
Exploring software development at the very large-scale:
a revelatory case study and research agenda for agile
method adaptation

Torgeir Dingsøyr1,2 & Nils Brede Moe1 &

Tor Erlend Fægri1 & Eva Amdahl Seim3

The Author(s) 2017. This article is an open access publication

Abstract Agile development methods were believed to best suit small, co-located
teams, but the success in small teams has inspired use in large and very large-scale
software development. However, fundamental assumptions of agile development are
challenged when applying the methods at a very large scale. An interpretative revela-
tory case study on one of the largest software development programmes in Norway
shows how agile methods were adapted and complemented with practices from tradi-
tional methods to handle the scale. The programme ran over four years with 12 co-
located development teams and a total of 175 people involved. The case study was
conducted retrospectively using group interviews with 24 participants and documents.
Findings on key challenging areas are reported: customer involvement, software archi-
tecture, and inter-team coordination. The revelatory study also suggests refinements of
a research agenda for very large-scale agile development.

Empir Software Eng
DOI 10.1007/s10664-017-9524-2

Communicated by:Vittorio Cortellessa

* Torgeir Dingsøyr
torgeird@sintef.no

Nils Brede Moe
nils.b.moe@sintef.no

Tor Erlend Fægri
tor.e.faegri@sintef.no

Eva Amdahl Seim
eva.amdahl.seim@sintef.no

1 Department of Software Engineering, Safety and Security, SINTEF, Box 4760 Sluppen,
Trondheim 7465, Norway

2 Department of Computer Science, Norwegian University of Science and Technology, Trondheim,
Norway

3 Department of Industrial Management, SINTEF, Box 4760 Sluppen, Trondheim, PO, Norway

http://orcid.org/0000-0003-0725-345X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9524-2&domain=pdf

Keywords Very large-scale software development . Software engineering . Requirements
engineering . Projectmanagement . Portfoliomanagement .Knowledgemanagement .Customer
involvement . Agile software development . Multi team systems . Inter-team coordination .

Software architecture . Scrum . Extreme programming

1 Introduction

Since the formulation of the agile manifesto in 2001, agile methods have transformed software
development practice by strongly emphasizing change tolerance, evolutionary delivery, and
active end-user involvement (Dingsøyr et al. 2012). Rajlich (2006) describes agile develop-
ment as a paradigm shift in software engineering that Bbrings a host of new topics into the
forefront of software engineering research^. In the first special issue on agile development in
IEEE Computer, Williams and Cockburn (2003) stated that agile methods Bbest suit collocated
teams of about 50 people or fewer who have easy access to user and business experts and are
developing projects that are not life-critical^. Agile methods have been criticized for lack of
focus on architecture, the little scientific support for claims in the agile community, and for
being applicable only to small teams (Dybå and Dingsøyr 2008). Boehm argued that projects
need to find a Bsweet spot^ between traditional and agile development based on the level of
risk that the project is willing to take (Boehm 2002; Boehm and Turner 2003).

Since then, the success of agile methods for small, co-located teams has inspired use in new
domains, and companies increasingly apply agile practices to large-scale projects. Frameworks
for managing large agile development projects have started to appear, such as the Scaled Agile
Framework1 and Large Scale Scrum.2 New challenges arise as agile development techniques
are used on large-scale projects. BAgile in the large^ was voted Btop burning research
question^ by practitioners at the XP2010 conference (Freudenberg and Sharp 2010). Practi-
tioners ask questions like, "How do you scale up a large project over many months or even
years?" (Gregory et al. 2016).

Large-scale projects or programmes are also fraught with challenges in other industries such
as infrastructure, construction, water, and energy. Such Bmegaprojects^ typically use tradition-
al project management methods and are often associated with large cost overruns and delays as
the considerable complexities are difficult to manage effectively (Flyvbjerg 2014; Giezen
2012). For companies engaged in development programmes, effective portfolio management
is critical for managing the exponential growth of interdependencies and mitigating associated
risks (Blichfeldt and Eskerod 2008). However, the iterative nature of agile methods introduces
new challenges in portfolio management that necessitate different patterns of action (Nerur and
Balijepally 2007; Stettina and Horz 2015).

The term Blarge-scale agile development^ has been used to describe agile develop-
ment in a range of contexts – spanning large teams to large multi-team projects to
making use of principles of agile development in a whole organization. We define
large-scale agile development as agile development efforts that involve a large number
of actors, a large number of systems and interdependencies (Rolland et al. 2016), which
have Bmore than two teams^ and very large-scale as "agile development efforts with more
than ten teams" (Dingsøyr et al. 2014), These definitions exclude agile methods applied

1 See http://www.scaledagileframework.com/
2 See https://less.works/

Empir Software Eng

http://www.scaledagileframework.com
https://less.works

in large organizations (Barlow et al. 2011) from Blarge-scale agile^, which we consider to
be a research direction on its own. Many refer to this as Benterprise agile^ (Bass 2015;
Fitzgerald and Stol 2017).

Fundamental assumptions in agile development are severely challenged when using
these practices in large-scale projects. Self-management is a central principle in agile
methods, but studies from fields other than software development indicate that self-
management can reduce the ability to coordinate across teams effectively (Ingvaldsen
and Rolfsen 2012). Also, while the teams need to self-manage, team members need to
have an effective knowledge network and collaborate closely with experts outside the
team in large-scale agile environments (Moe et al. 2014; Šmite et al. 2017). Having an
emerging architecture (Eckstein 2014) could hamper project progress when many teams
are working in parallel. Nord et al. (2014) argue that the tools needed to handle
architectural decisions in large projects do not exist in agile methods. Many agile teams
working towards the same goal requires much coordination and management effort
(Petersen and Wohlin 2010). Practices like Scrum of Scrum have been found to be
inefficient in large projects (Paasivaara et al. 2012) as is it hard to find the right level of
detail in discussions to keep the forum interesting for many participants. Knowledge
sharing focuses on tacit knowledge in agile methods, which is challenged when the
number of participants in a project or programme increases. Large-scale programmes
often have a high number of stakeholders and users of the product, and their needs need
to be communicated to a number of developers. This intensifies the challenges with
customer involvement.

The workshop on large-scale agile development at the International Conference on
Agile Software Development (XP) has worked to define a research agenda where topics
with high priority include Borganization of large development efforts^, Bvariability
factors in scaling^, Binter-team coordination^, and Brelease planning and architecture^
(Dingsøyr and Moe 2014).

This article presents an interpretative revelatory case study of a very large-scale develop-
ment programme with extensive use of the agile method Scrum. We raise the following
research question: How can agile methods be adapted in the very large scale, regarding
programme organization, customer involvement, software architecture and inter-team coordi-
nation? Arguments for the chosen topic areas are provided in section 3. The main contribution
is a thorough description of method adaptation and identification of key characteristics of
adaptation, for example by showing how customer involvement was organized to adapt to both
a large number of customer representatives and a large number of developers. Based on these
findings, we suggest directions for future research in the form of novel research questions that
extend the research agenda on large-scale agile development.

In the following, Section 2 provides an introduction to very large-scale development, first
outlining differences between traditional and agile development and then providing back-
ground on three focus areas: customer involvement, software architecture and inter-team
coordination. Section 3 provides a description of how we conducted the interpretative revela-
tory case study, selection criteria for the case as well as methods for data collection and
analysis. Section 4 describes results, first through a thick description of how the large-scale
programme was organized, then providing details on customer involvement, software archi-
tecture and inter-team coordination. Section 5 contrasts findings with previous work identified
in Section 2 and discusses the main limitations of the study. Section 6 concludes by formu-
lating novel research questions based on our study.

Empir Software Eng

2 Very Large-Scale Development

Boehm and Turner (2003) suggested that programmes should find a Bsweet spot^ combining a
mixture of traditional and agile methods. Previous research on the use of development methods
suggests that methods need to be adapted to the work context (Fitzgerald et al. 2006). We first
describe some of the main differences between traditional and agile development before
focusing on three aspects of adaptation that are critical in very large scale development:
customer involvement, software architecture, and inter-team coordination.

2.1 Traditional and Agile Development

Nerur et al. (2005) described the fundamental assumption behind traditional methods to be that
information systems are fully specifiable and built through meticulous and extensive planning.
Agile methods, on the other hand, assume that information systems can be built through
continuous design, improvement, and testing based on rapid feedback and change. Learning
and adaptation should be embraced (Conboy 2009). Adapting the method to the context will
involve balance in a number of areas (Vinekar et al. 2006), as illustrated in Table 1. Very large-
scale projects involve great risk and management attention. Boehm and Turner (2003) argued
that traditional and agile methods should be balanced when facing risk such as increases in
programme size.

The transition from traditional plan-driven development to a more agile method with
iterations and development conducted in small teams was the focus of a study by
Petersen and Wohlin (2010). They examined the development of three large subsystem
components in an Ericsson product involving 117 people and found that many of the
issues raised in traditional development were not raised after the transition to agile
development. This suggests that agile methods can also work well in large-scale
product development. Another study from Ericsson finds that agile principles in large
scale contributed to knowledge-sharing, and led to increased project visibility and
effectiveness in coordination (Lagerberg et al. 2013).

