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Fault-tolerant control allocation for overactuated nonlinear systems

Andrea Cristofaro∗, Marios M. Polycarpou and Tor Arne Johansen

ABSTRACT

This paper addresses the problem of fault-tolerant control allocation for
input affine nonlinear systems. The proposed scheme is divided in three main
tasks: fault detection and estimation using a nonlinear observer, fault isolation
through a bank of unknown input observers with a resetting policy to reduce
the effects of nonlinearities and control reconfiguration based on reduced order
allocation. Analytical results regarding the isolability and reconfigurability of
actuator faults are derived and a simulation example is used to illustrate the the
proposed fault tolerant control methodology.
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I. Introduction

Mechanical systems are often equipped with a
redundant number of control devices in order to
enhance the manoeuvrability capabilities and achieve
satisfactory performances. The main objective of
control allocation is to determine how to generate
a desired control effect from a redundant set of
actuators and effectors. Due to input redundancy,
several configurations leading to the same generalized
force are admissible and for this reason the control
allocation schemes commonly incorporate additional
secondary objectives [2] [20], such as the minimization
of power consumption. On the other hand, having a
large number of degrees of freedom in the control
input design is a useful feature in handling the typical
limitation factors arising in the mechanical applications
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[3] [7] [15] [18] [25], such as actuators/effectors
dynamics, input saturation and other physical or
operational constraints. One further advantage of
actuator and effector redundancy is the possibility to
reconfigure the control in order to cope with unexpected
changes on the system dynamics, such as failures or
malfunctions. In particular, if the set of actuators and
effectors is partially affected by faults, one can modify
the control allocation scheme by preventing the use
of inefficient/ineffective devices in the generation of
control effect or compensating for the loss of efficiency.
However, one key point for successfully re-allocating
the control is the availability of adequate information
about the faults that have occurred; indeed, some
accurate fault estimation and/or a correct isolation
of the faulty actuators or effectors is necessary to
address the reconfiguration problem. Recent results
in the field of fault tolerant control allocation have
been proposed based on sliding-mode techniques [8]
[17], adaptive control strategies [5] [23] [24] and
unknown input observers [10] [11]. Some application-
oriented allocation schemes are instead proposed for
reconfiguration in flight control [4] [26], and fault
accommodation in automated underwater vehicles [9]
[22].
This paper deals with the problem of fault-tolerant
control allocation for nonlinear systems and, in
particular, with the extension of the results on fault
detection/isolation/accommodation of linear systems
proposed in [10] [11] to nonlinear systems with a
redundant set of inputs. An exhaustive fault diagnosis
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and fault-tolerant framework for a large class of
nonlinear systems has been developed in [27] [28],
and the combination of these results with the fault-
tolerant control allocation setup constitutes the core
of the paper. One of the major challenges towards
fault isolation in the presence of redundant inputs is
that, due to redundancy, the same anomalous effects
on the system dynamics can be produced by failures
of different effectors or actuators. Addressing the
resolution of this problem in a nonlinear framework is
the main contribution of the paper, and to the best of
authors’ knowledge no other methods for the synthesis
of fault-tolerant nonlinear control allocation schemes
are available. The proposed architecture is based on
unknown input observers together with a logic to
recursively re-initialize the estimator design parameters
in order to reduce the effects of nonlinearities, and a
control re-allocation algorithm to be used in cascade
with the fault diagnosis module. The paper is structured
as follows. The problem setting is introduced in
Section II; the fault detection task is addressed in
Section III, while Section IV is dedicated to fault
isolation. Moreover, a procedure to apply the proposed
isolation scheme in the presence of unmeasured states
is discussed in Section V for a class of monotone
systems. Some strategies to tackle the problems of
fault-tolerant control and control reconfiguration are
discussed in Section VI. Finally, a simulation study
is reported in Section VII to support and validate the
proposed theoretical results.

II. Basic setup and problem formulation

Let us consider the nonlinear redundant control
system Σ = (f, g,G) given by the state equation

ẋ = f(x) + g(x)τ + η(x, u, t) + b(t− T0)φ(x, u) (1)

together with the nonlinear effector model

τ = G(x)u, (2)

where x ∈ Rn, τ ∈ Rk, u ∈ Rm, k < m. The vector
u represents the redundant control input and τ is the
generalized control effect or virtual input; the two
variables are related through the matrix function G(·) :
Rn → Rk×m, which is assumed to be uniformly full-
rank. The vector fields η(·, ·, ·) : Rn ×Rm ×R+ →
Rn and φ(·, ·) : Rn ×Rm → Rn represent the model
uncertainty and the change in system dynamics due to
a fault, respectively; the coefficient b(·) : R+ → R+ is
the time profile evolution of the fault and T0 is the
(unknown) fault occurrence time. φ(·, ·) and b(·) will be
further described below.

Assumption II.1 The state x and the redundant input
u are assumed to be known for any time t ≥ 0.

