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ABSTRACT This paper deals with the problem of transient events in model-based observers for dynamic
positioning of marine surface vessels. Traditionally, model-based observers experience a deterioration of
performance during transients, and there is a give or take relationship between transient and steady state
performance. To remedy this problem, we propose to use time-varying gains for a model-based observer. The
gains are aggressive during transients to improve transient performance, and relaxed in steady state to lower
the oscillations of the estimates. The proposed observer is analyzed with regard to stability. Its performance
is verified in both a high-fidelity simulation model, and on experimental data with the research vessel (R/V)

Gunnerus. In addition, a partial closed-loop validation with R/V Gunnerus has been performed.

INDEX TERMS Dynamic positioning, Marine control systems, Observers.

I. INTRODUCTION

A dynamically positioned (DP) vessel means a unit or a
vessel which automatically maintains its position (fixed loca-
tion or predetermined track) exclusively by means of thruster
force [1]. As dynamic positioning operations are moving
into harsher conditions or doing more complex operations,
better transient performance of the DP system is required.
A bias term is used as integral action to model slowly-varying
environmental loads and unmodeled dynamics, and for good
model-based observer performance it is important to estimate
this bias accurately. Integral action is typically based on
the assumption that this bias is constant. The bias load is,
however, slowly-varying in steady state, but can vary rapidly
in transient events. A major obstacle in transient performance
of DP is how to handle rapid changes in this bias load.

In model-based observers for DP, the environmental loads
are typically modeled as a constant force vector in the North-
East-Down-frame (NED), that is, the following kinetic equa-
tion is typically used, M) = —Dv + R(Y)' b + 7, where
b is this constant load (bias) vector in the NED-frame and
R(-) is a rotation matrix mapping into the body-frame of the
vessel; see Section II-A for more details about the model-
ing, as well as [2], [3]. There are instances when the bias
loads change significantly over a short time period, where
this assumption does not hold. In Figure 1 we investigate,
as an example, how the current and wave drift loads vary in

the NED-frame over a heading change. The figure shows a
high-fidelity simulation of a surface vessel performing two
maneuvers; first, a position setpoint change, and afterwards,
a combined setpoint change of position and heading. In the
top plot of Figure 1 the low-frequency North position and
heading angle are shown. In the bottom plot the combined
current and wave-drift loads are shown in North and yaw.
We observe that the loads experienced by the vessel in the
NED-frame changes significantly, even though the current
and wave parameters are constant in the NED-frame. This
is because the forces experienced by the vessel vary due to
ship hull geometry, which is not accounted for in the sim-
ple (but effective) bias model. Consequently, for some time
after a transient event, the bias load estimate of a model-based
observer will be off, leading to poor velocity and position
estimates. This example clearly illustrates that if the vessel
changes heading, the common slowly-varying assumption of
the bias model in the NED-frame does not apply in transients;
see also [4] for a discussion on this for AUVs (Autonomous
Underwater Vehicles) exposed to currents. Other common
occurrences of rapid bias load changes include wave trains,
rotational currents, sea-ice loads, or during mode changes in
the operation of the DP system.

Even with the knowledge that the slowly-varying bias
assumption is not good in transients, it is difficult to device
better ways of handling this. One non-model based option
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FIGURE 1. Low-frequency North position and heading angle (top), and
current and wave-drift loads in North and yaw experienced by the
vessel (bottom).

is to measure accelerations to estimate the forces in a direct
fashion as suggested in [5]. Another option that does not
require more instrumentation is to use a more complex model
of the hydrodynamic loads, but this would also give a more
complex control algorithm that could be more difficult to
parameterize and analyze with respect to stability. Moreover,
depending on the type of environment, there will always be
uncertainty in such models.

There exists other time-varying observer schemes for DP in
the literature. See for instance [6], where an inertial observer
for DP is proposed that uses time-varying gains to improve
convergence and suppress sensor noise. In [7] and [8] a
wave encounter frequency observer is proposed, where time-
varying gains are used in an adaption law, and in [9] hybrid
gains are used in integral action for DP.

