1 1 2 2 5 5

Sit-to-Walk Walk-to-Sit Lie-to-Walk Walk-to-Lie Squat down-to-Pick
an Object

Standing up after
Picking up an Object Lean-to-Walk Walk-to-Lean

Sit at a table and write a letter/ list or read 1 1
Sit on an armchair watch TV, video or read a magazine 1 1

Sit on a low stool or toilet seat (lid down clothes on,
simulation only) 1 1

Lie on a bed, clothes on (CBF10) 1 1
Get in and out of a car (CBF10) or sitting on a bed 1 1

Prepare and consume a drink or food while standing 1 1
Set a table for dinner or move from one counter to

another many times (up to 10) (shuffling) 1 1

Simulate unloading a washing machine for 10 s or
preparing a fireplace 1 1

Pick an object of the floor/replace or tie or untie
shoe laces 1 1 1 1

Climbing and descending stairs or walking up and down
an inclined path

Remove clothes from washing machine and hang on
clothes rack or remove rubbish from bin and dispose

Sit and prepare and eat something 1 1
Clean mirror or clean a window 1 1

Wash and dry hands 1 1
Sit at a table and read 1 1
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Table A2. Cont.

Per 20 Subjects 20 20 40 680 520 120 80 400 600

Per Subject 1 1 2 34 26 6 4 20 30

Ascending
Stairs Descend-Stairs Shuffling Standing Sitting Lying Squat down Posture

(Object Picking)
Leaning Posture to

Each Side Walking

Sit at a table and write a letter/list or read 2 4 2
Sit on an armchair watch TV, video or

read a magazine 2 4 2

Sit on a low stool or toilet seat (lid down clothes on,
simulation only) 2 4 2

Lie on a bed, clothes on (CBF10) 2 2 6 2
Get in and out of a car (CBF10) or sitting on a bed 2 4 2

Prepare and consume a drink or food while standing 2 4 2
Set a table for dinner or move from one counter to

another many times (up to 10) (shuffling) 2 4 2 2

Simulate unloading a washing machine for 10 s or
preparing a fireplace 2 0 4 2

Pick an object of the floor/replace or tie or untie
shoe laces 2 2 2 2

Climbing and descending stairs or walking up and
down an inclined path 1 1

Remove clothes from washing machine and hang on
clothes rack or remove rubbish from bin and dispose 2 2

Sit and prepare and eat something 2 4 2
Clean mirror or clean a window 4 4 4

Wash and dry hands 4 4 4
Sit at a table and read 2 4 2
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Appendix C

Table A3. The instruction set for the semi-structured task-based protocol.

Start Posture End Posture

1 Stand on A and sit at the table, repeat Zone 1

Stand on A stand stand
Sit at the table stand sitting

Stand on A sitting stand
Sit at the table stand sitting

Stand on A sitting stand
Sit at the table stand sitting
Stands on A sitting stand

2 Stand-sit at a table-walk-pick an object-sit-stand Zone 1

Stand on A stand stand
Sit at the table beside A stand sitting

Walk and touch F with your hand and then sit at the table beside A sitting sitting
Walk and touch F with your hand and then sit at the table beside A sitting sitting
Walk and touch F with your hand and then sit at the table beside A sitting sitting

Stand on A sitting stand

3 Stand and lean to pick and object of a table FW-stand Zone 1

Stand on A stand stand
Lean and touch G and then return to standing stand stand
Lean and touch G and then return to standing stand stand
Lean and touch G and then return to standing stand stand

Walk and stand on E stand stand

4 Stand-pick and object off the floor-stand Zone 2

Stand on E stand stand
Bend down and touch E and return to standing stand stand
Bend down and touch E and return to standing stand stand
Bend down and touch E and return to standing stand stand

Stand on E stand stand

5 Lean and pick objects while sitting Zone 2

Stand on E stand stand
Sit on the chair stand sitting

While sitting, pick an object off the floor forward sitting sitting
Stand on E sitting stand

Sit on the chair stand sitting
While sitting, pick an object off the floor left sitting sitting

Stand on E sitting stand
Sit on the chair stand sitting

While sitting, pick an object off the floor right sitting sitting
Stand on E sitting stand

Sit on the chair stand sitting
While sitting, pick an object off the floor forward sitting sitting

Stand on E sitting stand
Sit on the chair stand sitting

While sitting, pick an object off the floor left sitting sitting
Stand on E sitting stand

Sit on the chair stand sitting
While sitting, pick an object off the floor right sitting sitting

Stand on E sitting stand
Sit on the chair stand sitting

While sitting, pick an object off the floor forward sitting sitting
Stand on E sitting stand

Sit on the chair stand sitting
While sitting, pick an object off the floor left sitting sitting

Stand on E sitting stand
Sit on the chair stand sitting

While sitting, pick an object off the floor right sitting sitting
Stand on E sitting stand

Walk to B and stand stand stand
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Table A3. Cont.