The plant is assumed to be coupled with the nonlinear
controller

ẋc = z(xc, x, υ)
τc = h(xc, υ),

(3)

where υ is an additional input, and a control allocation
scheme is responsible to design the control input u such
that the actuator joint effect produces the desired virtual
input τc while some secondary objectives are possibly
achieved. In particular, the control allocation scheme is
requested to handle the problem of finding u ∈ Rm such
that

u = arg min
w∈U⊆Rm

J(x,w)

subject to
G(x)w = τc,

(4)

where U is a prescribed constraint set and J(·, ·)
is a suitable cost functional that is used to model
secondary objectives. In the simple case of a quadratic
functional J(x,w) = wTΩw without additional control
constraints, a solution u = G−RΩ (x)τc is provided by the
weighted right-pseudo inverse of the matrix G(x), this
being well defined thanks to the full-rank assumption:

G−RΩ (x) = Ω−1GT (x)(G(x)Ω−1GT (x))−1.

Assumption II.2 The model uncertainty η is an
unstructured and unknown function of x, u and t; a
known bound is supposed to be available ∀i = 1, ..., n :

|ηi(x, u, t)| ≤ η̄i(x, t) ∀(x, u) ∈ Rn ×U ∀t ≥ 0,

for a positive, bounded and Lipschitz function η̄i(·, ·).
For any such disturbance function, it is assumed that
the solution of the nominal system (1) with φ(x, u) ≡ 0
and subject to the controller (3) exists, and is unique
and bounded for any t ≥ 0.

The fault time profile b(·) is described by

b(t− T0) =

{
0 t < T0

1− e−α(t−T0) t ≥ T0

where α > 0 is the (unknown) fault evolution rate.
The faults considered in this paper are modeled

as actuator/effector loss of efficiency; this performance
deterioration may involve single actuators/effectors
as well as clusters of them if they share the
same auxiliaries. In this regard, let us define the
actuator/effector clusters

U1, . . . ,Ur ⊂ [1, ...,m]m,
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represented as groups of indices: if the index j is
included in Ui, then the actuator/effector uj is part of
the ith cluster. For i = 1, ..., r and j = 1, ...,m, let us
set

χUi(uj) =

{
1 j ∈ Ui
0 j /∈ Ui

and
∆Ui = diag(χUi(u1), . . . , χUi(um)).

In addition let us define Oj = diag(δ1j , δ2j , ..., δmj),
where δij is the standard Kronecker symbol. Based on
this construction, we define the set of admissible faults,
divided into single and cluster for the sake of clarity:

single faults


φ̄1(x, u) = −g(x)G(x)O1u
φ̄2(x, u) = −g(x)G(x)O2u
...
φ̄m(x, u) = −g(x)G(x)Omu

(5)

cluster faults


φ̄m+1(x, u) = −g(x)G(x)∆U1u
φ̄m+2(x, u) = −g(x)G(x)∆U2u
...
φ̄m+r(x, u) = −g(x)G(x)∆Uru

(6)

Assumption II.3 The fault φ(x, u) is assumed to
belong to the finite set of q = m+ r admissible
functions:

φ(·, ·) ∈ F , F := {θ1φ̄1(·, ·), . . . , θqφ̄q(·, ·)},

where, for any i = 1, ..., q, θi is an unknown magnitude
parameter with θi ∈ (0, 1], and φ̄i is an admissible fault
structure according to (5)-(6).

Problem statement. The main objective of this paper
is to address the fault isolation problem for a nonlinear
system with redundant inputs and to define a robust
control allocation scheme towards maintaining system
stability and recovering performances in spite of single
or multiple actuator faults. Three fundamental issues
have to be addressed: fault detection (FD), fault
isolation (FI) and control reconfiguration (CR).

• FD: a full-state observer x̂(0) is designed and,
monitoring the residual |x(t)− x̂(0)(t)|, a fault
is detected whenever this signal exceeds a given
threshold.

• FI: a bank of q full-state observers x̂(s), indexed
by s, are designed such that the combined
behavior of residuals allows us to identify the
faulty actuator or the faulty actuator cluster.

• CR: the control allocation policy is updated such
that the actuators that are identified as faulty are
not used or strongly weighted, this leading to a
reconfigured input signal ũ with G(x)ũ→ τc.

III. Fault detection

Following the methodology developed in [27], the
FD observer x̂(0) is chosen as follows:

˙̂x(0) = −Λ(0)(x̂(0) − x) + f(x) + g(x)τc + φ̂(x, u, ζ(0))
(7)

where φ̂(·, ·, ·) : Rn ×Rm ×Rq → Rn is a fault
approximation model, ζ(0) is a vector of adjustable
weights and Λ(0) = diag(λ

(0)
1 , ..., λ

(0)
n ) with −λ(0)

i < 0
for any i = 1, ..., n. The initial weight vector ζ(0)(0)

is chosen such that φ̂(x, u, ζ(0)(0)) = 0 for any
(x, u) ∈ Rn ×Rm, corresponding to the fault-free
condition.
The fault estimator φ̂ is defined as a linear combination
of the admissible faults φ ∈ F , where the coefficients
of the combination are given by the entries of ζ(0):

φ̂(x, u, ζ(0) :=

q∑
j=1

ζ
(0)
j φ̄j(x, u). (8)

