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Abstract

The total solar irradiation (TSI) is the primary quantity of energy that is
provided to the Earth. The properties of the TSI variability are critical for
understanding the cause of the irradiation variability and its expected influence
on climate variations. A deterministic property of TSI variability can provide
information about future irradiation variability and expected long-term climate
variation, whereas the non-deterministic variability can only explain the past.
This study of solar variability is based on an analysis of the TSI data series
from 1700 and 1000 A.D., a sunspot data series from 1611, and a solar orbit
data series from 1000. The study is based on a wavelet spectrum analysis.
First the TSI data series are transformed into a wavelet spectrum. Then the
wavelet spectrum is transformed into an autocorrelation spectrum, to identify
stationary, subharmonic and coincidence periods in the TSI variability.

The results indicate that the TSI and sunspot data series have periodic
cycles that is correlated to the solar position oscillation and controlled by gravity
variations from the large planets Jupiter, Saturn, Uranus and Neptune and the

solar dynamo. A possible explanation is forced oscillation gravity between the
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large planets and the solar dynamo.The major solar variability is controlled by
the 12-year Jupiter period and the 84-year Uranus period. The TSI data series
from 1700 has a direct relation to the 84-year Uranus period with subharmonics.
The phase lag between the solar position oscillation and this TSI oscillation is
estimated to about 0.157 (rad/year) for the dominating 84-year period, and is
phase locked to the perihel state of Uranus.

The long TSI data series from 1000 has stationary periods of approximately
125 years and 210 years, which are controlled by the same stationary period of
84 year. The minimum of the 125 year period coincide with the time Uranus
perihel. The 125-year and the 210-year period subsequently produce a new set
of subharmonic periods. The sunspot data series from 1611 has a stationary 12-
year Jupiter period and a stationary period of approximately 210 years, which
are controlled by a 5/2 resonance to the 84-year Uranus period. The study
confirms that the 12-year Jupiter period and the 210-year de Vries/Suess period
have coincidence periods in TSI and sunspot variability. The phase lag between
the solar position oscillation and TSI and sunspot oscillation is estimated to
about 0.77 (rad/year) for the dominating 210-year period.

A model of the stationary periods in TSI and sunspot variability confirms
the results by a close relation to known long solar minimum periods since 1000
and a modern maximum period from 1940 to 2015. The model computes a new
Dalton sunspot minimum from approximately 2025 to 2050 and a new Dalton
period TSI minimum from approximately 2040 to 2065.
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1. Introduction

The total solar irradiation (TSI) is the primary source of energy that is
provided to the Earth’s climate system. A variation in the TSI irradiation
will contribute to a natural climate variation on the Earth. The variability of

the irradiation from the Sun was approximately 0.3% over the last 300 years
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(Scafetta & Willsonl, |2014)). A better understanding of the TSI variability prop-
erties is critical for understanding the cause of the irradiation variability from
the Sun. A TSI data series has information that reflects the cause of the TSI
variability. If the TSI variability has deterministic oscillating periods, we can
forecast expected TSI variation, whereas a random TSI variability can only ex-
plain the past. The intermittency of the solar variation is preferably explained
as stochastic noise (Charbonneaul 2010). In this investigation, we introduce a
simple hypothesis: if the TSI variability has a periodic oscillation, the variabil-
ity oscillation must have an oscillation source that influences the solar energy
oscillation. A possible oscillation source is the oscillating gravity between the

Sun and the large planets.

1.1. Solar variability

The concept of a perfect and constant Sun, as postulated by Aristotle, was
undisputed for many centuries. Although some transient changes of the Sun
were observed with the naked eye, the introduction of the telescope in approxi-
mately 1600 demonstrated that the Sun had spots that varied in number and lo-
cation. From 1610 systematic observations were reported. A pattern of sunspot
variations was established when Heinrich Schwabe began regular observations
of sunspots in 1826. He reported a possible period of approximately ten years
(Schwabe | [1844]). Wolf] (1859)) ) presented the opinion that the planets Venus,
Earth, Jupiter and Saturn modulate the solar variability.

The solar activity cycle (Hathaway, 2015) consists of dark sunspots and
bright regions (faculae) in addition to active regions that display sudden energy
releases (flares). The average cycle length is 11.1 years. During a cycle, the
number of spots increases to a maximum number and then decreases. The
average lifetime of a sunspot is slightly longer than the solar rotation period.
They are bipolar, with the same magnetic polarity that leads with respect to
the direction of the solar rotation. When the next cycle starts, spots appear
with opposite polarity at high latitudes in both hemispheres, and as the cycle
progress, they appear closer to the Equator.
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The 11.1-year sunspot period is referred to as the Schwabe cycle, and is
proposed to be created by the tidal torque from the planets Venus, Earth and
Jupiter (Wilson, |2013). The 22-year magnetic reversal period is referred to as
the Hale period. |Scafettal (2012) showed that the 11-year Schwabe sunspot cycle
consists of three periods of 9.98, 10.90 and 11.86 years, which are close to the
Jupiter/Saturn spring period of 9.93 years, a tidal pattern of Venus, Earth and
Jupiter of 11.07 years and the Jupiter orbital period of 11.86 years. A relation
between the planets periods and sunspot periods indicates the possibility of a
deterministic long-term relation between planet periods and hidden periods in

sunspot data series.

1.1.1. Sunspot data series

The sunspot number time series is a measure of the long-term evolution of
the solar cycle and the long-term influence of the Sun on the Earth’s climate.
The relative sunspot number (R) as defined by [Wolf| (1861) is based on the total
number of individual sunspots n and the number of sunspot groups g, according
to the formula R = k(109 + n), where k is a correction factor for the observer.
It was introduced to correct for the use of different telescopes and observers. R
is referred to as the Ziirich, Wolf or International Sunspot Number. Today SN
is used for the International Sunspot Number (Clette et al., [2014)).

Rudolf Wolf started systematic observations of sunspot numbers in 1849.
He also collected previous observations to construct daily sunspot numbers to
1750 and a yearly series to 1700. The cycle that started in 1755 became sunspot
cycle 1. The sunspot numbers had to be scaled upwards several times due to
missing spots. By approximately doubling the number of recovered observations
and cleverly interpolating between sparse observations (Hoyt et al., [1994), gaps
were reduced and the series was extended to the first recording of sunspots
by telescope in 1611. The history of the sunspot series and the last extensive
corrections are described by |Clette et al.| (2014). The revised yearly series, which
is available from the World Data Center SILSO from July 2015, was employed

in our analysis.
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Because the standard sunspot series is a composite time series based on sin-
gle spots and groups, the accuracy significantly decreases the possibility of going

back in time. Similar to poorer telescopes and locations, smaller spots were diffi-

cult to see and frequently lost. To correct for this situation, Hoyt and Schatten|

(1998allb) constructed a new group sunspot number Rg that was normalized

to the Ziirich sunspot number. Their series covered the period 1610-1995 and
was based on a larger and more refined observational database. Although the
group sunspot number corresponded to the relative sunspot number in the 20th

century, the maximum group number was 40% lower in the 19th century and

previous centuries (Clette et al. [2014). The group sunspot numbers were re-

cently revised, and the difference between the series may now be considered as
random noise. However, during the last two sunspot cycles (nos. 23 and 24),

30% fewer sunspots per group were observed, which may be a sign of changes

in the solar dynamo (Clette et al., 2014).

