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Abstract
We have recently developed a method to calculate thermodynamic properties of macroscopic
systems by extrapolating properties of systems of molecular dimensions. Appropriate scaling
laws for small systems were derived using the method for small systems thermodynamics of
Hill, considering surface and nook energies in small systems of varying sizes. Given certain
conditions, Hill’s method provides the same systematic basis for small systems as
conventional thermodynamics does for large systems. We show how the method can be used to
compute thermodynamic data for the macroscopic limit from knowledge of fluctuations in the
small system. The rapid and precise method offers an alternative to current more difficult
computations of thermodynamic factors from Kirkwood–Buff integrals. When multiplied with
computed Maxwell–Stefan diffusivities, agreement is found between computed predictions
and experiments of the Fick diffusion coefficients for several binary systems. Diffusion
coefficients were obtained by linking the Green–Kubo formulae to the Onsager coefficients.
The formulae were used to improve/disprove empirical formulae for diffusion coefficients.

Keywords: nanothermodynamics, scaling laws, Kirkwood–Buff integrals, thermodynamic
factors, diffusion coefficients
Classification number: 3.00

1. Introduction

Classical thermodynamics applies to systems on micrometer-
or larger scales, as in the laboratory or in a chemical plant.
Thermodynamic properties of nano-scale systems can be very
far from the thermodynamic limit. It is well known that small
systems are no longer extensive due to e.g. surface effects.
Typical for a small system is that surface energies can be large.
Even line and corner energies may contribute to the system
energy.

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

Systems that no longer obey the extensivity we find on
the large scale, can be understood as being small. Hill [1]
proposed that the effect of such smallness can be handled
by introducing an extra term in the classical thermodynamic
equations. It is also necessary to specify the control
variables, because unlike a large system, a small system has
thermodynamic properties which depend on the environment.
Using Hill’s formalism one can derive equations for the effect
of smallness on thermodynamic properties in an ensemble
of interest. The small system that we have studied first [2–4]
is controlled by the environment in such a way that it has
constant chemical potential µ, volume V and temperature T.
The thermodynamic limit is usually approached in computer
simulations by using periodic boundary conditions. The
effect of such boundary conditions has been well studied,
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Figure 1. (a) Typical periodic boundary conditions as used in
standard molecular dynamics simulations. (b) A small system
controlled by a reservoir having constant chemical potential and
temperature. The system is open and allows particles to enter at
random. Due to lack of periodic boundary conditions as in
(a) the system has an effective surface energy (adapted from
Schnell et al [2]).

see e.g. Landau et al [5] and Siepmann et al [6]. We can
take advantage of properties of periodic boundary conditions
to create a well-defined environment for the small system.
The small system of interest is put inside a reservoir that has
constant µ and T, and the effect of smallness is studied. At
equilibrium, the number of particles and the energy of the
small system will fluctuate. If the small system is sufficiently
small compared to the size of the reservoir, however, it will
be in the grand-canonical ensemble.

The important difference between the small and large
scale system is illustrated in figure 1. Configurations
illustrated in figure 1(a) are characteristic for systems with
periodic boundary conditions, while the configurations in
figure 1(b) are allowed for the small system. This setup creates
surface energy for the small system. This presentation will
focus on thermodynamic properties that follow from energy-
and density fluctuations: the thermodynamic correction factor
0, Kirkwood–Buff integrals and the molar enthalpy H.

The thermodynamic correction factor is a measure of
the deviation from ideal behaviour and can be used to
convert Maxwell–Stefan diffusivities into Fick diffusivities.
For an open single-component system, the thermodynamic
correction factor follows from density fluctuations at a
constant volume

1

0
=

〈N 2
〉 − 〈N 〉

2

〈N 〉
, (1)

where brackets denote an ensemble average, and N is the
number of particles. The Kirkwood–Buff integral [7] provides
derivatives of activity coefficients in mixtures from

G i j = V
〈Ni N j 〉 − 〈Ni 〉〈N j 〉

〈Ni 〉〈N j 〉
−

δi j

ci
, (2)

Figure 2. Systems of molecular size (with few particles) are
positioned inside a large reservoir. The reservoir enclosing the boxes
defines the variables which are controlled, and which are
fluctuating. System properties can be computed from
equations (1)–(3), and extrapolated to provide values for the
macroscopic limit through equation (4) [3, 4].

where V is the volume, δi j the Kroenecker delta and ci is the
concentration of component i. The brackets denote averages
in the grand-canonical ensemble. The molar enthalpy H can
likewise be computed from energy and density fluctuations(

∂ H

∂ N

)
p,T

=
〈U N 〉 − 〈N 〉〈U 〉

〈N 2〉 − 〈N 〉2
+ RT, (3)

where U is the potential energy of the system, and R
is the universal gas constant. Using molecular dynamics
simulations, we shall use these formulae to determine
thermodynamic properties at different length scales. The
characteristic length of the system, L = V 1/d , is varied, see
figure 2, where d is the system’s dimension, here d = 3.

