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Abstract With the emergence of Industry 4.0, mainte-

nance is considered to be a specific area of action that is

needed to successfully sustain a competitive advantage. For

instance, predictive maintenance will be central for asset

utilization, service, and after-sales in realizing Industry 4.0.

Moreover, artificial intelligence (AI) is also central for

Industry 4.0, and offers data-driven methods. The aim of

this article is to develop a new maintenance model called

deep digital maintenance (DDM). With the support of

theoretical foundations in cyber-physical systems (CPS)

and maintenance, a concept for DDM is proposed. In this

paper, the planning module of DDM is investigated in more

detail with realistic industrial data from earlier case studies.

It is expected that this planning module will enable inte-

grated planning (IPL) where maintenance and production

planning can be more integrated. The result of the testing

shows that both the remaining useful life (RUL) and the

expected profit loss indicator (PLI) of ignoring the failure

can be calculated for the planning module. The article

concludes that further research is needed in testing the

accuracy of RUL, classifying PLI for different failure

modes, and testing of other DDM modules with industrial

case studies.

Keywords Maintenance planning � Integrated planning

(IPL) � Digital maintenance � Predictive maintenance �
Industry 4.0

1 Introduction

With the onset of Industry 4.0, there will be a game change

in manufacturing. To ensure future competitive advantage,

manufacturing companies must employ cyber-physical

systems (CPS) [1]. One priority area for action in Industry

4.0 is the management of complex systems. The models in

this system offer huge potential in Industry 4.0. For

instance, the models can offer transparency of information

and improve interdisciplinary cooperation. The focus of

this paper is the cooperation between production and

maintenance planning, which is denoted as integrated

planning (IPL) [2]. In particular, in this concept, a key

performance indicator (KPI) denoted profit loss indicator

(PLI) is promising in data-driven predictive maintenance

[3].

The digital world in Industry 4.0 will include two types

of models [1]:

(i) Planning models. These models make it possible to

build complex systems. An example of a planning

model could be a reliability model used by an

engineer to evaluate the reliability of a system.

Here, the model will contain the engineers’

knowledge.

(ii) Explanatory models. These models are often used

to validate the engineers’ design choices, e.g., a

simulation model that can calculate the energy

consumption in a factory.

McKinsey [4] points out 8 main value drivers for

Industry 4.0: time to market, service/aftersales, resource/

process, asset utilization, labor, inventories, quality and

supply/demand match. Among these value drivers, main-

tenance is included in the following:
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(i) Asset utilization. Predictive maintenance can drive

value by decreasing the planned machine down-

time, unplanned machine downtime, or changeover

times. The predictive maintenance typically

decreases the total machine downtime from 30%

to 50% and extends the operation life from 20% to

40%.

(ii) Services and aftersales. Predictive maintenance

combined with remote maintenance will typically

reduce the maintenance cost from 10% to 40%.

It is, therefore, no surprise that the largest expected

change in future maintenance is the shift from corrective to

predictive maintenance [5]. To ensure the highest perfor-

mance of an asset, an intelligent maintenance system must

bring together technology, data, analyses, prognosis, and

resources. This will also improve the maintenance planning

function where more real-time data support the planner.

Artificial intelligence (AI) should be central for data-

driven methods in Industry 4.0. A pure data-driven method

should be regarded as a mathematical method where no

phenomenological knowledge is needed [6]. An example of

phenomenological knowledge in maintenance is the

knowledge about physical processes involved in the

degradation or reliability theory with support from expert

judgment. In future maintenance, it is believed from the

authors point of view that there will be a combination of

data-driven methods and model-driven methods. This is

also supported in future EU projects where ‘‘…measure-

ments of a range of parameters at the level of components,

machines and production systems should be carried out to

provide data for building trend reference models for pre-

diction of equipment condition, to improve physically-

based models and to synchronize maintenance with pro-

duction planning and logistics options.’’ [7]. An important

tool for the program DeepMind from Google is one among

several that offer the next generation of AI [8]. Currently, it

seems that DeepMind is able to learn more like a human;

the program can learn tasks sequentially using skills it

acquires on the way [9]. For maintenance, AI is considered

to be a data-driven method, where an artificial neural net-

work (ANN) is applied to estimate the remaining useful life

[10]. In the context of process industry, a literature study

has been conducted on data-driven methods [6]. This study

presents the most popular data-driven methods in this

industry branch: multivariate principle component analysis,

partial least squares, ANN, neuro-fuzzy systems, support

vector machines.