The main contribution of this paper is to construct a model-
based observer with time-varying gains that performs well
in transients as well as in steady state. In state-of-the-art
fixed gain model-based observer design for DP [2], there
is a tradeoff in tuning the observer for either good steady
state performance or good transient performance, and in com-
mercial systems there are typically three gain settings; low,
medium, and high, which the DP operator can select from.
As an extension of the observer design from [10], we propose
in this paper to use time-varying bias and velocity injection
gains. The paper includes a comprehensive analysis and thor-
ough selection of gains, and an observer verification based
on experimental data. Another contribution is a full-scale
closed-loop validation of the observer when conducting a DP
experiment on the AMOS DP Research Cruise 2016 [11].
Demonstration of the observer performance through
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full-scale closed-loop experiments on an academic research
cruise is, to the author’s knowledge, not done before.

Notation and Terminology: In UGES, G stands for Global,
U for uniform, E for exponential, and S for Stable. The
smallest and largest eigenvalues of a matrix A € R™" is
Amin(A) and Apqx(A), respectively, and R. o denotes positive
real numbers. The L, signal norm is ||x||cc = esssup{|x(?)| :
t > 0}.

Il. PROBLEM FORMULATION

In the following we separate between the simulation model,
which is a high-fidelity model used for control and observer
verification, and the control design model, which is a sim-
plified model intended for control and observer design. The
control design model typically only includes the parts rele-
vant for the operational regime of the observer or controller.
For low-speed applications such as DP, this implies that the
Coriolis and centripetal forces are neglected, and the nonlin-
ear damping is typically neglected as well. See [3], and [2] for
DP modeling details, and [12], [13], [14] for other insightful
DP literature.

Two reference frames are used: The North-East-Down
frame (NED) is a local Earth-fixed frame assumed non-
rotating, with x-axis pointing North, y-axis pointing East, and
z-axis pointing down to the center of the Earth. The body-
frame is a local frame, centered along the center line and in
the water plane of the vessel. The x-axis points in the direction
of the the bow, y-axis starboard, and z-axis down.

A. CONTROL DESIGN MODEL
The control design model is a 3 degree of freedom (DOF)
model,

£ =AE+E,w, (1a)
N =R (1b)
b=—T,"b+w (1c)
Mv=—-Dv+RWY) b+t (1d)
y=n+Cy§ + vy, (1e)

where there is a separation between the first order wave-
induced motion in (1a) and the low-frequency motion of the
vessel in (1b) - (1d) [2]. When controlling the vessel, we are
typically only interested in the low-frequency part of the
motion. Controlling the total motion causes extra wear and
tear on the thrusters, and in most cases it is not possible to
counteract the first order wave-induced motion. The wave-
induced motion £ € R> x S! is modeled by a second order
mass-spring-damper model, where A,, is a Hurwitz matrix
that contains the peak frequency of the sea state and the
damping ratio of the wave motion model, w,, € R? is zero
mean white noise, and E,, = [03><3 13X3]T. The vector
n = col (nn, ne, ¥) € R x S contains the low-frequency
North/East position and heading angle of the vessel, and the
bias load b := col (by, b, by,) € R? is a NED-fixed vector
that contains the slowly-varying loads affecting the vessel due
to wave drift, mean and slowly-varying currents, mean wind
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loads, as well as unmodeled dynamics from inaccurate mass
and added mass, unmodeled hydrodynamic effects, and errors
in thrust modeling. The bias load dynamics are modeled by
a Markov process, where Tp is a diagonal matrix of time
constants, and w, € R3 is the white noise vector [2]. The
vector v = col (u,v,r) € R3 contains the low-frequency
surge/sway velocity and yaw rate in the body frame of the
vesse, M € R¥3 and D € R¥*3 are the mass (inertia
and added mass) and linear damping matrices, respectively.
T € R3 is the control vector. The measurement vector y € R3
is a sum of the low-frequency North/East position and head-
ing 71, and the wave frequency North/East and heading C,,&,
where C,, = [O3X3 I3« 3], and the measurement noise vector
vy € R3. The rotation matrix R(y) rotates a 3 DOF vector
from the body to the NED frame. It satisfies R(y)R(y) T =1
and det(R(y)) = 1, and its time derivative is R = R(r)Sr,
where

[cos(y) —sin(y) O
R(Y) = | sin(y)  cos(y) O,
0 0 1
[0 -1 0
s=|1 o0 ol: )
0 0 0

see [2] and [15] for details.

