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Abstract
In this thesis, a stochastic energy market equilibrium model is developed and im-
plemented in GAMS. The model involves multi objective optimization and is solved
as a mixed complementarity problem. To provide an e�cient solution strategy, a
Benders Decomposition method tailored for the modelled energy market problem
is studied and implemented. The scalability of the implemented decomposition
algorithm is investigated for di�erent versions of the energy market problem, and
the results are compared to the alternative of direct solution in GAMS.

An overall result is that the decomposition method succeeded in �nding correct
solutions, and proved to be the fastest solver option for the larger instances of
the tested problems. In addition, the results did also facilitate a discussion of
possibilities for further improvements in the e�ciency of the algorithm.
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Sammendrag
I denne masteroppgaven har en stokastisk likevektsmodell for energimarkeder blitt
utviklet og implementert i GAMS. Modellen omfatter optimering med �ere objek-
tivfunksjoner og er løst som et blandet komplementaritetsproblem. En Benders
dekomponeringsmetode spesielt tilpasset problemer som den utviklede modellen,
er studert og implementert for å oppnå en e�ektiv løsningsstrategi. For ulike ek-
sempler på energimarkeder er skaleringen av denne metoden undersøkt. Det er
også testet at algoritmen gir korrekte resultater i forhold til tilsvarende løsning
funnet ved direkte anvendelse av GAMS.

Overordnet er resultatet av dette arbeidet at dekomponeringsmetoden lykkes i
å �nne korrekte løsninger på problemet. Det viste seg også at denne metoden var
det raskeste alternativet til for de største problemene som ble testet. I tillegg har
test-resultatene gjort det mulig å påpeke ytterligere muligheter for forbedringer av
e�ektiviteten til algoitmen.
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Chapter 1

Introduction

1.1 Background and Motivation

Energy market models as referred to in this report were �rst developed and applied
in the 1970s. Most models are designed to consider only one energy source (such
as natural gas, oil, electricity etc.), and a market located in some region of North
America or Europe. Still, their structure and features are often similar regardless
of location and type of energy. In this manner, the same models are applicable
to a diversity of markets, enabling the modelling of a combination of markets and
energy types, and the interaction between them. Combinations of interest are,
for example, hydroelectricity and electricity generated by coal plants, as they to a
certain extent are mutually exclusive commodities.

An energy market model can aid policy- and decision makers when considering
changes in production, consumption and trade with energy. This is an important
feature, as stability in the availability of many energy sources is both critical and
anticipated in a modern society.

From a modeller's perspective, similarities and other characteristics in many
energy markets give the opportunity to exploit the problem structure to develop
good solution strategies. It may not be surprising that the determination of in-
ternational patterns in energy markets is a highly demanding process in terms of
data handling and computational resources. Some state of the art models even in-
clude stochastic elements to deal with uncertain elements. A collection of possible
scenarios are then considered as part of the solution, requiring considerably more
work than when seeking a solution to a deterministic model. This ampli�es the
importance of a fast solution strategy, and is also the motivation for this thesis.

In [16], a Benders Decomposition method tailored for stochastic energy market
models is developed and tested. This method is also applied in [9] and [10] with
promising results. Inspired by these works, a stochastic energy market model is

1



2 CHAPTER 1. INTRODUCTION

developed as part of this thesis. The model involves several features that are in
common with the aforementioned sources and other models found in the litera-
ture, but unlike the others, it does also have a few unique characteristics. These
characteristics are: multiple fuel types, transformation facilities form one fuel type
to another, and the possibility to invest in more transformation capacity if that
should be demanded. To investigate the possibilities to reduce running time, the
Benders Decomposition method from [16] is applied to the model.

Another contribution presented in this thesis is the thorough mathematical ap-
proach taken. This is in particular when analysing the model features for existence
and uniqueness of a solution in general, and when analysing convergence and other
technicalities regarding the application of the Benders Decomposition method.

1.2 The Structure of this Thesis

This thesis is structured by �rst, in Chapter 2, introducing background theory in
economics and mathematics that is relevant for the energy marked model described
in Chapter 3 and some parts of the later chapters. Next, in Chapter 4, relevant
decomposition techniques are described, ending with a description of how the
method in [16] applies to the developed model, and a discussion of convergence
for the problem. In Chapter 5, the performance of the implemented algorithm is
tested and, �nally, the thesis is concluded in Chapter 6, summarizing the work
and its results and indicating possibilities for further work.