For example, ANN has been applied to predict failure of

wind energy conversion systems [11]. The challenge today

in AI is ‘‘catastrophic forgetting’’ where knowledge of the

previously learned task is abruptly lost as information

relevant to the current task is incorporated [12]. It seems

that deep neural networks are currently the most successful

machine-learning technique to solve this challenge. Thus,

what was previously considered to be pure fiction, seems to

be soon the reality. This will also affect the maintenance

science and improve the maintenance models.

Figure 1 is based on earlier evaluations [13] and por-

trays a matrix of trends in Industry 4.0 and digital main-

tenance. Likewise, there has been a shift from lean

production towards smart manufacturing; it is also expec-

ted to be a shift from maturing maintenance towards digital

maintenance.

Inspired by the emergence of Industry 4.0 in manufac-

turing and the ever-increasing opportunities in AI, a new

concept should emerge in maintenance management. The

aim in this paper is, therefore, to develop a new mainte-

nance model called deep digital maintenance (DDM).

The rest of this article is structured as follows: Section 2

presents the relevance and trends of maintenance in

Industry 4.0. Section 3 develops the DDM model with

relevant modules. Section 4 describes along with a

demonstration of the modules. This article is concluded in

section 5 with a brief discussion of the result from the

testing.

2 Maintenance in Industry 4.0

Although there are several definitions of Industry 4.0, most

of them agree that CPS is a design principle [14]. To

succeed with Industry 4.0, an architecture for cyber phys-

ical production control has been constructed [15]. CPS for

maintenance is also central in Industry 4.0-based manu-

facturing systems [16]. In particular, Deutsches Institut für

Normung (DIN) (in English, the German Institute for

Standardization) points out in a roadmap for Industry 4.0

that smart maintenance will contribute to successful

implementation [17]. Smart maintenance would enable

Industry 4.0 and implement CPS, which are notable for its

high degree of networking, digitization, decentralization

and autonomy, efficiency, and availability.

2.1 5C architecture for Industry 4.0

Figure 2 illustrates the 5C architecture of CPS with 5 levels

[16]. CPS can be comprehended as the use of logical

properties of computers to control and monitor the dynamic

properties of a physical asset [18]. In Industry 4.0, the

logical properties of computers will improve the mainte-

nance functions in a company and will control the technical

conditions of physical assets better.

Level 1 of CPS comprises of connection to all relevant

data. This connection performs digital data capturing of

several types of data:
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(i) Data from sensors. Real-time data capturing from

sensors such as temperature and pressure;

(ii) Manual data. Data from manual registration and

further processing in computerized maintenance

management system (CMMS);

(iii) Cost data. Down time costs and maintenance costs

such as man-hours and spare parts.

In Level 2, the data will be converted into meaningful

information. For the machine, the information related to

power consumption and levels of vibration are calculated.

In maintenance logistics, the radio frequency identification

(RFID) will keep track of the spare parts in the inventory

and supply chain. In the CMMS system, the registered data

will be structured in an asset register.

The big data excel in a cyber network in Level 3.

Information is gathered from all the machines and the

CMMS systems, thus enabling sophisticated maintenance

analytics: machine prediction where remaining useful life

is estimated, twin models for components and machines,

synchronized maintenance and production planning, PLI

evaluations, digital root cause analysis, modeling with

expert judgment, physical models and data driven methods.

In Level 4, proper presentation of the analytics enables

human interaction and evaluation by experts. The dash-

board in Level 4 can be monitored in a control room or on a

tablet. Hence, there are no requirements for the physical

location of the dashboard; it only needs to have access to

the internet.

Level 5 is the decision level where CPS either provides

a digital advice or automatically controls the maintenance

through self-maintenance. An example of digital advice

would be the notification of remaining useful life based on

Fig. 1 Trends within maintenance, inspired by Ref. [13]

Fig. 2 5C architecture adapted from Ref. [16]
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which the maintenance planner should start scheduling

future maintenance tasks. Self-maintenance could be the

automatic maintenance of a machine that is non-intrusive

and does not need the intervention of technicians.