One of the very few studies on large projects combining traditional and agile
methods examined a project to develop a web-based customer booking engine for an
American cruise company (Batra et al. 2010). The study describes a $15 million project
that lasted for 28 months. The project was distributed and combined Scrum with the

Table 1 Traditional versus agile development (excerpt from (Nerur et al. 2005))

Traditional development Agile development

Management style Command and control Leadership and collaboration
Knowledge management Explicit Tacit
Communication Formal Informal
Development model Life-cycle model (waterfall,

spiral or some variation)
The evolutionary-delivery model

Desired organizational
form/ structure

Mechanistic (bureaucratic
with high formalization),
aimed at large organizations

Organic (flexible and participative
encouraging cooperative social
action), aimed at small and
medium-sized organizations

Quality control Heavy planning and strict
control. Late, heavy testing

Continuous control of
requirements, design and
solutions. Continuous testing

Empir Software Eng

Project Management Body of Knowledge3 framework. Customers were available but did
not work together with developers on a daily basis. The iteration length was two weeks.
Some of the challenges identified in the study were due to the size and involvement of a
high number of internal business sponsors, users, project managers, analysts, and exter-
nal developers from the UK and India; Customer involvement. The communications
were mainly formal, and formal documents were needed for changes. However, the
project was considered a success, and the study describes the balance between traditional
and agile methods as essential in achieving both project control and agility.

A model organizing development as chains of Scrum teams (the output of one team
is the input of the next) is described in a study of three cases of organizations with 150,
34, and 5 Scrum teams (Vlietland and van Vliet 2015). The study investigated strategy,
structure, collaboration, coordination, communication, mind-set, and competence of
people. The dependence of teams on the results from other teams introduces a number
of challenges. The three cases illustrate challenges that include a lack of coordination in
the chain, mismatch of backlog priority between teams, challenges in alignment be-
tween teams, and unpredictability in delivering on commitments, this suggests chal-
lenges with inter-team coordination and main design decisions as expressed in the
software architecture.

2.2 Customer Involvement

Agile methods are people-centric and recognize the value that competent people and
their relationships bring to software development (Nerur and Balijepally 2007). A key
pillar in any agile method is the close and continual collaboration between clients and
developers (Maiden and Jones 2010). Therefore, agile methods are highly dependent on
the on-site customer identifying and prioritizing features, providing feedback, and
guiding change in the course of the development (Vinekar et al. 2006). In their study
on a large-scale agile project, Bjarnason et al. (2012) found that low customer involve-
ment in near-development roles in combination with weak awareness of overall goals
may result in an unrealistically large project scope. Further, overscoping can lead to a
number of negative effects, including quality issues, delays, and failure to meet
customer expectations. A study on large-scale and distributed projects found that
understanding requirement dependencies is of paramount importance in such projects
(Daneva et al. 2013).

Active participation and constant involvement of the customer in systems develop-
ment yields greater benefits, but this reliance on the customer can fail if the on-site
customer goals are misaligned with the goals of other stakeholders. Having multiple
on-site customers in a large-scale project increases the risk of failure because of the
challenge of establishing a common understanding among all customer representatives.
A fragmented view of the system that each customer may have is likely to have a
negative impact on the project (Ramesh et al. 2010). Further, when different stake-
holder groups have different priorities, there is a need for open and transparent
dialogue and cross stakeholder group communication in large-scale agile projects
(Barney and Wohlin 2009).

3 See http://www.pmi.org/PMBOK-Guide-and-Standards.aspx

Empir Software Eng

http://www.pmi.org/PMBOK-Guide-and-Standards.aspx

2.3 Software Architecture

The software architecture is the fundamental technical organization of a system. How and
when to make architectural decisions have been the subject of major debate in the software
engineering field (Abrahamsson et al. 2010). In traditional development, the architecture is
defined prior to implementation and testing, whereas the architectural design emerges as a
result of on-going clarification in ‘purist’ agile development. Traditionally, software architec-
ture is associated with up-front designs and stable structures that accommodate pre-defined,
non-functional requirements. The assumption is that the value of good architectural decisions
will surface at a later point in time in forms such as more easily maintainable code and
scalability (Faber 2010). Also, a sound architecture is largely invisible and provides an
effective structure for subsequent functionality. It is interesting to note that software
architecture has meaning and significance for a wide variety of stakeholders. Different
stakeholders are also likely to associate different meanings to software architecture.
Smolander (2002) suggested that the four metaphors blueprints, literature, language, and
decisions capture the meaning of software architecture for different actors involved in software
development. This underlines the pervasive role of software architecture.

Several approaches to architecture work have been taken in large agile projects. Some start
with the architecture (‘big up-front design‘) and then use agile methods. Others spend the first
iteration focusing on architecture. Others again start directly on development and let the
architecture emerge. To construct a large software system developed by a number of teams,
it is vitally important for the architecture to be agreed upon and communicated without
introducing the bureaucracy and overhead associated with traditional methods. In a study on
software product companies, Unphon and Dittrich (2010) found that architectural knowledge
was transferred by face-to-face communication with chief architects taking the role of a
Bwalking architecture^.

Awareness and social protocols are important perspectives on how architecture is commu-
nicated. Unphon and Dittrich do not discuss the increased challenges of architectural work at a
large scale. In their study of a large-scale agile approach at Ericsson, Petersen and Wohlin
(2010) found a need for a high-level architectural design to facilitate planning. Nord et al.
(2014) argued that for large-scale agile projects, agility is enabled by architecture, and
architecture is enabled by agility. They suggested several tactics for handling architecture in
large-scale projects, including making use of a matrix structure and focusing on the production
infrastructure.

2.4 Inter-Team Coordination

Coordination can be defined as Bthe managing of dependencies^ (Malone and Crowston
1994), where dependencies can be related to tasks, knowledge, resources, or technology.
The central challenge in coordination is identifying the right form or artefacts, arenas, and
degree of formalization in large projects with high uncertainty. In small agile projects, the
development team coordinates work through frequent informal interaction among themselves
and with customers, as in the customer-on-site practice in eXtreme Programming. Scrum has
dedicated meetings for planning, review, and retrospectives. Many teams use visual boards,
like in Kanban, to show who is working on what and the status of work tasks. Strode et al.
(2012) explain coordination at the team level in agile teams and propose a model for
coordination strategy and coordination effectiveness.

Empir Software Eng

For large-scale projects, there is less support. Scrum prescribes regular meetings between
Scrum teams (BScrum of Scrums^) in order to manage the interfaces between teams. Eckstein
shows techniques that are applicable to large projects in order to facilitate planning, status
information, integration, and retrospectives in her book with recommendations to practitioners
(Eckstein 2004). Some large-scale agile frameworks have been suggested by practitioners
(Larman and Vodde 2013; Larman and Vodde 2017; Leffingwell et al. 2017) that describe roles
and arenas for inter-team coordination. Visual boards was the primary form of inter-team
coordination in a project in Sweden described in an experience report by Kniberg (2011).

There is a small body of studies on inter-team coordination. Vlietland and van Vliet (2015)
propose that embedded coordination practices within and between Scrum teams positively
impact delivery predictability in large projects. A study of BScrum of Scrums^ (Paasivaara
et al. 2012) suggests that this forum did not lead to satisfactory coordination: feature-specific
or site-specific fora were better, but coordination at the project level was still a challenge.
Researchers working closely with SAP (Scheerer et al. 2014; Scheerer and Kude 2014) have
developed models of coordination called Bcoordination configurations^ and are exploring how
coordination configuration influences coordination effectiveness. Paasivaara and Lassenius
(2014) describe a very large-scale development initiative at Ericsson with 40 teams where four
types of communities of practice (Wenger 1998) are used to coordinate teams. A survey on
coordination in large-scale software teams found that respondents wished more effective and
efficient communication, as well as the importance of good personal relationships for coordi-
nation (Begel et al. 2009).

A management science study (Ingvaldsen and Rolfsen 2012) suggests that inter-group
coordination is a major challenge when groups are self-managing. Self-management involves
giving teams authority to decide how to 1) execute tasks, and 2) monitor and manage their
work process (Hackman 1986). Moe et al. (2009) describe challenges to self-management at
the team level and highlight challenges at the organizational level, such as shared resources,
organizational control, and specialist culture.

3 Method

We have chosen an interpretative embedded revelatory case study (Klein and Myers
1999; Runeson and Höst 2009; Yin 2014) to investigate the research question of how
agile methods can be adapted in the very large scale. There are few empirical studies on
how agile methods are adapted at the very large scale, and we seek new insights to
generate ideas for research agendas on agile approaches in very large-scale development.
We focus on one case that was described by practitioners as a particularly successful very
large programme with extensive use of agile methods.4 We selected a case where the
whole development programme was co-located in order to remove effects due to distri-
bution of teams. In the following, we refer to the case as the Perform programme, which
aimed to develop a new office automation system for the Norwegian Public Service
Pension Fund (the BPension Fund^). This programme ran from 2008 to 2012 and had at
most 12 development teams working in parallel. The development project was divided in

4 The programme is known for presenting their model at national agile development conferences, and is a
programme that was completed on time and budget.

Empir Software Eng

three parts: one carried out by an internal development unit (6 teams) and two other parts
conducted by consulting companies Accenture and Steria.5 We provide more details of
the project in the results section. After an initial meeting with the manager of the
development project from the Pension Fund, we met with project managers from
Accenture and Steria and were granted access to collect data from all three parties.

We chose an embedded study to gain further insight in topics described in section 2 which
are challenging in very large-scale programmes:

1. Customer involvement, because a very-large programme involves a number of require-
ments, stakeholders and developers.

2. Software architecture, because a very-large programme involves many developers and it is
a challenge to adjust main design decisions given many stakeholders.

3. Inter-team coordination, as very-large programmes involve a number of teams who handle
tasks with interdependencies and thus need methods that facilitate coordination.

Before starting data collection, we studied public presentations and an official report from
the programme in order to increase our understanding. We quickly realized that the programme
had a very complex organization with 175 people involved and a number of projects and
subprojects. Our data collection started after the project was finished, and all programme
personnel were then allocated to new projects. This created challenges in gaining access to
people and in that it had been over a year since some had worked on the project.