1.1.2. Solar activity periods — grand maxima and minima

In the 1890s, G. Sporer and E. W. Maunder (Maunder} |1890)) reported that

the solar activity was strongly reduced over a period of 70 years from 1645 to

1715 (Eddy, [1976| [1983). Based on naked-eye observations of sunspots, records

of aurora activity, and a relation between 14C variations and solar activity, a
grand maximum (1100-1250) and the Spérer minimum (1460-1550) were also
identified .

The distribution of the solar activity can be interpreted as bi-modal, which
implies distinct modes of activity. The main (regular) mode corresponds to
moderate activity, which has a maxima of the 10-yr average spot number be-
tween 20 spots and 67 spots. In addition, we obtain grand maxima and grand
minima that are above this range and below this range, respectively
. Studies that employ cosmogenic isotope data and sunspot data

indicate that we are currently leaving a grand activity maximum, which started

in approximately 1940 and is now declining (Usoskin et al.,|2003; |Solanki et al.,
[2004; |Abreu et al.l [2008]).
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Because grand maxima and minima occur on centennial or millennial timescales,

they can only be investigated using proxy data, i.e., solar activity reconstructed
from 1“Be and '*C time-calibrated data. The conclusion is that the activity
level of the Modern Maximum (1940-2000) is a relatively rare event, with the
previous similarly high levels of solar activity observed 4 and 8 millennia ago
(Usoskin et al., 2003). Nineteen grand maxima have been identified by |[Usoskin
et al.|(2007)) in an 11,000-yr series.

Grand minimum modes with reduced activity cannot be explained by only
random fluctuations of the regular mode (Usoskin et al.| |2014). They can be
characterized as two flavors: short minima in the length range of 50-80 years
(Maunder-type) and longer minima (Spdrer-type). Twenty-seven grand minima
are identified with a total duration of 1900 years, or approximately 17% of the
time during the last 11,500 years (Usoskin et al. [2007). An adjustment-free
reconstruction of the solar activity over the last three millennia confirms four
grand minima since the year 1000: Maunder (1640-1720), Sporer (1390-1550),
Wolf (1270-1340) and Oort (1010-1070) (Usoskin et al. 2007). The Dalton
minimum (1790-1820) does not fit the definition of a grand minimum; it is more
likely a regular deep minimum that is observed once per century or an immediate
state between the grand minimum and normal activity (Usoskin et al.l |2013]).

Temperature reconstructions for the last millennium for the northern hemi-
sphere (Ljungquist), 2010) show a medieval maximum temperature at approx-
imately the year 1000 and a cooling period starting at approximately 1350,
immediately after the Wolf minimum and lasting nearly 500 years, with the
coldest period in what is referred to as the Little Ice Age (LIA) at the time of
the Maunder minimum. A cold period was also observed during the time of the
Dalton minimum. The Maunder and the Dalton minima are associated with less
solar activity and colder climate periods. In this investigation, minimum solar
activity periods may serve as a reference for the identified minimum irradiations

in the TSI oscillations.
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1.2. Total Solar Irradiance

The total solar irradiance (TSI) represents a direct index for the luminosity
of the Sun measured at the Earths average distance from the Sun. The solar
luminosity was previously considered to be constant, and the TSI was also
named the solar constant. Since satellite observations started in 1979, the total
solar intensity (TSI) has increased by approximately 0.1% from the solar minima
to the solar maxima in the three observed sunspot periods. The variation in
the TSI level does not adequately explain the observed variations in the global
temperature. In addition to the direct effect, however, many indirect effects
exist, such as UV energy changes that affect the production of ozone, solar
wind modulation of the galactic cosmic ray flux that may affect the formation
of clouds, and local and regional effects on temperature, pressure, precipitation
(monsoons) and ocean currents. The Pacific Decadal Oscillation (PDO) and
the North Atlantic Oscillation also show variations that are related to the phase
of the TSI (Velasco & Mendozay, 2008). A significant relation between sunspots
and ENSO data has also been observed (Hassan et al., [2016).

Composite TSI records have been constructed from a database of seven in-
dependent measurement series that cover different periods since 1979. Different
approaches to the selection of results and cross-calibration have produced com-
posites with different characteristics: the Active Cavity Radiometer Irradiance
Monitor (ACRIM) and the Physikalisch-Meteorologisches Observatorium Davos
(PMOD) series. The ACRIM composite uses the TSI measurements that were
published by the experimental teams (Willson| [2014), whereas the PMOD com-
posite uses a proxy model that is based on the linear regression of sunspot
blocking and faculae brightening against satellite TSI observations (Frolich &
Lean, [1998). To construct a TSI from a previous time period, two different ap-
proaches are employeda reconstruction that is based on several different proxies
for the suns irradiance (ACRIM) or a statistical approach (PMOD). Proxies
for the Suns irradiance include the equatorial solar rotation rate, the sunspot
structure, the decay rate of individual sunspots, the number of sunspots without

umbra, the length and decay rate of the sunspot cycle, and the solar activity
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level.

Hoyt & Schatten| (1993]) constructed an irradiance model that was based on
the solar cycle length, cycle decay rate, and mean level of solar activity for the
period 1700-1874. From 1875-1992, a maximum of five solar indices were em-
ployed. The correlation between these indices and the phase coherence indicated
that they have the same origin. [Hoyt & Schatten| (1993)) interpret this finding
as a response to convection changes near the top of the convection zone in the
Sun. All solar indices have maxima between 1920 and 1940; the majority of
the maxima occur in the 1930s. The Hoyt-Schatten irradiance model has been
calibrated and extended with the newest version of ACRIM TSI observations
(e.g. [Scafetta & Willson, 2014) Fig. 16); it is employed in this analysis. In the
following section, this reconstruction is referred to as TSI-HS. A mostly rural
Northern Hemisphere composite temperature series 1880 -2013 show strong cor-
relation with the TSI-HS reconstruction, which indicates a strong solar influence
on Northern Hemisphere temperature (Soon et al., 2015)).