Furthermore, the 5C architecture has also been proposed

for predictive production systems using the approach of

CPS [19]. It was further detailed that Level 5 in this model

must comprise maintenance decision making, in which

maintenance scheduling is an essential element. An

important decision would then be when to schedule the

maintenance. It has been demonstrated as a concept with

CPS using ball screw prognostics. The improved mainte-

nance scheduling approaches based on Industry 4.0 remain

to be investigated in more detail.

2.2 Maturity model for Industry 4.0

A maturity model has been developed within Industry 4.0

[20, 21]. Figure 3 illustrates this model, which comprises

of six development stages. Before starting the development

path of Industry 4.0, activities for digitalization are nec-

essary. In the Industry 4.0 maturity model, these activities

are organized in two stages: computerization and connec-

tivity. When the digitalization has been finalized, the

development path for Industry 4.0 can start in the organi-

zation. For the energy sector, it is proposed that predictive

maintenance should be positioned in stages 5 and 6 [20]. It

is also important to emphasize that not all activities in the

organization should be positioned in stage 6, but in a stage

that represents the best trade-off between costs, capabili-

ties, and benefits [21].

The elaborated description of each development stage is

as follows:

(i) Computerization. This stage concerns the differ-

ent isolated information technologies that are used

in the company.

(ii) Connectivity. In this stage the isolated information

technologies are connected. An example is remote

maintenance that connects the machine builder

with the industrial end-user.

(iii) Visibility. This stage provides companies the

opportunity to ‘‘see’’ what is happening. When

the connectivity has been successfully imple-

mented, it would be possible for the organization

to create a digital shadow of the company. With

real-time recording of events and states in the

organization, it is possible to ensure an up-to-date

digital model for the production plant at all times.

In this stage, there is a new approach for data

gathering and processing. In the new approach,

data are not tied up to individual data analyses.

Instead, data from several systems such as enter-

prise resource planning (ERP) and manufacturing

execution system (MES) are combined, and data

can be applied for several analysis methods.

(iv) Transparency. Based on the digital shadow cre-

ated in stage 3, the next stage for the company is

to understand why something is happening in the

organization. The processed data in the organiza-

tion must be analyzed with engineering knowl-

edge and the support of new technologies that

enable, for example, big data. With support from

big data, extensive stochastic data analysis and

machine learning methods can reveal interactions

in the company’s digital shadow.

(v) Prediction. Once transparency is established, it is

possible to simulate the different future scenarios

Fig. 3 Industry 4.0 maturity model
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and evaluate the most likely ones. In this stage, the

organization can predict future developments and

take decisions before it is too late. For predictive

maintenance, this involves the estimation of

remaining useful life, thus providing sufficient

time to schedule the maintenance activities for the

relevant machine.

(vi) Adaptability. When the organization is able to

predict future situations, this stage concerns the

ability of the organization to become adaptive,

whereby more actions are automated. This

depends on the complexity of the decisions, the

risk related to the decision, and the cost-benefit

ratio in automating the decision. An example

would be the rescheduling of planned orders due

to machine breakdown. In predictive maintenance,

this could concern rescheduling the maintenance

plan due to change in the production schedule.

As in the case of 5C architecture, the maintenance

scheduling and planning approaches based on Industry 4.0

still remains to be investigated in more detail.

3 DDM management model

Figure 4 illustrates the behavior of the DDM in terms of work

processes. To ensure continuous improvement of DDM, the

work processes follow the logic of the Deming cycle; PLAN-

DO-CHECK-ACT [22]. The objectives and requirements for

DDM comprise several maintenance functions:

(i) Technical: reduction of downtime,

(ii) Organizational: increase man-hours for predictive

maintenance,

(iii) Economic: reduction of maintenance costs.

When the objectives and requirements for DDM have

been established, the DDM modules can be applied.

Table 1 elaborates the modules in DDM.

To focus on future maintenance work, IPL enables

synchronization between maintenance and production

planning. With a well-established maintenance dashboard

and interaction with the production planner, the mainte-

nance planner will be able to provide better and faster

maintenance decisions. In parallel with IPL, the physical

system conducts self-maintenance without requiring human

interaction. Based on pre-defined rules, the system will

adjust the production or automatically perform standard

maintenance of the physical system.