3.1 Data Collection

We chose to use two types of data for this revelatory study: Group interviews and documents:
First, for each topic in the embedded case study design (customer involvement, software
architecture, inter-team coordination), we organized three group interviews (Myers and
Newman 2007), one for each organization. The reason for three interviews on each topic
was that we knew from introductory meetings that there would be slightly different approaches
in the three development subprojects, and having meetings in each organization might have led
to more openness (and trust as discussed by Myers and Newman (2007)) than in joint group
meetings. Due to the explorative character of the study we primarily wanted groups in order to
facilitate a broader discussion.

We asked the three organizations to invite the most relevant people to attend each group
interview. This involved people with responsibility for the topic, for example from team level,
subproject level and programme level. At Accenture, the key persons working on architecture
were no longer working at the company. Table 2 gives an overview of the interview groups and
lists the number of participants for each group. In total, 24 people participated. At Steria and
the Pension Fund, some participated in several groups, making a total of 19 individuals. These
people had a number of roles in Perform, from project management, subproject management,
technical architecture, functional architecture, testing, development leadership, GUI, informa-
tion security, Scrum masters, and developers (See Table 2). Note that there is a bias in
participation towards employees in management positions (discussed in the limitations sec-
tion). However, many of the participants had started in the programme as developers and
assumed other roles during the programme. The participants selected where the ones who had

5 Now Sopra Steria.

Empir Software Eng

responsibility for the topics we discuss, but we do not claim to represent all views of stakeholders
on the topics. At the time of the data collection, all participants were seniors, with at least four
years of experience in development, architecture or management positions, and at least four years
of experience from their own organization. Intervieweeswere informed that the study is registered
by and performed according to specifications by the Norwegian Data Protection Official for
Research, which regulates collection and use of personal data material.

Two researchers participated in each group interview, and there was one interview guide per
topic (see Appendix A). We developed a timeline for the project, which was shown to the
participants so that they could remember key events in the project. The researchers had roles of
leading and moderating the discussion and taking notes. All interviews would start with
participants explaining their role in the project. One meeting at Accenture included only one
person and was conducted as a semi-structured interview (Myers and Newman 2007). One group
interview at Steria included six persons, and we used brainstorming techniques to ensure
contribution from everyone invited. Participants brainstormed on key events, on what they
thought was conducted well in the programme within the topic of discussion, and on what they
thought could be improved. All nine meetings lasted two hours and were recorded and tran-
scribed. We took pictures of drawings on whiteboards. This produced a total of 247 pages of
transcribed material. The transcripts were sent to participants for information and for comments.

Second were three documents: the official report after project completion, the internal
experience report (both from 2012), and the quality assurance report for the project, which was
written by an external consulting company in 2010. We chose to include these documents as
they provide overall descriptions of the programme such as planned organization, processes
and roles. The internal experience report provides main lessons learned by the programme, the
quality assurance report provides an assessment of main risks. In total, these reports contained
277 pages of text.

3.2 Data Analysis

We imported all interview transcripts and documents into a tool for qualitative analysis and did
a descriptive and holistic coding (Saldaña 2009) of the topic inter-team coordination. Three

Table 2 Participants in group interviews and interviews. In total, 24 project members participated in interviews

Theme Organisation Participants Roles present

Customer involvement Accenture 1 Functional architect
Steria 6 Functional architect, GUI

responsible, subproject
manager, technical
architects, test responsible

Pension Fund 3 Functional architects
Software architecture Accenture 0

Steria 3 Technical architects
Pension Fund 3 Chief architect, technical

architects
Inter-team coordination Accenture 2 Subproject managers

Steria 3 Functional architect, subproject
manager, technical architect

Pension Fund 3 Scrum master, subproject
manager, technical architect

Empir Software Eng

researchers read the relevant documents and did individual coding, and then we agreed on
coding in joint meetings. Units of text ranged from sentences to whole pages and were coded
into topics such as BScrum of Scrums^ and BMetascrum^. The results of this pilot was
presented and discussed with the rest of the research team, and we set up two research teams
with two persons each to code the material on customer involvement and software architecture.
Given the various topics and backgrounds of researchers, the level of detail in the coding
varied between the research teams.

As an example, the statement, "On an overall level, the teams worked quite similarly after
exchanging experience. So the Scrum boards were used quite similarly across the teams. There
were differences in colours, but the function was quite similar", was coded as Bboard
discussions^ and grouped with 37 other concepts under Binter-team coordination^. The
following passage was coded as Bresponsibility ,̂ "it was important that when teams got user
stories and were to detail test conditions… that everyone contributed to detailing, then it was
sent to project business for approval, and when you had the stamp from the business resource,
you had agreed on scope". This was coded with six other concepts under the category
Bparticipation^, which was one of seven concepts under Bpractice^, which again was one of
four main categories under Bcustomer involvement^. In total, there were 29 concepts related to
this topic and 17 concepts related to software architecture.

After coding the material, we discussed what the most interesting findings were in the
material. This was then made into a slide presentation, and feedback meetings were conducted
with all three organizations Accenture, Steria, and the Pension Fund for member checking.
These meetings were recorded and partially transcribed to add further data material, which led
to small revisions of the first findings. Reactions to findings included surprise with the number
of coordination arenas identified in the study, and comments on the thorough description of the
architectural work in the programme.

4 Results

We first provide a description of the Perform programme before presenting results on our four
areas of data collection: programme organization, customer involvement, software architec-
ture, and inter-team coordination.

4.1 The Perform Programme

The Perform programme was conducted by the public department the Norwegian Public
Service Pension Fund (the BPension Fund^), which needed a new office automation system.
The main arguments for initiating the programme were public reform that required new
functionality in office automation, and the existing office automation system was on a platform
that was to be abandoned. When the programme started, the content of the public reform was
not known. This was the main reason for choosing agile development practices for the project.
The public department has about 380 employees and provides 950,000 customers with several
types of services. The department integrates heavily with one other public department.

Perform was initiated to enable the department to provide accurate and timely services to
customers and ensure a cost-effective implementation of the reform. Because of the reform, the
programme had a strict deadline. It is one of the largest IT programmes in Norway, with a final
budget of about EUR 140 million. The programme started in January 2008 and lasted until

Empir Software Eng

March 2012. The project involved 175 people, of whom 100 were external consultants from
five companies.6 The programme used both time and material and target price contracts for
subcontractors. About 800,000 person-hours were used to develop around 300 epics, with a
total of about 2500 user stories. These epics were divided into 12 releases as in Fig. 1.

As an example, release R8 contained coupling of workflow in the office automation system
to the archive solution, a self-service solution for new legislation, simulation of services
towards external public departments, and first data warehouse reports on new data warehouse
architecture. Most user stories were identified prior to the first release but were supplemented
and reprioritised for every release.

The existing office automation system was client/server-based and written in C. The new
system is a service-oriented system written in Java and provides a richer interface using Flex.7

The database from the old system was kept, but the data model was changed. The regulations
and legislations are implemented in the new system as rules using JRules. The system is
integrated with a new document archive and with systems from another public department.
Figure 2 gives an overall description of the existing solution and the new solution.

The programme was managed by a programme director who mainly focused on external
relations, a programme manager focusing on the operations, and a controller and four project
managers responsible for the business, construction, architecture, and test projects (see Fig. 3):

& Business - Responsible for analysis of needs through defining and prioritizing epics and
user stories in a product backlog. This project was manned with product owners and a total
of 30 employees8 from the line organization in the department. Functional and technical
architects from development teams also contributed to this project.

& Architecture - Responsible for defining the overall architecture in the programme and for
detailing user stories in the solution description phase. Consisted of a lead architect and
technical architects from the feature teams. Suppliers Accenture and Steria participated on
a time & material basis.

& Development - Divided into three subprojects: one led by the Pension Fund (6 teams) with
their own people and people from five consulting companies, and the two other subproj-
ects led by Accenture (3 teams) and Steria (3 teams). The feature teams worked according
to Scrum with three-week iterations, delivering on a common demonstration day. The
feature teams had roles such as Scrum master, as listed in Table 3. In addition to the 12
feature teams, the project had an environment team responsible for development and test
environments.

& Test - Responsible for testing procedures and approving deliverables from the development
teams. Consisted of a lead tester and test resources from development teams.

There were also projects for communication and adoption to prepare users for the new
systems, in total six projects.

6 Accenture and Steria were the main external consulting companies, with responsibility for their own subproj-
ects on development as well as providing personnel to other projects.
7 Flex was developed by Adobe as a framework for Bexpressive web application^ and is now an open source
product.
8 The number of people involved in the project varied; we use numbers in the peak period in the project from
2009 to 2011.

Empir Software Eng

As shown in Fig. 3, the programme used a matrix structure where the business and
development projects took part in the architecture and test projects. This matrix
structure meant that a feature team would then mainly take part in project development,
while also devoting resources to projects architecture (through the technical architect),
business (through the functional architect), and test (through the test responsible) as
shown in Table 3.

The programme started working at the main office of the public department, but in 2009, it
was moved to a separate office building located in the same city. Here, all teams were
organized around tables as shown in Fig. 4.

Initially, the development process included the four phases described in Fig. 5:

& Analysis of needs - This phase started with a walkthrough of the target functionality of a
release and identification of high-level user stories. Product owners prioritized the product
backlog.

& Solution description - The user stories were assigned to epics, and the user stories were
described in more detail, including design and architectural choices. User stories were
estimated and assigned to a feature team.