The TSI-HS series covers the period from 1700-2013. To investigate longer
periods to search for minimum periods, we have employed a statistical TSI index
that was estimated by |Velasco Hererra et al.| (2015)) from 1000 to 2100. The
index, which is referred to as TSI-LS, is estimated by the least squares support
vector machine (LS-SVM) method, which is applied for the first time for this
purpose. The method is nonlinear and nonparametric. The starting point is a
probability density function (PDF) that was constructed from the PMOD and
ACRIM composites. The function describes how many times a certain level
of TSI has been observed. From this normalized annual power, anomalies are
constructed. The TSI between 1610 and 1978 was determined by the LS-SVM
method using the group sunspot number as an input after calibration between
1979 and 2013 with the ACRIM or PMOD composites. To estimate the TSI
from 1000 to 1510 and from 2013 to 2100, the LS-SVM method and a nonlinear
autoregressive exogenous model (NARX) were employed. In this study, we
have employed the TSI reconstruction that was calibrated by the ACRIM TSI

composite (Velasco Hererra et al., 2015).
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1.8. Solar energy oscillation

An oscillation TSI variability is produced by irradiation from an oscillating
energy source. This oscillation energy source may be the solar inertial motion,
processes in the interior of the Sun, solar tide and/or solar orbit oscillation
around the solar system barycenter (SSB). The energy source for the solar ac-
tivity is the deceleration of the rotation of the Sun by magnetic field lines that
are connected to interplanetary space. The solar wind carries mass away from
the Sun; this magnetic braking causes a spin down of the solar rotation. Part
of the decrease in rotational energy is the energy source for the solar dynamo,
which converts kinetic energy to electromagnetic energy.

The classical interpretation of the solar dynamo is that it is placed in the
transition zone between convection and radiation near the solar surface: the
tachocline, approximately 200,000 km below the surface. Strong electric cur-
rents originate by the interaction between the convection and the differential
solar rotation, which causes the formation of strong magnetic fields, which rise
to the surface and display various aspects of solar activity, such as spots, facu-
lar fields, flares, coronal mass emissions, coronal holes, polar bright points, and
polar faculae, after having detached, as described by De Jager & Duhaul (2011)).
They explain the 22-year Hale cycle as attributed to magneto-hydrodynamic
oscillations of the tachocline. This period is not constant and persisted for ap-
proximately 23 years prior to the Maunder Minimum, during which it increased
to 26 years. During the maximum of the last century, this period was as brief as
21 years. |Gleissberg (1958 [1965) discovered a cycle of approximately 80 years
in the amplitude of the sunspot numbers. It is interpreted as the average of
two frequency bandsone band from 50-80 years and one band from 90-140 years
(Ogurtsov et all 2002). An examination of the longest detailed cosmogenic
isotope record (INTCAL98) of C abundance, with a length of 12,000 years,
reveals an average Gleissberg cycle period of 87.8 years. It is resolved in two
combination periods of 91.5+0.1 and 84.6 £0.1 yr (Peristykh & Damon| |{2003)).

Proxies that describe the magnetic fields in the equatorial and polar regions

can describe the variability of the tachocline. A proxy for the equatorial (or
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toroidal) magnetic field is Ry,q, (the maximum number of sunspots in two suc-
cessive Schwabe cycles), and a proxy for the maximum poloidal magnetic field
strength is aamip, (the minimum value of the measured terrestrial magnetic field
difference). In a phase diagram based on theR,,,q, and aan,;, values, two Gleiss-
berg cycles (1630-1724) and (1787-1880) are shown (Duhau & De Jager], [2008)).
The years 1630 and 1787 represent transition points, where phase transitions
to the grand episodes (Maunder and Dalton minima) occurred. The lengths
of the two Gleissberg cycles were 157 years and 93 years. The next Gleissberg
cycle lasted 129 years until 2009 with an expected phase transition to a high
state in 1924. |Duhau & De Jager| (2008) predicted that the transition in 2009
indicates a transition to a Maunder-type minimum that will start with cycle 25
in approximately 2020.

In addition to the variable Gleissberg period, a de Vries period from 170-260
years is observed in the '*C and 33Cl records. This period is fairly sharp with
little or no variability (Ogurtsov et all |2002)). Almost no existing models for
the solar activity predicted the current weak cycle 24. A principal component
analysis of full disc magnetograms during solar cycles 21-23 revealed two mag-
netic waves that travel from opposite hemispheres with similar frequencies and
increasing phase shifts (Shepherd et al.,|2014; [Zharkova et al.,|2015). To under-
stand this phase shift they introduce a non-linear dynamo model in a two-layer
medium with opposite meridional circulation. One dynamo is located in the
surface layer and the other dipole deeply in the solar convection zone. The solar
poloidal field is generated by these two dynamos in different cells with oppo-
site meridional circulation. The observed poloidal-toroidal fields have similar
periods of oscillation with opposite polarities that are in an anti-phase every
11 years, which explains the Schwabe period. The double-cell meridional cir-
culation flow is also detected with helioseismology by HMI/SDO observations
(Zhao et al.,|2013). Extrapolations backward of these two components revealed
two 350-year grand cycles that were superimposed on a 22-year cycle. The beat
between the two waves shows a remarkable resemblance to the sunspot activity,

including the Maunder and Dalton minima, and forecasts a deep minimum in

10
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this century. The low frequency wave has a variable period length from 320 year
(in 18-20 centuries) to 400 year predicted for the next millennium.

Another model is based on the observation that the thermal relaxation time

in the convection zone is on the order of 10° years (Foukal et al.l 2009), which

is too long to explain the rapid decay of the magnetic field during one solar
cycle. A simple and elegant solution is to place the dynamo in small bubbles

in the solar core, which change polarity every cycle due to interaction with

the interplanetary magnetic field (Granpierre} 2015). The liberated rotational

energy then forms buoyant hot bubbles that move toward the solar surface.
These bubbles are observed on the solar surface as precursors for large flares.
The largest flares have a high probability of appearing near the closest position
of one or more of the tide-producing planetsMars, Venus, Earth and Jupiter

(Hung}, [2007; Morner et all 2015). The energy of the hot bubbles is boosted

by thermonuclear runaway processes in the bubbles, which appear at the solar

surface as hot areas with a frozen magnetic field. In this process, planetary

effects serve an important role (Granpierre, 1990} 1996; [Wolf & O’Donovan,
[2007} [Scafettal [2012)).

1.4. Eaxternal forcing generated by the planets

Although the various dynamo models can explain the variations to some
extent, few or no constraints on the periods exist. The majority of the expla-
nations operate with a range of possible periods. The models do not explicitly
determine whether the observed periods are random and stochastic or if some
period-forcing from external or internal sources occurs. In the following section,
we investigate the external forcing that is generated by the planets in the solar

system.

1.4.1. Solar inertial motion

|Charvatova & Heidal (2014) have classified the solar inertial motion (SIM)

in an ordered (trefoil) pattern with a length of approximately 50 years and dis-

ordered intervals. Exceptionally long (approximately 370 years) trefoil patterns

11



280

285

290

295

300

appear with a 2402-year period (Hallstadt period). They determined that the
deepest and longest solar activity minima (of Spérer and Maunder types) ap-
peared in the second half of the 2402-year cycle, in accordance with the most
disordered type of SIM. The Dalton minimum appeared during a mildly disor-
dered SIM (1787-1843), which repeats from 1985-2040. The solar orbit in the
period 1940-2040, which is shown in Figure 1, demonstrates this phase.