Setting ε(0) = x− x̂(0), the weight vector ζ(0) is
updated according to a learning algorithm based on
Lyapunov synthesis methods [27]:

ζ̇(0) = ΠZ

{
Γ(0)Y TD[ε(0)]

}
(9)

where Π is a projection operator that restricts the
parameter estimation vector ζ(0) to a prescribed
compact and convex domain Z ⊂ Rq, Γ(0) is a
symmetric positive definite learning rate matrix and Y
is the gradient matrix of the estimator (8) with respect
to the weight, i.e. Y :=

[
φ̄1(x, u) · · · φ̄q(x, u)

]
. The

dead-zone operator is described by the expression

D[ε(0)(t)] :=

{
0 |ε(0)

i (t)| ≤ ε?i (t), i = 1, ..., n
ε(0)(t) otherwise

where ε?i is a suitable time-varying threshold to be
specified. The dead-zone is introduced in order to
prevent adaptation of the weight due to the presence of
the modeling errors η(x, u, t), these causing generally
nonzero state estimation errors; in this regard, according
to Assumption II.2, the detection thresholds can be
defined as follows:

ε∗i (t) :=

∫ t

0

e−λ
(0)
i (t−σ)η̄i(x(σ), σ)dσ

≥
∣∣∣∣∫ t

0

e−λ
(0)
i (t−σ)ηi(x(σ), u(σ), σ)dσ

∣∣∣∣ .
This threshold correspond to the forced response of the
observer ε(0) to the input given by the upper bound
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η̄(x, t), and it can be straightforwardly implemented as
a filter with transfer function 1/(s+ λ

(0)
i ) with zero

initial conditions.

Theorem III.1 A fault is detectable when |ε(0)
i (t)| >

ε?i (t) for some i = 1, ..., n. Accordingly, we define the
fault detection time Td as the infimum

Td := inf

n⋃
i=1

{t ≥ T0 : |ε(0)
i (t)| > ε?i (t)}. (10)

We notice that, by construction, the fault estimator
(8)-(9) begins to be updated only for t ≥ Td.

IV. Fault isolation

One major challenge in the design of fault
isolation scheme for systems with redundant inputs
is superposition of fault effects. Specifically, due to
redundancy, for any i 6= j a non-empty sub-domain
Dij ⊂ Rn ×Rm may exist such that

g(x)G(x)(Im −Oi)u = g(x)G(x)(Im −Oj)u

∀(x, u) ∈ Dij , where Im ∈ Rm×m denotes the identity
matrix and the equality τc = G(x)u has been used.
We propose a switching architecture based on unknown
input observes (UIO) [6] [13] [19] [21]. Let us denote
by B(x) the matrix function

B(x) = g(x)G(x),

select a vector x̄ ∈ Rn to be specified later, and apply
the decomposition

B(x) = Wx̄ +Bx̄(x), (11)

where Wx̄ = B(x̄) and Bx̄(x) = B(x)−B(x̄).
Accordingly, for an input signal B(x(t))σ(t), we will
refer to Wx̄σ(t) as the linear part of the signal.
Let us then consider the following nonlinear UIO
structure:

ω̇ = Fx̄ω +Rx̄g(x)τc + f(x)−Hx̄f(x) + (Kx̄ −Rx̄)x
z = ω +Hx̄x

(12)
with

Kx̄ = Kx̄,1 +Kx̄,2 (13)
Rx̄ = In −Hx̄ (14)
Fx̄ = Rx̄ −Kx̄,1, spec(Fx̄) ⊂ C− (15)
Kx̄,2 = Fx̄Hx̄ (16)

and where the parameters have to be designed according
to the choice of x̄ and the set of admissible faults. Let us
stress that the parameter Hx̄ has not been fixed at this
stage, and that some degrees of freedom exist for the
tuning of Kx̄,1, which is used to place the eigenvalues
of Fx̄ once a proper choice for Hx̄ has been made. To
this end, exploiting the matrix structure, one has

Wx̄ = [Wx̄,1 · · · Wx̄,m];

in addition, for j = 1, ..., r we denote by Wx̄,Uj the
sub-matrix obtained from Wx̄ picking the columns
corresponding to the indices included in Uj only.

Lemma IV.1 Suppose that matrices Wx̄,s,Wx̄,Us are
full column rank∗ and define {H(s)

x̄ }, s = 1, ..., q as
follows:

H
(s)
x̄ := Wx̄,s(W

T
x̄,sWx̄,s)

−1WT
x̄,s s = 1, ...,m

H
(m+s)
x̄ := Wx̄,Us(WT

x̄,UsWx̄,Us)−1WT
x̄,Us s = 1, ..., r.

Then the resulting estimation error ε(s) := x− z(s),
with z(s) assigned by (12), is decoupled from the linear
part of faults of the type φ̄s(x, u).