B. ASSUMPTIONS

Since the wave-induced heading angle is typically less than
1° for normal sea states and less than 5° for extreme sea states,
we assume as in [16] that:

(A1) R(¥ + ¥w) = R(Y), that is, the heading angle due to
wave-induced motion, v, is small.

We also make the following assumptions:

(A2) The added mass part of M and the wave-induced
damping of D are set to the values when the wave
frequency approaches infinity, and therefore they
are constant. In addition, starboard/port symmetry is
assumed, M = M T > 0, and that the damping matrix
satisfies D+ DT > 0.

(A3) wy, = wp = 0. Since the presented observers are
deterministic, both the wave and the bias estimates in
the observers are driven by the estimation error [16].

(A4) In the stability analysis, no measurement noise is con-
sidered, vy = 0. However, simulation and experimen-
tal data include it.

The last two assumptions are common for a deterministic

observer design, but in practice we will see that the resulting
observer has good filtering properties of these noise inputs.

C. PROBLEM STATEMENT

We consider the case where the bias b is constant or slowly
varying in long periods of time, but then sporadically expe-
riences rapid changes due to some transient condition. The
problem is thus to design an observer for (1) that accurately
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estimates the states during both steady and transient condi-
tions. The performance of the observer shall be compared to
a conventional design basis through a performance index.

IIl. OBSERVER DESIGN

The proposed observer is based upon the “nonlinear passive
observer” initially presented in [16]. Time-varying injection
gains for the velocity and the bias dynamics are proposed
to capture slowly-varying dynamics in steady state, and fast
dynamics during transients. The observer is designed by
copying the control design model (1) and adding injection
terms, that is,

E=AE+Kiy (3a)
7 = RWY)D + Ka§ (3b)
b=—T'b+Ks(t)j (3c)
MY =—Dd+RW) b+t +KiORW)'5  (3d)
5=+ Cut, (3e)

whereé e R’ xS, 5 e R? xS, b e R3 and D € R? are
the state estimates, K; € R3, Ky, K3(1), K4(r) € R3*3 are
non-negative gain matrices, and y = y —y is the measurement
error. The gains K| and K depend on the peak frequency
of the wave spectrum as in [16]. The observer in (3) was
preliminarily presented in [10] with only K3(¢) varying with
time. Further analysis shows that an appropriate choice of
values for K3 and K4 are important for good transient observer
performance, so here a scheme for time-varying K3 and K is
proposed.

As discussed in Section I, the transient changes of the bias
load experienced by the vessel pose challenges for the model-
based observer in (3). To illustrate this, consider the following
case: When the vessel is pushed off setpoint due to a rapid
external load b, the DP controller will try to decelerate and
stop the movement, and bring the vessel back to setpoint.
The observer has information about this control action t and
position deviation y, whereas the bias observer state b under-
estimates the actual bias load. While the position deviation is
helpful for the observer, the control action’s “‘push back™ to
position is seen as an indication that the vessel is moving in
the direction of the control action, which initially is opposite
of the actual motion of the vessel. Therefore, including feed-
back control action deteriorates the observer performance in
the initial phase of a transient.

Therefore, in order to achieve good transient observer
performance, the injection gain K4(¢) in the velocity dynam-
ics (3d) must be high enough to dominate the feedback con-
trol action. In addition, the injection gain K3(¢) in (3¢c) must be
high enough in order for the bias estimate to more accurately
track the bias load value during the transient. Keeping these
gains high all the time will, however, result in oscillatory
estimates of the bias and velocity in steady state.

