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Sammendrag

Denne oppgaven omhandler vannbølgeproblemet. Vi bruker lokal bifurkasjonste-
ori til å etablere eksistens av reisende og periodiske løsninger av Eulerligningene
med vortisitet og liten amplitude. Tilnæmingen vi bruker baserer seg på den
til Ehrnström, Escher og Wahlén [6], der hovedforskjellen er at vi bruker nye
bifurkasjonsparametere. Vi bifurkerer både fra en éndimensjonal og en todimen-
sjonal kjerne, der den todimensjonale bifurkasjonen gir opphav til bølger med flere
bølgetopper og -daler i hver minimale periode. Vi gir også et nytt og elementært
bevis av Fredholm-egenskapen til den elliptiske differensialoperatoren assosiert med
vannbølgeproblemet. Videre undersøker vi deriverte av bifurkasjonskurven, og gir
et nytt resultat for det tilhørende lineære problemet.
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Abstract

This thesis is concerned with the water wave problem. Using local bifurcation we
establish small-amplitude steady and periodic solutions of the Euler equations with
vorticity. Our approach is based on that of Ehrnström, Escher and Wahlén [6], the
main difference being that we use new bifurcation parameters. The bifurcation is
done both from a one-dimensional and a two-dimensional kernel, the latter bifur-
cation giving rise to waves having more than one crest in each minimal period. We
also give a novel and rudimentary proof of a key lemma establishing the Fredholm
property of the elliptic operator associated with the water wave problem. Further-
more, we investigate derivatives of the bifurcation curve, and present a new result
for the corresponding linear problem.
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1 Overview of sets and function spaces

κ−1S The one-dimensional sphere of radius κ−1.

N The set of positive integers.

N0 The set of nonnegative integers.

X1 The function space C2,β
even(κ−1S,R).

X2 The function space C2,β
per,even(Ω̂,R).

X The function space X1 ×X2.

Y1 The function space C1,β
even(κ−1S,R).

Y2 The function space C0,β
per,even(Ω̂,R).

Y The function space Y1 × Y2.

X̃2 The function space
{
φ ∈ C2,β

per,even(Ω̂,R) : φ|s=0 = 0
}
.

X̃ The function space X1 × X̃2.

kerT For a function T : X → Y , the set {x ∈ X : T (x) = 0}.

ranT The a function T : X → Y , the set {T (x) : x ∈ X}.
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2 Introduction

2.1 Previous work

The steady water wave problem concerns the flow of an inviscid fluid of uniform
density, uniformly translating in the horizontal direction, subject to the external
forces of gravity, surface tension, or both. This reduces to studying the Euler
equations (see (2.1) below). In our case, we consider only pure gravity waves. The
mathematical study of steady water waves has until recently focused on irrotational
flow, i.e. flows with a curl-free velocity field. See Groves [14] for a general overview
of this theory. There are however many naturally occurring situations in which
it is necessary to take vorticity into account. Examples are running water with
nonuniform velocity, and any region where the wind is blowing along a water
surface.

Already in 1802 Gerstner [11] constructed an explicit example of a periodic
traveling wave on water of infinite depth with a particular nonzero vorticity. In
1934 Dubreil-Jacotin [4], using a power series approach, constructed steady, pe-
riodic small-amplitude solutions with a general vorticity distribution. In 2004
Constantin and Strauss [2], using a modern functional-analytic framework, were
the first to construct large-amplitude rotational waves. They applied global bi-
furcation theory to prove the existence of a connected solution set of exact pure
gravity waves over a flat bottom, with vorticity encoded in a large class of admissi-
ble vorticity functions γ, depending only on the stream function of the flow. This
breakthrough allows for the identification of new types of waves solving the Euler
equations exactly, and paved the way for a new branch of research studying the
properties of waves with nonzero vorticity.

One direction of study is to allow for waves with a non-uniform background
flow, something that is excluded in the analysis in [2]. Some papers in this direction
are [6, 19, 9, 8]. The paper [19] by Wahlén is concerned with the case where the
vorticity function γ is a constant, while [6] considered the wider class of affine
vorticity functions. As an effect of vorticity, these papers established the existence
of waves with critical layers—a connected part of the fluid domain consisting only
of closed streamlines—a feature not encountered in the earlier mathematical study
of rotational flows, and never for irrotational flows.

2.2 The work at hand

This thesis is based on the paper [6] by Ehrnström, Escher and Wahlén, which
reformulates the water wave problem in the setting of functional analysis, and then
uses local bifurcation theory to prove existence of solutions. This technique exploits
the fact that there are some obvious trivial solutions to the Euler equations, namely
that of laminar flows which are uniform in the horizontal direction with a flat
surface. Bifurcation theory allows us to study solutions which are sufficiently close
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(in a sense made precise later) to a trivial solution, and deduce various properties
of these solutions.

The main novelty of our approach compared to that of [6] is that bifurcations
are performed using a different parameter, which presents a new technical difficulty
we call the orthogonality condition (Lemma 5.3). We also give detailed proofs of
some claims made in [6], but never proved in that paper, and give a new proof of
the Fredholm property of the linearized operator (Theorem 4.6) valid in a larger
function class than previous work. In section 5.3 we present a situation where we
can give a local classification of all solutions of the water wave problem in a given
function space. In section 7 we present a new result for the linearized problem,
showing that, with the right choice of parameters, the kernel of the linear problem
can have any specified finite dimension. This parallels a result in [7]. In section 8
we compute the values of certain derivatives in the Lyapunov-Schmidt reduction,
which elicit new information about the nature of our solution curves.

Any proposition which is taken directly from existing literature, and whose
proof is either omitted, or for which our supplied proof does not contain any new
ideas, has been clearly marked with the relevant reference. All other results are
novel contributions by the author.

2.3 The governing equations

We now present the equations governing the propagation of pure gravity waves
on water. Gravity is assumed to be the only external force acting on the water,
and so we are neglecting effects of e.g. surface tension. We stipulate that the
bottom of the domain is flat, and we choose the origin to lie at the bottom. We
use a Cartesian coordinate system oriented so that the x-axis is horizontal, the
y-axis points vertically upwards, and direct the z-axis so as to give a right-handed
orthogonal coordinate system. The bottom is therefore given by the equation
y = 0. In its undisturbed state with no waves, the equation of the flat surface is
given by y = d for some d > 0. In the presence of waves, we define the function η?
such that the free surface is given1 by y = d+ η?(t, x, z).

In the mathematical treatment of steady waves, it is physically realistic to
treat water as having constant density [16], and, at least for gravity waves, as
being inviscid [3]. The governing equations for inviscid fluid motion are the Euler
equations, and in the case of an incompressible fluid, they take the form

∇ · u? = 0,

ρ(∂t + u? · ∇)u? = −∇P? + f,
(2.1)

expressing conservation of mass and conservation of momentum, respectively, in
the domain 0 < y < d+η?(t, x, z) during some period of time. Here ρ is the density
of the fluid, u? is the velocity field, P? is the pressure and f = (0,−ρg, 0) is the
sum of external force densities. The functions u? and P? are functions of t, x, y

1The subscript ? is only a device for not mixing up function definitions at a later stage.
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and z, and since η? is a priori unknown, the domain (i.e. the form of the body of
water) is also a priori unknown.

We now supply (2.1) with boundary conditions. First, we require that water
does not penetrate the flat bed, which is the same as demanding that the flow at
the bottom is tangential:

v? = 0 on y = 0. (2.2)

Second, we require that a water particle with coordinates (x(t), y(t), z(t)) which is
on the surface at time t, i.e. y(t) = η?(t, x(t), y(t)), will stay on the surface for all
times. This is equivalent to demanding d

dty(t) = d
dtη?(t, x(t), z(t)), giving rise to

the boundary condition

v? = (η?)t + (η?)xu? + (η?)zw? on y = d+ η?(t, x, z). (2.3)

Third, we impose the condition that the pressure at the surface is equal to the
(constant) atmospheric pressure,

P = Patm on y = d+ η?(t, x, z). (2.4)

As we will see, equation (2.4) has the effect of decoupling the motion of water from
the motion of the overlying air.

To tackle (2.1)–(2.4), we need to make some simplifying assumptions. First, we
reduce from three spatial dimensions to two: We assume that the motion is iden-
tical on any line parallel to the z-axis, and that the direction of wave propagation
is along the x-axis. This is reasonable since the motion of most waves propagating
on the surface of the sea or in a channel is close to identical in any direction par-
allel to the crest line. Second we restrict our search for solutions to that of steady
waves, also called traveling waves, traveling with a given constant speed c > 0.
This entails that all functions involved have a space-time dependence of the form
(x− ct, y), which allows us to eliminate time from the problem. We can therefore
write u?(t, x, y, z) = (u(x− ct, y), v(x− ct, y), 0), where u and v are the horizontal
and vertical velocity components. Similarly, we can write η?(t, x, z) = η(x − ct)
and P?(t, x, y, z) = P (x − ct, y) for some functions η and P . With these simplifi-
cations, and by normalizing the density ρ to 1, which amounts to scaling P and g
by the constant factor ρ, the equations (2.1) reduce to

ux + vy = 0, (2.5)
(u− c)ux + vuy = −Px, (2.6)
(u− c)vx + vvy = −Py − g, (2.7)

vx − uy = ω (2.8)

which are to hold for all points in Ωη = {(x, y) ∈ R2 : 0 < y < d + η(x)}. Here
we have also introduced the vorticity ω = vx − uy, which we include as a separate
equation since we will be looking for solutions where ω takes a specific form. The
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boundary conditions (2.2)–(2.4) become

v = 0 on y = 0, (2.9)

v = (u− c)ηx on y = d+ η(x), (2.10)

P = Patm on y = d+ η(x). (2.11)

The time t and the spatial dimension z is at this point eliminated from our analysis,
while the interpretation of our new coordinates (x, y) is as being measured along
a coordinate system traveling in the direction of propagation with speed c. The
last simplification is that we will only be searching for periodic waves, and so we
introduce the wave number κ > 0, and stipulate that all functions involved be
2π/κ-periodic in the x-variable.

2.4 Stream function formulation

We now reformulate the water wave problem (2.5)–(2.11) in terms of a potential
ψ, called the relative stream function. We will largely follow the approach of [5].
From mass conservation (2.5), stating that (u, v) is a divergence-free vector field,
under the assumption that Ωη is simply connected we know that there exists a
function ψ having the properties

ψx = −v, ψy = u− c. (2.12)

That Ωη is simply connected is essentially equivalent to the assumption η > −d.
This means that no waves are so large that the bottom y = 0 is exposed directly
to the air. Equation (2.8) now becomes

∆ψ = −ω.

Also observe that the condition (2.9) can be reformulated as ψx = 0 at y = 0, and
so ψ is constant on the bottom. Furthermore, since

d

dx
ψ(x, d+ η(x)) = ψx(x, d+ η(x)) + ψy(x, d+ η(x))ηx(x)

= −v(x, d+ η(x)) + (u(x, d+ η(x))− c)ηx(x),

we see that surface condition (2.10) is precisely the statement that ψ is constant
along the surface.

Observe that equations (2.6) and (2.7) can be written in the form

(v · ∇) · v = −∇P −∇(gy),

where we have introduced v = (u− c, v, 0). Using the identity (v · ∇)v = 1
2∇(v ·

v)− v× (∇× v), we get

∇P = −∇
(

1
2v · v + gy

)
+ v× (∇× v). (2.13)
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A small calculation yields

v× (∇× v) = (u− c, v, 0)× (0, 0, ω) = (vω,−(u− c)ω, 0) = (ψx∆ψ,ψy∆ψ, 0).
(2.14)

If we take the curl of (2.13) we therefore get (ψy∆ψ)x − (ψx∆ψ)y = 0, which can
be simplified to

{ψ,∆ψ} = 0,

where we have introduced the Poisson bracket {f, g} = fygx − fxgy.
By differentiating the boundary condition P (x, d+ η(x)) = Patm, we get

Px + ηxPy = 0

⇐⇒ (u− c)ux + vuy + ηx((u− c)vx + vvy + g) = 0

⇐⇒ (u− c)ux + vvx + ηx((u− c)uy + vvy) + (−v + ηx(u− c))ω = −gηx
⇐⇒ 1

2 ((u− c)2 + v2)x + 1
2ηx((u− c)2 + v2)y = −gηx

(2.15)
which after integration is equivalent to the nonlinear surface condition (2.21).

1
2 |∇ψ|

2 + gη = constant on y = d+ η(x).

Observe finally that ψ is 2π/κ-periodic in the horizontal variable. To see this,
first recall that ψx = −v, and so

ψ(x0 + 2π/κ, y)− ψ(x0, y) = −
∫ x0+2π/κ

x0

v(s, y) ds (2.16)

The y-derivative of the integral in (2.16) is 0, which is a consequence of vy = −ux
coupled with the 2π/κ-periodicity of u. Using that v|y=0 = 0, we conclude that
ψ(x0 + 2π/κ, y)− ψ(x0, y) = 0.

Proposition 2.1. [5] (Stream function formulation) Given η ∈ C3
per(R) and

u, v ∈ C2
per(Ωη) (where the subscript per denotes horizontal 2π/κ-periodicity) the

steady water-wave problem (2.5)–(2.11) is equivalent to the stream function for-
mulation

∆ψ = −ω in Ωη, (2.17)

{ψ,∆ψ} = 0 in Ωη, (2.18)

ψ = m0 on y = 0, (2.19)

ψ = m1 on y = d+ η(x), (2.20)
1
2 |∇ψ|

2 + gη = Q on y = d+ η(x), (2.21)

for ψ ∈ C3
per(Ωη), and some constants m0,m1 and Q.

Proof. We have already shown that the steady water wave problem implies the
stream function formulation, and we now prove the converse. Given a ψ ∈ C3

per(Ωη)
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define u − c = ψy and v = −ψx. Then u, v ∈ C3
per(Ωη), and the calculation

preceding this proposition makes it clear that mass conservation (2.5), the bottom
condition (2.9) and the surface condition (2.10) all hold. What remains is how to
define P , and show that conservation of momentum (2.6) and (2.7) as well as the
pressure condition (2.11) hold.

Recall that (2.6) and (2.7) is equivalent to

∇P = −∇
(

1
2v · v + gy

)
+ v× (∇× v), v = (ψy,−ψx, 0).

We can use this to define P (up to a constant) if the curl of the right hand side is
0, which as we have seen holds due to (2.18). Furthermore, the nonlinear surface
condition (2.21) coupled with the computation (2.15) show that P is constant and
at the surface, and since P up to is only defined up to a constant, we can arrange
it so that P = Patm on y = d+ η(x).

2.5 The vorticity function

We now show that under the condition u < c, there exists a function with the
property that ω(x, y) = γ(ψ(x, y)) throughout the fluid. γ is called the vorticity
function, and is a measure of the strength of the vorticity. The assumption u <
c is supported by empirical evidence: For wave patterns not near the breaking
state, the propagation speed c of the surface wave is considerably higher than the
horizontal velocity u of individual water particles [16].

Lemma 2.2. [2] (Existence of a vorticity function.) Suppose u < c. Then
there exists a function γ such that ω(x, y) = γ(ψ(x, y)) for all (x, y) ∈ Ωη.

Proof. Since ψy = u−c < 0, we see that ψ(x, y) is strictly decreasing as a function
of y for fixed x. This implies the existence of a (bijective) coordinate transforma-
tion

q = x, p = −ψ(x, y).

In particular it is possible to write the vorticity as a function of q and p, i.e.
ω = ω(q, p). To prove the lemma, it suffices to show that ∂qω = 0 throughout the
fluid. First note that2

ωx = ωq + ωppx = ωq − ωpv,

ωy = ωppy = −ωp(u− c),

and therefore
ωq = ωx −

v

c− u
ωy, (2.22)

where we used that c− u is never 0 by assumption. Note that

ωq = 0 ⇐⇒ (u− c)ωx + vωy = 0 ⇐⇒ {ψ,∆ψ} = 0,

and the latter equation is just (2.18).
2We use the usual convention that partials indicate which coordinates we consider ω to depend

on.
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We will as announced assume γ to be affine; i.e. ω = αψ+ δ, where α 6= 0 and
δ are real constants. In this case {ψ,∆ψ} = 0 is trivially satisfied. Making the
shift ψ−δ/α 7→ ψ and the corresponding shifts of m0 and m1, we can assume that
γ is linear: ω = αψ. By also redefining gη 7→ η, the stream function formulation
reduces to

ψxx + ψyy = αψ in Ωη,

ψ = m0 on y = 0,

ψ = m1 on y = d+ η(x),

1
2 |∇ψ|

2 + η = Q on y = d+ η(x),

(2.23)

Seeing as solutions of (2.23) induces solutions of the water wave problem also when
ψy = u − c < 0 is not satisfied, and we therefore drop this assumption. In fact,
some of the solutions we find will satisfy u ≥ c at some points, and these will
therefore not be covered by the general existence theory of rotational waves in
Constantin and Strauss [2]. Furthermore, (2.23) makes sense also for less regular
function spaces than specified in Proposition 2.1, and we will therefore allow for
less regular (but still classical) solutions. See section 4.
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3 Background material

We now record some mathematical machinery this thesis relies upon. The treat-
ment will be minimalistic. In this chapter only, X and Y will denote arbitrary
Banach spaces over R, and not the special spaces given on the Notation page.

3.1 Calculus in Banach spaces

We now review the general facts about differential calculus in Banach spaces. Given
two Banach spaces X and Y , by L(X,Y ) we mean the bounded linear operators
from X to Y , which is a Banach space with norm

‖T‖L(X,Y ) = sup
‖x‖X≤1

‖T (x)‖Y .

Fréchet Derivatives. Given an open set U ⊂ X and a function F : U → Y ,
we say that F is Fréchet differentiable at x0 ∈ U if there exists A ∈ L(X,Y ) such
that

lim
‖h‖X→0

‖F (x0 + h)− F (x0)−Ah‖Y
‖h‖X

= 0.

If such an operator exists, it is unique and is called the Fréchet derivative of F
at x0. We write A = DF (x0), and sometimes A = DF [x0] when we want to
emphasize that the dependence on x0 is not (necessarily) linear. Furthermore, we
say that F is Fréchet differentiable on U if it is Fréchet differentiable at every point
of U . Just as in the Euclidean case, Fréchet differentiability implies continuity.

It is readily seen from the definition that the Fréchet derivative of a sum of two
functions is the sum of the Fréchet derivatives. A not so immediate consequence
is the following.

Lemma 3.1. [1] (The chain rule) Let X,Y, Z be Banach spaces, U ⊂ X,V ⊂ Y
open sets and suppose that F : U → Y and G : V → Z are such that F (U) ⊂ V ,
and that DF [x0] and DG[F (x0)] exist. Then D(G ◦ F )[x0] exists and

D(G ◦ F )[x0] = DG[F (x0)] ◦DF [x0].

We will often use the following corollary to the Chain Rule: If T : Y → Z and
H : W → X are bounded linear operators, then D(T ◦ F )[x] = T ◦ DF [x] and
D(F ◦H)[x] = DF [H(x)]. A more general result is the following:

Lemma 3.2. Let Λ be an open set in a Banach space W , and suppose that T :
Λ→ L(X,Y ) and L : Λ→ L(Y,Z) are differentiable. Then also G : Λ→ L(X,Z)
given by G(λ) = L(λ) ◦ T (λ) is differentiable, with

DG[λ] = DλL[λ] ◦ T (λ) + L(λ) ◦DλT [λ].
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Proof. Rearranging terms and applying the triangle inequality, we obtain the es-
timate

‖L(λ+ h) ◦ T (λ+ h)− L(λ) ◦ T (λ)− (DλL[λ]h) ◦ T (λ)− L(λ) ◦ (DλT [λ)h)‖L(X,Z)

≤ ‖L(λ+ h)− L(λ)−DλL[λ]h‖L(Y,Z) ‖T (λ)‖L(X,Y )

+ ‖L(λ+ h)‖L(Y,Z) ‖T (λ+ h)− T (λ)−DλT [λ]h‖L(X,Y )

+ ‖L(λ+ h)− L(λ)‖L(Y,Z) ‖DλT [λ]h‖L(X,Y ) ,

and so dividing by ‖h‖W and letting h → 0, the limit is 0, which proves Lemma
3.2.

We will often be interested in finding the Fréchet derivative of an operator
λ 7→ f(λ)T , where f is some real-valued function and T is a bounded linear
operator not depending on λ. In this special case, the above lemma gives the
derivative f ′(λ)T . See also Corollary 3.4.

The next lemma is an analogue of the mean value theorem in the Euclidean
setting.

Lemma 3.3. [1] (The mean value theorem.) Let X and Y be Banach spaces,
U ⊂ X a an open and convex set, and let F : U → Y be Fréchet differentiable at
each point of U with

sup{‖DF [x]‖L(X,Y ) : x ∈ U} = M <∞.

Then, for all x1, x2 ∈ U ,

‖F (x1)− F (x2)‖Y ≤M ‖x1 − x2‖X .