After the self-maintenance and maintenance execu-

tion, the physical system achieves a certain level of

technical condition. Based on the maintenance execution

and self-maintenance, the DDM reports the results of the

maintenance. Based on the findings in the report, a root

cause analysis (RCA) will be conducted. In addition to

traditional RCA methods such as Isikawa diagram and

5-why analysis, the analytics from data driven methods

will be able to cluster the information into different

cause categories. The maintenance dashboard enables the

decision maker to evaluate the root cause. Once RCA

has been conducted, the following improvements will be

performed.

To ensure that each work process in DDM is followed

up, deep digital maintenance management is positioned at

the center of the loop. When necessary, this function will

also include the audit of DDM. Further, in this section, the

DDM modules AI, PLI, and planning are elaborated in

more detail.

Fig. 4 Work processes for DDM, inspired by Ref. [22]
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3.1 AI module

The purpose of the AI module is to provide accurate pre-

dictions of RUL for all known failure modes. Accurate

predictions of RUL can contribute to lesser critical failures

and lesser unnecessary maintenance, in addition to

improved resource- and spare part planning [11]. Figure 5

shows the structure of the AI module.

Data are collected through an IoT hub, which commu-

nicates with IoT units using standard protocols. The IoT

units can be IP-connected metering devices or non-IP-

connected units through a connected gateway. Real-time

data are fed to the data stream analytics and then stored in a

database.

Machine learning (ML) is used to train the prediction

models to recognize healthy patterns, un-healthy patterns,

and anomalies. The prediction models are generated as

code and applied to the datastream of the sensor readings to

obtain real-time prediction of RUL [10]. The prediction

results are communicated with the CMMS via e-mail or

customized dashboards.

ML uses statistical techniques to learn and recognize

patterns in big data. A code is generated from the predic-

tion model and used for recognizing the patterns in a

stream of data [23]. The output is the probability for the

machine being in a particular state. For example, a binary

parameter that indicates whether the machine will fail

within x cycles is engineered, and the model is trained to

predict the value of this parameter. In this case, the code

will output a probability for this parameter being true or

false, i.e., the probability that the machine will fail in less

than x cycles. Deciding what to do with this probability is a

business decision [24]. Figure 6 shows the typical ML

process.

3.2 PLI module

When estimating the PLIScenario, the PLI cube shown in

Fig.7 is needed [2]. This cube classifies the hidden factory

in terms of time loss and waste. The time loss is based on

the categories of overall equipment effectiveness (OEE),

utilization degree of the equipment, amount of raw material

consumed, and resource consumption. In resource con-

sumption, the energy consumption is identified. For each

category of time loss and waste, PLI will be the sum of the

turnover loss and extra costs. For example, if an unplanned

downtime occurs, PLI will calculate both the turnover loss

in terms of reduced number of goods to sell as well as the

extra costs in terms of corrective maintenance. Moreover,

PLI can be calculated at the process level, plant level,

Table 1 Deep digital maintenance modules

Modules Description

AI This module offers the most successful machine-learning techniques such as deep neural networks, clustering, etc.

PLI PLI will provide scenarios of unwanted events (e.g., breakdown) and provide analysis for RCA (taxonomy of the hidden

factory).

Planning The planning module will analysis the maintenance window and offer alternative maintenance plans. Furthermore, it will

enable IPL where maintenance and production planning is integrated.

Fig. 5 Structure of the AI module
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system level, or equipment level. The estimation of the

expected PLI value, PLIExpected, in this paper is based on an

earlier case study of one specific event [3]. With the

capabilities of AI, the future expected PLI value could also

be predicted without historical events for PLI.

3.3 Planning module

The purpose of maintenance planning is to achieve a reli-

able plant capacity [25]. A central principle in maintenance

planning is the ability to concentrate on future work. In this

paper, the future time horizon is denoted as Thorizon. To

focus on future work, the CMMS will administer the

maintenance data and release maintenance work orders for

craft technicians. The CMMS improves the entire mainte-

nance management function with analyses from asset data

collection systems, supporting automated preventive work

orders based on data-driven insight [26]. CMMS is also

vital for the coordination of maintenance activities related

to both availability and productivity [27]. The strength of

CMMS in maintenance planning lies in its ability to

schedule complex, fast-moving workloads. In addition,

CMMS improves the cost management and controls the

resources better.