Proof. By construction, the following identity holds
true for R(s)

x̄ defined by (14) when Hx̄ is replaced by
H

(s)
x̄ :

R
(s)
x̄ Wx̄,s = 0 s = 1, ...,m

R
(s)
x̄ Wx̄,Us−m

= 0 s = m+ 1, ..., q.
(17)

As a consequence the dynamics of the estimation error
ε(s) := x− z(s), where z(s) is the state of the unknown
input observer (12)-(16) with Hx̄ replaced by H(s)

x̄ , is
assigned by

ε̇(s) = f(x) + g(x)τc + η(x, u, t) + b(t− T0)φ(x, u)

−F (s)
x̄ z(s) + F

(s)
x̄ H

(s)
x̄ x−R(s)

x̄ g(x)τc − f(x)

+H
(s)
x̄ f(x) +R

(s)
x̄ x−K(s)

x̄ x−H(s)
x̄ ẋ

= F
(s)
x̄ ε(s)+R

(s)
x̄ η(x, u, t)+b(t− T0)R

(s)
x̄ φ(x, u),

(18)
where the identity ż(s) = ω̇(s) −H(s)

x̄ ẋ has been used.
Choose now φ ∈ F , say φ(x, u) = θφ̄1(x, u) for sake
of simplicity, with θ ∈ (0, 1]. Then, by construction, the
error dynamics reduces to

ε̇(1) = F
(1)
x̄ ε(1) +R

(1)
x̄ η + bθR

(1)
x̄ (Wx̄ +Bx̄(x))O1u

= F
(1)
x̄ ε(1) +R

(1)
x̄ η + bθR

(1)
x̄ Bx̄,1(x)u1

∗A sufficient condition for preventing rank deficiency and
guaranteeing the feasibility of observer design is selecting the vector x̄
such that the matrixWx̄ attains a uniform sub-rank [10, 11] not smaller
than the number of elements included in the largest actuator cluster.
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where the arguments in η(·, ·, ·) and b(·) have been omit-
ted and the identities R(1)

x̄ Wx̄,1 = 0 and Bx̄(x)O1u =
Bx̄,1(x)u1 have been used, Wx̄,1 +Bx̄,1(x) being the
first column of B(x). The case s = 2, ..., q can be
established using similar arguments. 2

Roughly speaking, Lemma IV.1 guarantees that the
error only depends on the fault through the nonlinear
part of the vector field B(x), i.e. Bx̄(x) according to
our notation: this means that, as long as such nonlinear
part is negligible, the error ε(s) remains substantially
decoupled from the fault φ̄s. For any s = 1, ..., q let us
choose

K
(s)
x̄,1 = R

(s)
x̄ + Λ,

with −Λ a diagonal Hurwitz matrix: this guarantees
observer stability since F (s)

x̄ = −Λ for any s = 1, ..., q.
Without loss of generality one can assume Λ = Λ0, as
defined in Sec. III for the case of fault detection.

The basic idea is to adapt the isolation algorithm
proposed in [11] for the case of linear systems and
therefore one aims at maintaining the size of Bx̄(x)
as small as possible; on the other hand, since we
do not mean to influence the system dynamics while
preforming fault isolation, a feasible way to limit the
size of Bx̄(x) is to reconfigure and re-initialize the
observers by linearizing B(x) around a new fixed point
if Bx̄(x) becomes too large. To this end, let us set % > 0
as an indicator of the maximum admissible size for
Bx̄(x), this meaning that whenever maxi,j |Bx̄,ij(¯̄x)| ≥
% for some ¯̄x, then the decomposition of B(x) needs to
be updated as

B(x) = W¯̄x +B¯̄x(x).

A general rule for the selection of a suitable % > 0
is proposed at the end of the section (Remark IV.1).
Referring to the thresholds ε?i (t), we consider a larger
bound given by µ

(s)
i (t) := ε?i (t) + µ̄

(s)
i (t), i = 1, ..., n

with µ̄(s)
i (·) a positive function to be specified. To this

end we observe that, by integration, when φ(x, u) =
θφ̄1(x, u) the error ε(1)(t) verifies

|ε(1)
i (t)|

=

∣∣∣∣∫ 1

0

e−λi(t−σ)[R
(1)
x̄ ηi(x(σ),u(σ),σ)+b(σ)θν

(1)
i (σ)]dσ

∣∣∣∣
where ν(1)

i is the ith component ofR(1)Bx̄,1(x)u1. Now
the following bound is in force as long as Bx̄(x) is %-
limited:

|ν(1)
i | =

∣∣∣∣∣
n∑
`=1

R
(1)
i` Bx̄,`1(x)u1

∣∣∣∣∣
≤ %

n∑
`=1

∣∣∣R(1)
i`

∣∣∣ |u1| =: %ψ
(1)
i |u1|.

Setting µ̄
(1)
i (t) :=

∫ t
0
e−λi(t−σ)%ψ

(1)
i |u1(σ)|dσ and

recalling that both θ and b(t) are bounded by 1, it is
straightforward to verify that

|ε(1)
i (t)| < ε?i (t) + µ̄

(1)
i (t) = µ

(1)
i (t) (19)

for φ(x, u) = θφ̄1(x, u) and maxi,j |Bx̄,ij(x̄)| ≤ %.
Let us generalize the construction and set

ψ
(s)
i =

n∑
`=1

∣∣∣R(s)
i`

∣∣∣ , s = 1, ...,m

and

µ̄
(s)
i (t)=


∫ t

0

e−λi(t−σ)%ψ
(s)
i |us(σ)|dσ s =1, ...,m∫ t

0

e−λi(t−σ)%
∑

j∈Us−m

ψ
(j)
i |uj(σ)|dσ s =m+1, ..., q

Lemma IV.2 Assume that a fault has been detected by
the FD module at t = Tdet, and suppose that there exist
T ? > Tdet and s? ∈ {1, ..., q} such that

• maxi,j |Bx̄,ij(x(t))| < % ∀t ∈ [Tdet, T
?]