Start Posture End Posture

6 Stand-sit on a soft chair-stand Zone 3

Stand on B stand stand
Sit on the arm chair stand sitting

Stand on B sitting stand
Sit on the arm chair stand sitting

Stand on B sitting stand
Sit on the arm chair stand sitting

Stand on B sitting stand

7 Stand-sit-walk-pick an object-walk-sit-stand Zone 3

Stand on B stand stand
Sit on an armchair stand sitting

Walk and touch F and then sit on an armchair sitting sitting
Walk and touch F and then sit on an armchair sitting sitting
Walk and touch F and then sit on an armchair sitting sitting

Walk and stand at C sitting stand

8 Sit-kneel-sit Zone 4

Stand at C stand stand
Sit on the chair stand sitting

Kneel on the cushion sitting kneel
Sit on the chair kneel sitting

Kneel on the cushion sitting kneel
Sit on the chair kneel sitting

Kneel on the cushion sitting kneel
Sit on the chair kneel sitting

Stand at C stand stand
Walk and stand on D walk stand

9 Stand-lie-stand Zone 4

Stand on D stand stand
Lie on the bed stand lie

Stand on D lie stand
Lie on the bed stand lie

Stand on D lie stand
Lie on the bed stand lie

Stand on D lie stand

10 Sit-lie-sit Zone 4

Sit on the bed stand sit
Lie on the bed sitting lie
Sit on the bed lie sitting
Lie on the bed sitting lie
Sit on the bed lie sitting
Lie on the bed sitting lie
Sit on the bed lie sitting

Stand on D sitting stand

11 Stand-kneel-stand Zone 4

Stand on D stand stand
Kneel on the cushion stand kneel

Stand on D kneel stand
Kneel on the cushion stand kneel

Stand on D kneel stand
Kneel on the cushion stand kneel

Stand on D kneel stand
Walk to D and stand stand stand

12 Stand-lie-walk-pick an object-lie-stand Zone 4

Stand on D stand stand
Lie on the bed stand lie

Walk and touch E return and lie on the bed lie lie
Walk and touch E return and lie on the bed lie lie
Walk and touch E return and lie on the bed lie lie

Walk and stand on A lie stand
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Table A3. Cont.

Start Posture End Posture

13 Stand-move objects from one table to the other Zone 1

Stands on A stand stand
Move objects from one table to the other stand stand

Stand on A stand stand
Move objects from one table to the other stand stand

Stand on A stand stand
Move objects from one table to the other stand stand

Stand on A stand stand

14 Stand-walk(normal)-stand Zone 2

Stand on A stand stand
Walk at normal speed to F stand stand

Stand on A stand stand
Walk at normal speed to F stand stand

Stand on A stand stand
Walk at normal speed to F stand stand

Stand on A stand stand

15 Stand-walk(fast)-stand Zone 2

Stand on A stand stand
Walk at fast speed to F stand stand

Stand on A stand stand
Walk at fast speed to F stand stand

Stand on A stand stand
Walk at fast speed to F stand stand

Stand on A stand stand

16 Stand-walk(slow)-stand Zone 2

Stand on A stand stand
Walk at slow speed to F stand stand

Stand on A stand stand
Walk at slow speed to F stand stand

Stand on A stand stand
Walk at slow speed to F stand stand

Stand on A stand stand
Attach and sync the GoPro with a lying movement and a jump

and call the taxi
Walk and stand at the bottom of the stairs stand stand

17 Stand-climb stairs-stand-descend stairs Out-of-lab

Stand at the bottom of the stairs stand stand
Walk up stairs stand stand

Stand stand stand
Salk down stairs stand stand

Stand stand stand
Walk up stairs stand stand

Stand stand stand
Walk down stairs stand stand

Stand stand stand
Walk up stairs stand stand

Stand stand stand
Walk down stairs stand stand

Stand stand stand
Continue with the out-of-lab scenario
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