A challenge with CMMS is that it tends to have a ‘‘black

hole’’. This metaphor describes a system that is greedy for

data input but seldom provides output in terms of decision

support. In particular, predictive maintenance data analy-

sis can be a ‘‘black hole’’ in the CMMS module and tends

to lag behind [27]. Other ‘‘black holes’’ in systems that are

available in the market, but are not applied are [28] con-

dition monitoring analytics, diagnostics of equipment

failure, decision support to resource allocation, and deci-

sion analysis support.

For CMMS, there exists different business processes for

maintenance planning. For example, in SAP, there are two

business processes for planning, preventive maintenance,

and planned repair. In preventive maintenance, there are

fixed time intervals for the maintenance activities, whereas

planned repair maintenance is scheduled after a notification

is registered due to a failure [29]. Inspired by the business

process of planned repair, we propose a business process

for planned predictive maintenance with the following

steps:

(i) Notification. The predictive analysis system auto-

matically sends a notification to the CMMS when

RUL is approximately the same size as the

planning horizon. In the notification, an expected

PLI value is calculated, expressing the expected

PLI during the planning horizon.

(ii) Planning and controlling. The schedule in the

planning horizon is shown in a dashboard where

the planner can control the capacity of the

maintenance resources. It is further decided if

Fig. 6 Typical ML process adapted from Ref. [24]

Fig. 7 PLI cube, adapted from Ref. [2]
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the planner will ignore this notification and wait

for a new one, or if he will then schedule the

maintenance activities into the planning horizon.

(iii) Implementation. This phase comprises both with-

drawal of spare parts and processing of the actual

maintenance work order.

(iv) Completion. After the maintenance task has been

completed, the feedback is reported back to the

maintenance planner.

3.3.1 Notification

The notification is a trigger mechanism for maintenance

planning, when the request is registered. In DDM, the

following information is automatically registered in the

CMMS: PLIExpected, which will occur at the end of time

horizon Thorizon.

There can be several occasions for this notification in

CMMS. To ease the administrative planning function, three

opportunities are offered to the planner with a notification

(see Table 2).

3.3.2 Planning and controlling

Once the notification has been registered in the CMMS, the

maintenance planner can plan the future maintenance work

and control if necessary maintenance resources are avail-

able. Figure 8 illustrates an example of an IPL dashboard,

where the planner can evaluate the available maintenance

windows within the planning horizon Thorizon.

At the end of the planning horizon, it is expressed what

the expected PLI value would be. Based on this number

and the available maintenance windows and capacity, the

planner must decide whether to ignore this opportunity or

to schedule the future maintenance activity within this

planning horizon. This dashboard is also shared with the

production planner, enabling IPL.

4 Testing the DDM model

The starting point is to define the different scenarios for

unplanned events. To classify a future scenario, the fol-

lowing information is necessary:

(i) Description of the initiating situation, which can

be a failure mode;

(ii) The parts of the physical asset that are involved in

the scenario;

(iii) The further consequences of PLI: the duration of

the situation, the scrappage in production, the total

cost of PLI, skills of the craft technicians, the

quality of the maintenance tools used for con-

ducting maintenance, type of spare parts required,

the supplier needed in conducting the

maintenance.

In this paper, the following scenario is defined: ‘‘mal-

function of oil cooler in a machine center’’.

4.1 PLI module

The case study in Ref. [3] investigates the malfunction of

an oil cooler in a machine center. The malfunction was first

Table 2 Notification logic

No. of

notification

Criteria for notification

1 A conservative value of PLIExpected triggers the notification. This notification can be ignored if there are no capacity for

conducting maintenance

2 A higher value of PLIExpected is chosen for this notification. This notification is the most likely one to be chosen by the planner.

If there are still challenges with capacity, the planner should consider to ask the production planner to change the production

plan so that the maintenance activity can be performed

3 This is the highest value of PLIExpected and is considered as a worst case where maintenance must be conducted within this

time horizon to prevent a failure. The maintenance should be performed as soon as possible with first available maintenance

window. If maintenance resources are not available, they should be reallocated for this maintenance task. It is also expected

that the production planner should re-plan in order to help the maintenance planner to conduct the maintenance as soon as

possible

Fig. 8 IPL dashboard
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observed in terms of scrappage of product with unplanned

downtime. Before the failure occurred, the temperature of

the oil cooler increased significantly, causing instability in

the production process. After the observed scrappage, a

quality audit meeting was conducted to evaluate the cause

and consequence of the scrappage. In addition, mainte-

nance personnel performed inspection on the machine

center when the unplanned downtime occurred. They found

out that the cause of downtime was the malfunction of the

oil cooler. The oil cooler was then replaced with a new one.