• for each s ∈ {1, ..., q} \ {s?} there exists is ∈
{1, ..., n} with

|ε(s)is (T ?)| > µ
(s)
is

(T ?) (20)

• for each i = 1, ..., n, one has

|ε(s
?)

i (t)| ≤ µ(s?)
i (t) ∀t ∈ [Tdet, T

?].

Then we can isolate the faults using the decision
algorithm:

The fault is in
{

input us? if s? ∈ {1, ...,m}
cluster Us?−m if s? ∈ {m+ 1, ..., q}

(21)

In the following we will refer to residual ε(s)(t) as in
alarm mode if condition (20) is satisfied for some t ≥ 0.

Proof. In order to prove the statement, it is
sufficient to consider inequality (19) for a generic
s = 1, ..., q: as long as Bx̄(x(t)) is %−limited, if
φ(x, u) = θφs(x, u) then |ε(s)i (t)| < ε?i (t) + µ̄

(s)
i (t) =

µ
(s)
i (t) ∀i = 1, ..., n. Consequently, the only admissible

condition to realize a configuration with all residuals
except ε(s

?)(t) in alarm mode, is that the fault is of type
φ(x, u) = θφs?(x, u) for some θ ∈ (0, 1] 2

We point out that Lemma IV.2 holds true if and only if
Bx̄ is %−limited. In order to obtain a global decision
algorithm, we need to merge (21) with an iterative
linearization scheme for B(x).
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Theorem IV.1 Set x̄ = x(Tdet) and design the
observers according to (17) with Wx̄ = B(x(Tdet)).
There exists a subdivision of the interval
[Tdet,+∞) =

⋃
p∈N [Tp, Tp+1) with T1 = Tdet such

that, for any p ∈ N, either one of the following
conditions is verified:

A) There exist Tisol ∈ (Tp, Tp+1) and s? satisfying
the conditions of Lemma IV.2, and Bx̄(x(t)) =
B(x(t))−Wx̄ is %−limited in [Tp, Tp+1).

B) The total number of residuals in alarm mode
is less than q − 1 for any t ∈ [Tp, Tp+1)
and there exist i, j such |Bx̄,ij(x(Tp+1))| =
%. The observers are re-initialized with Wx̄ =
B(x(Tp+1)).

If case A) occurs, the fault can be correctly isolated
according to the rule (21).

It is worth to mention that, for the iterative procedure
of Theorem IV.1 to converge to an isolation time Tisol,
the rate of variation of B(x) must be negligible with
respect to the size and rate of the residuals. In other
words, on the one handB(x(t)) is required to be slowly-
variant, and on the other hand the fault rate α and the
size of the faulty inputs must be sufficiently large to
allows ε(s)(t) overpass the threshold as fast as possible:
in certain cases, this may require the fulfillment of a PE
condition. In this regard, the following statement can be
given.

Proposition IV.1 Let us denote by γB(x(t)) the rate of
change of B(x(t)), i.e. γB(x(t)) := |∇xB(x(t))ẋ(t)|.
Based on the mean-value theorem, a sufficient
condition for fault isolability is then provided
by the existence of a time interval [t1, t2]
with maxt∈[t1,t2] γB(x(t))|t2 − t1| ≤ % and
mint∈[t1,t2] |ε̇i(t)||t2 − t1| ≥ maxt∈[t1,t2] µ̄i(t).

Remark IV.1 The selection of the optimal tolerance %
raises the following trade-off: on the one hand % has
to be small to guarantee that the decoupling condition
(17) to be used for fault isolation holds true in spite of
nonlinearities, on the other hand a very small % may
lead to a vary fast residual resetting with a consequent
possible delay in the achievement of isolation. A general
rule for tuning the parameter is to choose % such that the
threshold µ̄(s)

i (t) are small enough to prevent hiding of
faults whose severity is classified as a potential hazard
for the overall system safety: this can be easily carried
out by comparing the size of the isolation thresholds
µ̄

(s)
i (t) with the size of the forced response of the error

systems (18) to the estimated fault φ̂(x, u, ζ(0)) defined
by the estimator (8).

V. Unmeasured states

The extension of the proposed results to the case of
nonlinear systems with unmeasured states is considered
in this section. We consider plants of the form

ẋ = Ax+Qρ(Nx) + f(y) + g(y)τ
+η(x, u, t) + b(t− T0)φ(x, u)

y = Cx,

(22)

with effector model τ = G(y)u, where A,Q,N,C are
matrices with appropriate dimensions and ρ is a smooth
funtion. We notice that (22) is a special case of the
original system (1), where the known nonlinearities of
the model are limited to involve the measured variables
y only, except for the term Qρ(Nx) that is allowed to
depend on the whole state x. Accordingly, it is assumed
the availability of a bound on the perturbation term
η(·, ·, ·) uniform with respect to the unmeasured states.