Higher order derivatives. If F is Fréchet differentiable on an open set
U , then higher order Fréchet derivatives can be defined in the obvious manner.
Note that if D2F [x0] exists it will be an element of L(X,L(X,Y )), and similarly
D3F [x0] will be an element of L(X,L(X,L(X,Y ))). It thus seems that DkF [x0]
is an element of a complicated space, but turns out that it has a simpler and more
useful characterization, which we now discuss.

Let n ∈ N. A mapping m : Xn → Y is said to be a multilinear operator, in this
case n-linear, if it is linear in each variable separately, i.e. for all k ∈ {1, . . . , n}
and fixed xj ∈ X, j 6= k, the map

x 7→ m(x1, . . . , xk−1, x, xk+1, . . . , xn) is linear in x.

It is called a bounded and symmetric multilinear operator if also

‖m‖ = sup{‖m(x1, x2, . . . , xn)‖ : ‖x1‖ , . . . ‖xn‖ ≤ 1} <∞ (3.1)

and
m(x1, . . . , xn) = m(xπ(1), . . . , xπ(n)) for all π ∈ Sn.

10



where Sn is the symmetric group of order n. Let Mn
sym(X,Y ) denote the set

of all bounded and symmetric multilinear operators from Xn to Y , where we let
M0

sym(X,Y ) = Y . With the norm (3.1),Mn
sym(X,Y ) becomes a Banach space.

Suppose that D2F [x0] ∈ L(X,L(X,Y )) exists, and let x1, x2 ∈ X. Then
D2F [x0]x1 ∈ L(X,Y ) and D2F [x0](x1, x2) ∈ Y . We will also use the notation
D2F [x0]x1x2 for D2F [x0](x1, x2). It can be proven that the map (x1, x2) 7→
D2F [x0]x1x2 is a bounded and symmetric 2-linear operator. With this identifi-
cation, we more generally have that, if the k’th Fréchet derivative of F exists at
x0, then DkF [x0] ∈ Mk

sym(X,Y ). The notation
∥∥DkF [x0]

∥∥ will always mean the
Mk

sym(X,Y )-norm.
If we combine the chain rule with Lemma 3.2, we get a formula for the second

derivative of a composition:

Corollary 3.4. [1] Let X and Y be Banach spaces, and U ⊂ X, V ⊂ Y open
sets. Suppose that F : U → Y and G : V → Z are twice differentiable and that
F (U) ⊂ V . Then

D2(F ◦G)[x0] = D2F [G(x0)](DG[x0], DG[x0]) +DF [G(x0)]D2G[x0].

We also have the following generalization to a classical theorem from calculus.

Theorem 3.5. [1] (Taylor’s Theorem.) Let X be a Banach space with U ⊂ X
open and convex. Let F ∈ Cn+1(U, Y ), for some n ∈ N, and x, x0 ∈ U . Then if
we define

Rn(x, x0) = F (x)−
n∑
k=0

1

k!
DkF [x0](x− x0)k,

we have that

‖Rn(x, x0)‖ ≤ ‖x− x0‖n+1

(n+ 1)!
sup

0≤t≤1

∥∥Dn+1F [tx0 + (1− t)x]
∥∥ .

Analytic operators. The operators we will be working with have Fréchet
derivatives of all orders where they are defined. They will moreover by analytic, a
concept we now define. We say that a function F : X → Y is analytic at x0 ∈ X
if there exists a number r > 0 and a sequence a0, a1, a2, . . . of bounded, symmetric
multilinear operators an ∈ Mn

sym(X,Y ), such that for all x with ‖x− x0‖X < r,
we have

∞∑
n=0

‖an‖ ‖x− x0‖nX <∞, and F (x) =

∞∑
n=0

an(x− x0)n. (3.2)

In that case, it can be shown that F has Fréchet derivatives of all orders, that
F is analytic at all points x with ‖x− x0‖ < r, and that we in fact have an =
1
n!D

nF [x0]. In particular observe that if we are able to represent F by a sum of
the form (3.2), we will be able to find DnF [x0](x − x0)n for any n. This will be
utilized in chapter 8.1.
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The implicit function theorem. Due to its central role in this thesis, we
include a proof of the implicit function theorem in a Banach space setting. We
prove a version which gives quantitative bounds on the domain of existence for the
implicit function. The approach is based on notes by C. Liverani [17]. Given an
element x0 ∈ X and a δ > 0, we will use the standard notation

Bδ(x0) = {x ∈ X : ‖x− x0‖ < δ}, Bδ(x0) = {x ∈ X : ‖x− x0‖ ≤ δ}.

First recall the following elementary result.

Lemma 3.6. [1] (Neumann series) Let T ∈ L(X,X), where X is a Banach
space. If ‖I − T‖ < 1, then T−1 exists and is given by the Neumann series

T−1 =

∞∑
j=0

(I − T )j .

Remark 3.7. Lemma 3.6 in particular shows that T 7→ T−1, as an operator from
the set of invertible bounded linear operators into itself, is analytic at I.

Theorem 3.8. (Quantitative implicit function theorem). Let X, Y and Z
be Banach spaces, U × V ⊂ X × Y an open subset, and (x0, y0) ∈ U × V . Let
also F ∈ Ck(U × V,Z) for some k ∈ N, such that F (x0, y0) = 0 and the partial
derivative DxF [x0, y0] ∈ L(X,Z) a homeomorphism1. Choose 0 < δ < 1 such that

sup
(x,y)∈Vδ

∥∥I − (DxF [x0, y0])−1DxF [x, y]
∥∥ < 1

2
,

where Vδ = Bδ(x0) × Bδ(y0) ⊂ U × V . (Such a δ exists due to the continuity of
DxF .) Define

Kδ = sup
(x,y)∈Vδ

‖DyF [x, y]‖ , M =
∥∥(DxF [x0, y0])−1

∥∥ ,
and set δ1 = min(δ, (2MKδ)

−1δ). Then there exists a φ ∈ Ck(Bδ1(y0), X) such
that all solutions of the equation F (x, y) = 0 in the open set S = Bδ(x0)×Bδ1(y0)
are given by {(φ(y), y) : y ∈ Bδ1(y0)}.
Proof. Define Θ : Bδ(x0)×Bδ1(y0)→ X by

Θ(x, y) = x− (DxF [x0, y0])−1F (x, y),

and observe that Θ(x, y) = x if and only if F (x, y) = 0. For all (x, y), (x′, y′) ∈
Bδ(x0)×Bδ1(y0), we have the estimate

‖Θ(x, y)−Θ(x′, y′)‖ ≤ ‖Θ(x, y)−Θ(x′, y)‖+ ‖Θ(x′, y)−Θ(x′, y′)‖

≤ sup
(x,y)∈Vδ

∥∥I − (DxF [x0, y0])−1DxF [x, y]
∥∥ ‖x− x′‖

+M sup
(x,y)∈Vδ

‖DyF [x, y]‖ ‖y − y′‖

< 1
2 ‖x− x

′‖+MKδ ‖y − y′‖ .

(3.3)

1See also Remark 3.9.
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From this estimate, we conclude the following:

i. By letting (x′, y′) = (x0, y0) and using that MKδδ1 ≤ δ/2, we see that
‖Θ(x, y)− x0‖ < δ.

ii. By letting y = y′, we find that Θ(·, y) is a contraction: ‖Θ(x, y)−Θ(x′, y)‖ <
1
2 ‖x− x

′‖.

It follows that Θ(·, y) is a contraction mapping from Bδ(x0) into itself. Appealing
to the contraction mapping theorem, we find that there exists a unique function
φ : Bδ(x0) → Bδ1(y0) such that Θ(φ(y), y) = φ(y), equivalently F (φ(y), y) = 0.
Since the inequality ‖Θ(x, y)− x0‖ < δ is strict, we find that φ actually maps into
the open ball Bδ(x0), and thus by restricting φ to the open ball Bδ1(y0), we have
established everything in the theorem except the regularity of φ.

First observe that φ is Lipschitz continuous, since by setting x = φ(y) and
x′ = φ(y′) in (3.3) we get

‖φ(y)− φ(y′)‖ ≤ 1
2 ‖φ(y)− φ(y′)‖+MKδ ‖y − y′‖ ,

Consequently, using the differentiability of F we must have

F (φ(y+h), y+h)−F (φ(y), y)−DxF [φ(y), y](φ(y+h)−φ(y))−DyF [φ(y), y]h = o(h),

and since F (φ(y + h), y + h) = F (φ(y), y) = 0, we can multiply both sides with
(DxF [φ(y), y])−1—which exists by Lemma 3.6—to get

φ(y + h)− φ(y) + (DxF [φ(y), y])−1DyF [φ(y), y]h = o(h).

Hence φ is differentiable, with

Dφ(y) = −(DxF [φ(y), y])−1DyF [φ(y), y]. (3.4)

Due to the formula (3.4), it is a consequence of the chain rule that φ is of class Ck
if F is of class Ck.

Remark 3.9. By the bounded inverse theorem, if DxF [x0, y0] ∈ L(X,Z) is bijec-
tive then it is also a homeomorphism.

3.2 Hölder spaces over compact sets

LetX and Y be Banach spaces. Let Ω be an open subset ofX which is precompact,
i.e. the closure Ω is compact. Given a nonnegative integer k, let Ck(Ω, Y ) be the
set of functions u which are k times continuously differentiable on Ω, i.e. Dju :
Ω →Mj

sym(Ω, Y ) can be continuously extended to Ω, j = 0, 1, . . . k. Ck(Ω, Y ) is
a Banach space with norm

‖u‖Ck(Ω,Y ) =

k∑
j=0

sup
x∈Ω

∥∥Dju[x]
∥∥ .
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If one identifies Dju with its continuous extension to Ω, then we of course have
supx∈Ω

∥∥Dju
∥∥ = supx∈Ω

∥∥Dju
∥∥. With this identification, we also see that Dju :

Ω → Y is uniformly continuous, j = 0, 1, . . . k. This follows from the general fact
that continuous functions with domain a compact set are uniformly continuous.
We moreover define C∞(Ω, Y ) = ∩∞k=1C

k(Ω, Y ).
Given a nonnegative integer k and a β ∈ (0, 1), we define the Hölder space

Ck,β(Ω, Y ) as the set

Ck,β(Ω, Y ) =
{
u ∈ Ck(Ω, Y ) : [Dku]β;Ω <∞

}
,

where

[Dku]β;Ω = sup
x,y∈Ω, x 6=y

∥∥Dku[x]−Dku[y]
∥∥

‖x− y‖β
, (3.5)

Ck,β(Ω, Y ) is becomes a Banach spaces when equipped with the norm

‖u‖Ck,β(Ω,Y ) = ‖u‖Ck(Ω,Y ) + [Dku]β;Ω.

If one identifies Dku with its continuous extension to Ω, then we can let the
supremum in (3.5) range over x, y ∈ Ω, x 6= y.

Lemma 3.10. Let X be a Banach space, and suppose that Ω ⊂ X is open, pre-
compact and convex. If u ∈ C1(Ω, Y ), then u ∈ C0,β(Ω) for any β ∈ (0, 1).

Proof. By the mean value theorem, we have

[u]β;Ω = sup
x,y∈Ω, x 6=y

‖u(x)− u(y)‖X
‖x− y‖β

≤
(

sup
x∈Ω
‖Du[x]‖

)
diam(Ω)1−β <∞.

Lemma 3.11. Let X, Y and Z be Banach spaces. Let ΩX ⊂ X, ΩY ⊂ Y be open,
precompact and convex. If g ∈ C2,β(ΩX , Y ), f ∈ C2,β(ΩY , Z) and g(ΩX) ⊂ ΩY ,
then f ◦ g ∈ C2,β(ΩX , Z).

Proof. We have that

D2(f ◦ g)[x] = D2f [g(x)](Dg[x], Dg[x]) +Df [g(x)]D2g[x],

and by rearranging terms and applying the triangle inequality, we find∥∥D2(f ◦ g)[x1]−D2(f ◦ g)[x2]
∥∥

≤
∥∥(D2f [g(x1)]−D2f [g(x2)])(Dg[x1], Dg[x1])

∥∥ (I)

+
∥∥D2f [g(x2)]((Dg[x1], Dg[x1])− (Dg[x2], Dg[x2]))

∥∥ (II)

+
∥∥Df [g(x1)](D2g[x1]−D2g[x2])

∥∥ (III)

+
∥∥(Df [g(x1)]−Df [g(x2)])D2g[x2]

∥∥ (IV )
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We now estimate the terms (I)-(IV). Using the notation
∥∥Dju

∥∥
∞ = supx

∥∥Dju(x)
∥∥,

and using the mean value theorem we find that

(I) ≤
∥∥D2f [g(x1)]−D2f [g(x2)]

∥∥ ‖Dg[x1]‖2 ≤ [D2f ]β ‖Dg‖2+β
∞ ‖x1 − x2‖β ,

(II) =
∥∥D2f [g(x2)]((Dg[x1]−Dg[x2], Dg[x1]) + (Dg[x2], Dg[x1]−Dg[x2]))

∥∥
≤ 2

∥∥D2f
∥∥
∞ ‖Dg‖∞ ‖Dg[x1]−Dg[x2]‖∞ ≤ 2

∥∥D2f
∥∥
∞ ‖Dg‖∞

∥∥D2g
∥∥
∞ ‖x1 − x2‖ ,

(III) ≤ ‖Df‖∞ [D2g]β ‖x1 − x2‖β ,

(IV ) ≤
∥∥D2f

∥∥
∞

∥∥D2g
∥∥
∞ ‖Dg‖∞ ‖x1 − x2‖ .

Since all terms are bounded by a constant times ‖x1 − x2‖β , the proof is complete.

3.3 Fredholm operators and the Lyapunov-Schmidt
reduction

Given two Banach spaces X and Y , a bounded linear operator T : X → Y is called
a Fredholm operator if it satifies

i) dim (kerT ) <∞,

ii) codim (ranT ) <∞,

iii) ranT is closed in Y .

Here codim(ranT ) = dim(cokerT ), where coker (T ) is the quotient space Y/ ran(T ).
The integer dim (kerT ) − codim (ranT ) is called the Fredholm index of T . The
condition iii) in the definition of a Fredholm operator is customary to include, but
is redundant as it follows from conditions i) and ii). Recalling that any finite-
dimensional subspace of a Banach space is closed, the redundancy of condition iii)
follows from condition ii) coupled with the following proposition.

Proposition 3.12. Let X and Y be Banach spaces, and T ∈ L(X,Y ) an operator
such that Y = ranT ⊕ C for some closed subspace C ⊂ Y . Then ranT is closed.

Proof. Since kerT is closed also X/ kerT is Banach space, and so by replacing T
with the induced map from this quotient space, we can without loss of generality
assume that T is injective. Introduce the operator S : X ⊕ C → Y defined by
S(x, c) = T (x) + c. It is clear that S is linear, injective and surjective, and also
bounded since S(x, c) ≤ ‖T‖ ‖x‖+‖c‖ ≤ max(1, ‖T‖)(‖x‖+‖c‖). By the bounded
inverse theorem, we have that T is a homeomorphism. Since X ⊕ {0} is closed in
X, it follows that ranT = S(X ⊕ {0}) is closed in Y .

We will also need the following two results.
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Proposition 3.13. Let X = C1 ⊕ C2 where X is a Banach space and C1, C2 are
closed subspaces. Then the projection Π1 : X → C1 is bounded.

Proof. C1×C2 is a Banach space with the norm ‖(x1, x2)‖C1×C2
= ‖x1‖X+‖x2‖X .

Define S : C1 × C2 → X by S(x1, x2) = x1 + x2. S is linear, bijective, and by
the triangle inequality also bounded. Applying the bounded inverse theorem we
conclude that, for all (x1, x2) ∈ C1 × C2, we have ‖x1‖+ ‖x2‖ ≤M ‖x1 + x2‖ for
some M > 0, and so in particular ‖x1‖ ≤M ‖x1 + x2‖. Thus Π1 is bounded.

Proposition 3.14 (Folland [10]). For any finite dimensional subspace F of a
Banach X, there exists a closed subspace C ⊂ X such that X = F ⊕ C.

Let us now return to the setting of the implicit function theorem:

X,Y, Z are Banach spaces, Ũ × Ṽ ⊂ X × Y is open,

F ∈ Ck(Ũ × Ṽ , Z), F (x0, y0) = 0,
(3.6)

While we in the implicit function theorem assumed that DxF (x0, y0) is a home-
omorphism, the Lyapunov-Schmidt reduction can be seen as a generalization of
the implicit function theorem to the case where DxF [x0, y0] is a (not necessarily
invertible) Fredholm operator. If DxF [x0, y0] is Fredholm, we can invoke propo-
sitions 3.13 and 3.14 to define the closed subspaces X0 ⊂ X and Z0 ⊂ Z such
that

X = N ⊕X0, Y = R⊕ Z0, (3.7)

where N = kerDxF [x0, y0] and R = ranDxF [x0, y0], with corresponding bounded
projections

ΠN : X → N parallel to X0, N = kerDxF [x0, y0],

ΠZ0
: Z → Z0 parallel to R, R = ranDxF [x0, y0],

(3.8)

Note that both ΠN and ΠZ0
project onto finite-dimensional subspaces.

Theorem 3.15 (Kielhöfer [15]). (Lyapunov-Schmidt reduction) Assume (3.6)
and that DxF [x0, y0] is a Fredholm operator. Define the spaces N,X0, R, Z0 and
projections ΠN ,ΠZ0 according to (3.7) and (3.8). There is a neighborhood U×V ⊂
Ũ × Ṽ of (x0, y0) such that the problem

F (x, y) = 0 for (x, y) ∈ U × V

is equivalent to the problem

Φ(u?, y) = 0 for (u?, y) ∈ U? × V, (3.9)

where U? is an open subset of U ∩ N (which is finite-dimensional), and Φ ∈
Ck(U? × V,Z0). A formula for Φ is given in (3.12) below.
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Proof. Note that the problem F (x, y) = 0 can be written

ΠZ0F (ΠNx+ (I −ΠN )x, y) = 0, (3.10)
(I −ΠZ0)F (ΠNx+ (I −ΠN )x, y) = 0. (3.11)

Choose an open neighborhood U? ⊂ N containing ΠNx0 and an open neighbor-
hood W ⊂ X0 containing (I − ΠN )x0 such that U? + W ⊂ Ũ . Choose also any
neighborhood V ⊂ Ṽ of y0. Define the function G : U? ×W × V → R given by

G(u?, w, y) = (I −ΠZ0)F (u? + w, y).

Because F (x0, y0) = 0 we also have G(ΠNx0, (I − ΠN )x0, y0) = 0. Further-
more, by our choice of the spaces we see that DwG(ΠNx0, (I − ΠN )x0, y0) =
(I −ΠZ0

)DxF (x0, y0) : X0 → R is bijective. Applying the implicit function theo-
rem then yields

G(u?, w, y) = 0 for (u?, w, y) ∈ U? ×W × V
if and only if w = ψ(u?, y),

for some ψ ∈ Ck(U? × V,W ). (According to the implicit function theorem, we
might need to shrink U?, W and V , but we retain the notation.)

We have now solved (3.11) locally. Define U = U? + W , and Φ : U? × V → Z
by

Φ(u?, y) := ΠZ0
F (u? + ψ(u?, y), y) .

Then
F (x, y) = 0 for (x, y) ∈ U × V

is by (3.10) and (3.11) equivalent to there being some u? ∈ U? such that

x = u? + ψ(u?, y) and Φ(u?, y) := ΠZ0F (u? + ψ(u?, y), y) = 0. (3.12)

Remark 3.16. If Y is finite dimensional, then (3.9) is a finite dimensional prob-
lem, and is equivalent to a set of dimZ0 (nonlinear) equations in dimN + dimY
real variables. The main difficulty with solving the system Φ(u?, y) = 0 is that
ψ is only known implicitly, as the unique function satisfying (I − ΠZ0

)F (u? +
ψ(u?, y), y) = 0.

Corollary 3.17 (Kielhöfer [15]). In the terminology of the proof of Theorem 3.15,
we have that

ψ(ΠNx0, y0) = (I −ΠN )x0, (3.13)
Du?ψ(ΠNx0, y0) = 0 ∈ L(N,X0), Du?Φ(ΠNx0, y0) = 0 ∈ L(N,Z0). (3.14)
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Proof. The property (3.13) is immediate from the definition of ψ.
Differentiating the identity (I−ΠZ0

)F (u?+ψ(u?, y), y) = 0 with respect to u?
gives, for all (u?, y) ∈ U? × V ,

(I −ΠZ0
)DxF [u? + ψ(u?, y), y](IN +Du?ψ(u?, y)) = 0

Evaluating at (u?, y) = (ΠNx0, y0) and using the fact that N is the kernel of
DxF [x0, y0], we get

(I −ΠZ0
)DxF [x0, y0]Du?ψ(ΠNx0, y0) = 0.