Due to anonymity, the time window for the downtime is

not accurate. Instead, it is assumed that a realistic duration

of the downtime is 6 days.

Table 3 shows the results of calculating the PLI value

for this event [3]. Both the availability and quality losses

can be traced to PLI. The main contribution of the PLI

value is the damaged part (scrappage) and loss of internal

machine revenue. The internal machine revenue is the

expected revenue for operating the machine. The loss of

internal machine revenue is the expected revenue loss due

to the downtime of the machine. The revenue rate should

be based on the norm decided by the company.

Figure 9 illustrates the PLI event ‘‘malfunction of oil

cooler’’ [3]. The loss of internal revenue from the machine

center will start immediately after scrappage of the part and

failure of the machine. Moreover, the quality audit meeting

and maintenance activities are performed sequentially.

During the maintenance activities, there is a significant

increase in the maintenance costs when the oil cooler is

replaced.

4.2 AI module

Since we did not obtain condition-monitoring data for the

oil cooler, we used data from another type of equipment to

test the AI module. For demonstrating how to perform

predictive maintenance, a case based on the data for an

aircraft turbofan engine is used instead. In the demonstra-

tion, a predictive maintenance model is developed using

Microsoft Azure Machine Learning and applied to a sim-

ulated dataset [30].

The predictive maintenance demonstration is based on a

dataset from the NASA Prognostics Center of Excellence

[31]. The dataset comprises of degradation simulation run-

to-failure data that contains settings and sensor readings for

run-to-failure of 100 turbofan jet engines. For each of the

engines, the dataset includes: operation cycle, which is a

time unit; 3 different settings, i.e., throttle, blade pitch, etc.;

21 sensor readings, i.e., pressure in the high-pressure

compressor, temperature at the nozzle, etc.

Table 4 lists the data for the first 10 cycles of engine id 1

and it illustrates how the data is structured.

The first iterative process in machine learning is the pre-

processing of the data and feature engineering. A binary

parameter that indicates whether the RUL is more or less

than 10 cycles is engineered. Of the data, 80% is used for

training the model, and 20% is used for evaluating the

model.

The next iterative process is to apply machine-learning

algorithms. These algorithms generate candidate models

and will iterate to find the most fitted prediction model. The

model is trained to predict the value of the engineered

binary parameter, thus the problem is a two-class classifi-

cation problem. The output of the model is the probability

that RUL[10 cycles, hereinafter denoted as Pr (RUL[10).

After iterations with logistic regression, neural network,

decision forest, and decision jungle, it is found that the

two-class neural network gives the best prediction model

for the turbofan jet engine run-to-failure dataset.

To demonstrate the results, Pr (RUL[10) for the entire

lifetime of one engine is plotted in Fig.10. In addition,

Fig. 11 shows the same plot, zoomed in on the end of the

lifetime, in which the point-of-failure and cycles with Pr =

10 are also indicated.

Table 3 Expected PLI of ignoring the notification [3]

Situation Type of PLI PLI value/

NOK

Damaged part (scrappage) Quality: extra cost 120 000

Quality audit meeting Quality: extra cost 3 500

Maintenance labor costs Availability: extra

costs

21 570

New oil cooler Availability: extra

costs

47 480

Loss of internal machine

revenue

Availability: turnover

loss

129 600

Sum 322 150

Fig. 9 Scenario ‘‘malfunction of oil cooler’’ [3]
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The results of the case study show that the prediction

model for the turbofan jet engine has close to zero false

predictions during the lifetime of the engine and that it

accurately predicts the RUL close to the selected alarm

level.

4.3 Planning module

The result of the AI module will also result in an expected

PLI value, PLIPredictive maintenance. As an example we

assume that the planned downtime of oil cooler is in

average 3 days and that the maintenance activity is com-

pleted within the maintenance window. Table 5 there-

fore shows the PLI elements that will occur during the

period. Figure 12 further illustrates the event of performing

predictive maintenance. The PLI in the predictive mainte-

nance is based on the PLI value from the case study of

malfunction of oil cooler.