Assumption V.1 There exist positive and bounded
functions η̄i(y, t), for i = 1, ..., n, with

|ηi(x, u, t)| ≤ η̄i(Cx, t) ∀(x, u) ∈ Rn ×U ∀t ≥ 0.

For systems of the class (22), unknown input observers
can be designed using the circle criterion under a fairly
general monotonicity assumption on the function ρ(·)
[16] [19].

Assumption V.2 The function ρ(ζ) satisfies the mono-
tonicity condition

∂ρ

∂ζ
+
∂ρT

∂ζ
≥ 0 ∀ζ

Finally, in order to guarantee isolability of faults, the
range of the vector field g(y) must be included in
a suitable linear subspace, as exploited in the next
assumption.

Assumption V.3 There exists a constant matrix E ∈
Rn×d with k ≤ d < n such that, for any fixed ȳ ∈ Rp
one has

Im(g(ȳ)) ⊆ Im(E).

Let H be a matrix selected such that (I +HC)E = 0,
where a possible, simple choice is

H = E[(CE)T (CBE)]−1(CE)T .

Define then the observer candidate

ω̇ = (I −HC)A(ω +Hy)
+L1(y − C(ω +Hy)) + (I −HC)(f(y) + g(y)τc)
+(I −HC)Qρ(E(ω +Hy) +K(y − C(ω −Hy)))

z = ω +Hy
(23)
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and assume that a symmetric matrix P > 0 and a scalar
κ > 0 exist such that the following LMI is feasible[

AT1 P + PA1 + κI PRQ+ (N −KC)T

QTRTP + (N −KC) 0

]
≤ 0

where R = (I −HC) and A1 = RA− L1C. Then,
thanks to Assumption V.2, (23) is an unknown input
observer [19, Theorem 4.2], and the estimation error
dynamics x̃ = x− z is governed by the equation

˙̃x = (A1 + (I −HC)Q(N −KC))x̃
+R(η(x, u, t) + b(t− T0)φ(x, u)).

and, in the absence of disturbances and faults, it results
to be UGES. Having established this result accounting
for the whole space spanned by the columns of g(y) (see
Assumption V.3), it is then guaranteed the existence of
unknown input observers of the form (23) featuring the
weaker decoupling property (I −HC)E? where E? is
any reduced-order matrix with Im(E?) ⊂ Im(E). It is
then possible to extend in a natural way the results of
Theorem IV.1 to system (22), by letting E? vary among
all the directions associated to single and cluster faults
as defined in (5)-(6) and considering the bound given in
Assumption V.1 to compute the detection thresholds.

Remark V.1 An alternative approach to deal with
unmeasured states, based on a special change of
coordinates, might be adopted in the case of Lipschitz
nonlinearities [29] [30].

VI. Control reconfiguration

Suppose that either one actuator, say ui] with
i] ∈ {1, ...,m}, or one cluster of actuators/effectors,
say Uj] with j] ∈ {1, ..., r}, has been identified as
faulty by the FDI module. For the sake of simplicity
the dependency of the effector matrix G on the
state x is dropped throughout the section. Denote
by G̃i] and G̃Uj] the matrices obtained from G by
removing, respectively, the column i] and the columns
corresponding to the actuators/effectors included in the
cluster Uj] . The reconfiguration can be performed by
different methods, depending on several factors such
as secondary objectives, actuator dynamics, limited
control inputs rates or other control constraints. It
is worth to note that in some cases, due to the
adverse effects of faults, also the desired control effect
τc(t) might be requested to change with respect to
the original one in order to recover the deteriorated
system performances, this corresponding to update the
controller structure (3).

6.1. Reduced-order allocation

Necessary conditions for having enough degrees of
freedom to perform an exact re-allocation are:

rankG̃i] ≥ k, rankG̃Uj] ≥ k. (24)

We notice that, while the first inequality is guaranteed
by the assumption m > k, the second one has to be
carefully checked as it depends on the cardinality of
the particular cluster Uj] . Usually this is taken care of
in the actuator/effector system design by considering
its redundancy and clusters defined by common mode
faults. The reconfiguration can be regarded as a
reduced-order control allocation in which some of the
inputs are neglected or strongly penalized. For example,
in the case of the quadratic cost functional J(w) with
U = Rm, assuming that the actuator cluster Uj] is
faulty, one has to solve the reduced-order optimization
problem

uTΩu = min
w∈Rm

wTΩw

subject to{
ui = 0 if i ∈ Uj]
τc = Gu

(25)

that yields a reduced vector

ũ = G̃−R
Ω̃
τc ∈ Rm−ℵj] ,

where ℵj] is the cardinality of the cluster Uj] and G̃−R
Ω̃

is the weighted pseudo inverse of the matrix G̃Uj] , i.e.

G̃−R
Ω̃

= Ω̃−1G̃TUj]
(G̃Uj] Ω̃−1G̃TUj]

)−1

with Ω̃ ∈ R(m−ℵj] )×(m−ℵj] ) obtained from Ω by
reducing the dimension according to G̃Uj] .