Depending on L, the thermodynamic properties differ
from those of a large system, but in a predictable way. We find
that the surface contributions scale linearly with 1/L, when
surface energies are important [3, 7]:

1

0
=

1

0∞

+
C

L
, G = G∞ +

D

L
, H = H∞ +

B

L
· (4)

We shall see how this scaling can be used in practice
to determine thermodynamic properties of bulk systems from
fluctuations in a system as small as a few particles. Line and
nook energies will add terms of second and third order to these
equations.

The method can also be used to determine surface
thermodynamic data. The first step will be to determine the
surface thickness of the adsorbed layer. This is done according
to Gibbs [8]. The sampling area is varied, while the thickness
of the surface is fixed. In this manner a two-dimensional
thermodynamic surface system is created.

For more information regarding the details of the method
in general, we refer to Schnell et al [4].

2. Application to diffusion

Diffusion is often a rate-limiting process in chemistry or
biology, and reliable data of mixtures are scarce. This is so
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in particular for ternary systems, where no simulations have
been done, and only a few experimental results are reported.

The generalized Fick equations for an n-component
mixture can be written for the flux of each component i by

Ji = −ct

n−1∑
j

Di j∇x j . (5)

The total concentration is ct in mol m−3, x j is the mole
fraction and Di j are Fick diffusivities. These equations are
frequently the basis for reduction of experimental data. On the
other hand, the Maxwell–Stefan (MS) equations are suitable
for computations:

−
1

RT
∇µi =

n∑
j=1, j 6=1

x j (ui − u j )

Dij
, (6)

where the parenthesis gives the difference in the average
velocities of components. Upright Dij are MS diffusivities.
As both sets of equations must describe the same physical
phenomena, the entropy production is invariant, and we obtain
relations between variables. In vector notation we have [9]

[D] = [B]−1[0], (7)

where

Bi i =
xi

Din
+

n∑
j=1, j 6=1

x j

Dij
, (8)

Bi j = −xi

[
1

Dij
−

1

Din

]
· (9)

The thermodynamic factors of the mixture are

0i j = δi j + xi

[
∂ ln γi

∂x j

]
T,p,6

, (10)

where γi is the activity coefficient of component i, and the
symbol 6 is used to indicate that the differentiation is carried
out, while keeping constant the mole fractions of all other
components, except the nth, so that the mole fractions sum to
unity, see Liu et al [9] for further references. From knowledge
of one set of diffusivities and corresponding thermodynamic
factors, both as functions of concentration, one can therefore
compute another set of diffusivities. This has been done using
the method described in the previous section, and coefficients
from experiments and simulations have been compared and
found to agree remarkably well [9, 10], see below.

Knowledge of thermodynamic factors may in this manner
facilitate the computational determination of Fick’s diffusion
coefficients which are difficult to measure.

3. Simulations

We tested first the performance of equations (1) and (2)
at the small scale using molecular simulations for systems
consisting of particles interacting either with a Lennard Jones
(LJ) potential (truncated and shifted at 2.5σ , where σ is
the molecular diameter) or a Weeks, Chander and Andersen
(WCA)-potential (a shifted LJ potential with the attractive tail
cut off, see Weeks et al [11]).

For convenience, the simulations were performed in
reduced units, see Frenkel and Smit [12] for details. As the
unit of length we use the particle diameter σ , and the unit

Figure 3. The thermodynamic factor (top) and the Kirkwood–Buff
integral (bottom) plotted versus 1/L and extrapolated to provide
their value in the thermodynamic limit.

of energy is the LJ-energy parameter, ε. We simulated the
large reservoir of particles in the micro-canonical ensemble, in
which the small system of a varying size was embedded. The
side of the small system (L = V 1/d , where d is the system’s
dimension) was smaller than that of the half reservoir (L t =

V 1/d
t ), in order to ensure that the small system is unaffected

by the periodic boundary conditions of the reservoir. With the
WCA and LJ particles, the box side was L t = 20.

The method was used to calculate the thermodynamic
factor of mixtures, for which the diffusion coefficients were
known experimentally. The Stefan–Maxwell diffusivities
of the mixture components were computed along well
defined schemes [9, 10]. The results of the calculations
of the Stefan–Maxwell diffusivities were next combined
with the results for the thermodynamic factor, using
equations (5)–(10), to determine the Fick type diffusion
coefficients. The outcome was compared with experimental
results [9, 10].

4. Results and discussion

Results for the thermodynamic factor and for Kirkwood–Buff
integrals are shown in figure 3. Both quantities are plotted
as a function of 1/L. The dependence on 1/L is significant,
meaning that the deviation from the thermodynamic limit is
large for small systems. Similar results were obtained for the
molar enthalpy (not shown).