& Construction - Development and delivery of functionally tested solutions from the product
backlog. Five to seven iterations per release.

& Approval - A formal functional and non-functional test to verify that the whole release
worked according to expectations. This included internal and external interfaces as well as
interplay between systems.

Fig. 1 Timeline for the Perform programme, showing 12 releases during the four-year period from initiation in
January 2008 to completion in March 2012

Fig. 2 Overall systems description of old and new solutions. The database was kept, but the data model was
changed. The rules engine and the external web client were new

Empir Software Eng

To keep the schedule of the project, solution descriptions needed to be ready in time
for the feature teams. This meant that releases were constantly being planned, con-
structed, and tested. Thus, given the roles in Table 3, a feature team would constantly
be engaged in construction for release Bn^, approving delivered functionality in release
Bn-1^, and analysing needs for the next release (Bn + 1), as shown in Fig. 5. After
approval from the programme, new releases were acceptance tested, set in production,
and underwent an approval phase before being accepted by the operational IT section of
the department.

4.2 Customer Involvement

The main arena for customer involvement in Perform was the interface between business and
architecture subprojects and the analysis of needs and solution description phases. We found

Fig. 3 The Perform Programme with four main projects: Business, Architecture, Development, and Test. The
figure shows the matrix organization of the programme, with overlapping work between projects. 12 develop-
ment teams worked in the programme at the peak. From 2009 to 2011 more than 150 people were working in the
programme. The Development project was divided into three subprojects managed by the Pension Fund (6
teams), Accenture (3 teams) and Steria (3 teams)

Table 3 Roles in the feature teams and how the roles at team level connect to the main projects shown in Fig. 3

Role Description

Scrum master Facilitated daily meetings, iteration planning, demonstration and
retrospective

Technical architect Responsible for technical design, working 50% on this and 50%
on development. Participated in project architecture

Functional architect Responsible for detailing of needs. This role was usually
allocated 50% to analysis and design, and 50% to development.
Participated in project business

Test responsible Made sure that testing was conducted at team level: unit tests,
integration tests, system tests and system integration tests.
Delivered test criteria to the project test

Developers 4–5 developers were allocated to a team (a mixture of junior
and senior developers)

Empir Software Eng

three key characteristics of this work: first, that the solution description was developed using
teamwork; second, that it was conducted continuously and iteratively; and third, that the
boundaries between analysis of needs, solution description, and construction were blurred. We
describe each of these characteristics in the following.

Fig. 4 Open work area where the development programme was situated from 2009 until project end in 2012.
The figure shows the status when there were 11 development teams (Accenture 1–3, Steria 1–3, Pension Fund1–
5). Accenture and Steria had separate project management tables, while Pension Fund’s project management
(PM) was located with programme management. Separate tables for projects business, architecture, and test

Fig. 5 Initial development process. From early in the programme, while working on release Bn^, the teams
would also work with approving delivered functionality and analysing needs for the next release

Empir Software Eng

4.2.1 Solution Description Teams

The solution description team included people who participated in the construction and people
with relevant business skills from the customer organization. One informant described their
role as being^ in front of the development team, before they start Sprint planning, we make a
functional solution description with design of screens, error handling, services, conceptual
and logical data model^ (functional architect). Membership could also span contractors: BIf it
was only Steria that was involved, then it [solution description] was a business architect, the
business representative, and some representatives from the Steria construction teams. If the
work spanned contractors, we would involve people from Accenture, Steria, or the Pension
Fund^ (technical architect). In addition, other people believed to be particularly knowledge-
able for the work to be planned could be invited.

At least one member from the feature team (usually the functional architect) would
participate in the solution description team. Solution description work was spread among
construction team members: BIt wasn't one person's responsibility the whole time. It was
natural for one to do solution description for a while and then to change it to another from the
same team to ensure that everybody knew what we were working on^ (technical architect).
This practice of involvement reduced the need for overly detailed solution descriptions.
Another benefit was pointed out: BIt gave good continuity in the work and helped ensure that
the construction was smooth and easy^ (functional architect).

This was seen as an effective practice for the program regarding knowledge sharing and
collaboration, and was taken into account during iteration planning. However, it was chal-
lenging for the feature teams because they had to give up team members for a long period—
often the most skilled and often in the last phase of the iteration.

4.2.2 A Continuous and Iterative Process

Solution description was a continuous process in two dimensions. It was continuous
inside one release, and it was going on in several releases at the same time. Solution
description for release n would start while construction for release n-1 was still
underway (Fig. 5).

We learned that solution description work in Perform was characterized as Bfeeding
the machine^. The metaphor effectively conveys the property of the construction
project as a machine that requires raw material (user stories) to produce products
(construct the software system). The main purpose of solution description in Perform
was to ensure that the product backlog contained enough high priority work to fill
one to three iterations for the feature teams. Furthermore, it was essential to give the
machine sufficient raw materials to avoid idle time. Most of the development project
members were allocated full-time, and therefore, the cost of running the project
Bengine^ would be constant, whether the backlog was empty or filled.

The detailing level in solution description was subject to change during the project.
As the feature teams gained experience, they understood more about the problem
domain and less detail was required to convey the essential parts of the tasks. We
learned that solution description work became more efficient because Bthey [the feature
teams] understood what we wanted^ (functional architect). Informants expressed that it
is much easier to communicate effectively when you know the audience. Furthermore,
solution description was an iterative activity based on a pragmatic ambition to Bdetail

Empir Software Eng

as much as time permits^ (functional architect). Hence, the level of detail was limited
by the time available.

Tensions arose from working with a pipeline of completed solution descriptions with as few
as one to three iterations. There were noticeable differences between the three suppliers
Accenture, Steria, and the Pension Fund in terms of preferences for up-front planning.
Accenture had a preference for more detailed, up-front specifications. Accenture wanted
reduced risk: BRegarding Pension Fund, we had to ‘discipline’ the customer somewhat, to
clarify what they wanted before we took it into our list of committed work, so that we could get
the least amount of rework^ (functional architect). Steria, on the other hand, was comfortable
with more open specifications and continuous collaboration to resolve the details of the
software in construction. The Pension Fund had more up-front descriptions than Steria, but
less than Accenture.

4.2.3 Blurred Boundaries between Phases

Each release consisted of four consecutive phases: analysis of needs, solution description,
construction, and approval. BWe could talk to anyone who might have the answer^ (technical
architect). Customer representatives could approach the feature teams if they needed to discuss
or clarify some issues. As a result, the boundaries were blurred between high-level require-
ments, solution description, and construction: BIn practice, high-level requirements and
solution description merged more and more" (another technical architect). This enabled more
efficient collaboration. The same technical architect stated, "As the contractor starts to
understand more about the context, the customer's real problem is more visible, and this
means we can find a solution together. Fast.^ Blurring the boundaries also gave another
interesting result. It became possible for people working on solution description to question the
output from the high-level requirement work. A contractor could challenge the Pension Fund:
BBut could you do it this way instead? Why do it like this?^ (technical architect). Project
participants found that this way of working stimulated creativity.

The iterative style of detailing the solution descriptions also contributed to blurring the
boundaries. For example, the acceptance criteria were supposed to be defined in the solution
description phase but were in practice often defined during construction by the teams. Our
respondents were unable to agree on what phase the definition of acceptance criteria belonged
to. Sometimes, the solution descriptions were too vague to enable construction and were
passed back for revision.

We found pragmatism in the allocation of tasks to construction teams. We learned that
often, the most challenging tasks were given to the Pension Fund feature teams because they
had more domain knowledge and a more flexible contract model: BIf there were many changes,
if there were complicated modules, and we didn't quite know how to design them, then the
Pension Fund teams would get these tasks. I experienced the Pension Fund as being more
flexible … without the same constraints in relation to budgets and contracts^ (functional
architect).

4.3 Software Architecture

Two topics emerged as primary characteristics related to managing work on software archi-
tecture: the tension between up-front and emergent architecture, and the demanding role for
architects in large-scale agile projects.

Empir Software Eng

4.3.1 Up-Front Architecture

In February 2009, a new chief architect entered Perform. At this point in time, the architecture
of the new system was described in terms of architectural strategies but with little compliance
in the system under construction. The core principle of the initial architecture was Bservice
orientation^, but it resulted in a complex system with many dependencies and high vulnera-
bility in the event of changes. It was during this period that the decision was made to scale up
Perform to more teams. The chief architect’s most pressing concern was to create a system
architecture that allowed the maximum parallelism of work in the different teams by Bavoiding
people stepping on each other’s feet^.

To account for this need, the chief architect and his team created a simpler system
architecture focused around service modules and a horizontal unified Bwork surface^ on top.
The GUI layer—the Bwork surface^—made use of all the service modules. The architecture
also established rules of ownership to specific parts of the database. An important benefit of
the architecture was that it helped to separate the work of different teams into different parts of
the code. In Perform, we found that the software architecture for the most part allowed the
teams to work autonomously and effectively.

Even if this architecture manifested important decisions for the continued work in the
teams, there were tensions stemming from having too little up-front work. Our respon-
dents stated wishes for more Bproof of concept^ experiments before new technologies
were adopted. A notable example was that the Flex technology used in the GUI layer had
not been properly understood for it to be used effectively and establish sound
Bapplication architecture guidelines^. Our respondents argued that the lack of proof of
concepts was due to the contract model: BThis was partly governed by the payment
model and the program's execution. If they had allocated resources for concept trials
that possibly would have to be thrown away, or that resources had been allocated for the
development of multiple candidate solutions—but resources were not allocated for that.^
(subproject manager, from feedback session).