6.2. Actuator dynamics

A different and more sophisticated approach is
needed in the presence of actuator dynamics. Suppose
for instance that the actuator states u ∈ Rm are assigned
by the dynamical relationships

u̇i = −κiui + vi

with κi ≥ 0 and vi actuator control inputs. As a matter
of fact, within this extended framework, the faults may
affect the actuator dynamics through modification of
the nominal drift coefficients κi. Since the actuator
states can only be changed dynamically by means
of the input vi, zeroing the latter does not always
ensure that the corresponding ui converges to the
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origin, and actuators may approach some non zero
steady-state. While this fact does not compromise the
fault detection and isolation procedures, it constitutes
an additional challenge towards addressing control
reconfiguration. A possible solution to this problem has
been proposed in [12], consisting in two main steps:
estimation of the faulty actuators steady-state (if any)
using residuals and finite-time control reconfiguration
[1], i.e. determination of a reduced-order actuator input
ṽ(t) able to guarantee convergence in a finite time τ? >
0 of the safe actuator states to the desired control input

lim
t→τ?

|G̃ũ(t)− τ̃c(t)| = 0,

where τ̃c(t) = τc(t)−Gi]u[i] , u[i] being the estimate of
the faulty actuator steady-state.

6.3. Dynamic weighting
As already highlighted, exact control reconfig-

uration is achievable only when the rank condition
(24) is fulfilled; however, in some circumstances, this
condition may be too restrictive, and hence some
techniques to handle the case rank G̃Uj] < k are
needed. A first approach, leading to approximate
solutions, is to penalize the faulty actuators Uj]
by rescaling (non uniformly) the weighting matrix
Ω. For example, assuming Ω = diag(ω1, ..., ωm), the
allocation problem reads as

u = arg min
w∈U⊆Rm

wTΞΩw

subject to
τc = Gw,

where Ξ = diag(ξ1, ..., ξm) is a diagonal positive
definite matrix such that{

ξj = 1 j /∈ Uj]
ξj >> 1 j ∈ Uj]

As proposed in [9], the weights ξj might also be defined
dynamically with a rate depending on the fault severity,
which can be inferred from the size of residuals. A
simple dynamic updating scheme for the weights is the
following:

ξ̇j = 0 j /∈ Uj]
ξ̇j = −υ(t)ξj j ∈ Uj] ,

where υ(t) is the measure of fault severity computed as

υ(t) =
1

q

q∑
s=1

n∑
i=1

max{0, |ε(s)i (t)| − µ(s)
i (t)},

which corresponds to the average offset of active
residuals with respect to thresholds.

6.4. Switching schemes

An alternative and possibly more robust strategy
is to adopt the robust framework proposed in [28].
Based on Lyapunov techniques and relying on the
FDI module, the controller is designed to robustly
stabilize the plant during all the three fault-related
phases: before fault occurrence (α), after fault detection
(β), after fault isolation (γ). This can be done through
a switching term ẋc = z3(t, xc, x, υ) depending on the
fault estimation and on the particular phase 3 = α, β, γ.
We notice that, in order to adapt this approach to
the input redundancy framework, the switching term
z3(·, ·, ·, ·) must be first incorporated in the controller
definition (3) and then accordingly commanded to the
actuators through the allocation scheme. In conclusion,
let us state the following general rule.

Rule VI.1 Assume that the actuator cluster Uj] has
been identified as faulty. There are two options for
performing control reconfiguration:

A) The rank condition (24) is satisfied. The
controller structure (3) does not change, unless
for the case of actuator dynamics with non zero
steady-sates, and the control input is reallocated
according to the reduced-order scheme (25).

B) The rank condition (24) is not fulfilled. The
allocation scheme (4) does not change, and
the controller structure (3) is updated by
incorporating a switching term z3(t, xc, x, υ)
that can be designed following the procedure
presented in [28].

VII. A simulation study

Let us consider the following nonlinear system as
a working example:

ẋ1 = x2

ẋ2 = x3 + sign(x2)
√
|x2|+ g0(x1)τ1

ẋ3 = −x1x3 + g0(x1)τ1 + τ2

with

g(x) =

 0 0
g0(x1) 0
g0(x1) 1

 , g0(x1) =
1

1 + x2
1

.

The desired control effect τ = [τ1 τ2]T is assigned by
a feedback linearizing law which ensures the regulation
of the state x1 to the setpoint r1 = −1.5, i.e.

τ1 = −g−1
0 (x1)sign(x2)

√
|x2|

τ2 = x1x3 − g0(x1)τ1 −Kx+Krr1
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with K = [6 11 6]T and Kr = 6. The control
allocation scheme is defined as

τ = G(x)u, u = [u1 u2 u3 u4]T

G(x) =

[
1 1 1 0
x1√
1+x2

1

−1 0 −2

]
.

The input disturbance has been chosen as an oscillating
signal with state-dependent amplitude:

η(x, u, t) = [0 0.2 sin(t)x2 0.2 cos(t2)x1]T .