Chapter 2

Background Theory

2.1 Economic Principles

A Market

In a market, producers and consumers are buying and selling products. A com-
mon assumption is that each of these actors is operating with only one ambition:
to maximize the participant's own welfare. To provide a descriptive model of a
market, all interfering or in�uencing factors must be taken into consideration.

Pro�t

A supplier's pro�t is what is left of income from sales when all related costs are
subtracted. Income is the product of quantity sold and the selling price.

Supply and Demand

Market demand is the amounts of a product desired by all consumers at a given
price. Conversely, supply can be interpreted as the quantity of a product that is
o�ered for sale in a market at a given price.

Equilibrium

In a market, equilibrium occurs when supply equals demand. At this point, both
suppliers and consumers are satis�ed with the quantity and price of the traded
product. Such a price is often called 'equilibrium price' or 'market clearing price'.
The term 'Market clearing' relates to the fact that no non-supplied demand or
excess supply exists.

3



4 CHAPTER 2. BACKGROUND THEORY

Nash Equilibrium

Nash Equilibrium is de�ned in [22] as a state where no participant can obtain
a more bene�cial situation by changing his strategy, given all other participants
strategies. In [22] it is also proven that at least one such equilibrium exists when
the number of participants and possible strategies is �nite.

Market Power

A market participant that can exert market power, is able to a�ect the market
equilibrium signi�cantly by his actions.

Perfectly Competitive Market

In a perfectly competitive market, the volume of consumers and producers precludes
any exertion of market power.

Monopoly

In a monopoly, only one supplier is present, enabling this supplier - the monopolist
- to adjust quantities supplied to a level at which the price and quantity maximizes
his pro�t. The monopolists pro�t is only restricted by the market demand.

Oligopoly

An oligopoly is a market structure with a few actors, facilitating a limited amount
of market power exertion.

Consumer Surplus

Consumer surplus (CS) is what consumers save when buying products at a price
lower than the maximum price they are willing to pay [26]. Given a price function,
p(qS), describing the price consumers are willing to pay for the product as a func-
tion of the quantity available for sale, qS, the consumer surplus can be computed
as:

CS =

∫ qSeq

0

(p− peq) dqS, (2.1)

where the 'eq'-subscript denotes the variables values at equilibrium.
In a perfectly competitive market, both producers pro�ts and consumer surplus

is maximized. This can be modelled as an optimization problem with an objective
function describing both pro�t and CS.
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2.2 Optimization Theory

This section covers background theory in optimization that is essential to the work
presented later in this report, both the modelling part and the decomposition.

Most of the optimization problems considered are problems with linear equality
and inequality constraints:

min
z

f(z)

st. Cz ≤ a (λ)

Dz = b (µ),

(2.2)

where f(z) : Rn → R, C is an m×n matrix, D is a p×n matrix, and λ ∈ Rm
+ and

µ ∈ Rp are vectors of Lagrangian multipliers related to the constraints Cz ≤ a
and Dz = b respectively. The domain de�ned by Cz ≤ a and Dz = b is called the
feasible region to the problem. For (2.2) the feasible region is a polyhedron when
there is a �nite number of constraints, and the constraints are all linear equations.

2.2.1 Optimization under Uncertainty

In this thesis, stochastic optimization problems will be studied. The uncertainty
is modelled by considering a collection of possible future scenarios following a
scenario tree. Hence, some relevant background theory is introduced in this section.

Scenario Trees

The scenario tree is a graph that consists of all possible outcomes together with
their likelihood to occur on a discretized time line. The �gure below gives a
schematic illustration of a scenario tree with 4 time stages and 3 scenarios. At
each of the 9 nodes, the unconditional probability, P , for the event(s) represented
by the node, and the node number is printed. Unconditional probability means
the probability for an event to occur regardless of the occurrence of its ancestor
node. Hence, the probabilities at each time stage sum up to 1. The scenarios can
be described by listing the associated nodes with respect to ascending time stage,
for example; {1, 2, 4, 7}, {1, 3, 5, 8} and {1, 3, 6, 9}.

Solving Stochastic Optimization Problems

In comparison to optimization problems where all data is deterministic, the uncer-
tainties in a problem with stochastic variables entail a severe increase in complexity
[19]. There are di�erent ways to manage the stochastic elements in a model, lead-
ing to varieties in complexity and quality. A thorough review of this topic is found
in [19]. Here, the most elementary concepts are described.
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Figure 2.1: Illustration of a scenario tree.

Based on the information of all stochastic elements included in the problem
one could compute the expected value of all stochastic variables, and solve the
problem as if it was a deterministic problem. The result to this approach is called
the expected value solution (EVS).