1.4.2. Interior of the Sun as a rotating star

Wolf & Patrone (2010) have investigated how the interior of a rotating star
can be perturbed when the star is accelerated by orbiting objects, as in the solar
system. They present a simple model in which fluid elements of equal mass
exchange positions. This exchange releases potential energy (PE) that is only
available in the hemisphere that faces the barycenter of the planetary system,
with a minor exception. This effect can raise the PE for a few well-positioned
elements in the Suns envelope by a factor of 7, which indicates that a star with
planets will burn nuclear fuel more effectively and have a shorter lifetime than
identical stars without planets. However, occasional mass exchanges occur near
the solar center, which activate a mixed shell situated at 0.1675 where r, is the
solar radius. For this reason, the close passages of the barycenter are important
because they can cause negative pulses in the PE. The energy is a result of the
roto-translational dynamics of the cell around the solar system barycenter. An
analysis of the variation of the PE storage reveals that the maximum variations
correspond to the documented grand minima of the last 1000 years because
the PE minima are connected to periods in which the Sun moves close to the
barycenter. Large reductions in the PE values occur when the giant planets are
quasi-aligned, which occurred in approximately 1632, 1811 and 1990, separated
by 179 years (Jose cycle). Because the planetary positions never exactly repeat,
the PE variations show a complex pattern that creates different minima (Cionco

& Soon|, [2015).

12
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1.4.8. Solar inertial oscillations

The complex planetary synchronization structure of the solar system has
been known since the time of Pythagoras of Samos (ca. 570-495 BC). [Jose
(1965) showed that the solar center moves in loops around the solar system
barycenter (SSB). The average orbital period of 19.86 years corresponds to
the heliocentric synodic period of Jupiter and Saturn. The modulation of the
orbit by the outer planets Uranus and Neptune produces asymmetries in the
orbital shape and period variations between 15.3 and 23.4 years (Fairbridge &
Shirleyl [1987). The solar motion differs from the Keplerian motion of planets
and satellites in important ways. For instance, the velocity is some time highest
when the distance from the Sun to the SSB is largest, and the solar angular
momentum may vary by more than one order of magnitude over a period of ten
years (Blizzard, |1981)). An analysis of solar orbits from A.D. 816 — 2054 covered
seven complete Jose cycles of 179 years and indicated that prolonged minima
can be identified by two parameters: the first parameter is the difference in
axial symmetry of the orbit, and the second parameter is the change in angular
momentum (torque) about SSB. Based on these criteria, a new minimum should
begin between 1990 and 2013 and end in 2091 (Fairbridge & Shirley, |1987).

The distance of the Sun from the barycenter, the velocity, and the angular
momentum show the same periodic behavior. The motion of the solar center
around the SSB is typically prograde; however, in 1811 and 1990, the Sun
occasionally passes near the SSB in a retrograde motion. Because the 1811
event occurred at the time of the Dalton minimum, a new minimum may occur
in approximately 1990 (Cionco & Soon, [2015)).

Scafetta) (2014|)reviews the investigation of the patterns that are described by
the Sun and planets. He concludes that modern research shows that the plane-
tary orbits can be approximated by a simple system of resonant frequencies and
that the solar system oscillates with a specific set of gravitational frequencies,
many of which range between three and 100 years, that can be constructed as

harmonics of a base period of ~ 178.78 years.

13
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1.4.4. Solar tidal oscillation

The tidal elongation at the solar surface is on the order of 1-2 mm from
the planets Venus and Jupiter with less tides from the other planets. [Scafettal
(2012)) proposed that tidal forces, torques and jerk shocks act on and inside the
Sun and that the continuous tidal massaging of the Sun should involve heating
the core and periodically increasing the nuclear fusion rate. This action would
amplify weak signals from the planets with a factor ~ 4 x 105, Even if the
amplitude is small in the direction of a planet, it creates a wave that propagates
with the velocity of the planet. If the planet has an elliptical orbit, the variation
in distance creates a disturbance that will affect the nuclear energy production
in the center of the Sun. Since more planets participate, the effect will be a
combination of phases and periods, which can be highly nonlinear.

Our hypothesis is that the solar position oscillation (SPO) represents an in-
dicator of the tidal and inertial interaction between the giant planets Jupiter,
Saturn, Neptune, Uranus and the Sun. The SPO can be calculated from plane-
tary Ephemeris as the movement of the Sun around the Solar System Barycenter
(SSB). In section 2, we describe the methods and data sets used to demonstrate
a connection between SPO and TSI and SN variations. In section 3, we present
the results; in section 4, we discuss the results and relate them to other investi-
gations. We conclude the paper in section 5. Because the solar system and its
planets has a long lifetime, we can expect forces in the same direction over long

periods of time that may have a strong effect on long periods.

2. Materials and methods

2.1. Data

The motive of the study is to identify possible stationary periods in TSI
variability. In this study possible stationary periods are represented by first
stationary periods, subharmonic periods and coincidence periods. First sta-
tionary periods have a period T in the data series. Subharmonic periods have

periods nx T for n = 2,3,4 ... Coincidence periods have a coincidence between

14
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two ore more periods and may be represented by n x T3 = m * T5. Coincidence
periods are stationary periods and introduce a new set of subharmonic periods.
The study compares the identified stationary periods and period phase in two
TSI data series, a sunspot data series and a SPO data series.

The SPO data series represents an indicator of the oscillating tidal and in-
ertial interaction between the Sun and the large planets. The large planets
have the following periods (in years): Jupiter P(J,11.862), Saturn P(.S,29.447)
, Uranus P(U,84.02) and Neptune P(N,164.79). The SPO covers the pe-
riod from 1000 to 2100, where SPOuxrepresents the z-direction of the xyz-
vector. The source of the SPO data series is the JPL Horizon web interface
(http://ssd. jpl.nasa.gov/horizons.cgi#top) ,which is based on the Re-
vised July 31, 2013 ephemeris with the ICRF/J2000 reference frame, down-
loaded 30.09.14 and at subsequent dates.

The total solar irradiance (TSI-HS) data series (e.g. [Scafetta & Willson)
2014l Fig. 16) covers the period from 1700 to 2013. The source of the data series
is Scafetta (personal communication. Dec. 2013). The total solar irradiation
(TSI-LS) is based on the LS-SVM ACRIM data series (Velasco Hererra et al.,
2015)) and covers the period from 1000 to 2100. The source of the TSI-LS data
series is Velasco Herrera (21.09.14. Personal communication). The sunspot
data series is the group sunspot numbers from 1610 to 2015. The source of
the sunspot data series is SILSO (The World Data Center for the production,

preservation and dissemination of the international sunspot number).