At the end of the program, there was much work in optimizing the GUI layer code to obtain
acceptable performance. Performance had been largely neglected for the main part of the
programme but received significant attention in the final stages. This triggered some re-work
for the architecture team: BWhen we started to use this technology [Flex], we established an
architecture that was fit only for small applications and small solutions. It was not appropriate
for us when we had to fill it up with more logic and GUI elements^ (functional architect). Also,
significant refactoring was done in the object-persistence layer9 on top of the relational
database management system for performance reasons. These refactoring efforts were pack-
aged into specific user stories for non-functional requirements.

The programme put emphasis on common architectural principles: BThere needs to be
openness with regard to suggesting architectural ideas from ‘below’ [in the teams], but you
must also be able to convey merits of these ideas to convince the people in the appropriate
forums so that it ends up as a unified architecture—so that each team does not use their own
solutions^ (technical architect, feedback session).

The main architectural structure of the new system remained stable throughout the project.
Mostly, the subsequent architectural work was local within the service modules.

9 Using the Hibernate technology.

Empir Software Eng

4.3.2 The Demanding Role of Architects in Very Large-Scale Programme

We learned that the architect role in very large agile projects is demanding because it requires
continuous coordination and negotiation between many stakeholders, including representatives
from the business side and the developers. The architect must be able to Bsell^ technically
sound designs and technologies that may have short-term negative impacts on project progress
and costs. Another tension was the approach to decision-making in the architecture project. For
the most agile-oriented participants, this top-down decision-model came into conflict with their
own ambitions to satisfy the business representatives. Team members pointed to a tendency of
project architecture to step away from the discussions with business representatives when
development teams pointed out that a particular architectural design had cost consequences for
the business representatives. When developers argued to the business representatives that a
proposed architectural approach would have penalties in terms of cost or performance,
subproject architecture responded that it was unfair of developers Bto hide behind the business
people^ instead of complying with architectural principles.

Architecture workwas increasinglymore difficult for project architecture as well. In the last half
of the second year, the pressure to deliver functionality increased: BAt this point, project manage-
ment and other management was concerned about progress … It became much more difficult to
promote improvements [in the architecture]^ (technical architect). BYes, more difficult. And then
came these issues regarding technical debt, you know? Issues that are horrible in an agile setting^
(technical architect). Over time, technical debt would accumulate because the pressure to deliver
functionality was so high. Due to the strict schedule in the programme, the business needs were
often given priority to long-term architecture. Functionality was given priority over refactoring.We
learned that team architects took steps ‘on their own’ to integrate refactoring into normal work
tasks: BFor me it was equally important to establish the right attitude in the teams regarding code
quality as it was to make the business side allocate resources for refactoring^ (technical architect,
feedback session).We see that architectural work in agile projects is more continuous, and requires
more integrative collaboration with a wider range of people.

The two suppliers Accenture and Steria used different approaches to architecture work during
the project. Accenture made many architectural decisions during the solution description phase,
while Steria delayed many such decisions until the construction. Accenture’s motive was to
ensure the highest possible efficiency of the teams’ work during the Iteration. The culture in
Steria appeared more flexible and collaborative, seeking rather to clarify issues as they emerged.

4.4 Arenas for Inter-Team Coordination

From our data material on coordination and knowledge-sharing between feature teams in the
development programme, we identify three main findings. First, there were a number of arenas
involved in order to achieve coordination and knowledge sharing. Second, the use of these
arenas changed over time, and third, many emphasize the importance of the informal coordi-
nation arenas, which were enabled by the open work area. We describe results from each of
these three areas in the following.

4.4.1 A Number of Coordination Arenas

Each feature team followed Scrum practices like having a planning meeting, daily stand-up
meetings, retrospectives, and demos for each three-week iteration. There were a number of

Empir Software Eng

arenas in use to coordinate work and share knowledge between the teams, as shown in Table 4.
This list includes mainly formal arenas such as the Scrum of Scrums and Metascrum at a level
above the Scrum of Scrum. There were also several informal arenas such as experience
forums, lunch seminars, and instant messaging. Some of the arenas were only used within a
subproject, such as the Bexperience forum^ at Accenture and the Btechnical corner^ at Steria.

4.4.2 Changing Arenas Over Time

A characteristic of the Perform programme was that arenas for coordination changed over
time. "There were meetings that came and disappeared and some that remained" (functional

Table 4 Coordination arenas used in the Perform project

Arena Description

Board discussions Every team had a board with tasks and status on one side and free space for
drawing on the backside. The backside was used frequently for informal
discussions

Demo Demonstration of developed user stories after every iteration, from morning until
lunch. Everyone could participate. 10 min devoted to each team. For rapid
feedback, feature teams started organizing Bmini demos^ for participants in the
business project within iterations

Experience forum A meeting forum at subcontractor Accenture for Scrum masters, development
manager and agile coach focusing on development method

Instant messaging Instant messaging to all participants was set up after a need was identified in an
open space session. Was used for open technical questions but also for social
activities such as wine lottery

Lunch seminars Seminar where 2–3 people gave short presentations during lunch on topics such
as new architectural components, project management or on how to follow up
on a team

Masterplan The programme established a common product backlog as a master plan, with the
2500 user stories organized into 300 epics. The master plan was maintained in
an issue tracker

Metascruma Two meetings per week with project managers from the development,
architecture, test and the business projects, as well as subproject managers
from the development projects

Open space technology A process where all participants suggested topics for discussion, which is made
into an agenda and participants are free to join discussion groups of interest.
Used per release during parts of the project

Open work area From 2009, the project with all teams and project management was situated in an
open-plan office space on one floor

Retrospectives Mainly used on team level, but a few times on subproject level. All retrospectives
were documented in the programme wiki

Rotation of team members Members sometimes rotated between teams, in particular in build-up phase when
existing teams were split and new members added to all teams for a subproject

Scrum of Scrums All three subprojects had Scrum of Scrum meetings with their teams, 2–3 times a
week. Scrum masters and project manager attended, and sometimes others
such as product owners and test managers

Technical corner Architectural briefings in the subproject at Steria, where team architects briefed
the teams. About 1.5 h, used in the beginning of the project

Wiki Architectural guidelines, team routines, cross-team routines, system
documentation, reports from retrospectives, solution descriptions and func-
tional tests were documented on the project wiki

a Note that the forum Metascrum is used here with another meaning than the definition by the Agile Alliance,
where "meta Scrum" and Scrum of Scrums are synonymous. Metascrums was at project level, while Scrum of
Scrums were at subproject-level

Empir Software Eng

architect). There were information needs that the programme saw was not covered, and new
arenas such as the instant messaging were then established. Also, arenas were abandoned
because the programme found that they were no longer useful. Open space is an example of an
arena that existed for a while and then was abandoned. Some state that this arena had an effect:
"During a phase, I felt it had a mission, in particular to motivate people" (subproject
manager). Others were more critical of the practice: " …But in total, I feel that we did not
get much out of it. Maybe we got to know each other better. Maybe." (another subproject
manager).

Several commented on the change from formal mechanisms to informal mechanisms. Over
time there was "more usage of boards, more common coffee breaks, more lunches" (subproject
manager). Some arenas changed function over time. Internal meetings within the Accenture
subproject developed over time into an arena for sharing technical knowledge. This illustrates
that there was a change in both the arenas and in how the arenas functioned over time.

4.4.3 Open Work Area

Beginning in 2009, the project was co-located on an open-plan office floor. The teams were
organized around tables, and project management for the whole programme and for the
projects were on the same floor (see Fig. 5). Many stated that being in one open work area
contributed to efficient coordination and knowledge sharing: "It was the best possible solution
that the project managers were at one table, in immediate reach of the development teams"
(subproject manager). Another subproject manager stated, "I think being on the same floor is
important. That is something I notice now being at [another large development programme],
where we are not located on the same floor. It is much harder to know what is going on.".

We learned that many of the decisions made in the project were discussed between relevant
stakeholders informally and then officially decided upon in one of the formal arenas, the daily
Scrums, Scrum of Scrums, or the Metascrum. Although mainly seen as vital to coordination
and knowledge sharing, loud discussions on team tables in the open landscape led to some
starting to use earphones in order to avoid noise and to indicate that they were not to be
disturbed while working.

5 Discussion

Our research question is, BHow can agile methods be adapted in the very large scale,
regarding programme organization, customer involvement, software architecture and inter-
team coordination?^ We defined very large scale as projects or programmes involving more
than ten development teams, with a high number of actors, and a large number of systems and
interdependencies. The scale of such programmes leads to challenges including involving the
customer, maintaining software architecture, and coordinating a large number of teams,
projects, and subprojects. The Perform case shows some of the characteristics of the study
by Batra et al. (2010), who describe making use of both traditional and agile methods. We give
an overview of our findings in Table 5.

The Pension Fund decided to employ agile methods in the Perform programme because the
content and extent of the public reform that the software system would support were unknown.
We have provided a thorough description of the method adopted in the Perform programme
and elaborated on some of the tensions that we propose are especially interesting themes for

Empir Software Eng

future research on large-scale development projects. Based on our findings, we formulate
research questions that should be addressed further in future research in three areas: customer
involvement, learning and change, and inter-team coordination:

5.1 Customer Involvement

Agile methods describe the on-site customer to identify and prioritize features, provide
feedback, and guide change through the course of the development (Vinekar et al. 2006).
Customer involvement is a challenge in large-scale development efforts (Batra et al. 2010).
Many representatives are needed, the representatives need to be aligned, and they must be
available to all the teams. In large-scale projects the alignment challenge is considerable
because different stakeholder groups have been found to have different priorities (Barney
and Wohlin 2009). Further, a fragmented view of the system that each customer representative
may have is likely to impact the project negatively (Ramesh et al. 2010), and the dependence
on the on-site customer may cause project failure if the on-site customer is misaligned with the
stakeholder goals (Vinekar et al. 2006). While each project in a large-scale effort may have
success at the project level, there could still be overall failure at the program level if the
projects are not aligned. The Perform program consisted of six subprojects and 175 people,
which made alignment a challenge.