Conversely, the stochastic solution (SS) is obtained by considering the expected
value of every objective value at every possible variation in the stochastic variables.
This means that the problem is solved for all nodes of the scenario tree, and the
solution is weighted by each node's probability. In comparison to the EVS, the SS
is more demanding to obtain, but it may also be more indicative and true to the
real world, because it involves a higher level of details [19].

2.2.2 Optimality Conditions

Consider a problem like (2.2). If f(z) is continuously di�erentiable at a solution
z∗, there is a pair of Lagrangian multiplier vectors, (λ∗, µ∗), such that the following
conditions are satis�ed [23]:
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∇f(z∗) + CTλ∗ +DTµ∗ = 0 (2.3a)

a− Cz∗ ≥ 0 (2.3b)

b−Dz∗ = 0 (2.3c)

λ∗ ≥ 0 (2.3d)

λ∗T (a− Cz∗) = 0, (2.3e)

The equations (2.3) are known as the Karush-Kuhn-Tucker conditions (KKT).
When all constraints are linear and the number of constraints is �nite, the KKT
conditions are often referred to as �rst order necessary conditions because they
must be satis�ed for z∗ to be a solution to (2.2). If f(z) in addition is a convex
function, the KKT conditions are also su�cient [23]. This means that a point z∗

satisfying (2.3) is a solution to (2.2). Strict convexity of the objective function
also assures that z∗ is a unique solution.

2.2.3 Duality

For every optimization problem like (2.2), one can de�ne a Lagrangian dual prob-
lem [7]:

max
λ≥0,µ

q(λ, µ),

st. λ ≥ 0,
(2.4)

where the function q(λ, µ) is

q(λ, µ) = inf
z
L(z, λ, µ). (2.5)

In this setting, (2.2) is often referred to as the primal problem. If f(z) in (2.2) is
a linear function, the relation between the primal and dual problem is symmetric
[23], that is, deriving the dual of a dual problem always gives the primal. Despite
the joint solution, the di�culty in solving either the primal or dual problem may
vary [23]. Hence, having an alternative problem at hand is an often appreciated
feature in algorithms to solve optimization problems.

When concerning algorithms utilizing the primal-dual relationship, the theo-
rems below are useful.

Theorem 2.2.1. (Weak Duality Theorem) (Theorem 4.3 in [7]).
For any z feasible for (2.2) and any λ and µ feasible for (2.4), the following is

always true
q(λ, µ) ≤ f(z). (2.6)
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Theorem 2.2.2. (Strong Duality) (After Theorem 12.13 in [23]). Suppose that
f(z) in (2.2) is convex and continuously di�erentiable on Rn, and suppose that
z is a solution of (2.2) at which LICQ1 holds. Suppose that λ̂ solves (2.4) and
that the in�mum in inf

z
L(z, λ̂) is attained at ẑ. Assume further that L(·, λ̂) is a

strictly convex function. Then z = ẑ (that is, ẑ is the unique solution of (2.2)),
and f(z) = L(ẑ, λ̂).

For a linear optimization problem, that is a problem like (2.2) but with f(z)
a linear function, it is not hard to show that the KKT conditions derived from
the primal and dual problems are identical, see [23]. This is also a consequence of
Theorem 2.2.2. Despite the previous focus on problems with a non-linear objective
function, the equivalence between the KKT conditions for linear problems will
become useful later in this report.

2.2.4 Shadow Prices and Lagrangian Multipliers

When optimization problems such as (2.2) describes prices or costs or a combina-
tion thereof, and strong duality holds for the problem, the term shadow price is
a common synonym to the Lagrangian multipliers or dual variables λ and µ. To
interpret shadow price, let i = 1...m and j = 1...p, so that a = [a1, ..., am]T etc. At
the optimal solution z∗, the following relation holds:

f(z∗) = L(z∗, λ∗, µ∗) = f(z∗) + λ∗T (a− Cz∗) + µ∗T (b−Dz∗)

= f(z∗)− λ∗TCz∗ − µ∗TDz∗ +
m∑
i=1

λi
∗ai +

p∑
j=1

µj
∗bj.

(2.7)

Di�erentiation with respect to ai and bj gives [7]:

∂f(z)

∂ai

∣∣∣∣
z∗

= λi,
∂f(z)

∂bj

∣∣∣∣
z∗

= µj. (2.8)

Hence, the shadow price is an approximation of the rate of change for the objective
function at z∗ respect to the right hand side of a constraint.