Because Du?ψ(ΠNx0, y0) maps into X0, which is complementary to N , and (I −
ΠZ0

)DxF [x0, y0]|X0
is a bijection, we get that Du?ψ(ΠNx0, y0) = 0. From the

formula Φ(u?, y) = ΠZ0
F (u? + ψ(u?, y), y) it then follows that

Du?Φ(ΠNx0, y0) = ΠZ0
DxF [x0, y0](IN +Du?ψ(ΠNx0, y0)) = 0,

because R = ranDxF [x0, y0] is in the kernel of ΠZ0
.
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4 The functional-analytic setting

We recall the problem of interest

ψxx + ψyy = αψ in Ωη, (4.1a)
1
2 |∇ψ|

2 + η = Q on S, (4.1b)
ψ = m0 on B, (4.1c)
ψ = m1 on S, (4.1d)

where the interior Ωη, the bottom B and the surface S are subsets of R2 given by

Ωη = {(x, y) : 0 < y < 1 + η(x)},

B = {(x, y) : y = 0}, S = {(x, y) : y = 1 + η(x)}.

We let α in (4.1a) be an arbitrary negative constant1. We will be looking for solu-
tions η ∈ C2,β

even(κ−1S,R) and ψ ∈ C2,β
per, even(Ωη,R) of (4.1), where the subscripts

signify that we are in the subspace2 of functions which are 2π/κ-periodic and even
in the horizontal variable, and 2π/κ-periodic functions are identified with func-
tions on the scaled unit circle κ−1S. The Hölder exponent β ∈ (0, 1) and the wave
number κ > 0 are fixed, but arbitrary constants.

Remark 4.1. All steady water waves known to exist are horizontally symmetric.
See e.g. [7], which shows that the converse always holds: symmetric waves are
steady waves. Our goal is not to prove the existence of nonsymmetric waves, and
so in this thesis we impose symmetry from the start by assuming that waves are
even in the horizontal variable.

4.1 Trivial solutions and the flattening transform

Trivial solutions. The solutions of problem (4.1) we construct are perturbations
of laminar flows in which the velocity field is horizontal but depth-dependent.
These are the trivial solutions of (4.1) in the sense that η = 0 and ψ(x, y) is
independent of x. By integrating equation (4.1a), we see that the trivial solutions
take the form

ψ0(y;µ, α, λ) = µ cos
(
|α|1/2(y − 1) + λ

)
, µ, λ ∈ R, (4.2)

with corresponding Q = Q(µ, α, λ), m0 = m0(µ, α, λ) and m1 = m1(µ, α, λ) deter-
mined from equations (4.1b), (4.1c) and (4.1d) as

Q(µ, α, λ) =
µ2|α| sin2(λ)

2
, m0(µ, α, λ) = µ cos(λ− |α|1/2), m1(µ, λ) = µ cos(λ).

1If α > 0 then two-dimensional bifurcation is not possible, see [6].
2This is a closed subspace, and is therefore itself a Banach space.
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We will find nontrivial solutions of (4.1) for certain combinations of µ, α and λ,
corresponding to some particular values of Q, m0 and m1. For technical reasons
which we will elucidate later (see Appendix A), it is assumed that

(ψ0)y(1) = −µ|α|1/2 sin(λ) 6= 0. (4.3)

As in (4.3), we will often omit the dependence on µ, α and λ in the notation for
ψ, and write ψ0(y) instead of ψ0(y, µ, α, λ).

The flattening transform. The main difficulty with the system (4.1) is that
it is a free-boundary problem, which entails that the domain is a priori unknown.
This can, however, be remedied by the change of variables

G : (x, y) 7→
(
x,

y

1 + η(x)

)
, (4.4)

giving a bijection from the sets Ωη, B and S onto

Ω̂ = {(x, s) : s ∈ [0, 1]}, B̂ = {(x, s) : s = 0}, Ŝ = {(x, s) : s = 1},

respectively, where we have introduced Ω̂ = {(x, s) : s ∈ (0, 1)}. The mapG is well-
defined if η > −1. Under this assumption, and recalling that η ∈ C2,β

even(κ−1S,R),
both G and its inverse G−1(x, s) = (x, (1 + η(x))s) are of class C2,β . If we let
ψ̂(x, s) = ψ(x, y), where s = y/(1 + η(x)), straightforward differentiation gives
that

ψx = ψ̂x −
sηxψ̂s
1 + η

, ψxx =

(
ψ̂x −

sηxψ̂s
1 + η

)
x

− sηx
1 + η

(
ψ̂x −

sηxψ̂s
1 + η

)
s

,

and

ψy =
ψ̂s

1 + η
, ψyy =

ψ̂ss
(1 + η)2

,

where ψ and its derivatives are evaluated at (x, y), η is evaluated at x, and ψ̂ and
its derivatives are evaluated at (x, y/(1 + η(x))). Inserting these expressions into
equations (4.1a) and (4.1b), we get

1

2

(
ψ̂x −

sηxψ̂s
1 + η

)2

+
1

2

(
ψ̂s

1 + η

)2

+ η −Q = 0 on Ŝ,

(
ψ̂x −

sηxψ̂s
1 + η

)
x

− sηx
1 + η

(
ψ̂x −

sηxψ̂s
1 + η

)
s

+
ψ̂ss

(1 + η)2
− αψ̂ = 0 in Ω̂.

(4.5)

Let E((η, ψ̂),Λ) denote the vector consisting of the left hand sides of equations
(4.5). We then have
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Lemma 4.2 ([6]). When min η > −1 the steady water-wave problem (4.1) in the
given function classes, is equivalent to the transformed problem

E((η, ψ̂),Λ) = 0, (η, ψ̂) ∈ C2,β
even(κ−1S,R)×

{
Ω̂ ∈ C2,β

per,even(Ω̂,R) : ψ̂|s=0 = m0, ψ̂|s=1 = m1

}
,

and E((0, ψ̂),Λ) = 0 for solutions ψ̂ = ψ̂(s) independent of the horizontal variable
if and only if ψ̂(s) = ψ0(s).

Proof. Under the assumption that η > −1, we have as mentioned that G given by
(4.4) is a diffeomorphism of class C2,β . Since compositions of maps of class C2,β

are again of class C2,β , we see that ψ and ψ̂ = ψ ◦ G−1 are both of class C2,β if
one of them is. Moreover, from the form of G we also see that both ψ and ψ̂ are
even and 2π/κ-periodic in the horizontal variable if one of them is.

The equivalence of the problem (4.1) for (η, ψ) and the equation E((η, ψ̂),Λ) = 0

for (η, ψ̂) thus follows from the calculations preceding this lemma, and the fact that
we in the transformed problem have incorporated the boundary conditions (4.1c)
and (4.1d) directly into the function space. When we insert η = 0 and ψ̂ = ψ̂(s)
into the second equation of (4.5), we end up with the same equation that deter-
mined ψ0 in the non-transformed problem. Thus the trivial, x-independent solu-
tions of E((0, φ̂),Λ) = 0 are the same for the original problem and the transformed
problem, namely s 7→ ψ0(s).

4.2 The linearized problem

We want to linearize the problem around a trivial solution ψ0. We therefore
introduce ψ̂ = ψ0 + φ̂, and the spaces

X = X1 ×X2 = C2,β
even(κ−1S,R)×

{
φ̂ ∈ C2,β

per,even(Ω̂,R) : φ̂|s=0 = φ̂|s=1 = 0
}

and
Y = Y1 × Y2 = C1,β

even(κ−1S,R)× Cβper,even(Ω̂,R).

To capture our assumptions, it is convenient to define the subsets

O = {(η, φ̂) ∈ X : min η > −1},

and, to enforce the assumptions α < 0 and (4.3), the set

U = {(µ, α, λ) ∈ R3 : µ 6= 0, α < 0, sin(λ) 6= 0}.

From now on we will use the abbreviation w = (η, φ̂) for elements of X, and
elements of U will be written Λ = (µ, α, λ). We now define the operator F :
O × U → Y by

F(w,Λ) = E
(

(η, ψ0(s; Λ) + φ̂),Λ
)
,
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or, written out component-wise (and remembering that ψ0x = 0),

F1(w,Λ) =
1

2


φ̂x − sηx

(
ψ0s + φ̂s

)
1 + η

2

+

(
ψ0s + φ̂s

)2

(1 + η)2


s=1

+ η −Q(Λ), (4.6)

F2(w,Λ) =

(
φ̂x −

sηx(ψ0s + φ̂s)

1 + η

)
x

− sηx
1 + η

(
φ̂x −

sηx(ψ0s + φ̂s)

1 + η

)
s

+
ψ0ss + φ̂ss
(1 + η)2

− α(ψ0ss + φ̂),

(4.7)

where ψ0 = ψ0(· ; Λ). Note that the codomains of F1 and F2 are Y1 and Y2,
respectively. It is not immediately obvious that F given by (4.6) and (4.7) really
does map O × U into Y , but now we justify this. Since the order of the highest
derivative of η and φ appearing in F1 and F2 is one and two, respectively, we
must have that F(O×U) ⊂ C1,β(κ−1S,R)×Cβ(Ω̂,R). Moreover, due to the way
the derivatives appear in (4.6) and (4.7), we see that F(·,Λ) preserves horizontal
periodicity and evenness; in other words, if η and φ are T -periodic and even in the
horizontal variable, then this is also true for F1((η, φ),Λ) and F2((η, φ),Λ).

Lemma 4.3 ([6]). The problem F(w,Λ) = 0, (w,Λ) ∈ O × U is equivalent to
problem (4.1), and F((0, φ̂),Λ) = 0 for φ̂ = φ̂(s) if and only if φ̂ = 0. Moreover
F ∈ C∞(O × U , Y ).

Proof. That F(η, φ̂) = 0, (η, φ̂) ∈ O is equivalent to problem (4.1) follows from
the definition of F and Lemma 4.2. That F ∈ C∞(O×U , Y ) follows from the fact
that compositions of smooth maps are smooth, using that ψ0 ∈ C∞(R × U ,R),
that F depends polynomially on η and φ̂ and its partial derivatives, and that F is
a rational function in 1 + η > 0.

Linearization. We obtain the linearized problem by taking the Fréchet deriva-
tive of F = (F1,F2) at the point w = 0. As shown in section 8.1, we have that

DwF1(0,Λ)w =
[
ψ0sφ̂s − (ψ0s)

2η + η
]
s=1

, (4.8)

DwF2(0,Λ)w = (∂2
x + ∂2

s − α)φ̂− sψ0sηxx − 2ψ0ssη. (4.9)

Define

X̃2 =
{
φ ∈ C2,β

per,even(Ω̂,R) : φ|s=0 = 0
}
, X̃ =

{
(η, φ) ∈ X1 × X̃2

}
.

Then we have the set inclusions X2 ⊂ X̃2 and X ⊂ X̃ ⊂ Y . We will typically use
the symbol φ to denote an element in X̃2. From this point onward we start relying
on the assumption (4.3) that ψ0s(1) 6= 0.
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Proposition 4.4 ([6]). (The T isomorphism.) The bounded linear operator
T (Λ) : X̃2 → X given by

T (Λ)φ =

(
− φ|s=1

ψ0s(1)
, φ− sψ0s

ψ0s(1)
φ|s=1

)
(4.10)

is an isomorphism of normed spaces, i.e. it is bijective and has a bounded inverse.
Define L(Λ) = DwF(0,Λ)T (Λ) : X̃2 → Y . Then

L(Λ)φ =

([
ψ0sφs −

(
ψ0ss +

1

ψ0s

)
φ

]
s=1

, (∂2
x + ∂2

s − α)φ

)
. (4.11)

Proof. From the definition (4.10) of T (Λ), it is clear that it preserves horizontal
evenness and 2π/κ-peridocity. That T (Λ) is bounded follows readily from the
definition of the Cn,β-norms, and linearity is clear. One can verify that its inverse
is given by

(T (Λ))
−1

(η, φ̂) = φ̂− sψ0sη, (4.12)

which also is seen to be linear and bounded.
Let us now show (4.11). To prove the equality in the first component, we use

(4.8) and (4.10) to calculate

DwF1(0,Λ)T (Λ)φ

=

[
(ψ0s)

(
φ− sψ0sφ|s=1

ψ0s(1)

)
s

− (ψ0s)
2

(
− φ|s=1

ψ0s(1)

)
+

(
− φ|s=1

ψ0s(1)

)]
s=1

=

[
ψ0sφs − (ψ0s + sψ0ss)φ|s=1 + ψ0sφ|s=1 −

φ|s=1

ψ0s(1)

]
s=1

=

[
ψ0sφs −

(
ψ0ss +

1

ψ0s

)
φ

]
s=1

To prove the equality in the second component of (4.11), we recall that ψ0(s; Λ) =
µ cos

(
|α|1/2(s− 1) + λ

)
and α < 0, and compute

(∂2
x + ∂2

s − α) (T (Λ))
−1

(η, φ̂)

= (∂2
x + ∂2

s − α)(φ̂− sψ0sη)

= (∂2
x + ∂2

s − α)φ̂− (sψ0sηxx)− (2ψ0ssη − sψ0sssη)− α (sψ0sη)

= DwF2(0,Λ)(η, φ̂).

Introducing the notation Lj(Λ) = DwFj(0,Λ) ◦ T , j = 1, 2, we thus find that
L2(Λ) = (∂2

x + ∂2
s − α). This concludes the proof.

We introduce the complex parameter

θk =
√
α+ k2 =

{√
α+ k2, α+ k2 ≥ 0,

i
√
|α+ k2| α+ k2 < 0.
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We will soon be dealing with the functions cosh(θks) and sinh(θks)/θk of s, which
are real-valued functions of s:

cosh(θks) =

{
cosh(θks), α+ k2 ≥ 0,

cos(|θk|), α+ k2 < 0,

sinh(θks)

θk
=

{
sinh(θks)/θk, α+ k2 ≥ 0,

sin(|θk|s)/|θk|, α+ k2 < 0.

(4.13)

In the case θk = 0 we interpret cosh(θks) as 1 and sinh(θks)/θk as s.
The following lemma is stated, but not proved, in [6].

Lemma 4.5 ([6]). Let Λ ∈ U . A basis for kerL(Λ) is given by {φk}k∈M , where

φk(x, s) =

{
cos(kx) sinh(θks)/θk, θk 6= 0,

cos(kx)s, θk = 0,

and M is the set of all k ∈ κN for which

θk coth(θk) =
1

µ2θ2
0 sin2(λ)

+ θ0 cot(λ). (4.14)

Furthermore, M is finite.

Proof. Suppose that φ ∈ X̃2 is such that L(Λ)φ = 0. Since for each s ∈ [0, 1], the
function φ(·, s) is 2π/κ-periodic, even and of class C2,β , we know that we have the
Fourier expansion

φ(x, s) =
1

2
a0(s) +

∞∑
n=1

an(s) cos(nκx), an(s) =
2

2π/κ

∫ 2π/κ

0

φ(x, s) cos(nκx) dx,

(4.15)
and that for each fixed s, the series is uniformly convergent in x. The fact that
L2(Λ)φ = 0 implies

∫ 2π/κ

0
(φxx + φss − αφ)(x, s) cos(nκx) dx = 0, and using that

φ ∈ X̃2 we deduce that

anss(s)− (α+ (nκ)2)an(s) = 0, s ∈ (0, 1), n ∈ N0. (4.16)

Using the fact that φ(·, 0) = 0 (by definition of X̃2), and the fact that L1(Λ)φ = 0,
we get the boundary conditions

an(0) = 0, ψ0s(1)ans(1)−
(
ψ0ss(1) +

1

ψ0s(1)

)
an(1) = 0, n ∈ N0. (4.17)

i.e. a Dirichlet condition at the bottom, and a Robin condition at the top. Now,
the general solution of (4.16) is

an(s) = An cosh(θnκs) +Bn
sinh(θnκs)

θnκ
, An, Bn ∈ R, n ∈ N0.
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Note that {cosh(θnκs), sinh(θnκs)/θnκ} is a solution basis of (4.16) even in the
case α+ (nκ)2 = 0.

Incorporating the Dirichlet boundary condition yields that An = 0, and the
Robin boundary condition then reduces to(

ψ0s(1) cosh(θnκ)−
(
ψ0ss(1) +

1

ψ0s(1)

)
sinh(θnκ)

θnκ

)
Bn = 0. (4.18)

Observe that if the coefficient in front of Bn in (4.18) is nonzero, then we must
have Bn = 0 and therefore an = 0. If the coefficient is zero, then we can only
conclude that an(s) = Bn sinh(θnκs)/θnκ for some Bn ∈ R. Suppose now that the
coefficient is zero, i.e. that

ψ0s(1) cosh(θnκ)−
(
ψ0ss(1) +

1

ψ0s(1)

)
sinh(θnκ)

θnκ
= 0. (4.19)

Note that if (4.19) holds, then sinh(θnκ)/θnκ 6= 0; otherwise (4.19) would imply
that cosh(θnκ) = sinh(θnκ) = 0, which is not possible. Thus (4.19) is equivalent to

θnκ coth(θnκ) =
ψ0ss(1)

ψ0s(1)
+

1

ψ0s(1)2
. (4.20)

Recalling that ψ0(s; Λ) = µ cos(θ0(s− 1) + λ), we find

ψ0s(1; Λ) = −µθ0 sin(λ), ψ0ss(1; Λ) = −µθ2
0 cos(λ),

and thus (4.20) is equivalent to

θnκ coth(θnκ) =
1

µ2θ2
0 sin2(λ)

+ θ0 cot(λ), (4.21)

where θnκ coth(θnκ) is naturally interpreted as 1 in the case θnκ = 0.
Define now the set M be the set of k ∈ κN satisfying (4.21). We claim that

M is finite. This is a consequence of the following three facts: that the right hand
side of (4.21) is independent of n, that there are only finitely many n ∈ N for
which α + (nκ)2 < 0, and that for α + (nκ)2 ≥ 0 the function n 7→ θnκ coth(θnκ)
is strictly increasing.

We have thus deduced that if φ ∈ kerL(Λ), then φ can be represented by the
finite sum

φ(x, s) =
∑
nκ∈M

Bn
sinh(θnκs)

θnκ
cos(kx). (4.22)

Since also each function φk(x, s) = sinh(θks)
θk

cos(kx) is easily verified to be in
kerL(Λ) for k ∈M , we have proved Lemma 4.5.

The following result is stated, but not proved, in [6].

25



Theorem 4.6 ([6]). For each Λ ∈ U , the operator L(Λ) is Fredholm with index 0.
Let Z = {(ηφ, φ) : φ ∈ kerL(Λ)} ⊂ X̃ ⊂ Y . The range of L(Λ) is the orthogonal
complement of Z in Y with respect to the inner product〈

(η1, φ̂1), (η2, φ̂2)
〉
Y

=

∫ 2π/κ

0

η1η2 dx+

∫ 1

0

∫ 2π/κ

0

φ̂1φ̂2 dxds, (ηj , φ̂j) ∈ Y.

Let w̃k = (ηφk , φk) for k ∈ M , where φk and M are as in Lemma 4.5. The
projection ΠZ : Y → Z parallel to ranL(Λ) is then given by

ΠZw =
∑
k∈M

〈w, w̃k〉Y
‖w̃k‖2Y

w̃k. (4.23)

Proof. That (Y, 〈·, ·〉Y ) is an inner product space follows from the fact that L2(κ−1S,R)

and L2(Ω̂,R) are inner product spaces. Observe that we can decompose Y into a
direct sum in two ways, namely

Y = ranL(Λ)⊕ cokerL(Λ) = ranL(Λ)⊕ ranL(Λ)⊥.

If we are able to show that Z = {(ηφ, φ) : φ ∈ kerL(Λ)} is the orthogonal comple-
ment of ranL(Λ) in (Y, 〈·, ·〉Y ), elementary considerations allows us to conclude

dim (cokerL(Λ)) = dim
(
ranL(Λ)⊥

)
= dim (Z) = dim (kerL(Λ)) ,

proving that L(Λ) is a Fredholm operator of index 0.
To show that Z = ranL(Λ)⊥ in (Y, 〈·, ·〉Y ), let (η0, φ0) be an arbitrary but

fixed element of ranL(Λ)⊥ ⊂ Y . Recalling the definition of L(Λ),

L(Λ)φ =

([
ψ0sφs −

(
ψ0ss +

1

ψ0s

)
φ

]
s=1

, (∂2
x + ∂2

s − α)φ

)
.

we see that (η0, φ0) has to satisfy the following identity for all φ ∈ X̃2:

0 =

∫ 2π/κ

0

[
ψ0sφs −

(
ψ0ss +

1

ψ0s

)
φ

]
s=1

η0 dx

+

∫ 1

0

∫ 2π/κ

0

φ0(φxx + φss − αφ) dx ds.