K3(t) and K4(¢) are proposed to stay within the range

Ki(t) € [Ki,mins Ki,max]s i= 3, 4Vt = 1.
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The values of K; ;4 should be set such that they give a good
transient performance of the observer, and Kj i, such that
the observer performs well in steady state. The steady state
tuning is purposely set low, providing calmer estimates to
the controller, as is normal tuning practice for conventional
DP observers. The time-varying gains should react quickly
to transient events by approaching their maximum values
rapidly.
The equation for K3(¢) and K4(¢) is thus proposed as

Ki(t) = k(OKimax + (1 = k(O)Kimin, 1=3,4, (4)

where «(t) € [0, 1], V¢ > 0. Whenever there is a transient
event, « should approach 1, and whenever the vessel is in
steady state, « should stay close to 0.

Three transient events are considered. The first is an
operator-executed heading change, which is easily detected
through the desired yaw rate from the guidance system.
The second is a change in the environmental disturbances.
This is detected through a deterioration of the observer per-
formance. The final transient is the error due to initialization
of the observer. The proposed dynamics for « is

() = max{0, B(r) — 1}} (5)
B(6) = miner, lra(0)] + £y (1), 2} (5b)
= =T, iy = ), (5¢)

where ¢, € R.( and the desired yaw rate r4(f) € R are
related to a heading change. The second term 7y in (5b) is
the lowpass filter (5c) that tracks the observer output error
performance, where T, € R3*3 is a diagonal matrix of
filter time constants. If the observer performance deteriorate,
|77| will grow. The time constants and &, € R are tuned
such that « approaches zero at steady state. To incorporate
the effect of a transient at observer startup, 7y is initialized
with non-zero values. The value of § in (5b) takes a value
between zero and two. The maximum function in (5a) defines
a threshold such that « will not go above zero before B is
larger than one. This will reduce the amount of switching
back and forth.

IV. STABILITY ANALYSIS

By defining the estimation error states E:=¢ —é 1 i=n—n,
D :=v—1,and bh:=b-— i), and subtracting the observer
equations (3) from the control design model (1), we get the
observer error dynamics,

MV = —Dv + R(Y) b — Ka()R(Y) . (6d)

The stability analysis follows the same structure as in [10].
However, the following proof removes the assumption of a
maximum yaw rate. We collect all the observer error states
from (6) in a vector x := col(g‘, 7, b, ) € R and write the
observer error dynamics from (6) compactly as

x =AY, tx, (N

where the equation can be derived, as shown at the bottom of
this page.
The dynamics (7) can be written as [17],

i =TW) A0, NT(W)x, ®)

where

T(y) = diag{RW) ", RW) ", RW),RW), 1}, (9)

if the matrices K3, K3(¢), and T commute with R(v), and
K1 R = diag{R, R}K;. Note that the nonlinearity R(y) is
replaced by R(0) = I in A(0, ¢). Moreover, it can be shown
that we can write A(0, ) as

A0, 1) = k(DAmax + (1 — k(D)Amin, «(@) €[0,1]. (10)

where A,,;, =A(0,0) and A,,,,x =A(0, 1).
Proposition 1: The equilibrium x =
Ki(t), i=3,4, is given by (4), and

0 of (7) where

k() €[0,1] V=0,

is uniformly globally exponentially stable (UGES) if the
following holds:
(1) The matrices K>, K3(t), and T;, commute with the rota-
tion matrix R(v), and K1 R = diag{R, R}K].
(2) The linear matrix inequalities (LMIs) below are

satisfied,
AP+ PAyiny < —Q (11a)
A} P4 PApay < —Q (11b)
PSt — STP is skew-symmetric, (l1c)

where S7 = diag(S, S, S, 5,0}, and P € R>*15 and

Q e R>*15 are symmetric positive definite matrices. (]

Proof 1: Consider the transformation z = T(¥)x given
by (9), and notice that 7(y¥/)~' = T(y) . From (8) we get

g — A — Ky (62)
i = R — Ko (6b) = TTW)TAQ, 1)z + TTW) Tz
b= —T7%— K1) (60) — A, 1)z — Sy, (12)
A, —KiCy —Ki 0 0
._ —Ka2Cy —K> 0 R()
AVD=1 _orw)TC, K3 (ORGP ;! 0

—M'K4(ORWY) T Cy
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where 7 is the yaw rate. We introduce a quadratic Lyapunov
function V(z) = z' Pz with P from (11), and take the time
derivative of V along (12), which gives

V =z {PAQ0, 1) + A0, 1) P — r(PSt — STP)}z
= 0.85z" {k(1)(PAmar + A P)
+ (1= K (O)PApin + AP}z
= _‘]m|z|2 (13)

where g, is the smallest eigenvalue of Q from (11).