1LICQ (Linear Independence Constraint Quali�cation) [21] is satis�ed when all gradients of
all active constraints are linearly independent. The active constraints are all of the equality
constraints and the inequality constraints for which Ci(zi) = 0.
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2.3 Complementarity Problems

2.3.1 The Non-linear Complementarity Problem - NCP

The solution, z, to a non-linear complementarity problem (NCP) is to �nd z
satisfying the following conditions:

0 ≤ z⊥F (z) ≥ 0, (2.9)

where F (z) : Rn → Rn is a given function [15]. The sign ⊥ is part of common
notation for NCPs, and equation (2.9) is equivalent with zT · F (z) = 0. For a
linear function F (z), the NCP is called a linear complementarity problem (LCP).

2.3.2 The Mixed Complementarity Problem - MCP

A mixed complementarity problem (MCP) extends the NCP problem class by
allowing other bounds on z than 0 only. Hence, z ∈ Rn, is a solution to a MCP if
all of the following conditions are satis�ed:

zi ∈ (li, ui) =⇒ Fi(zi) = 0

zi = li =⇒ Fi(zi) ≥ 0

zi = ui =⇒ Fi(zi) ≤ 0,

(2.10)

where i = 1...n and l and u provide the lower and upper bounds on z respectively,
[15]. With the set K = [l, u], MCP (K,F ) is a convenient compact form for the
problem (2.10). Optimality conditions can be formulated as an MCP. To do so for
the problem (2.2), let:

l =

−∞0
−∞

 , u =

∞∞
∞

 (2.11)

F (z, λ, µ) =

∇f(z) + CTλ+DTµ
a− Cz
b−Dz

 . (2.12)

Then the optimality conditions (2.3) for the optimization problem (2.2) suits a
mixed complementarity problem formulation:

z free, ∇f(z) + CTλ+DTµ = 0

0 ≤ λ ⊥ a− Cz ≥ 0

µ free, b−Dz = 0.

(2.13)

'z and µ free' is convenient notation, widely used in the literature. It refers to
the situation when the upper and lower bounds for a variable are ∞ and −∞
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respectively. In (2.13), it is the lower bound on λ that distinguishes the problem
from being an NCP. Nevertheless, non-negativity for multipliers arises in every
optimization problem with inequality constrains, and hence the given example is
a rather normal case.

2.4 Variational Inequality Problems - VIs

In [12], �nite-dimensional variational inequality problems and complementarity
problems are studied. The book gives an excellent overview of the topic, and
de�nes a variational inequality problem as follows. For a function G(z) : Rn → Rn

and a set K ⊂ Rn the Variational Inequality problem, V I(K,G), is to �nd z∗ ∈ K
such that:

G(z∗)T (z − z∗) ≥ 0, ∀z ∈ K. (2.14)

The following relation holds for the solution to (2.14):

G(z∗)T (z) ≥ G(z∗)T (z∗), ∀z ∈ K. (2.15)

Hence, if z∗ is treated as �xed, z∗ is a solution to (2.14) if and only if z = z∗ solves
the following (linear) optimization problem.

min
z

G(z∗)T z

st. z ∈ K.
(2.16)

If, additionally, the set K is polyhedral, the problem (2.16) is a linear optimization
problem.

2.4.1 KKT Conditions for VI Problems

For a polyhedral set K = {z ∈ Rn|Cz ≤ a,Dz = b}, z∗ is a solution of (2.14) if
and only if the vectors λ∗ ∈ Rm and µ∗ ∈ Rp exist so that the following conditions
are satis�ed (Proposition 1.2.1 in [12]):

G(z∗) + CTλ∗ +DTµ∗ = 0

a− Cz∗ ≥ 0

b−Dz∗ = 0

λ∗ ≥ 0

λ∗T (a− Cz∗) = 0

(2.17)

The conditions (2.17) are the KKT conditions for (2.16). In Section 2.3.2 it was
shown that the KKT system for optimization problems belong to a subclass of
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MCPs. In the following the corresponding relationship between VI problems and
MCPs are investigated. Recall the MCP function F (z, λ, µ) in (2.12). A similar
function can be derived for the above KKT system (2.17).

F̃ (z, λ, µ) =

G(z) + CTλ+DTµ
a− Cz
b−Dz

 . (2.18)

In other words, V I(K,G) and MCP (K, F̃ ) are equivalent when K = {z ∈
Rn|Cz ≤ a,Dz = b}, and the solution of V I(K,G) is equivalent to the solution of
its KKT system. Hence, MCPs are a subclass of VI problems.