(4.24)

In particular, for all φ ∈ X̃2 that has support not intersecting the boundary lines
s = 0 and s = 1, we have that∫ 1

0

∫ 2π/κ

0

φ0(φxx + φss − αφ) dxds = 0, (4.25)

and we will use this to deduce properties of φ0.
First, we claim that (4.25) also holds for an arbitrary φ ∈ C∞c (R×(0, 1),R). To

see this, we first show that (4.25) holds if φ is any element of C∞c ((0, 2π/κ)×(0, 1).
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Indeed, defining φ̃(x, s) = 1
2 (φ(π/κ − x, s) + φ(π/κ + x, s)), we can use partial

integration and the symmetry-properties of φ0 to deduce that∫ 1

0

∫ 2π/κ

0

φ0(φxx + φss − αφ) dx ds =

∫ 1

0

∫ 2π/κ

0

φ0(φ̃xx + φ̃ss − αφ̃) dxds,

but since φ̃ can be periodically extended to an element of X̃2, both of these integrals
have to be zero. A similar symmetry-trick allows us extend this to φ ∈ C∞c (R ×
(0, 1),R), and we therefore conclude that φ0 solves (∂2

x+∂2
s−α)φ0 = 0 in R×(0, 1)

in the sense of distribution. By interior elliptic regularity (Folland [10, p. 327])
we conclude that φ0 ∈ Y2 ∩ C∞(Ω̂), and moreover

L2(Λ)φ0 = (∂2
x + ∂2

s − α)φ0 = 0 in Ω̂. (4.26)

For s ∈ [0, 1] and x ∈ R, we have the Fourier expansion

φ0(x, s) =
1

2
a0(s)+

∞∑
n=1

an(s) cos(nκx), an(s) =
2

2π/κ

∫ 2π/κ

0

φ0(x, s) cos(nκx) dx,

where for each s the series converges in L2(κ−1S,R) (Hölder continuity even implies
pointwise convergence, but we will not need this fact). In the same manner as the
proof of Lemma 4.5, we find

anss(s)− (α+ (nκ)2)an(s) = 0 for s ∈ (0, 1), an(0) = 0

for all n ∈ N0. This entails that

an(s) = Bn
sinh(θnκs)

θnκ
, s ∈ [0, 1], (4.27)

where Bn ∈ R. Define now the family of sequences

Aml (s) =

( (
1

2

)δj0
(nκ)la(m)

n (s)

)∞
n=0

, s ∈ [0, 1], l,m ∈ N0, (4.28)

where δ is the Kronecker delta. For s ∈ (0, 1), Aml (s) is the sequence of Fourier
coefficients of ∂lx∂ms φ0(·, s), modulo a sign. In particular, from Parseval’s theorem
we have ∥∥∂lx∂ms φ0(·, s)

∥∥
L2(κ−1S,R)

= ‖Aml (s)‖L2(N0,R) , s ∈ (0, 1).

Observe now from (4.27) that for all m, s 7→ |a(m)
j (s)| is strictly increasing for

s ≥ 0, and therefore we have Aml (0) ∈ L2(N0,R) and lims↓0A
m
l (s) = Aml (0) for

all nonnegative integers l and m. Using dominated convergence (in L2(N0,R))
and Parseval’s theorem, we see in particular that lims↓0 φ0(·, s) and lims↓0 φ0s(·, s)
exist in L2(κ−1S,R), with the former limit being 0. This will now be utilized.
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Given any ε ∈ (0, 1/2), we have the equalities∫ 1−ε

ε

∫ 2π/κ

0

φ0(φxx + φss − αφ) dxds

=−
∫ 1−ε

ε

∫ 2π/κ

0

(φ0xφx + φ0sφs − αφ0φ) dx ds

+

∫ 2π/κ

0

([φ0φs]s=1−ε − [φ0φs]s=ε) dx

=

∫ 1−ε

ε

∫ 2π/κ

0

(φ0xx + φ0ss − αφ0)φdxds

+

∫ 2π/κ

0

([φ0φs − φ0sφ]s=1−ε − [φ0φs − φ0sφ]s=ε) dx

=

∫ 2π/κ

0

([φ0φs − φ0sφ]s=1−ε − [φ0φs − φ0sφ]s=ε) dx

where in the last line we used (4.26). Taking the limit ε ↓ 0, we get the equality∫ 1

0

∫ 2π/κ

0

φ0(φxx+φss−αφ) dxds =

∫ 2π/κ

0

[φ0φs]s=1 dx−lim
ε ↓ 0

∫ 2π/κ

0

[φ0sφ]s=1−ε dx,

where we used that lims↓0 φ(·, s) = lims↓0 φ0(·, s) = 0, and that lims↓0 φ0s(·, s) and
lims↓0 φ(·, s) exist, the limits being taken in L2(κ−1S,R). We have therefore shown
that (4.24) is equivalent to

lim
σ ↑ 1

∫ 2π/κ

0

[φ0sφ]s=σ dx =

∫ 2π/κ

0

[(ψ0η0 + φ0)φs]s=1 dx

−
∫ 2π/κ

0

[(
ψ0ss +

1

ψ0s

)
φ

]
s=1

η0 dx

(4.29)

for all φ ∈ X̃2. In the special case φ(x, s) = g(s)φ̂(x) for functions x 7→ φ̂(x) in
C2,β

even(κ−1S,R) and s 7→ g(s) in C∞([0, 1],R) with g(0) = 0, (4.29) reduces to

g(1) lim
σ ↑ 1

∫ 2π/κ

0

[φ0sφ̂]s=σ dx = g′(1)

∫ 2π/κ

0

[(ψ0η0 + φ0)φ̂]s=1 dx

− g(1)

∫ 2π/κ

0

[(
ψ0ss +

1

ψ0s

)
φ̂

]
s=1

η0 dx.

(4.30)

Here we used that limσ ↑ 1

∫ 2π/κ

0
[φ0sφ̂]s=σ dx exists3 for all φ̂ ∈ C2,β

even(κ−1S,R),
which is needed to pull out g(1) from the limit on the left hand side of (4.30).

3This can be established by choosing g such that g(s) = 1 for s > 1/2, and appealing to
(4.29).
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Letting g(s) = s(s−1) in (4.30), and using the fact that g(1) = 0 and g′(1) = 1

while φ̂ is arbitrary, we conclude that
∫ 2π/κ

0
[(ψ0η0 +φ0)φ̂]s=1 dx = 0, which due to

the continuity of (ψ0η0 + φ0) and the arbitrariness of φ̂ implies

φ0(x, 1) = − η0(x)

ψ0s(1)
. (4.31)

In particular, this shows that φ0|s=1 is of class C1,β . Letting g(s) = s, (4.30)
reduces to

lim
σ ↑ 1

∫ 2π/κ

0

[φ0s]s=σφ̂ dx = −
∫ 2π/κ

0

[
ψ0ss +

1

ψ0s

]
s=1

η0φ̂ dx. (4.32)

showing that, as σ ↑ 1, φ0s(·, σ) converges to −
(
ψ0ss(1) + 1

ψ0s(1)

)
η0(·) in the sense

of distributions.
We now show that limσ ↑ 1 φ0s(·, σ) actually converges in L2(κ−1S,R), which

is equivalent to the limit limσ ↑ 1A
1
0(σ) existing in L2(N0,R). First we show that

A1
0(1) = (Bj cosh(θj))

∞
j=0 ∈ L2(N0,R). To see why this is true, first choose N so

that n ≥ N implies θnκ ∈ R; it is sufficient to show that

∞∑
n=N

B2
ne

2θnκ <∞. (4.33)

To this purpose, we will use the fact that φ0|s=1 is of class C1,β , implying that
φ0x|s=1 ∈ L2(κ−1S,R). Applying Parseval’s theorem again we find that

∑
n=N

(κn)2

θ2
nκ

B2
n sinh2(θnκ) <∞,

and therefore also
∑∞
n=N

(κn)2

θ2nκ
B2
ne

2θnκ <∞. Noting that

(κn)2

θ2
nκ

=
1

1 + α(κn)−2
= 1 +O(n−2) as n→∞,

we conclude that (4.33) is true, and consequently that A1
0(1) ∈ L2(N0,R). Due to

the monotonicity of s 7→ |a′j(s)| we find that
∥∥A1

0(s)
∥∥
L2(N0,R)

≤
∥∥A1

0(1)
∥∥
L2(N0,R)

for s ∈ (0, 1), and since lims ↑ 1A
1
0(s) = A1

0(1) pointwise (i.e. component-wise),
dominated convergence ensures that also lims ↑ 1A

1
0(s) = A1

0(1) in L2(N0,R), and
applying Parseval we therefore also get

lim
σ ↑ 1

φ0s(x, σ) =
1

2
a′0(1) +

∞∑
n=1

a′n(1) cos(nκx) in L2(κ−1S,R). (4.34)
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Having established L2(κ−1S,R)-convergence of limσ ↑ 1 φ0s(·, σ), (4.32) and (4.31)
show that

lim
σ ↑ 1

φ0s(x, σ) = −
(
ψ0ss(1) +

1

ψ0s(1)

)
η0(x)

=

(
ψ0ss(1)

ψ0s(1)
+

1

ψ0s(1)2

)
φ0(x, 1)

=

(
ψ0ss(1)

ψ0s(1)
+

1

ψ0s(1)2

)(
1

2
a0(1) +

∞∑
n=1

an(1) cos(nκx)

)
,

(4.35)

equalities also here meant as between elements of L2(κ−1S,R). Combining (4.34)
and (4.35), and using that elements of L2(κ−1S,R) are equal precisely when their
Fourier coefficients are equal, we once again end up with the condition

a′n(1) =

(
ψ0ss(1)

ψ0s(1)
+

1

ψ0s(1)2

)
an(1), n ∈ N0.

Repeating the argument in the proof of Lemma 4.5, we find that only finitely many
functions s 7→ an(s) are nonzero, with φ0 given by the representation (4.22). Thus
we have the regularity φ0 ∈ X̃2, and moreover that φ0 ∈ kerL(Λ). Furthermore,
(4.31) shows that η0 = T2(Λ)φ0. Thus

(η0, φ0) ∈ Z,

showing that ranL(Λ)⊥ ⊂ Z. Conversely, we alo have the inclusion Z ⊂ ranL(Λ)⊥:
Given (η0, φ0) ∈ Z, φ0 is smooth and therefore the statement (η0, φ0) ∈ kerL(Λ)⊥

is equivalent to (4.29), which by direct substitution is easily seen to hold for each
basis function (ηφk , φk) ∈ Z. Thus we indeed have the equality

Z = ranL(Λ)⊥.

Lastly, we prove the formula for the projection ΠZ . Clearly {φk}k∈M is a basis
for kerL(Λ), and we need only to show that it is orthogonal, i.e. that

〈
w̃ki , w̃kj

〉
Y

= 0 for ki 6= kj .

Recalling the formula

ηφk(x) = −φk(x, 1)

ψ0s(1)
= − sinh(θk)

θkψ0s(1)
cos(kx),
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we get, for ki 6= kj ,

〈
w̃ki , w̃kj

〉
Y

=

∫ 2π/κ

0

ηkiηkj dx+

∫ 1

0

∫ 2π/κ

0

φ̂ki φ̂kj dxds

=

(
sinh(θki) sinh(θkj )

θkiθkjψ0s(1)2

)2 ∫ 2π/κ

0

cos(kix) cos(kjx) dx

+

∫ 1

0

sinh(θkis) sinh(θkjs)

θkiθkj

∫ 2π/κ

0

cos(kix) cos(kjx) dx ds

= 0.

Remark 4.7. Our proof of Theorem 4.6 is valid even in the case β = 0, where
we identify C2,0(Ω) = C2(Ω). The reason for having β > 0 is that traditional
proofs of the Fredholm property of the elliptic operator associated with the water
wave problem rely on so-called Schauder estimates (see e.g. [12, 2, 18]), which are
invalid in the C2,0-setting.

Corollary 4.8. Given Λ ∈ U , the operator DwF(0,Λ) is a Fredholm operator of
index 0.

Proof. Since L(Λ) = DwF(0,Λ)T (Λ) and T (Λ) is an isomorphism, we get

dim (kerDwF(0,Λ)) = dim (kerL(Λ))

and
dim (ranDwF(0,Λ)) = dim (ranL(Λ)) .

Remark 4.9. In appendix A we show that if ψ0s(1; Λ) = 0, i.e. if Λ /∈ U , then
DwF(0,Λ) is not a Fredholm operator.

The bifurcation results in chapters 5 and 6 are valid under the assumption
that kerL(Λ) is respectively one- and two-dimensional. This corresponds to the
cardinality of the set M in Lemma 4.5 being one or two. We now record some
results on the kernel equation (4.14), which in particular show that it is indeed
possible to choose Λ ∈ U such that dim(kerL(Λ)) is one or two.

Lemma 4.10 ([6]). (Bifurcation kernels.) Let k1, k2 ∈ κN and Λ ∈ U .

(i) For every α and any k1 there are µ and λ such that the kernel equation (4.14)
holds for at least k = k1. The points α for which there exist λ and µ such
that equation (4.14) holds for more than one k ∈ κN are isolated.

(ii) For any λ with cot(λ) ≤ 0, and any pair k1, k2 with k2
2 ≥ k2

1 + 9π2/4, there
are α ∈ (−k2

2,−k2
1 − π2) and µ such that (4.14) holds for k = k1, k2 and for

no other k > k1.
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(iii) For any k1, k2 such that k2
2 > k2

1 + 3π2 and k2
2 − k2

1 /∈ (2Z + 1)π2, there
are α < −k2

2, µ and λ such that the kernel equation (4.14) holds at least for
k = k1, k2.

Remark 4.11. It follows from (i) that we can get a kernel which is one-dimensional.
Moreover, if we choose k1 = κ in (ii), we get a kernel which is two-dimensional.

Proof. Let r(µ, α, λ) = 1/
(
µ2θ2

0 sin2(λ)
)

+ θ0 cot(λ) denote the right hand side of
the kernel equation. For fixed α and λ such that cot(λ) < 0, observe that we have

ran
µ6=0

r(µ, α, λ) = (θ0 cot(λ),∞) ⊃ R+
0 ,

Introducing the positive parameter t = |α|, we study the function

l(t, k) =


√
t− k2 cot

(√
t− k2

)
, t > k2 (the trigonometric regime),√

k2 − t coth
(√
k2 − t

)
, k2 > t (the hyperbolic regime),

1, t = k2,

i.e. the left hand side of the kernel equation. Letting ltri(x) = x cot(x) and
lhyp(x) = x coth(x), we find that

d

dx
(x coth(x)) =

cosh(x) sinh(x)− x
sinh2(x)

> 0, 0 < x,

d

dx
(x cot(x)) =

cos(x) sin(x)− x
sin2(x)

< 0, 0 < x 6∈ πN.

It follows that l(t, k) is strictly increasing in k and strictly decreasing in t, which of
course does not apply across the singularities

√
t− k2 ∈ πN in the trigonometric

regime. Moreover, we have that

lim
x→a

ltri(x) =∞ for a ∈ {π+, (2π)+, (3π)+, . . .},

lim
x→a

ltri(x) = −∞ for a ∈ {π−, (2π)−, (3π)−, . . .},

lim
x→∞

lhyp(x) =∞.

The functions ltri and lhyp are plotted in Figure 4.1.
Having established these elementary properties of l, we now prove (i). Given

any α < 0 and any k1 ∈ κN one can choose µ and λ such that k1 solves the kernel
equation: first choose λ such that θ0 cot(λ) < l(|α|, k1), and then decrease µ such
that the right hand side r(µ, α, λ) equals l(α, k1).

Next we show the second part of (i), namely that the values of α for which
the kernel equation holds simultaneously for two different values of k are isolated.
To this end, we first establish the following weaker, preliminary result: given two
wave numbers k1 and k2, the values of α for which the kernel equation is satisfied
for both k1 and k2 are isolated. We therefore fix some t0 ∈ R, and suppose that
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Figure 4.1: A plot showing ltri(x) for x > 0, and lhyp(−x) for x < 0.

l(t0, k1) = l(t0, k2) for some k1 < k2. Note that due to the monotonicity of l(t, k)
for k2 ≥ t, we must have that t0 > k2

1. To prove the preliminary result, it suffices
to show that there is an open interval containing t0, in which the only zero of the
function f(t) = l(t, k1)− l(t, k2) is t0. We split the analysis into three cases:

Case I : k2
2 < t0. Then locally about t0 we have f(t) =

√
t− k2

1 cot
(√

t− k2
1

)
−√

t− k2
2 cot

(√
t− k2

2

)
. Since f is an analytic real-valued function of a real vari-

able, either f has isolated zeros, or f is identically zero4. To show that f is not
identically zero, we compute

f ′(t) =
cot
(√

t− k2
1

)
2
√
t− k2

1

− 1

2

(
1 + cot2

(√
t− k2

2

))

−
cot
(√

t− k2
2

)
2
√
t− k2

2

+
1

2

(
1 + cot2

(√
t− k2

2)

))

=
(t− k2

2)
√
t− k2

1 cot
(√

t− k2
1

)
− (t− k2

1)
√
t− k2

2 cot
(√

t− k2
2

)
2(t− k2

2)(t− k2
2)

+
(t− k2

1)(t− k2
2)
(

cot2
(√

t− k2
2

)
− cot2

(√
t− k2

1

))
2(t− k2

2)(t− k2
2)

.

4Suppose namely that there was a strictly monotone sequence (τn)n converging to t0 with
f(τn) = 0 for all n. By applying the mean value theorem repeatedly, we conclude that there
is a strictly monotone sequence (τ ′n)n also converging to t0 with f ′(τ ′n) = 0 for all n, and by
continuity f ′(t0) = 0. By induction, we conclude that f (m)(t0) = 0 for all m, so by analyticity
f is zero in a whole neighborhood about t0.
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If f(t) = 0, the expression for the derivative can be simplified to

f ′(t) =
(k2

2 − k2
1)ltri

(√
t− k2

1

)
(ltri

(√
t− k2

1

)
− 1)

2(t− k2
1)(t− k2

2)
, (4.36)

Since ltri
(√
· − k2

1

)
is locally strictly decreasing, f ′(t) can not be zero for all t in

a neighborhood of t0. Thus f is not locally identically zero, and so by analyticity
its zeros are isolated.

Case II : k2
1 < t0 < k2

2. We now let

f(t) =
√
t− k2

1 cot

(√
t− k2

1

)
−
√
k2

2 − t coth

(√
k2

2 − t
)
,

for which

f ′(t) =
cot
(√

t− k2
1

)
2
√
t− k2

1

− 1

2

(
1 + cot2

(√
t− k2

1

))

+
coth

(√
k2

2 − t
)

2
√
k2

2 − t
− 1

2

(
1 + coth2

(√
k2

2 − t
))

=
(k2

2 − t)
√
t− k2

1 cot(
√
t− k2

1) + (t− k2
1)
√
k2

2 − t coth(
√
k2

2 − t)
2(k2

2 − t)(t− k2
2)

−
(t− k2

1)(k2
2 − t)

(
coth2(

√
k2

2 − t) + cot2(
√
t− k2

1)
)

2(k2
2 − t)(t− k2

2)
.

If f(t) = 0, the expression for the derivative can be simplified to

f ′(t) =
(k2

2 − k2
1)ltri

(√
t− k2

1

)
(1− ltri

(√
t− k2

1

)
)

2(t− k2
2)(t− k2

1)
.

We can now repeat the argument following (4.36) in Case I, and conclude that f
has isolated zeros.

Case III : t0 = k2
2. In this case f(t) = l(t, k1) − l(t, k2) must be given by a

piecewise defined formula near t0. However, a straightforward computation shows
that

d

dt
l(t, k1)|t=t0 = −1

2
,

and
d

dt
l(t, k2)|t=t0 = −1

3
,

and thus f ′(t0) = −1/6 in this case, showing that t0 has to be an isolated zero of
f .

We now define, for an arbitrary t0 ∈ R, the finite set Stri(t0) = {k ∈ κN :
k2 − t0 < 0}, i.e. the set of all k’s such that (t0, k) is in the trigonometric regime.
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We know that if l(t0, ki) = l(t0, kj), then the smaller of ki and kj has to be in
Stri(t0). Due to the continuity of l, the monotonicity of l in the hyperbolic domain,
and the preliminary result just proved, we know that for each ki ∈ Stri(t0) there
is an εi > 0 such that

0 < |t− t0| < εi =⇒ l(t, k) 6= l(t, ki) ∀ k ∈ κN.

Letting
ε = min

ki∈Stri(t0)
εi

we find that, for all t with 0 < |t− t0| < ε, we have l(t, ki) 6= l(t, kj) for all distinct
ki, kj ∈ κN. This concludes the proof of (i).

To prove (ii), choose λ such that cot(λ) < 0 and any pair k1, k2 ∈ κN with
k2

2 ≥ k2
1 + 9π2/4, and consider the set I of t = |α| such that

π2 < t− k2
1 <

(
3π

2

)2

and rant∈I l(t, k1) = (1,∞). (4.37)

Due to the monotonicity of l with respect to k, the only possible k > k1 such that
l(t, k) = l(t, k1), must belong to the hyperbolic regime t− k2 < 0, and there is at
most one such k for a given t. Figure 1 should help make this clearer. Note now
that if t fulfills (4.37), then since k2

2 ≥ k2
1 + 9π2/4 we have k2

2 − t > 0. Since, in
that case,

1 < l(t, k2) =
√
k2

2 − t coth

(√
k2

2 − t
)
< k2 coth(k2),

while l(t, k1) spans (1,∞) as t spans I, there must by the intermediate value
theorem exist t∗ ∈ I such that l(t∗, k1) = l(t∗, k2). We then choose λ and µ such
that r(µ,−t∗, λ) = l(t∗, k1). This proves (ii).