V. SETUP, RESULTS, AND DISCUSSION
The observer in (3) has been tested on the high-fidelity simu-
lation model and on full-scale experimental data, described in
sections V-A and V-B, respectively. For the experimental data
we only have data sets with negligible waves, so the observer
tested does not apply the wave filter. Hence, the observer used
is (3b)-(3d) with y = 7. In addition, the data series for the full-
scale experiments contain a lot of transients, but little steady
state. Therefore, the simulation study has a wider discussion
of performance than the observer results on the experimental
data.

After a presentation of the setup, we start with presenting
a closed-loop verification of the observer from [10] onboard
the R/V Gunnerus. This serves as a verification of the time-
varying observer design, which is relevant for the observer
presented in this paper, as the observers have similar structure
and scheme for selecting the time-varying gains.

A. DP SIMULATION MODEL

The simulation model is a 6 DOF high-fidelity model
of a platform supply vessel with main parameters shown
in Table 1. The model includes nonlinear damping, Coriolis,
centripetal forces, and linear damping, based on building
blocks from the MSS Toolbox [18]. Wave drift and current
forces are calculated using lookup tables, which give a real-
istic variation of the bias loads with vessel heading. Realistic
noise is added to the measurement signals from the GPS and
compass, with sampling rates of 1 Hz and 10 Hz, respectively.

TABLE 1. Simulation, platform supply vessel, and main parameters.

Parameters Value
Length between perp. 80 m
Breadth 17.4 m
Draft 5.6 m
Displacment 6150 tons

The simulated sea state is very rough with significant wave
height of 6 meters, and a peak frequency of 0.53 rad/s taken
from the JONSWAP! spectrum. The mean incident wave
heading is 190° (head waves) in the North/East frame [19].
The simulation also includes current with a speed of 0.5 m/s
with direction of 160° (bow).

1 Joint North Sea Wave Project
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FIGURE 2. The NTNU-owned research vessel R/V Gunnerus.

TABLE 2. R/V Gunnerus, main parameters.

Parameters Value
Length over all 313 m
Length between perp. 289 m
Breadth middle 9.6 m
Draft 2.7 m
Dead weight 107 tons

Sway motion

Surge and sway motion Surge motion

Coupled motion all DOFs }——0

i

FIGURE 3. The 4-corner DP test. Courtesy: @ivind K. Kjerstad.

B. AMOS DP RESEARCH CRUISE 2016
Full-scale experimental data were collected during the
AMOS DP Research Cruise (ADPRC) 2016 [11] with R/V
Gunnerus, a 31-meter long research vessel owned and oper-
ated by NTNU, as seen in Figure 2, and with main parameters
in Table 2. In addition, a closed-loop verification of the
observer from [10] onboard the R/V Gunnerus was tested on
the cruise. For the experimental data we only have data sets
with negligible waves.

The data sets from the full-scale experiment with R/V
Gunnerus are all from the vessel performing a box maneuver,
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here called DP 4-corner test, as shown in Figure 3. The vessel
starts at North and East position (N, E) = (0, 0) with heading
zero degrees, and the test steps are:
1) Position change to (N, E) = (40m, 0) with zero head-
ing (pure surge motion).
2) Position change 40 meter to (N, E) =
with zero heading (pure sway motion).
3) Heading change to v = —45 degrees (pure rotation).
4) Position change to (N, E) = (0, —40m) keeping heading
at -45 degrees (combined surge and sway motion).
5) Position change to (N, E) = (0, 0) and heading ¢ = 0
degrees (coupled motion with all DOFs).