The issue of scale and availability was addressed by including 30 product owners and
customer representatives from the Pension Fund that worked full time in the program. They
were all in the Bbusiness^ project and responsible for analysing needs through defining and
prioritizing epics and user stories in a product backlog. Locating them in the same office space
as the construction teams ensured their availability. Further, alignment among the on-site
customers and between on-site customers and construction were supported throughout the
whole program by 1) a number of arenas, 2) a continuous and iterative solution description
process, and 3) the blurred boundaries between the phases of analysis and needs, solution
description, and construction. Our findings are consistent with Barney and Wohlin (2009) who
found that open and transparent dialogue and cross group communication as essential for
aligning the different stakeholder groups.

Alignment within and across the six projects grew from the formal and informal arenas,
continuous cooperation, and the constant opportunities to ask anyone about clarifications. Both
customer representatives and developers could exchange and diffuse shared insights and
knowledge through their network; that is, they could use their social capital (Wohlin et al.

Table 5 Main findings in the Perform programme

Area Finding

The Perform programme Matrix structure
Development phases

Customer collaboration Solution description teams
A continuous and iterative process
Blurred boundaries between phases

Software architecture Up-front architecture
Demanding role of architects in large programme

Inter-team coordination A number of coordination arenas
Changing arenas over time
Open work area

Empir Software Eng

2015) when aligning on all levels. Involving the teams in the solution description was
important for the program success because it ensured alignment between teams and gave them
end-to-end responsibility for features by involving them in the formulation of its requirement
until the release. The importance of end-to-end responsibility in large-scale agile development
is also consistent with Olsson et al. (2014) in their study of 30 teams in a large-scale program at
Ericsson. Because there was always solution description work going on in the Perform
program, the process can be understood as a continuous planning activity involving construc-
tion and business. Such continuous planning ensures alignment between the needs of the
business and software development (Fitzgerald and Stol 2017).

While the programme under study enabled the concept of the on-site customer in practice,
further research is needed to better understand the challenge of alignment between the on-site
customer representatives and between on-site customer and construction in large-scale pro-
jects. Especially when co-location is not possible or feasible, if there is a high degree of
uncertainty of what the customer wants, or there is a need for continuous deployment. We
therefore propose the following research question for further investigation:

How can alignment be ensured among customer representatives and between customer
representatives and developers in very large-scale programmes?

5.2 Learning on Architecture and Process

The system architecture and the development process are two vital areas of software devel-
opment that could undergo changes during a development programme. For architects, it is
difficult to balance concerns with delivering early customer value and taking care of over-
arching quality requirements (Hopkins and Harcombe 2014). The Pension Fund had to strike a
balance and support both change and stability simultaneously (Vinekar et al. 2006). A system
architecture defined up-front gave individual teams a stable working environment with room
for teams to design their own local sub-architectures that probably contributed to team
efficiency. Still, there were tensions from challenges that occurred because there had been
few proof-of-concepts with core technology. With respect to the development process, many
aspects remained unaltered. Team roles and iteration lengths are examples of this. Also, we
found few changes in the larger-scale structures in Perform. The masterplan (Table 4)—the
general matrix structure of the programme as well as the overall system architecture—
remained largely unchanged during the programme period (Table 5).

Learning and change were evident at both the inter-team and programme levels in
the Perform programme. At the inter-team level, we described that the coordination
arenas changed over time, and there was a degree of autonomy regarding local
architectural designs within the service modules. Further, deficiencies in information
dissemination were met with active experimentation with new arenas for communica-
tion and coordination. Those arenas that did not bring value were abandoned. The open
work area supported fast communication in informal meetings. Another example of
learning that led to change is that the level of detail in solution descriptions was
gradually reduced. The mutual understanding of the domain grew so that solution
descriptions could be expressed more succinctly. At the programme level, Perform
had mechanisms in place that enabled learning through numerous arenas for coordina-
tion and knowledge sharing. Perform gradually transformed towards an organizational
culture with more trust and collaborative relationships. For example, the contractors

Empir Software Eng

took on a more collaborative role later in the programme where they were free and
invited to question the assumptions underlying Pension Fund’s requirements.

Perform was a learning-centric programme, yet its overall architecture and main develop-
ment process remained unchanged for the bulk of the programme’s duration. It is unclear how
a more technically complex software system would impact the use of agile methods at such a
large scale. An interesting research question is:

How can large-scale agile programmes enable learning and change in architecture and
processes at inter-team and programme levels?

5.3 Inter-Team Coordination

Self-managing teams offer potential advantages over traditionally managed teams because they
bring decision-making authority to the level of operational problems and increase the speed
and accuracy of problem solving (Moe et al. 2009). In large projects, there are a number of
problems that span development teams as well as decisions that affect a number of teams.
Perform found a balance between self-management and a centralized structure. In the results
section, we described how the matrix structure in the programme enabled coordination of
development teams through roles in the teams and special arenas for the project’s business,
architecture, and test. This enabled direct communication between business and development,
which we called blurred boundaries between phases.

A number of arenas in the early phase of the programme established communication andmade
it easy for team members to mutually adjust to activities in other teams. The open work area
enabled quick oral coordination, but the extra roles (such as functional architect) and arenas (such
as the Open Space) led to less autonomy for the team. The introduction of extra roles is a threat to
self-management as the teams are instructed to establish certain roles, which Hackman (1986)
refers to as managing their own work process. Further, teams needed to provide resources for
projects other than development and had to engage in and accept decisions made in the projects
that affected all team members. An example is the architectural guidelines and the overall
architecture, which we have described as mainly being decided up-front. The standardization
of roles and arenas across the project was primarily done to ensure needs at the programme level.

Contrary to findings reported by Paasivaara et al. (2012), we found that the Scrum of
Scrums was perceived as a well-functioning coordination mechanism, but we could speculate
that this could be because of the size or the focus on a large number of total arenas. We did not
find use of Communities of Practice, which is described as a successful characteristic of an
even larger development effort at Ericsson (Paasivaara and Lassenius 2014). We do not have
insight on the total effectiveness of the coordination arenas in the Perform programme beyond
knowing that the programme was recognized as a success. We could speculate that the
dynamic nature of coordination with a large number of arenas made coordination efficient
(Jarzabkowski et al. 2012).

It seems the programme found a good balance between inter-team coordination and self-
management. However, this is a topic that deserves further research in describing other
approaches and also examining the matrix structure applied in the Perform case in further
detail. We pose the following research question for further investigation:

How do multi-team development programmes balance inter-team coordination and self-
management?

Empir Software Eng

5.4 Limitations

We use the most relevant principles for interpretative field research from Klein and
Myers (1999) in discussing limitations of this study. Given the revelatory nature of this
study, we have not put emphasis on limitations related to theory.

A main challenge in studying very large-scale programmes is the size of the case,
and thus a challenge to understand both whole and parts (principle of hermeneutic
circle). We have sought to address this by building an understanding of the whole
through a thick description of method adaptation, and building understanding of three
critical themes in an embedded case study design. Given the choice of three themes,
there are a number of other areas that we have left unexplored, such as how quality
was handled at the very large scale.

We have sought to satisfy the principle of contextualization by providing a thick
description of the adapted development method in the programme, describe the
development of key ideas on agile development in small teams in the theory and
show how these ideas are present in the very large programme in presenting the
empirical results.

Another limitation is related to the interaction between researchers and subject. We
relied on group interviews and documents and as two data sources. For the group
interviews, there is a potential elite bias (Myers and Newman 2007) in our data
collection as the people involved in the programme at the end had technical or leader
roles. We have avoided asking questions to evaluate the programme outcome but
asked participants to reflect critically on practices and concrete events. We also had
fewer participants from Accenture than from the other companies, which could have
given us less variety of opinions. Further, the internal authors of documents could
have an interest in portraying the programme as successful.

With the focus on three themes, we have aimed at identifying multiple interpreta-
tions by the different groups who participated in the programme, for example how
architects and business project participants had different opinions on what was im-
portant at stages in the programme.

To discover biases and distortions in our findings (principle of suspicion), we have
separated group interviews and presentation of findings to Accenture, the Pension Fund
and Steria. Further, we have conducted workshops between researchers where all have
had particular insight in one of the three main topics, thus sought to identify miscon-
ceptions from several angles.

Table 6 Items from research agenda (Dingsøyr and Moe 2014) and suggested research directions based on
findings in the Perform programme

Research agenda Suggested research direction

Customer collaboration How can alignment be ensured among customer representatives and between
customer representatives and developers in very large-scale programmes?

Knowledge sharing and
improvement

How can large-scale agile programmes enable learning and change in architecture
and processes at inter-team and programme levels?

Inter-team coordination How do multi-team development programmes balance inter-team coordination and
self-management?

Empir Software Eng

6 Conclusion

The first main contribution of this study is a thorough description of a very large development
programme that used a combination of agile and traditional methods. We believe this is an
important contribution for practitioners seeking to conduct very large programmes in order to
qualify advice in approaches such as agile methods. Our description of the Perform pro-
gramme shows one model to organize very large-scale development, which to our knowledge
is by far the most rich and detailed description available. We show how agile methods are
adopted with additional processes such as the ones focusing on customer involvement and
software architecture, and how inter-team coordination was organized with a number of extra
arenas and extra roles at feature team level. This description will be valuable for students to
learn how methods have been adopted to a specific context in very large scale.