We now prove (iii). Choose k1, k2 such that k2 > k2
1 + 3π2 and k2

2 − k2
1 /∈

(2Z + 1)π2. Since we are interested in α < −k2
2, we study t > k2

2, i.e. (t, k) in the
hyperbolic regime. By assumption, there exists a unique n ∈ N such that

(2n+ 1)π2 < k2
2 − k2

1 < (2n+ 3)π2.

This implies that

(n+ 1)2π2 < k2
2 − k2

1 + n2π2 < k2
2 − k2

1 + (n+ 1)2π2 < (n+ 2)2π2. (4.38)

On the interval I = (k2
2 + n2π2, k2

2 + (n + 1)2π2), the function h(·, k2) spans R.
Inequalites (4.38) show that, over I, h(·, k1) spans a bounded set, namely the
interval (a, b) where

a =
√
k2

2 − k2
1 + n2π2 coth(k2

2 − k2
1 + n2π2)

b =
√
k2

2 − k2
1 + (n+ 1)2π2 coth(

√
k2

2 − k2
1 + (n+ 1)2π2).
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By the intermediate value theorem, we must therefore have that l(t0, k1) = l(t0, k2)
for some t0 ∈ (k2

2 +n2π2, k2
2 +(n+1)2π2). Since t0 > k2

2, we get by setting α = −t0
that α < −k2

2, and thus the proof of part (iii) is finished by choosing µ and λ such
that l(|α|, k1) = r(µ, α, λ).

4.3 The Lyapunov-Schmidt reduction

Recall that L(Λ) maps from X̃2 to Y . Let Λ∗ denote a triple (µ∗, α∗, λ∗) such that
L(Λ∗) holds with nontrivial kernel, say with basis {φ∗1, . . . , φ∗n}. Let X 3 w∗j =
T (Λ∗)φ∗j , j = 1, . . . , n. Since DwF(0,Λ∗) is Fredholm, we know from section 3.3
that there exists a closed subspace X0 ⊂ X, and a decomposition of X into the
direct sum X = kerDwF(0,Λ∗)⊕X0. In our particular setting, we can even give
an explicit characterization of X0, which we now do. First, recall from Proposition
4.6 that we can decompose Y into the direct sum

Y = Z ⊕ ranL(Λ∗),

where Z = span{(ηφ∗j , φ
∗
j )}nj=1. Since X̃ ⊂ Y , the decomposition of Y induces the

decomposition

X̃ = Z ⊕
(

ranL(Λ∗) ∩ X̃
)
.

Define now the map R : X̃ → X by

R(η, φ) =

(
η, φ− sψ0sφ|s=1

ψ0s(1)

)
.

Note that R is a surjection, being the composition of the bijection

(id, T (Λ∗)) : X1 × X̃2 → X1 ×X, (η, φ) 7→ (η, T (Λ∗)φ)

and the surjection

(id, π2) : X1 ×X → X1 ×X2, (η1, (η2, φ)) 7→ (η1, φ).

Observe furthermore that R(η, φ) ∈ kerDwF(0,Λ∗) if and only if (η, φ) ∈ Z.
Letting X0 = R

(
ranL(Λ∗) ∩ X̃

)
, it follows that we can write X a sum of sub-

spaces, namely X = kerDwF(0,Λ∗) + X0. This sum is also direct, because if
w ∈ kerDwF(0,Λ∗) ∩X0, then R−1(w) ⊂ Z ∩ ranL(Λ∗) = {0}.

X = kerDwF(0,Λ∗)⊕X0.

Moreover, as a consequence Proposition 3.12, X0 is closed.
Applying the Lyapunov-Schmidt reduction, Theorem 3.15 and Corollary 3.17,

we obtain the following lemma.
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Lemma 4.12. There exist open neighborhoods N of 0 in kerDwF (0,Λ∗),M of 0
in X0, and U ′ of Λ∗ in R3, and a unique function ψ : N × U ′ →M such that

F(w,Λ) = 0 for w ∈ N +M, Λ ∈ U ′,

if and only if w = w∗ + ψ(w∗,Λ) and w∗ = t1w
∗
1 + · · · + tnw

∗
n ∈ N solves the

finite-dimensional problem

Φ(t,Λ) = 0 for t ∈ V, Λ ∈ U ′, (4.39)

in which

Φ(t,Λ) = ΠZF (w,Λ) and V = {t ∈ Rn : t1w
∗
1 + · · ·+ tnw

∗
n ∈ N}

(Since N is open, V contains a small ball in Rn centered at 0.) The function ψ
has the following properties: ψ ∈ C∞ (N × U ′,M), ψ(0,Λ) = 0 for all Λ ∈ U ′,
and Dwψ(0,Λ∗) = 0.
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5 One-dimensional bifurcation

We show that a curve of nontrivial solutions bifurcates from a point (0,Λ∗) ∈ X×U
where the kernel of DwF(0,Λ∗) is one-dimensional, given that Λ∗ satisfies an
additional technical condition. We also we use the one-dimensional bifurcation
result to give a local classification of all solutions near a trivial solution having an
associated one-dimensional kernel.

5.1 Preliminaries

Lemma 5.1. Suppose that φj ∈ kerL(Λ), where φj = φkj is the basis function
given by the formula (4.5). Then if w̃j = (ηφj , φj) is the corresponding basis
function of Z, we have

〈DλL(Λ)φj , w̃j〉Y = A

(
sinh(θkj )

θkj

)2

, (5.1)

where

A =
π

ψ0s(1)

[
µθ0 cos(λ)θkj coth(θkj ) + µθ2

0 sin(λ) +
cos(λ)

µθ0 sin2(λ)

]
6= 0.

Moreover,

〈DλL(Λ)φj , w̃j〉Y = 0 ⇐⇒ cot(λ) = −µ
2|α|3/2

2
.

Remark 5.2. Observe that, for a given Λ, the quantity A is independent of kj,
in the sense that it has the same value for all kj such that (kj ,Λ) solves the kernel
equation. This obervation will be important in chapter 6, when we invoke this
lemma in the proof of the two-dimensional bifurcation result.

Proof. First we list formulas for some derivatives of ψ0(s,Λ) = µ cos(θ0(s−1)+λ),
namely

ψ0s(s,Λ) = −µθ0 sin(θ0(s− 1) + λ),

ψ0sλ(s,Λ) = −µθ0 cos(θ0(s− 1) + λ),

ψ0ssλ(s,Λ) = µθ2
0 sin(θ0(s− 1) + λ).

(5.2)

Recall that L(Λ) =
([
ψ0s∂s −

(
ψ0ss + 1

ψ0s

)
id
]
s=1

, ∂2
x + ∂2

s − α id
)
. Using the

remark following Lemma 3.2, we know that the Frechet derivative DλL(Λ) can be
computed by formal differentiation with respect to λ, i.e.

DλL(Λ) =

([
ψ0sλ∂s −

(
ψ0ssλ −

ψ0sλ

ψ2
0s

)
id

]
s=1

, 0

)
. (5.3)
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Thus, using that φj(x, s) = cos(kjx) sinh(θkjs)/θkj and the formulas (5.2), we find

DλL(Λ)φj(x, s)

=

([
−µθ0 cos(λ) cosh(θkj )−

(
µθ2

0 sin(λ) +
cos(λ)

µθ0 sin2(λ)

)
sinh(θkj )

θkj

]
cos(kjx), 0

)
=

([
−
(
µθ0 cos(λ)θkj coth(θkj ) + µθ2

0 sin(λ) +
cos(λ)

µθ0 sin2(λ)

)
sinh(θkj )

θkj

]
cos(kjx), 0

)
=

(
−Aψ0s(1)

π

sinh(θkj )

θkj
cos(kjx), 0

)
,

where we from the first to the second line divided by sinh(θkj )/θkj , which is nonzero
since (kj ,Λ) satisfies the kernel equation (4.14). Since w̃j = (ηφj , φj), we also need
to recall that

ηφj (x) = −φj(x, 1)

ψ0s(1)
= −cos(kjx)

ψ0s(1)

sinh(θkj )

θkj
.

Now,

〈DλL(Λ)φj , w̃j〉Y =

∫ 2π/κ

0

(DλL(Λ)φj)1 ηφj dx+

∫ 1

0

∫ 2π/κ

0

(DλL(Λ)φj)2 φj dx ds

= A

(
sinh(θkj )

θkj

)2 ∫ 2π/κ

0

cos2(kjx)

π
dx

= A

(
sinh(θkj )

θkj

)2

.

The inner product is zero if and only if A = 0, i.e. if

0 = µθ0 cos(λ)θk coth(θk) + µθ2
0 sin(λ) +

cos(λ)

µθ0 sin2(λ)
(5.4)

⇐⇒ θk coth(θk) = −θ0 tan(λ)− 1

µ2θ0 sin2(λ)
. (5.5)

From (5.4) to (5.5) we divided with µ, θ0 and cos(λ). That µ and θ0 are nonzero
follows from the assumption Λ ∈ U . Moreover, note that cos(λ) = 0 will by (5.4)
imply that µθ0 sin(λ) = 0, which is not possible again due to the fact that Λ ∈ U .
Thus all divisions are justified. We can now combine the kernel equation with
(5.5) to deduce that

θ0 cot(λ) +
1

µ2θ2
0 sin2(λ)

= −θ0 tan(λ)− 1

µθ2
0 sin2(λ)

⇐⇒ tan(λ) + cot(λ) = − 2

µ2θ3
0 sin2(λ)

⇐⇒ 1 = − 2 cos(λ)

µ2|α|3/2 sin(λ)

⇐⇒ cot(λ) = −µ|α|
3/2

2
.
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Let us from now on call

cot(λ) = −µ2|α|3/2/2 (5.6)

the orthogonality condition. We now show that if the orthogonality condition holds
for some Λ ∈ U , then it is possible to rechoose µ and λ such that the right hand
side r(µ, α, λ) of the kernel equation remains unchanged, while the orthogonality
condition fails. Recall the definition

r(µ, α, λ) =
1

µ2θ2
0 sin2(λ)

+ θ0 cot(λ).

Lemma 5.3. Suppose that Λ = (µ, α, λ) ∈ U is such that the orthogonality condi-
tion (5.6) holds. Then there are µ̃, α̃ ∈ R with Λ̃ = (µ̃, α, λ̃) ∈ U such that

r(µ̃, α, λ̃) = r(µ, α, λ) and cot(λ̃) 6= − µ̃
2|α|3/2

2
.

Proof. First observe that since

∂µr(µ, α, λ) =
−2

µ3θ2
0 sin2(λ)

6= 0,

there is an open rectangle I1 × I2 centered in (µ∗, λ∗) and a unique function µ :
I2 → I1 such that r(µ(λ), α∗, λ) = r(µ∗, α∗, λ∗) for all λ ∈ I2. We will show that
there exists λ ∈ I2 such that

cot(λ) 6= −µ(λ)2θ3
0/2.

Assuming the contrary, we get the explicit expression µ(λ) = sgn(µ∗)
√

2| cot(λ)|/θ3
0.

Using cot(λ) = −µ(λ)2θ3
0/2 to eliminate λ from the right hand side of the kernel

equation, we end up with

r(µ(λ), α∗, λ) =
4 + µ(λ)4θ6

0

4θ2
0µ(λ)2

− 1

2
θ3

0µ(λ)2, (5.7)

which by our assumptions and the definition of λ 7→ µ(λ) should be the constant
r(µ∗, α∗, λ∗) for all λ ∈ I2. However, note that for fixed θ0 the expression (5.7)
is not a constant function over any interval for µ(λ). For if (4 + x4θ6

0)/(4θ2
0x

2) −
θ3

0x
2/2 = C, then also 4 + x4θ6

0 − 4Cθ2
0x

2 − 2θ5
0x

4 = 0, which by the fundamental
theorem of algebra can not hold over a whole interval in x for fixed θ0. Since µ(λ) =
sgn(µ∗)

√
2| cot(λ)|/θ3

0 obviously is continuous and not the constant function µ∗,
we finally arrive at a contradiction. Thus we see that, it is in fact possible to
choose (µ, λ) arbitrarily close to (µ∗, λ∗) such that r(µ, α∗, λ) = r(µ∗, α∗, λ∗),
while cot(λ) 6= −µ(λ)2θ3

0/2.
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5.2 The one-dimensional bifurcation result

The following result is essentially an application of the famous Crandall-Rabinowitz
bifurcation theorem (see e.g. Kielhöfer [15]). To clarify the proof of the two-
dimensional bifurcation in the next section, we will nonetheless spell out the details
of the proof.

Theorem 5.4 ([6]). Suppose that Λ∗ ∈ U is such that kerL(Λ∗) = 1, so that

kerDwF(0,Λ∗) = span{w∗},

where w∗ = T (Λ∗)φk for the unique k ∈ κN such that (Λ∗, k) satisfies the kernel
equation (4.14). Suppose furthermore that we have the non-orthogonality condition

cot(λ∗) 6= (µ∗)2|α∗|3/2

2
. (5.8)

Then there exists a C∞-curve of small-amplitude nontrivial solutions {(w(t), λ(t)) :
0 < |t| < ε} of

F(w, µ∗, α∗, λ) = 0,

in O × R, passing through (w(0), λ(0)) = (0, λ∗), with

w(t) = tw∗ +O(t2) in O as t→ 0. (5.9)

In a neighborhood of (0, λ∗) in O × R, these are the only nontrivial solutions of
(5.9). For small enough |t| > 0, the surface profile of w(t) has minimal period
2π/k, has one crest and one trough per minimal period, and is strictly monotone
between crest and trough.

Proof. Using the terminology from section 4.3, we know that there exists a neigh-
borhood of (0, λ∗) ∈ O×R for which the equation F(w, µ∗, α∗, λ) = 0 is equivalent
to Φ(t, µ∗, α∗, λ) = 0, where t ∈ R. Since the range of Φ, Z, in our case is one-
dimensional, we find

Φ(t,Λ) = Φ1(t,Λ)w̃∗,

where w̃∗ = (ηφk , φk) ∈ Z ⊂ Y , and Φ1 is a smooth real-valued function. From
Lemma 4.12 we know that we have the identity Φ(0,Λ) = 0, and therefore also
Φ1(0,Λ) = 0. Hence we can write

Φ1(t,Λ) =

∫ 1

0

d

dz
(Φ1(tz,Λ)) dz

= t

∫ 1

0

(Φ1t)(tz,Λ) dz

= tΨ(t,Λ),

where we have defined Ψ(t,Λ) =
∫ 1

0
Φ1t(tz,Λ) dz. For t 6= 0 the equations Φ1 = 0

and Ψ = 0 are equivalent, whence to prove the theorem we need only concern
ourselves with zeros of Ψ.
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We want to apply the implicit function theorem to Ψ. We start by showing
that Ψλ(0,Λ∗) 6= 0. Now, by definition of Ψ we find

Ψλ(0,Λ∗) = Φ1tλ(0,Λ∗), (5.10)

and from the formula Φ(t,Λ) = Φ1(t,Λ)w̃∗, we get

Φ1tλ(0,Λ∗)w̃∗ = Φtλ(0,Λ∗), (5.11)

By definition of Φ we see that

Φt(t,Λ) = ∂t (ΠZF(tw∗ + ψ(tw∗,Λ),Λ))

= ΠZDwF(tw∗ + ψ(tw∗,Λ),Λ)(w∗ + ψw(tw∗,Λ)w∗)

and so by evaluating in t = 0, and using the properties of ψ listed in Lemma 4.12,
we find

Φt(0,Λ) = ΠZDwF(0,Λ)(w∗ + ψw(0,Λ)w∗). (5.12)

Furthermore we have

Φtλ(0,Λ) = ∂λ (ΠZDwF(0,Λ)(w∗ + ψw(0,Λ)w∗))

= ΠZD
2
wλF(0,Λ)(w∗ + ψw(tw∗,Λ)) +DwF(0,Λ)ψwλ(w∗,Λ),

and so by evaluating in Λ = Λ∗, and using that Z is the orthogonal complement
of ranDwF(0,Λ∗), we get

Φtλ(0,Λ∗) = ΠZD
2
wλF(0,Λ)w∗

=

〈
D2
wλF(0,Λ∗)w∗, w̃∗

〉
Y

‖w̃∗‖2Y
w̃∗,

(5.13)

where we in the second line used the formula (4.23) for the projection ΠZ . Thus
we see from (5.11) that Φ1tλ(0,Λ∗) equals the coefficient of w̃∗ in (5.13). Going
back to (5.10) we therefore see that Ψλ(0,Λ∗) 6= 0 if and only if〈

D2
wλF(0,Λ∗)w∗, w̃∗

〉
Y
6= 0.

Now, by definition of L we haveDwF(0,Λ)w∗ = L(Λ)◦T (Λ)−1w∗, so using Lemma
3.2 we find

D2
wλF(0,Λ∗)w∗ = DλL(Λ∗)φk + L(Λ∗) ◦Dλ

(
T (Λ∗)−1

)
w∗.

The second term is in ranL(Λ∗), which is the orthogonal complement of Z. Thus
Ψλ(0,Λ∗) 6= 0 if and only if 〈DλL(Λ∗)φk, w̃

∗〉Y 6= 0, and the latter holds true due
to Lemma 5.1 and the non-orthogonality assumption (5.8).

We now show that Ψ(0,Λ∗) = 0. To see this, observe first that Ψ(0,Λ) =
∂tΦ1(0,Λ), and since Φ(t,Λ) = Φ1(t,Λ)w̃∗, it suffices to show that ∂tΦ(0,Λ∗) = 0.
This follows from (5.12) evaluated in Λ = Λ∗, and once again using that Z is the
orthogonal complement of ranDwF(0,Λ∗).
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Finally, since Ψ(0,Λ∗) = 0 and ∂λΨ(0,Λ∗) 6= 0, we can invoke the implicit
function theorem, and deduce that there exists an ε > 0, a C∞-function λ : (−ε, ε)
with λ(0) = λ∗ such that Ψ(t, µ∗, α∗, λ(t)) ≡ 0, and since Φ(t,Λ) = tΨ(t,Λ)w∗, we
have

F(tw∗ + ψ[tw∗, µ∗, α∗, λ(t)], µ∗, α∗, λ(t)) = 0 for all 0 < |t| < ε,

or in the notation of Theorem 5.4, w(t) = tw∗ + ψ(tw∗, µ∗, α∗, λ(t)). It follows
that

ẇ(t) = w∗ + ψw(tw∗, µ∗, α∗, λ(t))w∗ + ψλ(tw∗, µ∗, α∗, λ(t))λ̇(t),

and we can conclude, using the properties of ψ given in Lemma 4.12, that w(0) = 0
and ẇ(0) = w∗. Consequently,

w(t) = tw∗ +O(t2).

Letting w(t) = (η(t), φ(t)) we now prove that, for small enough |t| > 0, the sur-
face profiles η(t) have one crest and one trough per minimal period, and are strictly
monotone between crest and trough. First recall that w∗ = (T1(Λ∗)φk, T2(Λ∗)φk),
where

T1(Λ∗)φk = ηφk(x) = −φk(x, 1)

ψ0s(1)
= − sinh(θk)

θkψ0s(1)
cos(kx).

We know that
‖η(t)− tηφk‖C2 ≤ Kt2

for small enough |t|. In the following we consider t > 0; the analysis for t < 0 is
similar. For a given ε > 0, we define the open sets

I1(ε) = {x ∈ R : |η′φk(x)| > ε}, I2(ε) = {x ∈ R : |η′′φk(x)| > ε}.

Since ηφk is simply a scaled cosine, it is possible to choose ε0 such that I1(ε0) ∪
I2(ε0) = R. Then for t < ε0/K we have

sgn (η(t)′(x)) = sgn
(
η′φk(x)

)
, for x ∈ I1(ε0),

and
sgn (η(t)′′(x)) = sgn

(
η′′φk(x)

)
, for x ∈ I2(ε0).

It follows that η(t)′ will have alternating signs on each neighboring connected com-
ponent of I1, while η(t)′ will have alternating signs on each connected component
of I2. It follows that the minimal period of η(t) is the same as for x 7→ cos(kx),
i.e. 2π/k. Moreover, over the course of one minimal period each of η(t)′ and η(t)′

have exactly two zeros, with all four zeros distinct. In other words, η(t) has one
local minimum and one local maximum per period whenever 0 < t < ε0/K.

Remark 5.5. As shown in Theorem 4.6 in [6], there is an analogous version of
Theorem 5.4 where one instead of λ uses µ as the bifurcation parameter, but without
any non-orthogonality restriction. We have not been able to determine whether the
two resulting bifurcation curves consist of the same solutions of F (w,Λ) = 0.
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5.3 Local classification of solutions

Everything in this section is original.
Using Theorem 5.4, we now classify all solutions in a neighborhood of (0,Λ∗) ∈

X × U for any Λ∗ for which kerDwF(0,Λ∗) is one-dimensional and the non-
orthogonality condition cot(λ∗) 6= −(µ∗)2|α∗|3/2/2 is fulfilled. This can be achieved
by several careful applications of the implicit function theorem. The details are as
follows. Suppose that we have a one-dimensional kernel with wavenumber k, i.e.
kerDwF(0,Λ∗) = span{φk}. For this fixed k, define

K(µ, α, λ) = θk coth(θk)− 1

µ2θ2
0 sin2(λ)

− θ0 cot(λ).