(40m, —40m)

C. PERFORMANCE EVALUATION

To compare performance of the different observer algorithms,
we will apply the following cost functions as performance
indicators,

Iy . . 180 n
Jy = {Imv—nN|+|nE—nE|+7I1/f—wI}dt (14a)
fo

I . . 180
Jy =/ {|u—u|+|v—v|+7|r—r|}dt (14b)
Jb_/ff by = byl | 1be = bel by =Byl
16w 1o 16E lloo by lle =

where #p and #; are the initial and final time of the interval.

D. DERIVATIVE FREE OPTIMIZATION FOR TUNING

When comparing observers, a fair tuning is important.
We would like to find the tuning based on optimization.
Due to the absence of information about the gradient, Hes-
sian, or higher derivatives of a typical cost function, a classic
gradient descent-like method is not applicable. Therefore,
derivative free optimization (DFO) will be used as a guide to
tune the observers, and the MATLAB® function fininsearch
has been adopted.

To illustrate how derivative free optimization works, let
us consider a variable of interest, x € R. The goal is to
establish a cost function to minimize the error ¥ = x — X
given a certain parameter K € R and a simulation time
of #; seconds. We consider a cost function J(K, tr), where
for each value of K a new simulation is performed and the
cost function is evaluated. The derivative free optimization
method explores the solution set around the current iteration
result to compute a new solution point which minimizes the
cost function. In our case this means to find a new value for
K that gives a lower cost for J than the one before. There is
a chance of getting stuck in a local minimum, and therefore
several initial conditions for K are needed.

E. OBSERVER OF [10]: TIME-VARYING K3(t) ONLY, WITH
FULL-SCALE CLOSED-LOOP VERIFICATION

The time-varying observer from [10] was tested in closed
loop on the ADPRC 2016. The observer is similar to (3),
with a time-varying bias injection gain K3(¢), but K4 was kept
constant. However, since the waves were negligible while
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performing the closed-loop trials, the observer used in closed-
loop was (3b)-(3d) with y = 7.

The control law 7 used for the full-scale experiments had
a feedback term trp, and a reference feedforward term trp,
where the feedback term consisted of a nonlinear PD (pro-
portional, derivative) tracking term and a bias load rejection
term,

T = T + TFF (15a)
rr = Mg(t) + Dvy(t) (15b)
s = —KpR(Y) ' (7 — na (1)) — Ka(d — va(1)) — R(Y) " by,

(15¢)

where K, and K, are positive definite gain matrices, and
na(t), va(t), va(t) are the desired references generated by a
guidance system. The state Ef is a lowpass-filtered state of
the bias estimate l;,

by — b), (16)

where Ty is a diagonal matrix of the filter time constants. This
filter was used instead of the bias estimate directly, to achieve
a calmer control signal; see [10] for more details. The tuning
for the observer and controller gains were found through trial
and error.

by = =T,

1) EXPERIMENTAL CLOSED-LOOP RESULTS

The vessel followed the DP 4-corner maneuver described in
Section V-B, and Figure 4 shows the response of the vessel
for two different runs. The left side of the figure shows
the North/East position of the target and the two runs, and
the right side of Figure 4 shows the heading setpoint and the
vessel heading for the two runs. The figure indicates that the
observer worked well in closed loop, and vessel followed
the maneuver well. The best performance was in surge, and
when the degree of coupling between surge, sway, and yaw
increased, tracking the reference was harder.

The two runs had similar environmental conditions, with
current of velocity 0.3 m/s and direction 300°, and with
wind speed of 6 m/s and direction 250°. For both runs the
observer gains were the same, but the filter time constant
for the bias was four times higher for run 2. As seen from
Figure 4, both runs were quite similar in performance, but
run 2 was more oscillatory, at least on the last part of the
maneuver. This is probably due to the higher bias filter time
constant. The closed-loop results indicate that the observer
worked well in closed loop, and managed to control the vessel
to a satisfactory degree.