2.2. Methods

Possible stationary periods in the data series are identified in two steps. First
a wavelet transform of the data series separates all periods in into a wavelet
spectrum. The autocorrelation for wavelet spectrum then identifies dominant
first stationary periods, subharmonic periods and the coincidence periods. Prior

to the wavelet analysis, all data series are scaled by

z(t) = (y(t) — Ely()])/var(y(t)) (1)

15



395

400

405

410

415

where y(t) is the data series, E[y(¢)] is the mean value, var(y(t)) is the
variance and x(t) is the scaled data series. The data series are scaled to compare
the amplitudes from the oscillation periods and reduce side effects in the wavelet
analysis.

A wavelet transform of a data series x(t) has the ability to separate periods
in the data series into a wavelet spectrum. The wavelet spectrum is computed

by the transformation

Wasto = 7z [ ot (52 a )

where x(t) is the analyzed time series, ¥() is a coif3 wavelet impulse function
(Daubechies, 1992 [Matlab, 2015); which is chosen for its symmetrical perfor-
mance and its ability to identify symmetrical periods in data series; W (a, b(t))
represents the computed wavelet spectrum, the parameter a represents a time-
scaling parameter, and the parameter b represents a translation in time in the
wavelet transformation. When translating b = 0 and s = 1/a, the wavelet
spectrum W (s, t) represents a set of moving correlations between z(t) and the
impulse function () over the entire time series z(t). The relationship between
the wavelet s and a sinus period T is approximately T' ~ 1.2s when using the
coif3 wavelet function. In this investigation, the wavelet spectrum W (s,t) has
the spectrum range s = 0,1,2...0.6N, where N is the number of samples in
the data series.

An autocorrelation transformation of the wavelet spectrum W (s, t) identifies
first periods, subharmonic periods and coincidence periods as maximum values
in the computed set of autocorrelation functions. The set of autocorrelation

functions are estimated by the transformation

R(s,m) = E[W (s,t)W(s,t + m)] (3)

where R(s,m) represents the correlations between samples, at a distance m

years, for a wavelet s in the wavelet spectrum W (s, t).
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3. Results

3.1. Sun Position Oscillation

The Sun moves in a closed orbit around the barycenter of the solar system.
Figure 1 shows the SPO in the ecliptical plane from 1940 to 2040. The solar
system oscillation (SSO) is caused by the mutual gravity dynamics between
the planet system oscillation (PSO) and the solar position oscillation (SPO).
The solar position oscillation has oscillations in the (z,y, z) directions; they are
represented by the data series SPOx, SPOy and SPOz. The movement looks
rather chaotic, as shown in Figure 1, because it mirrors the movements of the
planets in their orbits. A first step in this investigation is to identify stationary
periods and phase relations in the solar position between year 1000 and year
2100.

A wavelet spectrum represents a set of moving correlations between a data
series and a scalable wavelet pulse. When the data series in the y-direction
- SPOy - is transformed to the wavelet spectrum Wspoy(s,t), the spectrum
represents a collection of dominant periods in the SPOy data series. A visual
inspection of the wavelet spectrum Wspoy(s,t) shows a long-term dominant
period of approximately Pspoy(164) years. This period has a coincidence to the
Neptune period P(N, 164.79). The data series SPOxz and SPOy have the same
periods; however, SPOy has a 90-degree phase delay.

The wavelet spectrum Wspoy(s, t) is transformed to a set of autocorrelation
functions Rspoy(s, m), as shown on Figure 2, where each colored function rep-
resents a single autocorrelation. The set of autocorrelations Rspoy(s,t) shows
the identified stationary periods in the wavelet spectrum Wspoy(s,t). The first
maximum represents the correlation to a first stationary period. Subharmonic
periods have a maximum correlation at a distance first periodxn where n =
1,2,3....Rspoy(s, m) identifies stationary periods P(spoy,12) for Rspoy(12) =
0.98, P(spoy, 29) for Rspoy(29) = 0.95, P(spoy, 84) for Rspoy(84) = 0.9 and
P(spoy, 164) for Rspoy(164) = 0.9. The same periods are associated with the
PSO periods P(.J,11.862), P(.5,29.447), P(U,84.02) and P(N, 164.79), which in-
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dicates that the planets Jupiter, Saturn, Uranus and Neptune in the planetary
system are controlling the SPO.

A coincidence between subharmonic periods will amplify the coincidence pe-
riod and introduce a new sett of stationary periods. The autocorrelation spec-
trum Rspoy(s, m) of Figure 2 shows a set of subharmonic periods - P(spoy,n *
12), P(spoy,n * 29) and P(spoy,n * 84) - where n = 1,2,3..... The identified
coincidence periods have mean values of
(P(spoy,5*12) + P(spoy,2 * 29))/2 = P(spox,59) for RW (spoy,59) = 0.95,
P(spoy, 7x12)+P(spoy, 3%29)+ P(spoy, 84)) /3 = P(spoy, 85) for RW (spoy, 85) =
0.9,

(P(spoy, 10 * 12) 4+ P(spoy,4 % 29))/2 = P(spoy, 118) for Rspoy(118) = 0.9
and (P(spoy, 2 % 84) + P(spoy,164))/2 = P(spoy, 166) for Rspoy(166) = 0.9.
Figure 2 reveals that the majority of the SPO periods are mutually related by
resonance. The new modulated periods are P(spoy,59) and P(spoy, 118).

The stationary long wavelet periods Wspoy(84,t) and Wspoy(164,t) have
maxima in approximately 1820, and Wspoy(29,t) has a maximum in approx-

imately 1812. The identified stationary periods may be transformed to the

model:
P(spoyc,29,t) = RW (spoy, 29) cos(2m(t — 1812))/29.447) (4)
P(spoyc,84,t) = RW (spoy, 85) cos(2m(t — 1820))/84.02) (5)
P(spoye, 164,t) = RW (spoy, 164) cos(27(t — 1820))/164.97) (6)

By this model, the year 1820 may serve as a phase reference for the SPOy
periods, TSI variability and solar variability (SN). The data series SPOz in has
the same stationary periods but a different phase. P(spoxc,84,t) has a max-
imum at approximately 1797, which represents a phase shift of approximately
7/2.P(spoxc,164,t) has a maximum at approximately 1779. The maxima in
SPoy and SPOx corresponds to minima in SPOj and SPOZ%. The determin-
istic model has the sum P(spoyc,29,t) + P(spoyc, 84,t) + P(spoyc,164,t) and

a maximum in approximately 1812.
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8.2. TSI-HS variability

The total solar irradiation (TSI) represents the measured irradiation Wm=2
from the Sun to the Earth. Figure 3 shows an annual mean total solar irradiance
(TSI-HS) data series (Scafetta & Willson, 2014) that covers the period from 1700
to 2013. A simple visual inspection of this data series shows some variability
properties. The TSI-HS data series irradiation has fluctuations of approximately
3-4 Wm~=2 . The TSI fluctuations have minima in approximately 1700 (or
before), 1800, 1890, and 1960, with gaps of approximately 100, 90, and 70
years, or a mean minimum period of approximately 86 years. The TSI-HS data
series has maxima in 1770, 1830, and 1950, with gaps of approximately 60 and
120 years. The mean maximum fluctuation period in the TSI-HS data series
is approximately 75 years or 11 years less than the mean minimum period.
Transformation of the TSI data series into a wavelet spectrum may identify
stationary periods.