We then have K(µ∗, α∗, λ∗) = 0, and

∂λK(µ, α, λ) =
sin(2λ)

µ2θ2
0 sin4(λ)

+
θ0

sin2(λ)
, (5.14)

which is zero if and only if

cot(λ) = −µ
2θ3

0

2
,

which is not true at Λ = Λ∗ by assumption.
By applying the Lyapunov-Schmidt reduction we obtain a neighborhoodB(Λ∗)×

U0(Λ∗) of (0,Λ∗) in which the equation F(w,Λ) is equivalent to a finite-dimensional
equation Φ(t,Λ) = 0. Since we are assuming that (5.14) is nonzero at Λ = Λ∗,
the implicit function theorem guarantees that there is a neighborhood of Λ∗ and
a unique function (µ, α) 7→ λ(µ, α) satisfying

K(µ, α, λ(µ, α)) = 0,

for (µ, α) close to (µ∗, α∗), and moreover (µ, α) 7→ λ(µ, α) is of class C∞. Let
C ⊂ R3 denote the graph of (µ, α) 7→ λ(µ, α). Using the fact that the values of α
for which dim kerDwF(0,Λ) > 1 form an isolated set, we can assume, by possibly
shrinking U(Λ∗), that all Λ ∈ C ∩ U(Λ∗) are such that dim kerL(Λ) = 1, implying
that in fact kerL(Λ) = span{φk}. By possibly shrinking U(Λ∗) further, we can
assume that the non-orthogonality condition is satisfied for each Λ ∈ U(Λ∗), which
therefore allows us to invoke Theorem 5.4 at each Λ ∈ C ∩ U(Λ∗). In other words,
for all Λ ∈ C ∩ U(Λ∗) we get a solution curve bifurcating out of the point. As Λ
varies, we therefore get a smooth two-dimensional sheet S of bifurcating solution
curves.

We now argue that, locally, the sheet S comprises all solutions. For each
Λ ∈ C ∩ U(Λ∗), applying Theorem 5.4 yields a uniqueness-domain

U(Λ) = {(w′, µ, α, λ′) ∈ X × U(Λ∗) : ‖w′‖ < r(Λ), |λ′ − λ| < r(Λ)},

such that the only nontrivial solutions (w′, λ′) ∈ X×R of F(w′, µ, α, λ′) = 0 lying
in the set U(Λ) are given by the solution curve {(w(t; Λ), λ(t; Λ)), 0 < |t| < ε(Λ)}
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from Theorem 5.4. Using the quantitative version of the implicit function theorem,
we can assume that r(Λ) is continuous, and subsequently—by possibly shrinking
U(Λ∗)—that r(Λ) is equal to a constant r0 > 0 on U(Λ∗). Consider now the set
A ⊂ X × U defined by

A = {(w, µ, α, h) : (µ, α, λ) ∈ C ∩ U(Λ∗), |h− λ| < r0 and ‖w‖ < r0}.

From its definition it is clear that A is an open set, and that all solutions of
F(w,Λ) = 0 in A are given by the two-dimensional sheet of solutions curves
obtained by letting Λ ∈ C ∩U(Λ∗) and applying Theorem 5.4. See also Figure 5.1.

Figure 5.1: In this illustration, U(Λ∗) ⊂ R3 is a ball centered in Λ∗ (light grey),
and C is a portion of a plane (dark grey). Since we can assume that the uniqueness-
domain has uniform size for all Λ ∈ C, all solutions of F(w,Λ) = 0 near (0,Λ∗) are
obtained by applying Theorem 5.4 at each dark grey point.
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6 Two-dimensional bifurcation

6.1 Preliminaries

In this chapter we will in addition to λ also be using α as a bifurcation parameter,
and so we are eventually going to need the analogue of Lemma 5.1 for the parameter
α. To avoid lengthy calculations, we will prove a version giving us only what is
needed for carrying out the proof of the two-dimensional bifurcation result.

Lemma 6.1. Suppose that φj ∈ kerL(Λ), where φj = φkj is the basis function
given by the formula (4.5). Then if w̃j = (ηφj , φj) is the corresponding basis
function of Z, we have

〈DαL(Λ)φj , w̃j〉Y = B

(
sinh(θkj )

θkj

)2

+ f(kj),

where

B =
−π

ψ0s(1)

[
ψ0sα(1)θkj cot(θkj )− ψ0ssα(1) +

ψ0sα(1)

ψ0s(1)2

](
sinh(θkj )

θkj

)2

,

f(kj) =

π
2

θkj−cosh(θkj ) sinh(θkj )

θ3kj
, θkj 6= 0,

−π3 θkj = 0.

Remark: For a given Λ, we see that the quantity B is independent of kj .

Proof. Recall that L(Λ) =
([
ψ0s∂s −

(
ψ0ss + 1

ψ0s

)
id
]
s=1

, ∂2
x + ∂2

s − α id
)
. Using

the remark following Lemma 3.2, we know that the Fréchet derivative DαL(Λ) can
be computed by formal differentiation with respect to α, giving

DαL(Λ) =

([
ψ0sα∂s −

(
ψ0ssα −

ψ0sα

ψ2
0s

)
id

]
s=1

,− id

)
.

Thus, using that φj(x, s) = cos(kjx) sinh(θkjs)/θkj , we find

DαL(Λ)φj(x, s)

=

(
ψ0sα(1) cos(θkj )−

(
ψ0ssα(1)− ψ0sα(1)

ψ0s(1)2

)
sinh(θkj )

θkj
,−

sinh(θkjs)

θkj

)
cos(kjx).

Recalling that

ηφj (x) = − sinh(θk)

ψ0s(1)θkj
cos(kjx),
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we find∫ 2π/κ

0

(DαL(Λ)φj)1 ηφj dx

=
−π

ψ0s(1)

[
ψ0sα(1)θkj coth(θkj )− ψ0ssα(1) +

ψ0sα(1)

ψ0s(1)2

](
sinh(θkj )

θkj

)2

= B

(
sinh(θkj )

θkj

)2

.

Moreover, ∫ 1

0

∫ 2π/κ

0

(DαL(Λ)φj)2 φj dx ds

= −
∫ 1

0

∫ 2π/κ

0

(φj)
2 dxds

= −
∫ 2π/κ

0

cos2(kjx) dx ·
∫ 1

0

(
sinh(θks)

θk

)2

dx

= −π
∫ 1

0

(
sinh(θks)

θk

)2

dx

=

 π
2θ2k
− π sinh(2θk)

4θ3k
= π

2

θkj−cosh(θkj ) sinh(θkj )

θ3kj
, θkj 6= 0

− 1
3 , θkj = 0,

and thus
∫ 1

0

∫ 2π/κ

0
(DαL(Λ)φj)2 φj dx ds = f(kj). This concludes the proof.

Lemma 6.2. Let κ > 0, and let k1, k2 ∈ κN with k2/k1 /∈ N. Then given a
function f : R → R which is continuous, 2π/k1-periodic and even, we have that∫ 2π/κ

0
f(x) cos(k2x) dx = 0.

Proof. The Fourier series of f converges to f in L2, and thus it suffices to show
that

∫ 2π/κ

0
cos(nk1x) cos(k2x) dx = 0 for all n ∈ N0. Using exponential notation,

we find ∫ 2π/κ

0

cos(nk1x) cos(k2x) dx

=
1

4

∫ 2π/κ

0

(
ei(nk1+k2)x + ei(−nk1+k2)x + ei(nk1−k2)x + e−i(nk1+k2)x

)
dx

=0.
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Suppose that we have a two-dimensional kernel, kerL(Λ∗) = span{φk1 , φk2},
with φkj given by formula (4.5). Again, we want to find solutions of F(w,Λ) = 0
in the vicinity of (0,Λ∗). In the analysis of this problem, we will be able to utilize
the one-dimensional bifurcation result, coupled with the fact that our discussion
so far is valid for arbitrary wave numbers κ. From now on, we let X(k1) denote the
subset of X which consists of functions which are 2π/k1-periodic in the horizontal
variable, and we will in the same manner superscript with (kj) all spaces and
operators which one gets by instead of operating with the wave number κ, one uses
the wave number kj (∈ κN). Let O(k1) and O(k2) be the subspaces of O consisting
of functions which are respectively 2π/k1 and 2π/k2-periodic in the horizontal
variable. Then F (k2) (= F|O(k2)) is well-defined, and the kernel of DwF (k2)(0,Λ)
is one-dimensional, spanned by φk2 . Using the classification from section 5.3, we
obtain the set S(k2) of all solutions of F(w,Λ) = 0 in a neighborhood of (0,Λ∗)
in X(k2) × U . Similarly, under the condition1 k2/k1 /∈ N, the kernel of F (k1) is
spanned by φk1 , and we obtain the set S(k1) of all solutions of F(w,Λ) = 0 in a
neighborhood of (0,Λ∗) in X(k1) × U . In this section we prove a two-dimensional
bifurcation result, which shows that there are solutions of F(w,Λ) = 0 near (0,Λ∗)
which are neither in X(k1) × U nor X(k2) × U .

In the one-dimensional bifurcation result, Theorem 5.4, we fixed µ = µ∗ and
α = α∗, and used λ as a bifurcation parameter. When the kernel is two-dimensional
we need two bifurcation parameters, which we will take to be α and λ, and hence
we will be looking for solutions of the equation

F(w, µ∗, α, λ) = 0. (6.1)

Let, for j = 1, 2, S(kj)
µ∗ denote all (w, µ, α, λ) ∈ S(kj) where µ = µ∗, i.e. the

near-zero solutions of equation (6.1) which are horizontally 2π/kj-periodic.

6.2 The two-dimensional bifurcation result

Theorem 6.3 ([6]). Suppose that we have a two-dimensional kernel

kerDwF(0,Λ∗) = span{T (Λ∗)φk1 , T (Λ∗)φk2}, k1, k1 ∈ κN, k1 < k2,

that the non-orthogonality condition

cot(λ∗) 6= − (µ∗)2|α∗|3/2

2
(6.2)

is fulfilled, and define

a = θk1 coth(θk1) = θk2 coth(θk2), (6.3)

i.e. the left hand side of the kernel equation. Furthermore, assume either that
a /∈ {0, 1}, or that θk2 = 0 (in which case a = 1).

1Unless this condition is fulfilled, any 2π/k2-periodic function will be 2π/k1-periodic as well.
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(i) If k2/k1 /∈ N, there exists a smooth sheet of small-amplitude nontrivial solu-
tions,

Smixed = {
(
w(t1, t2), α(t1, t2), λ(t1, t2)

)
: 0 < |t1|, |t2| < ε}

of (6.1) in O×R×R, passing through
(
w(0, 0), α(0, 0), λ(0, 0)

)
= (0, α∗, λ∗),

with
w(t1, t2) = t1w

∗
1 + t2w

∗
2 +O(t21 + t22). (6.4)

In a neighborhood of (0, α∗, λ∗) in O × R× R the set Smixed ∪ S(k1)
µ∗ ∪ S

(k2)
µ∗

contains all nontrivial solutions of (6.1).

(ii) Let δ > 0. If k2/k1 ∈ N, there exists a smooth sheet of small-amplitude
nontrivial solutions

Sδ = {
(
w(r, v), α(r, v), λ(r, v)

)
: 0 < r < ε, δ < |v| < π − δ}

of (6.1) in O × R2, passing through
(
w(0, v), α(0, v), λ(0, v)

)
= (0, α∗, λ∗),

with
w(r, v) = r cos(v)w∗1 + r sin(v)w∗2 +O(r2). (6.5)

In a neighborhood of (0, α∗, λ∗) in O × R2 the union Sδ ∪ S(k2)
µ∗ contains all

nontrivial solutions of (6.1) such that δ < |v| < π − δ, where r cos(v)w∗1 +
r sin(v)w∗2 is the projection of w(r, v) on kerDwF(0,Λ∗) parallel to X0.

Proof. The start is the same as in the one-dimensional bifurcation: Define w̃∗j =
(ηφkj , φkj ), and recall that Z = span{w̃∗1 , w̃∗2} and X = kerDwF(0,Λ∗) ⊕ X0.
Applying the Lyapunov-Schmidt reduction, we get the existence of a smooth ψ
defined in a neighborhood of (0,Λ∗) in kerDwF(0,Λ∗) × U with codomain X0,
and a neighborhood of (0,Λ∗) in X × U in which the equation F(w,Λ) = 0 is
equivalent to Φ(t1, t2,Λ) = 0, where

Φ(t1, t2,Λ) = ΠZF(t1w
∗
1 + t2w

∗
2 + ψ(t1w

∗
1 + t2w

∗
2 ,Λ),Λ). (6.6)

Let Π1 and Π2 denote the projection onto span{w̃∗1} and span{w̃∗2}, respectively.
Then ΠZ = Π1 + Π2, and we have

Π1Φ(t1, t2,Λ) = Φ1(t1, t2,Λ)w̃∗1 and Π2Φ(t1, t2,Λ) = Φ2(t1, t2,Λ)w̃∗2 (6.7)

for some smooth, real-valued functions Φ1 and Φ2. The equation Φ(t1, t2,Λ) = 0
can be rewritten as

Φ1(t1, t2,Λ) = 0,

Φ2(t1, t2,Λ) = 0.
(6.8)

This is a system of two equations in five unknowns, all of which are real numbers.
Note that we have the trivial solution (0, 0,Λ) for all Λ ∈ U ′; this follows from the
fact that ψ(0,Λ) = 0 and F(0,Λ) = 0 for all Λ ∈ U ′.
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Let us first consider case (i), where k2/k1 /∈ Z. We then claim that

Φ1(0, t2,Λ) = 0, for all t2,Λ,
Φ2(t1, 0,Λ) = 0, for all t1,Λ.

(6.9)

We now show that Φ1(0, t2,Λ) = 0. Using that kerDwF (k2)(0,Λ∗) = span{w∗2}, an
application of the Lyapunov-Schmidt reduction in X(k2) yields a unique function
ψ? with codomain X(k2)

0 satisfying

(I −Π2)F(tw∗2 + ψ?(tw
∗
2 ,Λ),Λ) = 0, (6.10)

for all t in a neighborhood of 0 ∈ R (recall that ψ? is defined as the unique function
satisfying (6.10)). Due to the 2π/k2-periodicity of F(tw∗2 +ψ?(tw

∗
2 ,Λ),Λ), coupled

with the formula for the projection Π1, which involves integrating against cos(k1x),
we can use Lemma 6.2 to conclude that

Π1F(tw∗2 + ψ?(tw
∗
2 ,Λ),Λ) = 0 (6.11)

as well. Thus (6.10) holds with I−Π2 replaced with I−ΠZ , and so by uniqueness
of ψ, we must have ψ(·,Λ)|X(k2) = ψ?(·,Λ) (where in this equality we might have
to shrink the domain of one of the functions). Recalling the definition of Φ1, we
thus see that formula (6.11) is equivalent to the identity Φ1(0, t2,Λ) = 0. The
second identity in (6.9) is proven by a similar argument.

Using (6.9) we find that

Φ1(t1, t2,Λ) =

∫ 1

0

d

dz
Φ1(zt1, t2,Λ) dz = t1

∫ 1

0

∂t1Φ1(zt1, t2,Λ) dz,

and a similar identity holds for Φ2. Defining

Ψ1(t1, t2,Λ) =

∫ 1

0

(∂t1Φ1)(zt1, t2,Λ) dz,

Ψ2(t1, t2,Λ) =

∫ 1

0

(∂t2Φ2)(t1, zt2,Λ) dz,

(6.12)

we therefore have Φj = tjΨj , and thus for tj 6= 0, j = 1, 2, Φj(t1, t2,Λ) = 0 is
equivalent to Ψj(t1, t2,Λ) = 0.

There are four possibilities. The case t1, t2 = 0 reduces to trivial solutions.
When t1 = 0 but t2 6= 0 the system reduces to Φ2(0, t2,Λ) = 0, the solutions
of which are given by2 S(k2)

µ∗ ; when t2 = 0 but t1 6= 0 we get solutions which lie
in S(k1)

µ∗ . The remaining case is where we allow both t1 and t2 to be nonzero,
which amounts to investigating the solutions of Ψ1(t1, t2,Λ) = Ψ2(t1, t2,Λ) = 0 in
a neighborhood of (0, 0,Λ∗).

2This amounts to saying that t2w∗2 +ψ(t2w∗2 ,Λ) is in X(k2), which is true since the argument
following (6.10) shows that ψ(t2w∗2 ,Λ) ∈ X(k2).
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We claim that Ψ1(0, 0,Λ∗) = Ψ2(0, 0,Λ∗) = 0. First note that Ψj(0, 0,Λ
∗) =

∂tjΦ(0, 0,Λ∗), j = 1, 2. Furthermore, observe that from the definition (6.6) of Φ,
we get

∂tjΦ(t1, t2,Λ
∗)

= ΠZDwF(t1w
∗
1 + t2w

∗
2 + ψ(t1w

∗
1 + t2w

∗
2 ,Λ

∗),Λ∗)(w∗j + ψw(t1w
∗
1 + t2w

∗
2 ,Λ

∗)w∗j ),

and so evaluating in (t1, t2) = (0, 0), and using that ΠZDwF(0,Λ∗) = 0, we find
∂tjΦ(t1, t2,Λ

∗) = 0.
If we can in addition prove that the matrix(

∂λΨ1(0, 0,Λ∗) ∂λΨ2(0, 0,Λ∗)

∂αΨ1(0, 0,Λ∗) ∂αΨ2(0, 0,Λ∗)

)
is invertible, we can apply the implicit function theorem, which will prove (i)
(except for the asymptotic formula (6.4) for small (t1, t2), which follows by a first
order Taylor expansion in the same way as in the proof of the one-dimensional
bifurcation). To this purpose, note that (6.12) yields

∂λΨ1(0, 0,Λ) = ∂t1∂λΦ1(0, 0,Λ),

and, by doing a similar computation as in the proof of the one-dimensional bifur-
cation, we get

∂t1∂λΦ1(0, 0,Λ∗) = Π1D
2
wλF(0,Λ∗)w∗1 .

By using the formula for the projection, we have

Π1D
2
wλF(0, 0,Λ∗)w∗1 =

〈
D2
wλF(0,Λ∗)w∗1 , w̃

∗
1

〉
Y

‖w̃∗1‖
2
Y

.

As we have already seen, using that by definition DwF(0,Λ) = L(Λ)T (Λ)−1 we
have

D2
wλF(0, 0,Λ∗)w∗1 = DλL(Λ∗)φk1 + L(Λ∗)DλT (Λ∗)−1w∗1 .

Since the last term is in ranL(Λ∗) ⊂ ker Π1, we conclude that

∂λΨ1(0, 0,Λ∗) =
〈DλL(Λ∗)φk1 , w̃

∗
1〉Y

‖w̃∗1‖
2
Y

.

Similar arguments show that

∂λΨ2(0, 0,Λ∗) =
〈DλL(Λ∗)φk2 , w̃

∗
2〉Y

‖w̃∗2‖
2
Y

,

and

∂αΨj(0, 0,Λ
∗) =

〈
DαL(Λ∗)φkj , w̃

∗
j

〉
Y

‖w̃j‖2Y
, j = 1, 2.
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It follows that

det

(
∂λΨ1(0, 0,Λ∗) ∂λΨ2(0, 0,Λ∗)

∂αΨ1(0, 0,Λ∗) ∂αΨ2(0, 0,Λ∗)

)
= C det

(
〈DλL(Λ∗)φk1 , w̃

∗
1〉Y 〈DλL(Λ∗)φk2 , w̃

∗
2〉Y

〈DαL(Λ∗)φk1 , w̃
∗
1〉Y 〈DαL(Λ∗)φk2 , w̃

∗
2〉Y

)
where C = ‖w̃∗1‖

−2
Y ‖w̃∗2‖

−2
Y 6= 0. The inner products appearing in the determinant

have already been computed in Lemmas 5.1 and 6.1, namely

〈
DλL(Λ∗)φkj , w̃

∗
j

〉
Y

= A

(
sinh(θkj )

θkj

)2

,

〈
DαL(Λ∗)φkj , w̃

∗
j

〉
Y

= B

(
sinh(θkj )

θkj

)2

+ f(kj),

where A and B do not depend on j, A 6= 0 due to our explicit assumption (6.2),
and

f(kj) =

π
2

1−a−1 cosh2(θkj )

θ2kj
, θkj 6= 0,

−π3 θkj = 0.
(6.13)

Here we have rewritten the expression for f(kj) given in Lemma 6.1, using the
quantity a /∈ {0, 1} introduced in (6.3). Using elementary properties of determi-
nants, we can thus make the following calculation.

det

(
〈DµL(Λ∗)φk1 , w̃

∗
1〉Y 〈DµL(Λ∗)φk2 , w̃

∗
2〉Y

〈DαL(Λ∗)φk1 , w̃
∗
1〉Y 〈DαL(Λ∗)φk2 , w̃

∗
2〉Y

)

= det

 A
(

sinh(θk1 )

θk1

)2

A
(

sinh(θk2 )

θk2

)2

B
(

sinh(θk1 )

θk1

)2

+ f(k1) B
(

sinh(θk2 )

θk2

)2

+ f(k2)



= Adet

( sinh(θk1 )

θk1

)2 (
sinh(θk2 )

θk2

)2

f(k1) f(k2)


= A

((
sinh(θk1)

θk1

)2

f(k2)−
(

sinh(θk2)

θk2

)2

f(k1)

)
.