F. OBSERVER WITH TIME-VARYING BIAS AND VELOCITY
INJECTION GAINS

We now present the results for the time-varying observer
in (3), where both K3(¢) and K4(¢) are time-varying. In addi-
tion, the results of the observer in [10] with only K3(¢) time-
varying is presented, with Ky = K4 min. TWo benchmarks
are included to compare the performance of the observers.
The first benchmark is an observer that always uses K3 in
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FIGURE 4. Full-scale experimental verification on R/V Gunnerus of the algorithm from [10]. The left plot shows the four corner target and results of two
different runs. The right side shows the heading setpoint and the response of the two different runs.

and K4 min in (4), named the baseline observer, working well
in steady state. This is the ‘“‘nonlinear passive observer”
presented in [16], with normal tuning, and is typical in the
literature. The second benchmark is an observer called the
aggressive observer that always uses K3 j,qc and Ky max,
working well in transients.

1) TUNING

To find the tuning for the observers, derivative free optimiza-
tion, as discussed in Section V-D, was used with the cost
function

J :]r/ +CUJUa (17)

where J,, and J, are defined in (14a) and (14b), and ¢, is a
scaling factor to weight the relative contributions for position
and velocity.

For the simulated data in Section V-F.2, a maneuver with
many transients has been used. The data set has both a change
of the current direction and a heading change combined
with a North/East position change, with short time intervals
between the transients. The resulting tuning was adjusted to
accommodate the stability requirements in (11), and this was
used as a guide to tune the transient observer gains, that is,
the maximum values of K3(¢) and K4(¢).

In order to find values for K3 i, and K4 s, several tests
have been conducted. We tried to select maximum gains
higher than the gains from the tuning found from DFO and
combined this with a low minimum tuning, but this did not
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yield good results. This makes sense as the DFO tuning is
found over a lot of transients, and thus is very aggressive
already.

Thereafter, using the DFO tuning as the maximum values,
we searched though several variations for the minimum tun-
ing. Setting the minimum gains to 60 — 70% of the maximum
gains yielded the best results. However, since we needed to
adjust K3 mqr to satisfy the stability requirements in (11),
we selected the highest feasible K3 ;4 that in combination
with minimum gains K; jin = 0.7 Kj juax that satisfied (11).
This gave K3 jax = 0.5 K?eriaox'

For the full-scale experimental data, a similar approach
was used where the DP 4-corner maneuver seen in Figure 3
was used to find the transient tuning. To find the gains
by using DFO, the post-processed position measurement
and velocities were used. The velocities were found by
differentiating the North/East position and heading using a
finite impulse response (FIR) filter. A search over possi-
ble ratios between the maximum and minimum tuning was
performed, where 0.7 performed well, satisfying (11) with
K3 pmax = 0.5 KPFO

3,max*

2) ESTIMATION BASED ON SIMULATED DATA
For the simulated data the vessel is controlled by (15) and (16)
that operate on the estimated states, i.e. the observers operate
in closed loop.

In the data series, the current changes direction
at + = 500 seconds, and at + = 1000 seconds there is
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FIGURE 5. Simulation results of observer in closed-loop.

TABLE 3. Performance indices for the estimation error, simulation data.

Time: 0-1500 s 2000-3500 s
Observer Jn Ju Jp Jn Jy Jy
Baseline 21252 964 666.8 21256 363 355.0
Aggressive 2098.8 847 6532 2141.8 50.0 4469
Time-varying K3 and K4  2099.3 85.1 6462 21256 363 3513
Time-varying K3 21172 917 697.1 21256 364 3524

a setpoint change of both North/East position and heading.
Figure 5 shows the results of the four observers. The left side
shows the low-frequency North/East position and heading of
the baseline observer in the top plot, the middle plot shows the
bias load of the baseline observer, found by solving (1d) for
b, and the lower left plot shows the « variable of the observer
with time-varying K3(¢) and K4(¢) from (4). The right side
shows the performance indices J;, J,, and Jp, in (14) from
top to bottom, respectively. The same performance index
values for 0 to 1500 seconds and for the steady-state time
interval 2000 to 3500 are listed in Table 3. Note that the
steady-state time interval 2500 to 3500 seconds is not shown
in Figure 5.