The transformed wavelet spectrum Whs(s,t) represents a set of separated
wavelet periods from the TSI-HS data series. Figure 4 shows the computed
wavelet spectrum of the TSI-HS data series from 1700 to 2013. In this presen-
tation, the wavelet scaling range is s = 1...0.6N, and the data series contains
N = 313 data points. A visual inspection of the TSI wavelet spectrum shows
the dominant periods in the TSI data series in the time window between 1700
and 2013. The long wavelet period has a maximum in 1760, 1840, 1930, and
2000, with a mean gap of approximately 80 years.

The autocorrelation spectrum Rhs(s, m) of the wavelet spectrum Whs(s, t)
identifies hidden stationary periods in the wavelet spectrum. The maximum
values in the autocorrelation spectrum Rhs(s, m) represent a correlation to sta-
tionary periods in the TSI-HS wavelet spectrum. Figure 5 shows the autocor-
relation spectrum Rhs(s,m) of the wavelet spectrum Whs(s,t) of the TSI-HS
data series.

A study of the autocorrelation spectrumRhs(s, m) shows a set of stationary
periods in the Whs(s,t) wavelet spectrum. The identified first cause station-

ary periods comprise the period set P(hs, 11) for Rhs(11) = 0.55, P(hs, 49) for
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Rhs(49) = 0.55, P(hs, 86) for Rhs(86) = 0.65 and P(hs, 164) for RWhs(164) =
0.7. The identified stationary periods are associated with the PSO periods
P(J,11.862), P(S,29.447), P(U,84.02) and P(N,164.79). The identified sta-
tionary period P(hs,49) is explained by a modulation between the Saturn os-
cillation and the Neptune oscillation: 2/(1/P(S,29.447) 4+ 1/P(N,164.79)) =
P(S,N,49.96). This finding indicates that the TSI-HS variability is related
to the solar position oscillation, which is controlled by the planet oscillation
from the large planets Jupiter, Saturn, Uranus and Neptune. Additional analy-
sis indicates that the dominant wavelet periods Whs(11,t) and Whs(49,t) are
mean estimates. Whs(11,t) has phase disturbance and Whs(49,t) has a phase-
reversal, as shown in Figure 6. They do not have a stable phase and represent
mean periods.

Figure 6 shows the identified dominant stationary wavelet periods Whs(49, t),
Whs(86,t) and Whs(165,¢) from the autocorrelation functions in Rhs(s,m). It
shows that the wavelet period P(hs,49) has a time-variant phase and is not a
stable period. The TSI-HS wavelet periods Whs(49,t) and Whs(86,t) have a
negative value coincidence in the period from 1786 to 1820. Wspoy(84,t) has an
estimated maximum velocity and Wspox(84,t) has maximum state at approx-
imately 1797. The dominant wavelet period Whs(84,t) has a minimum state
at approximately 1803, or a phase delay of approximately 0.157 between the
W spox(84,t) maximum and the minimum Whs(84,t). Uranus was in perihelion
in 1798. This indicates a relation between a minimum Uranus distance to the
Sun and a minimum in TSI-HS.

The correlation between the TSI-HS data series and the identified domi-
nant wavelet periods Whs(49,t) + Whs(86,t) + Whs(164,t) is estimated to be
R =0.93,Q = 46.6 (Pearson correlation coefficient) in N = 312 samples. The
correlation R = 0.93 reveals a close relation between the TSI-HS variability and
the solar position oscillation, which is controlled by Jupiter, Saturn, Uranus and

Neptune.
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3.2.1. Deterministic model
The identified stationary periods Whs(86,t) and Whs(164,t) may be repre-

sented by a deterministic model from the sum of the stationary cosine functions:

P(hsc,84,t) = —Rhs(86) cos(2m(t — 1803)/84.02) (7)
P(hsc,164,t) = —Rhs(164) cos(2m(t — 1860)/164.97) (8)
P(hsc,t) = P(hsc, 84,t) + P(hsc, 164, t) 9)

where R(hs,86) and R(hs, 164) represent estimated correlations in the autocor-
relation. The phase relation between the maximum value of Pspox(84,t) in 1797
and the minimum value P(hsc,84,t) in 1803 is approximately 0.157 (rad/year).
The year 1797 is also the year of Uranus in perigel. We also notice that the min-
imum value of P(hs, 164,t) (Eq. 8) is close to the time of Neptune in perihel.
This indicates a delayed response from the SPO periods on the TSI-HS vari-
ability. The correlation between the 84-year wavelet periods P(hsc,84,t) and
W (hsc, 84,t) is estimated to be Rhs, hsc(84) = 0.83. The correlation between
the 164-year periods is Rhs, hsc(164) = 0.88. The correlation between the data
series TSI-HS and the sum P(hsc,t) is estimated to be R = 0.55. These results
indicate that the dominant wavelet periods Whs(84,t) and Whs(164,t) have
stable phases from 1700 to 2013.

From the deterministic model (Eq. 9) of the data series TSI-HS, we estimate
grand minimum periods when P(hsc,t) < —1. These minima, which are com-
pared with named solar minima, are shown in Table 2. The next deep minimum
is estimated at approximately 2050. The TSH-HS data series can estimate time
period up to a maximum of (2013-1700)/2=156 years and supports reasonable
good estimates of periods of approximately one hundred years. Longer time

period estimates require longer data series.

8.8. TSI-LS variability

The TSI-LS data series (Figure 7) covers a period of 1100 years from 1000 to
2100, where the time period from the present to 2100 is forecasted. A realistic
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hundred-year forecast or hindcast has to be based on possible hidden determin-
istic periods in the data series. A coherence analysis of the wavelet spectra
Whs(s,t) and Wis(s,t) shows a coherency Chs,ls = 0.8 — 0.95 for periods be-
tween 48 years and 86 years, which indicates that the TSI-HS data series and
the TSI-LS data series have the same periods from 48 - 86 years from 1700 to
2013.

The data series TSI-LS is analyzed by computing the wavelet spectrum
Wis(s, t) and the autocorrelation spectrum Rls(s,m), the latter shown in Figure
8. The identified stationary periods in the autocorrelation spectrum Rls(s,m)
are P(ls,11) for Rls(11) = 0.8, P(ls,18) for RIs(18) = 0.3, P(ls,29) for
Rls(29) = 0.2, P(ls,83) for RIs(83) = 0.17, P(ls,125) for Rls(125) = 0.6,
P(ls,210) for Rls(210) = 0.35 and P(ls,373) for Rls(373) = 0.5, the last not
shown in Fig. 8. These periods are associated with the identified stationary
periods in the TSI-HS data series, the SPO data series periods and the PSO pe-
riods P(J,11.862), P(S,29.447) and P(U,84.02). The difference is the smaller
correlation value in the autocorrelation Ris(s,m). Smaller correlation values
may be explained by phase errors in this long data series.