The second contribution is showing some phenomena in organizing large programmes that
are challenging at a very large scale. For the research community, we suggest questions to
explore in the future in Table 6, and we hope that there will be more case studies to provide
industry practitioners with research-based advice that can complement the practitioner-based
advice that is available today. Topics of interest include how practices are adopted to scale, and
how the context of development programmes influence the scaling approach. In future studies
of very large-scale development programmes, we hope that researchers will be able to perform
longitudinal studies to focus on variations over time and use a larger set of data collection
methods such as participant observation to address the limitations that we have listed.

Acknowledgements We are very grateful to all participants in the group interviews. Further, we would like to
thank colleagues Svein Hallsteinsen for taking part in data collection and analysis of software architecture and
Tore Dybå for taking part in data collection and analysis of inter-team coordination, and both for taking part in
discussions of the case. Thanks to master student Espen Andreassen at the Norwegian University of Science and
Technology for conducting an independent analysis on parts of the material used in this article. We also thank
Knut Rolland at SINTEF and Saskia Bick at the University of Mannheim for comments on earlier versions of this
manuscript. Darja Smite at SINTEF provided great assistance in redesigning the figures to improve clarity. We
would also like to thank anonymous reviewers for a number of suggestions for improvements. The work was
supported by strategic internal projects at SINTEF on large-scale agile development and the project Agile 2.0
supported by the Research council of Norway through grant 236759 and by the companies Kantega, Kongsberg
Defence & Aerospace, Sopra Steria, and Sticos.

Appendix: Interview Guides

Customer Involvement

<Introduction>
Which role and tasks did you carry out in the programme?
What was your responsibility?
<Timeline exercise to place main events>
Brainstorm: What worked well in the programme? What could have been better?
How do you define Bsolution description^?
What were the inputs and outputs to the Bsolution description^?
Who was involved in solution description and what were their roles?
What activities were carried out?
When were these activities carried out?

Empir Software Eng

How did you coordinate work?
What kind of decisions were made?
Which role did the customer have in these decisions?
How were participants from construction involved?
How were architects and others involved?
How did you handle uncertainties in requirements and technology?

Software Architecture

<Introduction>
Which tasks did you have in the programme?
How would you describe the overall architecture in the programme?
<Timeline exercise focusing on the architecture>
How do you define Bsoftware architecture^?
How do you see the relationship between architecture and product characteristics?
What triggered events in the timeline with respect to architecture? (practices? meetings?
decisions?)
Who were the architects in the programme (static role/dynamic?)
Who were the main stakeholders?
How were decisions made? Who made decisions?
How were trade-offs handled?
Who gave premises for architectural work? How did you obtain Binput^ for architectural
work?
How was the architecture documented?
Did architectural decisions have an impact on the programme?
How was architecture communicated?
How did developers relate to the architecture?
What main architectural decisions were made?
Were there changes to the architecture over time?

Inter-Team Coordination

<Introduction>
Organization
* Draw teams and communication arenas between teams
* Who was sitting where?
Timeline exercise
* Important events in the project (in general).
Retrospective
* What worked well?
* What was challenging?
Inter-team coordination:
* How was the work organized in your part of the project?
* What kinds of dependencies were there between the teams in your part of the project?
(examples?)

* How were dependencies managed? (examples?)

Empir Software Eng

* What was managed in established fora and what was managed outside of the fora?
(examples?)

* Who were involved in managing dependencies between teams? (examples?)
* Did you encounter challenges with managing dependencies? (examples?)
* Did you change the way you managed dependencies during the project? (examples?)
* What practices do you think were most important in order to manage dependencies
between teams? (examples?)

* Are there any practices you think had little importance for managing dependencies?
* How did the division of the project into three main parts influence the coordination
between teams?

* Were there differences in inter-team coordination across the subprojects?
* Scrum of Scrum
* Metascrum
* Architecture forum
* Test forum
* Requirement forum
* Open space meetings
* Unofficial fora? Direct contact
* Documents?
Frequency of meetings/persons involved/time spent
Knowledge sharing:
* What type of knowledge was important to share between teams in this project?
* What kinds of practices were used to share knowledge?
* How would you evaluate the different practices used?
* Was there any knowledge that was difficult to share?
* Is it possible to identify Bknowledge communities^ within the project?
* Which of these communities were official and which were unofficial?
* How was the work organized within the communities?
* How was knowledge sharing influenced by having several companies working together
on the project?

* Which knowledge sharing arenas would you argue were most important for the project?
* Did a team know what other teams were working on?
* Were you able to shift workload across teams? Why was this easy/hard?
* Tool support?

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

References

Abrahamsson P, Babar MA, Kruchten P (2010) Agility and architecture: can they coexist? Introduction. IEEE
Softw 27:16–22

Barlow JB, Giboney J, Keith MJ, Wilson D, Schuetzler R, Lowry PB, Vance A (2011) Overview and guidance
on agile development in large organizations. Commun Assoc Inf Syst 29:25–44

Empir Software Eng

Barney S, Wohlin C (2009) Software product quality: ensuring a common goal. In Wang Q, Garousi V, Madachy
R, Pfahl D (eds) Trustworthy software development processes. ICSP 2009. Lecture notes in computer
science, vol 5543. Springer, Berlin, Heidelberg

Bass JM (2015) How product owner teams scale agile methods to large distributed enterprises. Empir Softw Eng
20:1525–1557

Batra D, Xia W, Vander Meetr D, Dutta K (2010) Balancing agile and structured development approaches to
successfully manage large distributed software projects: a case study from the Cuise line industry. Commun
Assoc Inf Syst 27:379–394

Begel A, Nagappan N, Poile C. Layman, L (2009) Coordination in large-scale software teams, in Proceedings of
the 2009 ICSE Workshop on Cooperative and Human Aspects on Software Engineering, pp. 1–7

Bjarnason, E., Wnuk, K., and Regnell, B., (2012) "Are you biting off more than you can chew? A case study on
causes and effects of overscoping in large-scale software engineering," Inf Softw Technol, vol. 54, pp. 1107–
1124, 10// 2012.

Blichfeldt BS, Eskerod P (2008) Project portfolio management – There’s more to it than what management
enacts. Int J Proj Manag 26:357–365 5// 2008

Boehm B (2002) Get ready for agile methods, with care. IEEE Computer 35:64–69
Boehm B, Turner R (2003) Balancing Agility and Discipline: A Guide for the Perplexed: Addison-Wesley
Conboy K (2009) Agility from first principles: reconstructing the concept of agility in information systems

development. Inf Syst Res 20:329–354 Sep 2009
Daneva M, van der Veen E, Amrit C, Ghaisas S, Sikkel K, Kumar R, Ajmeri N, Ramteerthkar U, Wieringa R

(2013) Agile requirements prioritization in large-scale outsourced system projects: an empirical study. J Syst
Softw 86:1333–1353

Dingsøyr, T. and Moe, N. B., (2014) "Towards Principles of Large-Scale Agile Development: A Summary of the
workshop at XP2014 and a revised research agenda," in Agile Methods. Large-Scale Development,
Refactoring, Testing, and Estimation. vol. 199, T. Dingsøyr, N. B. Moe, S. Counsell, R. Tonelli, C.
Gencel, and K. Petersen, Eds., ed Berlin: Springer, pp. 1–8.

Dingsøyr T, Nerur S, Balijepally V, Moe NB (2012) A decade of agile methodologies: towards explaining agile
software development. J Syst Softw 85:1213–1221

Dingsøyr T, Fægri T, Itkonen, J (2014) What Is Large in Large-Scale? ATaxonomy of Scale for Agile Software
Development, in Product-Focused Software Process Improvement. vol. 8892, A. Jedlitschka, P. Kuvaja, M.
Kuhrmann, T. Männistö, J. Münch, and M. Raatikaineen, Eds., ed: Springer International Publishing, pp.
273–276

Dybå T, Dingsøyr T (2008) Empirical studies of agile software development: a systematic review. Inf Softw
Technol 50:833–859

Eckstein J (2004) Agile software development in the large. Dorset House, New York
Eckstein, J., (2014) "Architecture in Large Scale Agile Development," in Agile Methods: Large-Scale

Development, Refactoring, Testing, and Estimation. vol. 199, T. Dingsøyr, N. B. Moe, R. Tonelli, S.
Counsell, C. Gencel, and K. Petersen, Eds., ed Berlin: Springer-Verlag Berlin, 2014, pp. 21–29.

Faber R (2010) Architects as service providers. IEEE Softw 27:33–40 Mar-Apr 2010
Fitzgerald B, Stol K-J (2017) Continuous software engineering: a roadmap and agenda. J Syst Softw:176–189
Fitzgerald B, Hartnett G, Conboy K (2006) Customizing agile methods to software practices at Intel Shannon.

Eur J Inf Syst 15:200–213
Flyvbjerg B (2014) What you should know about megaprojects and why: an overview. Proj Manag J 45:6–19
Freudenberg S, Sharp H (2010) The top 10 burning research questions from practitioners, IEEE Software, pp. 8-

9, 2010.
Giezen, M., (2012) "Keeping it simple? A case study into the advantages and disadvantages of reducing

complexity in mega project planning," International Journal of Project Management, vol. 30, pp. 781–
790, 10// 2012

Gregory, P., Barroca, L., Sharp, H., Deshpande, A., and Taylor, K., (2016) "The challenges that challenge: Engaging
with agile practitioners’ concerns," Information and Software Technology, vol. 75, pp. 26–38, 7// 2016.