Looking at the left side of Figure 5 we see that the bias
loads change a lot, both at the current direction change at
500 seconds, and at the setpoint change at 1000 seconds. The
k-value starts at 1 due to high initialization of 7¢(¢) in (5b)
in order to handle initial transients before settling at « = 0.
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At the heading change at 1000 seconds, « reacts quickly and
jumps to 1 due to the non-zero desired yaw rate. The current
direction change at 500 seconds has to be detected through
deterioration of the observer performance and the subsequent
rise in |77 (1)|. Therefore it takes « longer to reach 1 during the
current direction change.

On the right side of Figure 5 and in Table 3 we see that
all observers perform similarly for J;,. In both the estimation
of the velocity and bias loads, the time-varying observer pro-
posed in this paper performs the best, especially in velocity.
It outperforms the aggressive observer due to effect of lower
oscillations in steady state, and it outperforms the baseline
due to faster reaction over the transients. The time-varying
observer with only K3 time varying performs worse than the
observer with both K4 and K3 time varying, but it performs
better than the baseline observer in transients. As seen from
Table 3, the baseline and time-varying observers are slightly
better than the aggressive observer in steady state for posi-
tion estimation, and considerable better for bias and velocity
estimation.

If the noise variance of the measurements is increased,
the time-varying observer performs better relative to the
aggressive, due to lower tuning in steady state. To make the
time-varying setup better handle large measurement noise,
we could make &, in (5) depend on the variance of the noise.
In this way the time-varying observer could adopt lower gains
if the measurement noise increases.
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FIGURE 6. Observer results on full-scale experimental data from a DP 4-corner maneuver with R/V Gunnerus.

TABLE 4. Performance indices for the estimation error, full-scale exp.
data.

Time: 0-1500 s 1500-1940 s

Observer Jn Ju Jn Ju
Baseline 142.09 144.02 1097 895
Aggressive 13527 12335 11.02 9.05
Time-varying K3 and K4 137.00 12694 10.97 8.95
Time-varying K3 138.83 12697 1097 8.95

3) ESTIMATION BASED ON FULL-SCALE MEASUREMENTS
Figure 6 shows the results of the four observers on data from
R/V Gunnerus from ADPRC 2016. In the data set presented,
the vessel is exposed to a current roughly estimated to 0.6 m/s
and direction 170°, and with wind speed 5 m/s and direction
150°. The left side of the plot shows the measured North/East
position, and heading in the top plot. The bottom left plot
shows the « variable. Notice that « is 1 for most of the four
corner maneuver, and after 1500 a steady state is reached.
Since the four corner maneuver has a lot of transients, and
not too much steady state, it is harder to show a difference
between the different observers. The right side of Figure 6
shows the performance indices J,, and J,, in (14), and all four
observers perform similarly for J;, but for J, the baseline
observer is significantly worse than the other three, due to
all the transients. However, the performance between the
observer with only time-varying K3 to that of the other time-
varying observer is smaller than for the closed-loop simula-
tion results. The values for J,, and J, for the transient and
steady state periods are given in Table 4, and the trend is
similar to that of the closed-loop simulation results, although
the differences in steady state are smaller. This is natural as
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the steady state in simulation is actually steady, and here the
environment is changing, and there is less time to settle into
steady state conditions.

VI. CONCLUSION

A time-varying model-based observer with good perfor-
mance in both transients as well as steady state has been
proposed. The observer is shown to be UGES, and perfor-
mance is shown through a simulation study and on full-scale
experimental data. In addition, a full-scale closed-loop veri-
fication is presented, and this shows that the observer works
to a satisfactory degree in closed loop. Satisfactory tran-
sient tuning for the observer is found through derivative free
optimization. The time-varying observer shows a marginal
benefit over a well-tuned transient observer, depending on
variations in measurement noise and environmental condi-
tions. Especially, if there are large periods of steady state in
between transients the time-varying observer is a tractable
solution over the conventional DP observer. In addition,
the added complexity of implementation for the time-varying
gains is very small.
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