To show that the quantity in the parentheses is nonzero3, we split the analysis up
into cases, and refer to (6.13).

3If a = 0, we have k2j + α < 0, cosh(θkj ) = 0 and f(kj) = π/(2θ2kj
), j = 1, 2. This implies

that the quantity in the parantheses is zero.
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Case I. Assume that k2
1 + α < 0 and k2

2 + α < 0. Recalling the definition (6.3)
of a and the representations (4.13), we find(

sinh(θk1)

θk1

)2

f(k2)−
(

sinh(θk2)

θk2

)2

f(k1)

=
sin2(|θk1 |)
|θk1 |2

π

2
(−1)

1− a−1 cos2(|θk2 |)
|θk2 |2

− sin2(|θk2 |)
|θk2 |2

π

2
(−1)

1− a−1 cos2(|θk1 |)
|θk1 |2

=
π

2

a−1

|θk1 |2|θk2 |2
[
sin2(|θk2 |)(a− cos2(|θk1 |)− sin2(|θk1 |)(a− sin2(|θk2 |))

]
=
π

2

a−1(a− 1)

|θk1 |2|θk2 |2
(
sin2(|θk2 |)− sin2(|θk1 |)

)
6= 0.

(6.14)
To see that the quantity sin2(|θk2 |)−sin2(|θk1 |) is nonzero, first note that sin(|θkj |) 6=
0 follows from the fact that θkj 6= 0 and the kernel equation. We can then deduce
the contradiction

sin2(|θk2 |)− sin2(|θk1 |) = 0 =⇒ cot2(|θk1 |) = cot2(|θk2 |)
=⇒ |θk1 |2 cot2(|θk1 |) 6= |θk2 |2 cot2(|θk2 |).

Case II. Assume that k2
1 +α < 0 and k2

2 +α = 0. Then a = 1, sinh(θk2)/θk2 = 1
and we compute(

sinh(θk1)

θk1

)2

f(k2)−
(

sinh(θk2)

θk2

)2

f(k1)

=
sin2(|θk1 |)
|θk1 |2

(
−π

3

)
− (1)2π

2
(−1)

1− 1−1 cos2(|θk1 |)
|θk1 |2

=
sin2(|θk1 |)
|θk1 |2

(
−π

3

)
+

π

2|θk1 |2
sin2(|θk1 |)

=
π

6

sin2(|θk1 |)
|θk1 |2

6= 0.

Case III. Assume that k2
1 + α < 0 and k2

2 + α > 0. Then we have(
sinh(θk1)

θk1

)2

f(k2)−
(

sinh(θk2)

θk2

)2

f(k1)

=
sin2(|θk1 |)
|θk1 |2

π

2

1− a−1 cosh2(|θk2 |)
|θk2 |2

− sinh2(|θk2 |)
|θk2 |2

π

2
(−1)

1− a−1 cos2(|θk1 |)
|θk1 |2

=
π

2

sin2(|θk1 |)
|θk1 |2|θk2 |2

a−1
(
a− 1− sinh2(|θk2 |)

)
+
π

2

sinh2(|θk2 |)
|θk1 |2|θk2 |2

a−1
(
a− 1 + sin2(|θk1 |)

)
=
π

2
a−1(a− 1)

(
sin2(|θk1 |) + sinh2(|θk2 |)

)
6= 0.

This concludes the proof of part (i).

53



We now prove part (ii), dealing with the case k2/k1 ∈ N. Defining Φ1 and Φ2

in the same way as before by (6.7), we still have

Φ1(0, t2,Λ) = 0, for all t2,Λ.

We introduce Ψ1 with the same definition as before, but now using polar coordi-
nates4:

Ψ1(r, v,Λ) =

∫ 1

0

∂t1Φ1(zr cos(v), r sin(v),Λ) dz.

As before, Φ1 = 0 is equivalent to Ψ1 = 0 for t1 6= 0. As for Φ2, we can still use
the identity Φ2(0, 0,Λ) = 0, and we redefine Ψ2 as

Ψ2(r, v,Λ)

=

∫ 1

0

[∂t1Φ2(zr cos(v), zr sin(v),Λ) cos(v) + ∂t2Φ2(zr cos(v), zr sin(v),Λ) sin(v)] dz.

(6.15)
We then have that Φ2(r, v,Λ) = rΨ2(r, v,Λ), as a consequence of the Fundamental
Theorem of Calculus and the fact that the integrand in (6.15) equals

(1/r)∂zΦ2(zr cos(v), zr sin(v),Λ).

The solutions of Φ(0, t2,Λ) = 0 near (0,Λ∗) all lie in S
(k2)
µ∗ . When t1 6= 0,

also r 6= 0, and we have that Φ(t1, t2,Λ) = 0 is equivalent to the problem
(Ψ1(r, v,Λ),Ψ2(r, v,Λ)) = 0, which we now consider. We have that Ψ1(0, v,Λ) =
Ψ2(0, v,Λ) = 0 for all Λ. As before, we find that

∂λΨ1(0, v,Λ∗) =
〈DλL(Λ∗)φk1 , w̃

∗
1〉Y

‖w̃∗1‖
2
Y

,

∂αΨ1(0, v,Λ∗) =
〈DαL(Λ∗)φk1 , w̃

∗
1〉Y

‖w̃∗1‖
2
Y

.

To find the derivatives of Ψ2, first note that

∂λΨ2(0, v,Λ∗) = ∂t1∂λΦ2(0, 0,Λ∗) cos(v) + ∂t2∂λΦ2(0, 0,Λ∗) sin(v).

Using the formula

∂tj∂λΦ2(0, 0,Λ∗) = Π2D
2
wλF(0,Λ∗)w∗j , j = 1, 2,

and the formula for the projection, we get that

Π2D
2
wλF(0, 0,Λ∗)w∗j =

〈
D2
wλF(0,Λ∗)w∗j , w̃

∗
2

〉
Y

‖w̃∗2‖
2
Y

, j = 1, 2.

4To clarify the notation: here ∂t1Φ1(zr cos(v), zr sin(v),Λ) means the partial derivative of Φ1

with respect to the first variable, evaluated at (zr cos(v), zr sin(v),Λ).
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As we have already seen, using that by definition DwF(0,Λ) = L(Λ)T (Λ)−1 we
find

D2
wλF(0, 0,Λ∗)w∗j = DλL(Λ∗)φkj + L(Λ∗)DλT (Λ∗)−1w∗j , j = 1, 2.

Since the last term is in ranL(Λ∗) ⊂ ker ΠZ , we conclude that

∂λΨ2(0, v,Λ∗) =
〈DλL(Λ∗)φk1 , w̃

∗
2〉Y

‖w̃∗2‖
2
Y

cos(v) +
〈DλL(Λ∗)φk2 , w̃

∗
2〉Y

‖w̃∗2‖
2
Y

sin(v)

=
〈DλL(Λ∗)φk2 , w̃

∗
2〉Y

‖w̃∗2‖
2
Y

sin(v).

Here we used that 〈DλL(Λ∗)φk1 , w̃
∗
2〉Y = 0 due to the formula (5.3) forDλL(Λ∗)φk1 ,

showing that its x-dependence is cos(k1x), together with the fact that w̃∗2 =
(ηφkj , φkj ) has x-dependence cos(k2x), and trigonometric orthogonality in L2.

Similary, we find

∂αΨ2(0, v,Λ∗) =
〈DαL(Λ∗)φk1 , w̃

∗
2〉Y

‖w̃∗2‖
2
Y

cos(v) +
〈DαL(Λ∗)φk2 , w̃

∗
2〉Y

‖w̃∗2‖
2
Y

sin(v)

=
〈DαL(Λ∗)φk2 , w̃

∗
2〉Y

‖w̃∗2‖
2
Y

sin(v),

where the inner product 〈DαL(Λ∗)φk1 , w̃
∗
2〉Y is 0 once again due to trigonometric

orthogonality in L2.
Thus

det

(
∂λΨ1(0, v,Λ∗) ∂λΨ2(0, v,Λ∗)

∂αΨ1(0, v,Λ∗) ∂αΨ2(0, v,Λ∗)

)
= C sin(v) det

(
〈DλL(Λ∗)φk1 , w̃

∗
1〉Y 〈DλL(Λ∗)φk2 , w̃

∗
2〉Y

〈DαL(Λ∗)φk1 , w̃
∗
1〉Y 〈DαL(Λ∗)φk2 , w̃

∗
2〉Y ,

)
,

where C = ‖w̃∗1‖
−2
Y ‖w̃∗2‖

−2
Y . We can therefore apply the implicit function theorem

under the assumptions of Theorem 6.3 as long as sin(v) 6= 0.
Since (t1, t2) = (r cos(v), r sin(v)), the asymptotic formula (6.5) for small r

follows in the same way as in the one-dimensional bifurcation.

Remark 6.4. In case (i) the wave profiles of w(t1, t2) have multiple crests and
troughs per minimal period. This follows from the fact that w(t1, t2) = t1w

∗
1 +

t2w
∗
2 +O(t2), coupled with an analysis of the wave profiles similar as in the proof

one-dimensional bifurcation result; the point being that w(t1, t2) is approximately
a sum of the form A1 cos(k1x) +A2 cos(k2x).
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7 Kernels of arbitrary dimension

We now address a question raised in [6]: does there exist values of the parameters
Λ such that kerDwF(0,Λ) is at least three-dimensional? By also letting the wave
number vary, this question was answered affirmatively in [9], which showed that
there exist wave numbers κ and parameters Λ such that kerDwF(0,Λ) is at least
three-dimensional, and also that parameters can be chosen so as to make it exactly
three-dimensional. We here take a different approach. We will show that if κ =
π/2, then for any integer N ≥ 1 one can choose Λ such that kerDwF(0,Λ) is
N -dimensional. Moreover, we find a dense subset of K of R+ with the property
that if κ ∈ K, one can choose Λ such that kerDwF(0,Λ) has arbitrarily high
dimension. Although at this in one sense is a stronger result than the one in
[9], our method has other limitations, which we will also discuss. Everything in
chapter 7 is original.

Let us formulate the problem. We want to determine κ > 0, t > 0 and a ∈ R
such that the equation

θk coth(θk) = a (7.1)

has several solutions k ∈ κN. For any a ∈ R and α < 0, we can always choose µ, λ
so that the right hand side r(µ, α, λ) of the kernel equation equals a. We look for
solutions with a = 0, and thus search for κ > 0 and t > 0 such that√

t− k2 ∈
(
N− 1

2

)
π.

for k ∈ κN. Writing k = mκ, this can be reformulated as determining κ, t > 0
such that the equation √

t−m2κ2 =

(
n− 1

2

)
π (7.2)

holds for several k ∈ κN. We now rewrite (7.2) in the form

m2 +

(
n− 1

2

)2
π2

κ2
=

t

κ2
, (m,n) ∈ N2. (7.3)

We first consider the case κ = π/2.

Lemma 7.1. For κ = π/2 and any N ∈ N, there exists Λ ∈ U such that
dim kerDwF(0,Λ) = N .

Proof. Letting κ = π/2 in equation (7.3), we get the problem

m2 + (2n− 1)
2

=
4t

π2
, (m,n) ∈ N2.

By choosing t so that H = 4t/π2 is an integer, we have reduced the problem to
showing that there exists H ∈ N so that

m2 + (2n− 1)2 = H
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has exactly N solutions (m,n) ∈ N2. This is shown in e.g. [13]. More precisely,
we have that given any r ∈ N and prime p ∈ 4N + 1, the number of ways to
write p2r−1 as a sum of two squares of positive integers equals r. (In each of these
representations, exactly one of the squares will be an odd number.)

The result for κ = π/2 can be partially generalized in the following way.

Proposition 7.2. Let

K =
{πr

2s
: r, s ∈ N, r odd

}
.

For κ ∈ K and N ∈ N, there exists Λ ∈ U such that dim kerDwF(0,Λ) ≥ N .

Proof. Letting κ = π
2
r
s in (7.3), we get

r2m2 + s2(2n− 1)2 =
4s2

π2
t, (m,n) ∈ N2.

By Lemma 7.1, we know that we can chooseH ∈ N such that the equation a2+b2 =
H has N solutions (a1, b1), . . . , (aN , bN ) ∈ N × N, where we can assume that the
bj ’s are odd. Defining t, m̃j and ñj by

4s2

π2
t = r2s2H, and m̃j = saj , 2ñj − 1 = rbj , j = 1, . . . N,

we see that (m̃j , ñj), j = 1, . . . N all solve

r2m2 + s2(2n− 1)2 =
4s2

π2
t, (m,n) ∈ N.

Let us illustrate this and give an example of a four-dimensional kernel. If we
let κ = π/2 and choose H = 5125 (i.e. t = 5125π2/4), then since

5125 = 302 + 652 = 342 + 632 = 542 + 472 = 702 + 152,

we have obtained a four-dimensional kernel. In other words, letting

κ = π/2, t =
5125π2

4
,

we have
cot(

√
t− (mκ)2) = 0 for m = 30, 34, 54, 70.

(Note that this method gives explicit values of κ, t, and the wavenumbers k = mκ.)
Having found values of κ and Λ for which the linearized problem DwF(0,Λ) =

0 has solution space of arbitrarily high dimension, it is natural to ask whether
these give rise to solutions of the full nonlinear problem F(w,Λ) = 0. The two
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bifurcation results we have established, Theorem 5.4 and Theorem 6.3, deal with
the cases where the kernel is precisely one- and two-dimensional, respectively.
However, by the trick described in section 6.1, we may be able to choose a higher
wave-number κ′ such that, after restriction to X(κ′), the kernel is one- or two-
dimensional. Since a = 0 for our solutions, we can in any case not use the two-
dimensional bifurcation result, and this also excludes the possibility bifurcation
from kernels of higher dimensions. But the one-dimensional bifurcation result can
indeed by restricting to the wave-numbers ki in the kernel for which there are no
other kj such that kj |ki, as in our example of a four-dimensional kernel.

In contrast, the paper [9] establishes a three-dimensional kernel where a > 1,
and subsequently proves a three-dimensional bifurcation result, using κ, µ and α
as bifurcation parameters. We also remark that an obstacle for high-dimensional
bifurcation results is that there are only four parameters to the problem, namely µ,
α, λ and κ. Since for each dimension of the kernel one more parameter is required,
one needs to be able to vary other parameters than just the four at our disposal.
This may be remedied by e.g. including effects of surface tension.
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8 Further properties of the solution curve

In this section we investigate derivatives of the bifurcation curve. Everything in
section 8 is original, although the proofs of Propositions 8.1 and 8.5 are inspired
by similar calculations in the book by Kielhöfer [15].

8.1 Analytic series expansion of F

For a given Λ ∈ U , we will now show that F(w,Λ) is analytic at w = 0, and find
a corresponding analytic series expansion. We use this to find explicit expressions
for the derivatives Dn

wF(0,Λ)wn, n = 0, 1, 2, 3.
First, we perform the differentiations in the definition (4.6) of F1 and the

definition (4.7) of F2, which yields

F1(w,Λ) =
1

2


φ̂x − sηx

(
ψ0s + φ̂s

)
1 + η

2

+

(
ψ0s + φ̂s

)2

(1 + η)2

+ η −Q(Λ)

=
1

2
φ̂2
x −

sφ̂xηx

(
ψ0s + φ̂s

)
1 + η

+
(1 + s2η2

x)
(
ψ2

0s + 2ψ0sφ̂s + φ̂2
s

)
2(1 + η)2

+ η −Q(Λ),

(where we use the convention that in the expression for F1, all functions of s are
tacitly assumed to be evaluated at s = 1) and

F2(w,Λ) =

(
φ̂x −

sηx(ψ0s + φ̂s)

1 + η

)
x

− sηx
1 + η

(
φ̂x −

sηx(ψ0s + φ̂s)

1 + η

)
s

+
ψ0ss + φ̂ss
(1 + η)2

− α(ψ0ss + φ̂)

=φ̂xx − s
ηxx(ψ0s + φ̂s) + ηxφ̂sx

(1 + η)
+ s

η2
x(ψ0s + φ̂s)

(1 + η)2
− sηx

1 + η
φ̂xs

+
sη2
x(ψ0s + φ̂s) + s2η2

x(ψ0ss + φ̂ss)

(1 + η)2
+
ψ0ss + φ̂ss
(1 + η)2

− α(ψ0ss + φ̂)

=φ̂xx − s
ηxx(ψ0s + φ̂s) + 2ηxφ̂sx

(1 + η)

+
2sη2

x(ψ0s + φ̂s) + (s2η2
x + 1)(ψ0ss + φ̂ss)

(1 + η)2
− α(ψ0ss + φ̂).
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For ‖η‖X < 1, we have that

1

1 + η
= 1− η + η2 − η3 + · · · =

∞∑
j=0

(−1)jηj ,

1

(1 + η)2
= 1− 2η + 3η2 − 4η3 + · · · =

∞∑
j=0

j(−1)jηj ,

where the sums converge absolutely norm-wise in X. Inserting these expansions
into the definitions of F1(·,Λ) and F2(·,Λ), we see—by referring to the definition
of analyticity at a point given in section 3.1, and the subsequent remarks—that
F(·,Λ) is analytic at 0, and moreover that we can deduce explicit expressions for
Dn
wF(0,Λ)wn. The derivatives to the third order can be read off the following

Taylor expansions:

F1(w,Λ)

=
1

2
φ̂2
x − sφ̂xηx(ψ0s + φ̂s)

(
1− η + η2 + η3 +O(‖η‖4)

)
+

1

2
(1 + s2η2

x)(ψ2
0s + 2ψ0sφ̂s + φ̂2

s)
(

1− 2η + 3η2 − 4η3 +O(‖η‖4)
)

+ η −Q(Λ)

=− ψ2
0sη + ψ0sφ̂s + η

+
1

2
φ̂2
x − sψ0sφ̂xηx +

3

2
ψ2

0sη
2 +

1

2
φ̂2
s +

1

2
s2ψ2

0sη
2
x − 2ψ0sφ̂sη

+ sψ0sφ̂xηxη − sφ̂xηxφ̂s − 2ψ2
0sη

3 + 3ψ0sφ̂sη
2 − φ̂2

sη − s2ψ2
0sη

2
xη + s2ψ2

0sη
2
xφ̂s

+O(‖w‖4).

and

F2(w,Λ)

=φ̂xx − s
(
ηxx(ψ0s + φ̂s) + 2ηxφ̂sx

)(
1− η + η2 + η3 +O(‖η‖4)

)
+
(

2sη2
x(ψ0s + φ̂s) + (s2η2

x + 1)(ψ0ss + φ̂ss)
)(

1− 2η + 3η2 − 4η3 +O(‖η‖4)
)

− α(ψ0ss + φ̂)

=(∂2
x + ∂2

s − α)φ̂− sψ0sηxx − 2ψ0ssη

+ sψ0sηxxη − sηxxφ̂s − 2sηxφ̂sx + (2sψ0s + s2ψ0ss)η
2
x + 3ψ0ssη

2 − 2φ̂ssη

− sψ0sηxxη
2 + sηxxφ̂sη + 2sηxφ̂sxη − 4sψ0sη

2
xη + 2sη2

xφ̂s − 2s2ψ0ssη
2
xη + s2η2

xφ̂ss

− 4ψ0ssη
33 + φ̂ssη

2

+O(‖w‖4).
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8.2 The one-dimensional bifurcation curve

Recall Theorem 5.4, where we established the existence of a solution curve t 7→
(w(t), λ(t)) such that F(w(t), µ∗, α∗, λ(t)) = 0. We already know that ẇ(0) = w∗,
but one may ask if it is possible to determine the higher order behavior of w at
zero, say to the second order, which amounts to finding ẅ(t). To consider this
question, let us return to the expression for ẇ we found in the one-dimensional
bifurcation result Theorem 5.4, namely

ẇ(t) = w∗ + ψww
∗ + ψλλ̇(t),

where ψw and ψλ are evaluated at (tw∗, µ∗, α∗, λ(t)), and kerDwF(0,Λ∗) = span {w∗}.
Another differentiation yields

ẅ(t) = ψww(w∗)2 + ψwλw
∗λ̇(t) + ψλwλ̇(t) + ψλλλ̇(t)2 + ψλλ̈(t).

This expression can be simplified. In view of Lemma 4.12, we have that ψ(0,Λ) = 0
for all Λ in an open set about Λ∗, and thus ψλ(0,Λ∗) and ψλλ(0,Λ∗) are zero. We
furthermore claim that λ̇(0) = 0, so that, in fact, ẅ(0) = ψww(0,Λ∗)(w∗)2.

Proposition 8.1. In the one-dimensional bifurcation result Theorem 5.4, we have
λ̇(0) = 0.