The autocorrelation spectrumRIs(s,m) (Figure 8) shows coincidence peri-
ods between P(ls,3 x 11) = P(ls,33) and P(ls,2 x 18) = P(ls, 36), between
P(ls,5%11) = P(ls,55) and P(ls,3%18) = P(ls,54), and between P(ls,8%11) =
P(ls,88) and the first period P(ls,83). The coincidence period P(ls,55) in-
troduces the subharmonic periods P(ls,n * 55) for n = 1,2,3.... The new
information in Rls(s,m) is an identification of the dominant first cause pe-
riods P(ls,18), P(ls,125) and P(ls,210). These periods have a combination
resonance that is created by a 2/3 resonance and a 5/2 resonance. The sta-
tionary model has a perfect relation to the Jupiter period and the Uranus
period when P(ls,18) = P(ls,3 x 11/2) is related to P(ls,3 x 11.862/2 =
17.793), P(ls,126) = P(ls,3%84/2) is related to P(ls,3%84.02/2 = 126.03) and
P(ls,210) = P(ls,5 x 84/2) is related to the period P(ls,5 * 84.02/2 = 210.05).
The period P(ls,125) introduces a set of subharmonic periods P(ls,n * 125),

where n = 1,2,3.... In this investigation, we have only selected the third sub-
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harmonic period P(ls,3 x 126.03 = 378.09), which is the most dominant.

The autocorrelation spectrum Rls(s,m) shows that the period Wis(125,t)
represents the dominant amplitude variability in the TSI-LS data series. Fig-
ure 9 shows the identified long-term stationary periodsWis(124,t), Wis(210,t),
Wis(373,t) and the mean of the periods. The correlation between TSI-LS
and the mean is estimated to be R = 0.7 for N=1100 samples and the qual-
ity Q=27.4. The mean of the identified wavelets Wis(125,¢t), Wis(210,t),
Ws(373,t) has a negative state in the periods (1000-1100), (1275-1314), (1383-
1527), (1634-1729), (1802-1846) and (2002-2083). The mean has a minimum
state in the years 1050, 1293, 1428, 1679, 1820, and 2040.

3.3.1. Deterministic model
The identified dominant periods Wis(125,t), Wis(210,t), and W1is(373,t)
may be represented by the deterministic stationary model from the sum of the

cosine functions

P(lsc,126,t) = Rls(125) cos(2m(t — 1857)/(3 x 84.02/2) (10)
P(lsc,210,t) = Rls(210) cos(2m(t — 1769) /(5 * 84.02/2) (11)
P(lsc,378,t) = Rls(373) cos(2m(t — 1580) /(9 * 84.02/2) (12)
P(lsc,t) = P(lsc,126,t) 4+ P(lsc, 210,t) + P(lsc, 378, t) (13)

where Rls(125), Rls(210) and RW1s(373) represent the maximum period corre-
lations in the autocorrelation Rls(s,m). The correlation between the 125-year
wavelet period W (ls, 125, ¢) and the stationary period P(lsc, 126,t) is estimated
to be Rls,lsc(125) = 0.9 for N=1040 samples and Q=53.7, Rlis,lsc(210) = 0.67
for N=1000 and Q=28.9, and Rls,lsc(378) = 0.68 for N=1000 and Q=28.8.
The period Plsc(375,t) has the correlation Ris,lsc(378) = 0.67 to the identi-
fied wavelet period Wis(373,t) for N=1000 samples and Q=2813. The domi-
nant wavelet periods Wis(125,t) and Wis(375,t) have a stationary period and
an approximately stable phase in the period from 1000 to 2100. A correlation
of long data series is sensitive to phase noise. The sum of the stationary periods

P(lsc,t) represents a mean TSI-LS variability. The correlation to the TSI-LS
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data series is estimated to be Risc,1s(126 + 210 + 378) = 0.55 for N=1100 and
Q=21.5. This analysis indicates that the TSI-LS variability has been influenced
by stationary periods that are controlled by the Uranus period P(U,84.02). A
minimum of P(lsc, 126,t) is in 1794, which is close to the time of Uranus perihel
position, while P(lsc,2010,¢) has a minimum in 1874 which is 0.77 after the
Pspox(mazx). This indicates that the phase of these periods are synchronized
with Uranus perihel position.

The deterministic model (Eq.11) of the data series TSI-LS may represent an
index of minimum irradiation periods as shown in Table 2. By this index, the
chosen data series references a TSI minimum when the state is P(Isc,t) < —0.5,
a Dalton-type minimum when P(lsc,t) < —0.7 and a grand minimum when
P(lsc,t) < —1.0. The identified minima from this model are P(lsc,t) < —1.0 for
the time period (1014-1056); P(lsc,t) < —0.5) for (1276-1301); P(lsc,t) < —1.0
for (1404-1435), which has a minimum -1.215 in the year 1419; P(lsc,t) < —0.5
for (1662-1695) which has a minimum -0.91 in the year 1672; and P(lsc,t) <
—0.5 for (1775-1819), which has a minimum -0.81 in the year 1796. The com-
puted subsequent minimum time period is P(lsc,t) < —0.5 for (2035-2079),
which has a minimum -0.79 in the year 2057. In this model, a Dalton-type min-
imum has a minimum at approximately -0.7. The Maunder minimum is between
-0.7 and -1.0, as shown in Table 2. The computed minimum -0.79 in the year
2057 indicates an expected Dalton-Maunder-type minimum. The determinis-
tic model state has a state P(lsc,t) > +0.5 index for the periods (1093-1134),
(1198-1241) and (1351-1357); P(lsc,t) > +1.0 index for the period (1582-1610);
P(lse,t) > 40.5 for (1945-2013); and P(lsc,t) > +1.0 for (1959-2001), which

has a maximum 1.4 in 1981.

8.4. Sunspot variability

The sunspot data series SN (¢) is an indicator of the solar variability. Figure
10 shows the group sunspot number data series that covers a period of approx-
imately 400 years from 1610 to 2015. From this 400-year data series, we can

estimate periods of approximately up to 200 years. Periods with few sunspots
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are associated with low solar activity and cold climate periods. Periods with
many sunspots are associated with high solar activity and warm climate periods.
If a relation exists between solar periods and climate periods, we may expect a
relation between the hidden periods in the TSI variability and solar variability.