The interesting fact is that the thermodynamic limit can
be determined by extrapolation of small systems’ properties.
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Figure 4. The inverse thermodynamic factor of CO2 on a graphite
surface, as a function of the number N of CO2 particles in the
system at reservoir area X1, X4 and X9 (see the text).

We have thus used the observed scaling property to predict
properties of bulk systems by investigating properties of small
systems! The lines in figure 3 are straight lines fitted to data
for small systems with sizes L = 6–16 (0.06 < 1/L < 0.18).
The value L t = 20 prevented the small system from being
affected by the periodic boundary conditions of the reservoir.
We selected the value L = 6 as the smallest length of a small
system to be investigated. With these values for L, one makes
sure that we operate in the linear regime. The scaling law is
the same for two- or three-dimensional systems (figure 3 top).

The method was also used to study surface adsorption,
CO2 on a graphite surface [8]. We selected then a cylindrical
volume element with thickness equal to the surface thickness,
as measured by the CO2 layer adsorbed on the surface. The
value of L was then the radius of the cylinder. We extended
the size of the total surface in order to investigate a possible
effect of L t on the thermodynamic factor, see figure 4. The
surface areas, L2

t , are labelled X1, X4 and X9, with X1 ∼

50 × 50 Å2, X4 ∼ 100 × 100 Å2 and X9 ∼ 150 × 150 Å2. The
figure shows results for 50 < N < 700, where N is the number
of CO2 molecules in the system. The areas X4 and X9 give
similar results, while X1 give results far from these. The
area X4 has L t equal to 20 (the length of CO2 ∼ 5 Å). This
value corresponds well with the value referred to above. To
find the thermodynamic factor, we therefore fitted results
for 0.10 < 1/L < 0.40 to the linear equation (4) for N50
(for the other samples the region was slightly smaller), and
made the extrapolation to the thermodynamic limit. From the
thermodynamic factor, one can further obtain the chemical
potential of the surface or the activity coefficient of the
surface.

The sign of the slope in figure 3 is related to attractive
and repulsive forces at the interface. It is not yet properly
understood. The scaling is in sharp contrast to the finite-size
scaling observed earlier for systems with periodic boundary
conditions [6]. In equation (3), the constants C, D and B, are
system-specific. Figure 3 reflects the linear term, except that
nook- and corner effects are present for very small L, see [4].
Clearly, such effects can become important for very small
system sizes.

The above results show that Monte Carlo simulations
can be used to verify that Hill’s approach to thermodynamics
for small systems successfully describes the size dependence
of thermodynamic properties of small systems embedded

Figure 5. Thermodynamic factor for acetone in tetrachloromethane,
as a function of mole fraction. Data are taken from Liu et al [9].

Figure 6. Fick’s diffusivity of acetone in tetrachloromethane as a
function of composition. Data are taken from Liu et al [9].

in a reservoir. We find a 1/L finite size scaling behaviour
for the inverse thermodynamic correction factor 0, the
Kirkwood–Buff integral and the molar enthalpy H. The values
of the slopes show that finite size effects are very important.
The scaling behaviour can be used to connect thermodynamic
properties obtained at different length scales. This gives a
new way to determine thermodynamic properties of large and
small systems.

The thermodynamic factor was found for binary mixtures
and used to calculate Fick’s diffusivities [9, 10], according to
the description above, see figures 5 and 6.

The agreement between computed values (simulations)
and experimental values is remarkable. Diffusion coefficients
for binary and ternary systems can be obtained by linking
the Green–Kubo formulae to the Onsager coefficients. The
values can be further used to predict new and evaluate
common formulae for diffusion coefficients of components
in a mixture. The method was used favourably for ternary
mixtures, where experimental data are few, and where
computational data are non-existent up to this point.

5. Conclusion and perspective

A new scaling method [3, 4] was used to compute
thermodynamic data for the macroscopic limit from
knowledge of fluctuations in small systems. The rapid and
precise method offers an alternative to more difficult
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computations of thermodynamic factors, say from
Kirkwood–Buff integrals [7]. When multiplied with
computed Maxwell–Stefan coefficients, agreement was
found between computed predictions and experiments for
several binary systems. Diffusion coefficients for binary and
ternary systems can be obtained by linking the Green–Kubo
formulae to the Onsager coefficients. The outcome formulae
can improve/disprove empirical formulae for diffusion
coefficients [9, 10].

The success of the procedure has interesting implications.
In the first place, the procedure helps to define smallness, and
precise thermodynamic relations on the nano-metre scale. In
the second place, it helps define local equilibrium or validity
of thermodynamic relations, and when this can be expected.
Taking example from, say, simulations of zeolites, one can
show that a volume element must be an appropriate fraction
of a unit cell in order to speak of thermodynamic properties in
a meaningful way.
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