A fault detection observer has been implemented
according to (7) with Λ(0) = diag(−3,−5,−7). An
fault is supposed to affect actuator u4 for t ≥ T0 = 20s,
fading in with a fast evolution rate α = 20. On the other
hand, we point out that the proposed architecture can
successfully handle the case of incipient faults too, i.e.
faults with a small rate α can still be correctly isolated.
The efficiency of the proposed fault detection technique
is illustrated in Fig. 1 and Fig. 2, where the residual
size is markedly larger than the detection thresholds
for t ≥ T0. The fault approximation performance is
shown in Fig. 12, representing the norm of the
actual fault versus its estimation. Once the fault has
been detected, four isolation observers have been
implemented: as rank G(x) = 2 ∀x, no actuator
clusters have been taken into account. The observers
have been designed according to (12), with matrices
Fi = diag(−3,−5,−7) ∀i = 1, .., 4 and by tuning the
tolerance parameter % = 0.6. The norm of residuals,
together with an overall isolation threshold, is depicted
in Figures 4-7: the reset of residuals to the zero
level, corresponding to re-inizialize the observer when
|Bx̄| = %, is clearly visible. The isolation task can be
successfully addressed: residuals r1, r2, r3 perceptibly
exceed the thresholds, while residual r4 is not larger
than ε except for a finite number of negligible
neighborhoods of the reset instants. The reconfiguration
is performed for t ≥ 50s. The behavior of the state x1

and of the virtual input τ is shown in Figures 8-10
for the three admissible scenarios, i.e. nominal system,
faulty system without accommodation and faulty
system with control reconfiguration: it is noticeable
that the original behavior is successfully recovered.
Note that reconfiguration could have been made shortly
after detection at time t = 20s based on the observed
residuals, and the reconfiguration at time t = 50s
was made to illustrate the successful computation of
residuals with the resetting. Finally the evolution of
the redundant inputs ui is depicted in Figure 11: the
three different stages, i.e. before fault, after fault, after

reconfiguration, are clearly distinguishable.
Besides the mere validation of the theoretical results, it
might be interesting to the test the proposed approach
in a more practical scenario. While modeling errors
can be treated in a natural way by incorporating
them in the nonlinear uncertainty η(·, ·, ·), the presence
of noisy measurements provides additional challenges
[11] [14]. To this end, the robustness of the method
with respect to noise has been successfully tested by
injecting a zero-mean random signal in the system,
and the corresponding isolation residuals are reported
in Figures 12-15, which show the effectiveness of the
scheme. The isolation thresholds are also affected by the
presence of the noise due to the state-dependent bounds
η̄(x, t). It is worth to notice that the fault diagnosis
performances might be further improved by filtering the
measured states prior to feed them to the observers.

VIII. Conclusions

In this paper the problem of fault-tolerant
control allocation has been addressed for nonlinear
systems with a redundant set of actuators. The
proposed scheme consists of three main steps: fault
detection/approximation, fault isolation and control
reconfiguration. Based on the fault diagnosis approach
for nonlinear systems introduced in [27] [28], the
construction extends to the nonlinear case some fault
isolation techniques obtained by the authors in the
framework of linear systems with redundant inputs
[11]. The key point of the method is the use of a
family of unknown input observers that are designed to
decouple faults affecting selected actuators or clusters
of actuators, the latter corresponding to common mode
faults. The observers’ parameters design is based
on linear algebraic rules, and a logic is provided
for resetting the estimators when the magnitude of
nonlinearities become too large to be neglected and
treated as a disturbance. Once the faults are detected and
isolated, the control reconfiguration module is activated
and, thanks to the input redundancy, a reduced-order
control application policy is enforced: the actuators
that are identified as faulty are not used or strongly
weighted, i.e. the desired control effect is produced
by the joint action of the healthy devices only. A
procedure dedicated to generalize the results to the
challenging case of unmeasured states is also provided.
A simulation study has been included to validate
the theoretical results and illustrate the efficiency of
the proposed fault diagnosis method for nonlinear
overactuated systems in the presence of uncertainties.
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Fig. 1. Fault detection residual: state x2 (without reconfiguration)
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Fig. 2. Fault detection residual: state x3 (without reconfiguration)
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Fig. 4. Fault isolation: norm of residual r1
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Fig. 5. Fault isolation: norm of residual r2
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Fig. 6. Fault isolation: norm of residual r3
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Fig. 8. State x1 for the three scenarios: nominal system, faulty actuator
u4 and control reconfiguration at t = 50
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Fig. 9. Virtual input τ1 for the three scenarios: nominal system, faulty
actuator u4 and control reconfiguration at t = 50
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Fig. 10. Virtual input τ2 for the three scenarios: nominal system, faulty
actuator u4 and control reconfiguration at t = 50
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Fig. 11. Redundant control inputs u1, u2, u3, u4
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Fig. 12. Fault isolation: norm of residual r1 subject to output noise
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Fig. 13. Fault isolation: norm of residual r2 subject to output noise
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Fig. 14. Fault isolation: norm of residual r3 subject to output noise
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Fig. 15. Fault isolation: norm of residual r4 subject to output noise
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