Hackman JR (1986) The psychology of self-management in organizations: American Psychological Association
Hopkins R, Harcombe S (2014) Agile architecting: enabling the delivery of complex agile systems development

projects, in Agile Software Architecture, M. A. Babar, A. W. Brown, and I. Mistrik, Eds., ed Boston: Morgan
Kaufmann, pp. 291-314

Ingvaldsen JA, Rolfsen M (2012) Autonomous work groups and the challenge of inter-group coordination.
Human Relations 65:861–881 Jul 2012

Jarzabkowski PA, Le JK, Feldman MS (2012) Toward a theory of coordinating: creating coordinating mecha-
nisms in practice. Organ Sci 23:907–927 Jul-Aug 2012

Klein HK, Myers MD (1999) A set of principles for conducting and evaluating interpretative field studies in
information systems. MIS Q 23:67–88

Empir Software Eng

Kniberg H (2011) Lean from the trenches: Managine Large-Scale Projects with Kanban: the pragmatic
bookshelf

Lagerberg L, Skude T, Emanuelsson P, Sandahl K, Ståhl D (2013) "The impact of agile principles and practices
on large-scale software development projects: a multiple-case study of two projects at ericsson," in 2013
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, pp. 348-356

Larman C, Vodde B (2013) "Scaling agile development," CrossTalk, p 9
Larman, C. and Vodde, B., (2017) Large-Scale Scrum: More with LeSS: Addison-Wesley professional.
Leffingwell, D., Yakyama, A., Knaster, R., Jemilo, D., and Oren, I., (2017) SAFe reference guide: Scaled Agile

Framework for Lean Software and Systems Engineering: Addison Wesley.
Maiden N, Jones S (2010) Agile requirements can we have our cake and eat it too? Software, IEEE 27:87–88
Malone TW, Crowston K (1994) The interdisciplinary study of coordination. ACM Computing Surveys (CSUR)

26:87–119
Moe NB, Dingsøyr T, Dybå T (2009) Overcoming barriers to self-Management in Software Teams. IEEE Softw

26:20–26
Moe NB, Šmite D, Šāblis, A, Börjesson A.-L, Andréasson P (2014) "Networking in a large-scale distributed agile

project," in Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, p. 12.

Myers, M. D. and Newman, M., (2007) "The qualitative interview in IS research: examining the craft," Inf
Organ, vol. 17, pp. 2–26.

Nerur S, Balijepally V (2007) Theoretical reflections on agile development methodologies. Commun ACM 50:
79–83

Nerur S, Mahapatra R, Mangalaraj G (2005) Challenges of migrating to agile methodologies. Commun ACM 48:
72–78

Nord, R. L., Ozkaya, I., and Kruchten, P., (2014) "Agile in Distress: Architecture to the Rescue," in Agile
Methods: Large-Scale Development, Refactoring, Testing, and Estimation. vol. 199, T. Dingsøyr, N. B. Moe,
R. Tonelli, S. Counsell, C. Gencel, and K. Petersen, Eds., ed, 2014, pp. 43–57.

Olsson H, Sandberg A, Bosch J, Alahyari H (2014) Scale and responsiveness in large-scale software develop-
ment. IEEE Softw 31:87–93

Paasivaara M, Lassenius C (2014) Communities of practice in a large distributed agile software development
organization - case Ericsson. Inf Softw Technol 56:1556–1577 Dec 2014

Paasivaara, M., Lassenius, C., and Heikkila, V. T., (2012) "Inter-team Coordination in Large-Scale Globally
Distributed Scrum: Do Scrum-of-Scrums Really Work?," in Proceedings of the ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, ed New York: IEEE, 2012, pp. 235–238.

Petersen K, Wohlin C (2010) The effect of moving from a plan-driven to an incremental software development
approach with agile practices. Empir Softw Eng 15:654–693 Dec 2010

Rajlich V (2006) Changing the paradigm of software engineering. Commun ACM 49:67–70
Ramesh B, Cao L, Baskerville R (2010) Agile requirements engineering practices and challenges: an empirical

study. Inf Syst J 20:449–480
Rolland, K. H., Fitzgerald, B., Dingsøyr, T., and Stol, K.-J (2016) "Problematizing agile in the large: alternative

assumptions for large-scale agile development," in International Conference on Information Systems, Dublin
Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software engineering.

Empir Softw Eng 14:131–164
Saldaña J (2009) The coding manual for qualitative researchers. Sage Publications Ltd, Second ed
Scheerer, A. and Kude, T., (2014) "Exploring coordination in large-scale agile software development: a

Multiteam systems perspective," in Thirty Fifth International Conference on Information Systems,
Auckland, 2014.

Scheerer, A., Hildenbrand, T., and Kude, T., (2014) "Coordination in Large-Scale Agile Software Development:
A Multiteam Systems Perspective," in 2014 47th Hawaii International Conference on System Sciences, R.
H. Sprague, Ed., ed New York: Ieee, 2014, pp. 4780–4788.

Šmite D, Moe NB, Šāblis A, Wohlin C (2017) Software teams and their knowledge networks in large-scale
software development. Inf Softw Technol 86:71–86

Smolander K (2002) Four metaphors of architecture in software organizations: finding out the meaning of
architecture in practice. In: Proceedings 2002 International Symposium on Empirical Software Engineering,
ed Nara. IEEE Computer Society, Japan, pp 211–221

Stettina CJ, Horz J (2015) Agile portfolio management: an empirical perspective on the practice in use. Int J Proj
Manag 33:140–152 Jan 2015

Strode DE, Huff SL, Hope BG, Link S (2012) Coordination in co-located agile software development projects. J
Syst Softw 85:1222–1238

Unphon, H. and Dittrich, Y., (2010) "Software architecture awareness in long-term software product evolution,"
Journal of Systems and Software, vol. 83, pp. 2211–2226, 11// 2010.

Empir Software Eng

Vinekar, V., Slinkman, C. W., and Nerur, S., (2006) "Can Agile and traditional systems development approaches
coexist? An ambidextrous view," Information Systems Management, vol. 23, pp. 31–42, Sum 2006.

Vlietland J, van Vliet H (2015) Towards a governance framework for chains of Scrum teams. Inf Softw Technol
57:52–65 Jan 2015

Wenger E (1998) Communities of practise : learning, meaning and identity. Cambridge University Press,
Cambridge

Williams L,CockburnA (2003)Agile software development: It’s about feedback and change. IEEEComputer 36:39–43
Wohlin, C., Šmite, D., and Moe, N. B., 2015 "A general theory of software engineering: Balancing human, social

and organizational capitals," Journal of Systems and Software, vol. 109, pp. 229–242, 11// 2015.
Yin RK (2014) Case Study Research: design and methods, 5th ed.: sage publications

Torgeir Dingsøyr focuses on software process improvement and knowledge management as chief scientist at the
SINTEF research foundation. In particular, he has studied agile software development through a number of case
studies, co-authored the systematic review of empirical studies, co-edited the book Agile Software Development:
Current Research and Future Directions, and co-edited the special issue on Agile Methods in the Journal of
Systems and Software. He wrote his doctoral thesis on Knowledge Management in Medium-Sized Software
Consulting Companies at the Department of Computer and Information Science, Norwegian University of
Science and Technology, where he is adjunct professor.

Nils Brede Moe works with software process improvement, intellectual capital, and agile and global software
development as a senior scientist at SINTEF. His research interests are related to organizational, socio-technical, and
global/distributed aspects. His publications include several longitudinal studies on self-management, decision making,
innovation, and teamwork. He has co-edited the books Agile Software Development: Current Research and Future

Empir Software Eng

Directions andAgility Across Time and Space: Implementing AgileMethods inGlobal Software Projects.His thesis was,
BFrom Improving Processes to Improving Practice - Software Process Improvement in Transition from Plan-driven to
Change-driven Development^. He holds an adjunct position at the Blekinge Institute of Technology in Sweden.

Tor Erlend Fægri works as a researcher at SINTEF, where he specializes in software process improvement and
enabling practice-based group-wise learning. His research interests are in socio-technical aspects of learning and
knowledge in software practice. His publications span learning practices in agile development and flexibility in
software architectures. He wrote his thesis on collaborative learning in software development at the Norwegian
University of Science and Technology.

Eva Amdahl Seimworks with organizational and knowledge process improvement, agile software development,
and ICT-based process and decision support as a senior scientist at the SINTEF research foundation. Her research
is related to socio-technical, organizational, and project/portfolio aspects in ICT-related industries and traditional
industries in general. Her publications include studies on project management, lean construction, and operational
integration. She has participated in projects on creating real-time transparency and situation awareness in
operational processes. She has a PhD in project management and has co-edited two books on interdisciplinarity
in the knowledge of economics.

Empir Software Eng

	Exploring software development at the very large-scale: a revelatory case study and research agenda for agile method adaptation
	Abstract
	Introduction
	Very Large-Scale Development
	Traditional and Agile Development
	Customer Involvement
	Software Architecture
	Inter-Team Coordination

	Method
	Data Collection
	Data Analysis

	Results
	The Perform Programme
	Customer Involvement
	Solution Description Teams
	A Continuous and Iterative Process
	Blurred Boundaries between Phases

	Software Architecture
	Up-Front Architecture
	The Demanding Role of Architects in Very Large-Scale Programme

	Arenas for Inter-Team Coordination
	A Number of Coordination Arenas
	Changing Arenas Over Time
	Open Work Area

	Discussion
	Customer Involvement
	Learning on Architecture and Process
	Inter-Team Coordination
	Limitations

	Conclusion
	Appendix: Interview Guides
	Customer Involvement
	Software Architecture
	Inter-Team Coordination

	References