Proof. We use the terminology from the proof of Theorem 5.4. Recall the defini-
tions

Φ(t,Λ) = ΠZF(tw∗ + ψ(tw∗,Λ),Λ), Φ(t,Λ) = Φ1(t,Λ)w∗,

Ψ(t,Λ) =

∫ 1

0

(∂tΦ1)(tz,Λ) dz.

We showed that Ψλ(0,Λ∗) 6= 0, and that Ψ(t, µ∗, α∗, λ(t)) = 0 for t ∈ (−ε, ε).
Differentiating Ψ(t, µ∗, α∗, λ(t)) = 0 and evaluating at t = 0 yields

Ψt(0,Λ
∗) + Ψλ(0,Λ∗)λ̇(0) = 0, i.e. λ̇(0) = −Ψt(0,Λ

∗)

Ψλ(0,Λ∗)
.

We are thus faced with the task of showing that Ψt(0,Λ
∗) = 0. Now,

Ψt(t,Λ) =

∫ 1

0

(∂2
t Φ1)(tz,Λ)z dz, and so Ψt(0,Λ

∗) =
1

2
(∂2
t Φ1)(0,Λ∗).

Moreover, ∂2
t Φ1(t,Λ)w∗ = ∂2

t Φ(t,Λ), and we find that

∂tΦ(t,Λ) =ΠZDwF(tw∗ + ψ(tw∗,Λ),Λ)(w∗ + ψw(tw∗,Λ)w∗),

∂2
t Φ(t,Λ) =ΠZDwwF(tw∗ + ψ(tw∗,Λ),Λ)(w∗ + ψw(tw∗,Λ)w∗)2

+ΠZDwF(tw∗ + ψ(tw∗,Λ),Λ)(ψww(tw∗,Λ)(w∗)2).
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Since ker ΠZ = ranDwF(0,Λ∗) we get ΠZDwF(0,Λ∗) = 0, and using the proper-
ties of ψ given in Lemma 4.12 thus yields that ∂2

t Φ(t,Λ∗) = ΠZDwwF(0,Λ∗)(w∗)2.
Recalling the formula for the projection ΠZ , we find

Ψt(0,Λ
∗) = 0 ⇐⇒

〈
DwwF(0,Λ∗)(w∗)2, w̃∗

〉
Y

‖w̃∗‖2Y
= 0.

Here w̃∗ = (ηφk , φk), where φk is as the unique function satisfying w∗ = T (Λ∗)φk,
where T (Λ) : X̃2 → X is the isomorphism from Proposition 4.4. We thus have to
show that the inner product in the numerator is zero. Recalling that

φk(x, s) = cos(kx) sin(θks)/θk,

we get

T (Λ)φk =

(
−φk|s=1

ψ0s(1)
, φk −

sψ0sφk|s=1

ψ0s(1)

)
= cos(kx)

(
− sinh(θk)

ψ0s(1)θk
,

sinh(θks)

θk
− sψ0s(s) sinh(θk)

ψ0s(1)θk

)
,

(8.1)

Letting w∗ = (η, φ̂), we see from (8.1) that both η and φ̂ are separable functions,
with x-dependence cos(kx). We have

DwwF1(0,Λ∗)(w∗)2 =φ̂2
x − 2sψ0sφ̂xηx + 3ψ2

0sη
2 + φ̂2

s + s2ψ2
0sη

2
x − 4ψ0sφ̂sη,

DwwF2(0,Λ∗)(w∗)2 =2sψ0sηxxη − 2sηxxφ̂s − 4sηxφ̂sx + (4sψ0s + 2s2ψ0ss)η
2
x

+ 6ψ0ssη
2 − 4φ̂ssη.

Since each term is bilinear in w∗, each term in both of the above expressions
will have an x-dependence of the form sina(kx) cosb(kx) where a + b = 2. Since
w̃ = (ηφk , φk), we see that when computing the inner product

〈
DwwF(0,Λ∗)(w∗)2, w̃∗

〉
Y

=

∫ 2π/κ

0

(
DwwF1(0,Λ)(w∗)2

)
ηφk dx

+

∫ 1

0

∫ 2π/κ

0

(
DwwF2(0,Λ)(w∗)2

)
φk dxds,

we will be integrating terms whose x-dependence is sina(kx) cosb(kx) where a+b =

3. But since
∫ 2π/κ

0
sina(kx) cosb(kx) dx = 0 whenever a + b is odd, we conclude

that 〈
DwwF(0,Λ∗)(w∗)2, w̃∗

〉
Y

= 0. (8.2)

Remark 8.2. Since the proof only depended on the fact that the inner prod-
uct

〈
DwwF(0,Λ∗)(w∗)2, w̃∗

〉
Y

is 0, we conclude that in the version of the one-
dimensional bifurcation result when one uses µ as the bifurcation parameter, we
also have µ̇(0) = 0.
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Corollary 8.3. In the one-dimensional bifurcation curve from Theorem 5.4, we
have

ẅ(0) = ψww(0,Λ∗)(w∗)2.

We now derive a more explicit expression for ψww(0,Λ∗)(w∗)2. To do this, we
will use the defining identity for ψ, namely that it is the unique function defined
in a neighborhood of (0,Λ∗) ∈ X × U mapping into X0 satisfying

(I −ΠZ)F(tw∗ + ψ(tw∗,Λ),Λ) = 0.

Differentiating this identity with respect to t gives

(I −ΠZ)DwF(tw∗ + ψ(tw∗,Λ),Λ)(w∗ + ψw(tw∗,Λ)w∗) = 0,

and taking yet another t-derivative yields

(I −ΠZ)DwwF(tw∗ + ψ(tw∗,Λ),Λ)(w∗ + ψw(tw∗,Λ)w∗)2

+(I −ΠZ)DwF(tw∗ + ψ(tw∗,Λ),Λ)ψww(tw∗,Λ)(w∗)2 = 0.

From this it follows that

DwF(0,Λ∗)ψww(0,Λ∗)(w∗)2 = −DwwF(0,Λ∗)(w∗)2, (8.3)

where we can remove the projections I −ΠZ since equation (8.2) establishes that
DwwF(0,Λ∗)(w∗)2 ∈ ranDwF(0,Λ∗) (recall that Z = span {w̃∗} is the orthogonal
complement of ranL(Λ∗)), in addition to the fact that ker ΠZ = ranDwF(0,Λ∗).
Note that since DwF(0,Λ∗)|X0 is invertible and ψww(0,Λ∗)(w∗)2 ∈ X0, equation
(8.3) determines ψww(0,Λ∗)(w∗)2 uniquely.

To solve for ψww(0,Λ)(w∗)2 using (8.3), we first give an explicit expression for
DwwF(0,Λ∗)(w∗)2. Recalling that

w∗ = (η, φ̂) =

(
−φk|s=1

ψ0s(1)
, φk −

sψ0sφk|s=1

ψ0s(1)

)
= cos(kx)

(
− sinh(θk)

ψ0s(1)θk
,

sinh(θks)

θk
− sψ0s(s) sinh(θk)

ψ0s(1)θk

)
,

(8.4)

we find

D2
wwF1(0,Λ∗)(w∗)2

=
[
(φ̂x)2 − 2sψ0sηxφ̂x + (φ̂s)

2 − 4ψ0sφ̂sη + 3ψ2
0sη

2
]
s=1

= 0− 0 +

(
cosh(θk)− (ψ0s(1) + ψ0ss(1)) sinh(θk)

θkψ0s(1)

)2

cos2(kx)

− 4ψ0s(1)

(
cosh(θk)− (ψ0s(1) + ψ0ss(1)) sinh(θk)

θkψ0s(1)

)(
− sinh(θk)

θkψ0s(1)

)
cos2(kx)

+ 3

(
sinh(θk)

θk

)2

cos2(kx)
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and

DwwF2(0,Λ∗)(w∗)2

=2sψ0sηxxη − 2sηxxφ̂s − 4sηxφ̂sx + (4sψ0s + 2s2ψ0ss)η
2
x + 6ψ0ssη

2 − 4φ̂ssη

=2sψ0s(s)

(
− sinh(θk)

θkψ0s(1)

)2

(−k2) cos2(kx)

−2s

(
− sinh(θk)

θkψ0s(1)

)(
cosh(θks)−

(ψ0s(s) + sψ0ss(s)) sinh(θk)

θkψ0s(1)

)
(−k2) cos2(kx)

−4s

(
−k sinh(θk)

θkψ0s(1)

)(
cosh(θks)−

(ψ0s(s) + sψ0ss(s)) sinh(θk)

θkψ0s(1)

)
k2 sin2(kx)

+(4sψ0s(s) + 2s2ψ0ss(s))

(
− sinh(θk)

θkψ0s(1)

)2

k2 sin2(kx)

+6ψ0ss(s)

(
− sinh(θk)

θkψ0s(1)

)2

cos2(kx)

−4

(
θk sinh(θks)−

(2ψ0ss(s) + sψ0sss(s)) sinh(θk)

θkψ0s(1)

)(
− sinh(θk)

θkψ0s(1)

)
cos2(kx).

Note that because of the identities

sin2(kx) =
1

2
− 1

2
cos(2kx), cos2(kx) =

1

2
+

1

2
cos(2kx),

we can write DwwF2(0,Λ)(w∗)2 = f0(s) + f2(s) cos(2kx). Introduce the function
ζ ∈ X̃2 by ζ = T (Λ∗)−1ψww(0,Λ∗)(w∗)2. Then the equation (8.3) can be written

L(Λ∗)ζ = −DwwF(0,Λ∗)(w∗)2. (8.5)

Furthermore,

L(Λ∗)ζ =

([
ψ0sζs −

(
ψ0ss +

1

ψ0s

)
ζ

]
s=1

, (∂2
x + ∂2

s − α∗)ζ
)
,

and we will therefore consider the inhomogeneous Helmholtz equation

(∂2
x + ∂2

s − α∗)ζ = −DwwF2(0,Λ∗)(w∗)2.

The function ζ must take the form

ζ(x, s) = a0(s) + a2(s) cos(2kx),

and so we have that

(∂2
x + ∂2

s − α) (a0(s) + a2(s) cos(2kx)) = [a′′0(s)− αa0(s)]

+
[
a′′2(s)− (4k2 + α)a0(s)

]
cos(2kx).

(8.6)
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We are thus left with two ordinary, linear differential equations of second order for
a0 and a2, for which we already have identified the corresponding homogeneous
solution basis. We can therefore obtain the inhomogeneous solution using variation
of parameters. Let

um1 (s) = cosh(θmks) um2 (s) = sinh(θmks)/θmk, m = 0, 2, (8.7)

with the usual interpretations in the case θmk = 0. Then {um1 , um2 } is a solution
basis for the homogeneous equation a′′m(s) − (mk2 + α)am(s) = 0. Since the
Wronskian of the basis (8.7) equals 1, the well-known variation of parameters-
formula in this case becomes,

a0(s) = AI(s)u1(s) +BI(s)u2(s), a2(s) = AII(s)u1(s) +BII(s)u2(s),

where

AI(s) = −
∫
u2(s)f0(s) ds, BI(s) =

∫
u1(s)f0(s) ds,

AII(s) = −
∫
u2(s)f2(s) ds, BII(s) =

∫
u1(s)f2(s) ds.

and the two constants of integration are determined by the conditions ζ|s=0 = 0
(giving a0(0) = a2(0) = 0) and L1(Λ∗)ζ = −DwwF1(0,Λ∗)(w∗)2. These integrals
are possible to solve by elementary—but arduous—antidifferentiation. We will
content ourselves with the following result:

Proposition 8.4. We have that ẅ(0) = T (Λ)ζ, where

ζ(x, s) = a0(s) + a2(s) cos(2kx).

Furthermore a0(0) = a2(0) = 0, and a0(s) and a2(s) are both nonzero polynomials
of degree at most four in the expressions s, cos(θ0(s − 1) + λ), sin(θ0(s − 1) +
λ), sin(θks), cos(θks), where in each term the power of s is at most two, the powers
of cos(θ0(s − 1) + λ), sin(θ0(s − 1) + λ) sum to at most one, and the powers of
sin(θks), cos(θks) sum to at most two.

Proof. Everything has been proved except the description of a0 and a2. This
follows from the fact that trigonometric and hyperbolic function can be written in
exponential form, together with the fact that

∫
sjeas ds = p(s)eas +C, where p is

a complex polynomial of degree j.

8.3 The two-dimensional bifurcation curve

Proposition 8.5. In case (i) of the two-dimensional bifurcation result Theorem
6.3, we have

∇α(0, 0) = (0, 0), ∇λ(0, 0) = (0, 0). (8.8)
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Proof. We use the terminology in the proof of Theorem 6.3. Recall the definitions

Φ(t1, t2,Λ) = ΠZF(t1w
∗
1 + t2w

∗
2 + ψ(t1w

∗
1 + t2w

∗
2 ,Λ),Λ),

Π1Φ(t1, t2,Λ) = Φ1(t1, t2,Λ), Π2Φ(t1, t2,Λ) = Φ2(t1, t2,Λ),

Ψ1(t1, t2,Λ) =

∫ 1

0

(∂t1Φ1)(zt1, t2,Λ) dz, Ψ2(t1, t2,Λ) =

∫ 1

0

(∂t2Φ2)(t1, zt2,Λ) dz.

We showed the local identities

Ψ1(t1, t2, µ
∗, α(t1, t2), λ(t1, t2)) = 0, Ψ2(t1, t2, µ

∗, α(t1, t2), λ(t1, t2)) = 0,

which, by differentiating with respect to tj , j = 1, 2, and evaluating at (t1, t2) =
(0, 0), yield the equalities

∂t1Ψ1(0, 0,Λ∗) + ∂αΨ1(0, 0,Λ∗)αt1(0, 0) + ∂λΨ1(0, 0,Λ∗)λt1(0, 0) = 0,

∂t1Ψ2(0, 0,Λ∗) + ∂αΨ2(0, 0,Λ∗)αt1(0, 0) + ∂λΨ2(0, 0,Λ∗)λt1(0, 0) = 0,
(8.9)

and

∂t2Ψ1(0, 0,Λ∗) + ∂αΨ1(0, 0,Λ∗)αt2(0, 0) + ∂λΨ1(0, 0,Λ∗)λt2(0, 0) = 0,

∂t2Ψ2(0, 0,Λ∗) + ∂αΨ2(0, 0,Λ∗)αt2(0, 0) + ∂λΨ2(0, 0,Λ∗)λt2(0, 0) = 0.
(8.10)

Equations (8.9) and (8.10) form a system of linear equations for the four quantites
contained in the two vectors ∇α(0, 0) and ∇λ(0, 0), and because we have also
shown that

det

(
∂λΨ1(0, 0,Λ∗) ∂λΨ2(0, 0,Λ∗)

∂αΨ1(0, 0,Λ∗) ∂αΨ2(0, 0,Λ∗)

)
6= 0,

it suffices—for the purpose of proving (8.8)—to show that the first order partial
derivatives of Ψ1(·, ·,Λ∗) and Ψ2(·, ·,Λ∗) vanish at (0, 0). We will focus on the
function Ψ1, as the calculations for Ψ2 are the same. We have that

∂t1Ψ1(0, 0,Λ∗) =
1

2
(∂t1Φ1)(0, 0,Λ∗), ∂t2Ψ1(0, 0,Λ∗) = (∂t1∂t2Φ1)(0, 0,Λ∗),

and furthermore

∂t1Φ1(t1, t2,Λ) =Π1DwF(tw∗1 + tw∗2 + ψ(tw∗1 + tw∗2 ,Λ),Λ)(w∗1 + ψw(tw∗1 + tw∗2 ,Λ)w∗1),

∂2
t1Φ1(0,Λ∗) =Π1DwwF(0,Λ∗)(w∗1)2,

∂t1∂t2Φ1(0,Λ∗) =Π1DwwF(0,Λ∗)(w∗1w
∗
2).

Using the formula for the projection, we find

Ψ1t1t1(0,Λ∗) = Π1DwwF(0,Λ∗)(w∗1)2 =

〈
DwwF(0,Λ∗)(w∗1)2, w̃∗1

〉
Y

‖w̃∗1‖
2
Y

,

Ψ1t1t2(0,Λ∗) = Π1DwwF(0,Λ∗)(w∗1)(w∗2) =
〈DwwF(0,Λ∗)(w∗1)(w∗2), w̃∗1〉Y

‖w̃∗1‖
2
Y

.
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By the same argument we employed in the proof of (8.2) we find that the first inner
product is zero. The second inner product can be reduced to a linear combination
of integrals of the form

∫ 2π/κ

0
exp (i(δ1k1 + δ2k2 + δ3k1)x) dx where δj ∈ {−1, 1},

j = 1, 2, 3, which are all zero because k2/k1 6= 2.

Remark 8.6. In the version of the two dimensional bifurcation result using α and
µ as bifurcation parameters [6], one can prove the analogue of Proposition 8.5.

In the two-dimensional bifurcation result Theorem 6.3 we have the solution
curve

w(t1, t2) = t1w
∗
1 + t2w

∗
2 + ψ(t1w

∗
1 + t2w

∗
2 , µ
∗, α(t1, t2), λ(t1, t2)).

This implies that

wt1(t1, t2) = w∗1 + ψww
∗
1 + ψααt1 + ψλλt1 ,

and

wt1t2(t1, t2) = ψwww
∗
1w
∗
2 + ψwαw

∗
1αt2 + ψwλw

∗
1λt2

+ ψαwαt1w
∗
2 + ψαααt1αt2 + ψαλαt1λt2 + ψααt1t2

+ ψλwλt1w
∗
2 + ψλαλt1αt2 + ψλλλt1λt2 + ψλλt1t2 .

Using Proposition 8.5 and the fact that ψ(0,Λ) = 0 for all Λ near Λ∗, we conclude
that wt1t2(0, 0) = ψww(0,Λ∗)w∗1w

∗
2 . Doing similar derivations for the two other

second derivatives, we find that

wt1t1(0, 0) = ψww(0,Λ∗)(w∗1)2, wt2t2(0, 0) = ψww(0,Λ∗)(w∗2)2,

wt1t2(0, 0) = ψww(0,Λ∗)w∗1w
∗
2 .

In the same way we proved (8.3), we can show that

DwF(0,Λ∗)ψww(0,Λ∗)w∗iw
∗
j = −DwwF(0,Λ∗)w∗iw

∗
j , i, j ∈ {1, 2}.

We have not pursued an explicit expression for ψww(0,Λ∗)w∗iw
∗
j , although we

suspect that an argument along the lines of section 8.2 is possible.
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A On the Fredholm property of the lin-
earized problem

In Corollary 4.8 we established that if Λ ∈ U , then DwF(0,Λ) is a Fredholm
operator of index 0; we now show that DwF(0,Λ) is not Fredholm if Λ 6= U , i.e. if
ψ0s(1; Λ) = 0. This is stated, but not proved, in [6]. Referring to (4.8) and (4.9),
we see that when ψ0s(1; Λ) = 0, DwF(0,Λ) : X → Y is given by

DwF1(0,Λ)(η, φ̂) = η

DwF2(0,Λ)(η, φ̂) = (∂2
x + ∂2

s − α)φ̂− sψ0sηxx − 2ψ0ssη.

In this case however, the codimension of ranDwF(0,Λ) is not finite, and therefore
DwF(0,Λ) is not Fredholm. To see this, first observe that ranDwF1(0,Λ) = Y1 ⊃
X1. Recalling that

X1 = C2+β
even(κ−1S,R), Y1 = C1+β

even(κ−1S,R), β ∈ (0, 1),

we see that it suffices to find an infinite family of linearly independent functions
{fn} in Y1 \X1. We give a constructive proof of this fact.

Proposition A.1. Let β ∈ (0, 1). For n = 1, 2, 3, . . ., define fn : R→ R by

fn(x) =
1

(nκ)(1 + β)
cos(nκx)| cos(nκx)|β .

Then fn ∈ X1 \ Y1 and {fn}n∈N is linearly independent.

Proof. We readily find that fn is differentiable, with

f ′n(x) = sin(nκx)| cos(nκx)|β sgn(cos(nκx)).

To see that f ′n is Hölder continuous of order β, note that f ′n is smooth away from
the zeros of x 7→ cos(nκx). Moreover, if cos(nκx0) = 0, then by the mean-value
theorem we have

|f ′n(x0 + h)− f ′n(x0)| = |f ′n(x0 + h)| = | sin(nκ(x0 + h))|| sin(nκx̃0)|β |h|β

for some x̃0 between x0 and x0 + h. Thus f ′n is Hölder continuous of order β, but
not for any higher index β′ > β. Consequently, fn ∈ Y1 \X1.

To show linear independence, it suffices to show that for n > 1, fn is not a
linear combination of f1, f2, . . . , fn−1. Lemma 6.2 shows that∫ 2π/κ

0

fm(x) cos(nκx) dx = 0, m = 1, 2, . . . n− 1,

and so if fm is a linear combination of f1, f2, . . . , fn−1 then we must also have∫ 2π/κ

0

fn(x) cos(nκx) dx =
1

(nκ)(1 + β)

∫ 2π/κ

0

| cos(nκx)|2+β dx = 0,

which is clearly not the case. Thus {fn}n∈N is linearly independent.
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