Figure 11 shows the computed wavelet spectrum Wsn(s, t) of the SN (¢) data
series from 1610 to 2015, with the wavelet scaling parameter s = 1...6N. A
visual inspection of the wavelet spectrum shows a maximum at the approximate
years (1750, 1860, 1970), which represents periods of approximately 110 years.
The time from 1750 to 1970 represents a period of 220 years. Temporary periods
of approximately 50 years from approximately 1725 and 1930 may be confirmed
by computing the autocorrelation wavelet spectrum Rsn(s,t).

The computed set of autocorrelations Rsn(s,m) of the wavelet spectrum
Wsn(s,t) is shown in Figure 12. The wavelet spectrum W (sn,t) has the sta-
tionary periods P(sn,11) for Rsn(11) = 0.73, P(sn,22) for Rsn(22) = 0.35
and P(sn,86) for Rsn(86) = 0.35. The identified period P(sn,11) repre-
sents the Schwabe cycle and corresponds to the TSI P(tsi, 11), the SPO period
P(spox,11) and the Jupiter period P(J,11.862).

The period P(sn,11) introduces the subharmonic period P(sn,5 % 11) =

P(sn,55) for Rsn(55) = 0.43, which introduces the subharmonic periods P(sn, 110)

for Rsn(110) = 0.40 and P(sn,210) for Rsn(210) = 0.36. The period P(sn,55)
is a temporary stationary period from 1610 only when P(sn,110) has a posi-
tive state. An inspection of P(sn,55) shows that the period is stationary when
P(sn,210) has a positive state from 1726-1831 and from 1935. The period
P(sn, 55) shifted to P(sn,2x55) when P(sn,220) has a negative state from 1831-
1935. A possible explanation is an 5/2 relation between the periods P (U, 84.04)
and P(sn,210) (Eq. 16).

Figure 12 shows that the period P(sn,55) has combination resonance peri-
ods with a 3/2 relation P(sn,3 % 55/2 = 84) to the Uranus period P(U, 84.02).
The 3/2 correlation to the P(ls,84) period and the Uranus period P (U, 84.02)
explains the synchronization between the SN variability and the TSI-LS vari-

ability. The dominant period P(sn,110) is a coincidence period in the subhar-

25



680

685

690

695

monic period P(sn,2 * 55 = 110), which has a combination resonance to the
Neptune period by P(sn,2 x 164,79/3 = 109,86). The long stationary iden-
tified period P(sn,210) is related to a 5/2 combination resonance to Uranus
by P(U,5 % 84.02/2 = 210.05). The period P(sn,210) corresponds to the TSI-
LS period P(ls,210). The identified periods have a subharmonic resonance in
the Jupiter period P(J,11.862). The correlation between the data series SN(t)
and the dominant wavelet periods W (sn,55,t) + W (sn, 110,t) + W(sn, 210,t)
is estimated to be R = 0.51 for N=404 and Q=11.8.

3.4.1. Deterministic model
The identified temporary stationary periods Wsn(55,t), Wsn(110,t) and

Wls(210,t) may be represented by a deterministic model

P(snc,56,t) = Rsn(55) cos(2m(t — 1782) /(2 * 84.02/3) (14)
P(snc,112,t) = Rsn(110) cos(2m(t — 1751) /(4 % 84.02/3) (15)
P(snc,210,t) = Rsn(210) cos(2r(t — 1770) /(5 x 84.02/2) (16)
P(sne,t) = Psnc,56,t) + P(snc, 112, t) + P(snc, 210, t) (17)

where Rsn(56), Rsn(112) and Rsn(210) represent the maximum correlation
in the autocorrelation Rsn(s,m). This model is, however, a simplified lin-
ear model. Figure 11 shows that the Rsn(55) amplitude is controlled by the
Rsn(110) amplitude, which indicates that the period P(sn,55) is temporarily
stable. The correlation between the 55-year wavelet periods W (sn, 55, ) and the
stationary period P(snc,55,t) is estimated to be Rsn, snc(55) = 0.66 for N=354
samples and Q=16.6. The correlations are Rsn, snc(110) = 0.9 for N=304 and
Q=36 and Rsn, snc(210) = 0.9 for N=304 and Q=36. The correlation between
the sum W (sn, 55,t)+W (sn, 110,t)+ W (sn, 210,t) and the deterministic model
from (Eq. 17) is estimated to be R = 0.84 for N=304 and Q=29.8. Minimum
states that correspond to negative values of the stationary model correspond
to the observed minima, as shown in Table 2. The model indicates a future

minimum in the period 2018 - 2055 with an extreme value in 2035.
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This analysis indicates that the sunspot variations is controlled by the Uranus
period P(U,84.02), which introduces a 2/3 resonance to the period P(sn,55,t)
and a 5/2 super-resonance to the P(sn,210) period. The TSI-LS data series and
the sunspots data series have stationary coincidence periods with P(ls,11) and
P(sn,11), P(ls,125) and P(sn,110) and with P(ls,210) and P(sn,210). The
difference between the stationary periods P(ls,125) and P(sn,110) indicates a

limited direct relation between the data series.

3.5. Stationary dominant periods and minima

The relations between the identified dominant periods in SN(t), TSI-HS and
TSI-LS are shown in Table 1, where R is the autocorrelation of the wavelet
spectrum..

In Table 2 we compare values of the stationary models P(hsc,t), P(lsc,t)
and P(snc,t) at minima corresponding to the solar activity minima determined
by [Usoskin et al.|(2007). The grand minimum periods are calculated from the
stationary models in Equations 9, 13 and 17, and compared with Spox and Spoy
maxima. The model P(snc,t) computes a new Dalton sunspot minimum from
approximately 2025 to 2050; the model P(hsc,t) computes a new Dalton TSI
minimum period (2035-2065), and the model P(lsc,t) computes a new Dalton
TSI minimum period (2045-2070).

The SN model in Eq. 17 is a simplified linear model. It has a minimum
P(snc,t) < —0.5 in 1907-1931, which is not shown in the table. The HS-model
from Eq. 9 has grand minima in 1200-120 and 1876-1887, which are not shown
in the table. For this model the Dalton minimum is less deep. The LS-model
from Eq. 13 has the maximum index P(lsc,t) > 0.5 for the periods (1093-
1134), (1198-1241), (1351-1357), and (1945-2013) and the grand maximum index
P(lsc,t) > +1.0 for the periods (1582-1610) and (1959-2001).

4. Discussion

The study of the TSI variability is based on the TSI-HS data series from
1700-2013, the TSI-LS data series 1000-2100, sunspots data series 1610-2015
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and a Solar Barycenter orbit data series from 1000-2100. The results are, how-
ever, limited by how well they represent the solar physics and how well the
methods are able to identify the periods in the data series. The investiga-
tion is based on a new method. The data series are transformed to a wavelet
spectrum to separate periods, and the wavelets are transformed into a set of
autocorrelations to identify the first periods, subharmonic periods and coinci-
dence periods. The identified stationary periods in the TSI and SN series are
supported by the close relations with the well-known solar p