5 Discussions and concluding remarks of DDM

The aim of this article was to develop a new maintenance

model called DDM. The DDM is based on both the

architecture for CPS and the work processes from the

deming cycle. The DDM model was also tested to evaluate

the applicability.

As the first attempt for testing this model, the planning

module for predictive maintenance was investigated. The

quality of this test relied on having realistic data. With PLI

calculation from a case study in manufacturing, and esti-

mation of RUL based on simulated data from a gas turbine,

this article should be considered to increase the quality of

testing the planning module.

Several challenges for DDM must be identified and

discussed. A challenge with this testing is that the condi-

tion monitoring data for prediction are based on an

industrial context other than the manufacturing industry.

For predictions related to the manufacturing industry, there

could be other results in terms of the precision of RUL and

Table 4 Data example for the 10 first cycles of engine id 1 [31]

Cycle Setting Sensor

1 2 3 1 2 … 20 21

1 - 0.0007 - 0.0004 100 518.67 641.82 … 39.06 23.4190

2 0.0019 - 0.0003 100 518.67 642.15 … 39.00 23.4236

3 - 0.0043 0.0003 100 518.67 642.35 … 38.95 23.3442

4 0.0007 0 100 518.67 642.35 … 38.88 23.3739

5 - 0.0019 - 0.0002 100 518.67 642.37 … 38.90 23.4044

6 - 0.0043 - 0.0001 100 518.67 642.10 … 38.98 23.3669

7 0.0010 0.0001 100 518.67 642.48 … 39.10 23.3774

8 - 0.0034 0.0003 100 518.67 642.56 … 38.97 23.3106

9 0.0008 0.0001 100 518.67 642.12 … 39.05 23.4066

10 0.0033 0.0001 100 518.67 641.71 … 38.95 23.4694

Fig. 10 Predicted probability that RUL[10 cycles for entire lifetime

of the engine

Fig. 11 Predicted probability that RUL[10 cycles for end-of-life of

the engine
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the size of the maintenance window. Nevertheless, using

real data to conduct the prediction will strengthen the

confidence of conducting predictive maintenance. It should

also be investigated whether the different industry branches

are actually quite different with respect to estimating the

RUL.

A second challenge is the calculation of PLI. This can be

context driven, where the failure modes affect the types of

consequences that will occur, the magnitude of PLI, and

the PLI elements that are of relevance. For instance, if the

failure of an oil cooler occurs in the oil and gas industry,

scrappage would not be of relevance; however, the mag-

nitude of availability losses could be bigger. Therefore, it is

important to have similar contexts when comparing PLI

with other case studies. Benchmarking is an example where

comparing different PLI values supports continuous

improvement. However, PLI is also of interest in IPL as a

tool for measuring the consequences of ignoring mainte-

nance planning. In addition, more work is necessary in

terms of automating the PLI calculation, which is per-

formed manually at present. This would require more

precision in measuring the financial perspectives in real-

time. For instance, when maintenance costs are measured,

there must be a pre-defined cost rate.

A third challenge is the implementation of the existing

CMMS. During the implementation, it is important to have

tight cooperation with both the end-user and the software

provider for CMMS. The end-user will ensure that the

correct functionality is established for DDM, while the

software provider will ensure that the necessary interfaces

with CMMS are established.

Thus, a framework has been developed for DDM, and

the planning module has been tested. Further research on

DDM would include testing the accuracy of RUL with

different maintenance windows, classification of PLI val-

ues for different failure modes, and testing the other DDM

modules with industrial case studies.

To improve the theory of DDM and to ensure scholarly

relevance in the research quality, the results must have high

degree of generality. Thus, in future researches, this con-

cept should be demonstrated with other case studies from

different application areas and industry branches. This will

also improve the utility value with more contribution to

practical applications.

Table 5 Expected PLI of predictive maintenance

Situation Type of PLI PLI value/ NOK

Maintenance labour costs Availability: extra costs 10 785

New oil cooler Availability: extra costs 47 480

Loss of internal machine revenue Availability: turnover loss 64 800

Sum 123 065

Fig. 12 PLI calculation when performing predictive maintenance
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