Similarly, the KKT conditions for an optimization problem suits a special class
of VI problems. Consider the problem (2.2) and note that the feasible region in
(2.2) is the polyhedral set K = {z ∈ Rn|Cz ≤ a,Dz = b}. If G(z∗) and f(z∗) are
such that G(z∗) = ∇f(z∗), then the conditions (2.17) are the same as the KKT
conditions to (2.2).

The converse is not necessarily true; not all VI problems correspond to an opti-
mization problem. Among others, [15] and [12] describe the Principle of Symmetry
and an Integrability Condition which are tools to determine if such an optimization
problem exists.

As a summary to this discussion, the relation among the problem classes of
importance for the remaining of this report are summarized in Figure 2.2 below.

VI MCP 
/Linearly constrained VI KKT FROM  

LINEARLY 
CONSTRAINED 
OPTIMIZATION

OPTIMIZATION VI
KKT FROM OTHER           
SPECIAL CLASSES

Figure 2.2: Relationship among VI, MCP and KKT conditions of optimization
problems.
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2.4.2 Duality for VI Problems

Later in this report, when concerning decomposition techniques, the derivation of
a dual VI problem will be required. A good piece of deep theory on the topic is
found in [18], and [12] describes saddle point theory for a vector valued Lagrangian
function corresponding to VI problems. A much easier option that suits the spe-
cialized application problem is however found in [16]. In this approach, the linear
programming problem (2.16) related to the VI (2.14) is used as a starting point.
The dual is deduced by investigating the KKT conditions and using linear duality
theory to derive a problem that has dual variables as decision variables and with
the same KKT conditions as the primal problem. The details of this approach are
given later, in Section 3.4, after the introduction of generalized notation for the
energy market model.

2.4.3 Existence and Uniqueness of Solutions to VI Problems

Theory of existence and uniqueness of solutions to VI problems is found in [15]
and [12]. While [15] provides a brief overview with focus on applications, [12] takes
a more detailed and mathematical approach. The theory in this section is based
on both. First a useful theorem on existence:

Theorem 2.4.1. (Corollary 2.2.5 in [12]) Let K ⊆ Rn be compact and convex
and let G : K → Rn be continuous. Then the set of solutions to V I(K,F ) is
non-empty and compact.

Before stating another useful theorem on uniqueness of solutions, strict and
strong monotonicity is de�ned:

De�nition 2.4.2. Strict Monotonicity A mapping G : K ⊆ Rn → Rn is strictly
monotone on K if

(G(z)−G(y))T (z − y) > 0 ∀z, y ∈ K and z 6= y. (2.19)

De�nition 2.4.3. Strong Monotonicity A mapping G : K ⊆ Rn → Rn is
strongly monotone on K if there exists a constant c > 0 such that

(G(z)−G(y))T (z − y) ≥ c ‖z − y‖2 ∀z, y ∈ K. (2.20)

The de�nitions 2.4.2 and 2.4.3 are from [12] together with the following theo-
rem.
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Theorem 2.4.4. (Theorem 2.3.3 in [12]) Let K ⊆ Rn be a closed and convex set,
and let G : K → Rn be continuous. If G is strictly monotone on K, V I(K,G) has
at most one solution.

Note that Theorem 2.4.4 does not guarantee that a solution exists, there might
as well not be any solution. Uniqueness of a solution is stated in the theorem
below.

Theorem 2.4.5. (Theorem 4.7 in [15]) Let K ⊆ Rn be a non-empty closed and
convex set, and let G : K → Rn be continuous. If G is strongly monotone on K,
V I(K,G) has a unique solution.

If the strong monotonicity requirement in Theorem 2.4.5 cannot be satis�ed,
the next theorem may help, broadening the class of mappings for which a unique
solution exists:

Theorem 2.4.6. (Theorem 9 in [13] Let K ⊆ Rn be a non-empty closed and
convex set, and let G : K → Rn be a mapping of the form G(z) =

(
F (q)
∇c(x)

)
. If F

is strictly monotone on K, then the solution to V I(K,G) is unique in q and in
the scalar value c(x). If c(x) is a strictly convex function on K, the solution to
V I(K,G) is unique in q and x.

The Theorems 2.4.5 and 2.4.6 are useful in many applications together with
the following results; the mapping G(z) = Az + b : Rn → Rn is both strictly
and strongly monotone if A is symmetric positive de�nite. To see why, insert
G(z) = Az + b and G(y) = Ay + b into equation (2.19):

(Az + b− Ay − b)T (z − y) > 0

⇓

(Az − Ay)T (z − y) > 0

⇓

(z − y)TAT (z − y) > 0 (2.21)

If AT is symmetric positive de�nite, then xTAx is positive for any non-zero
vector x. When z 6= y, ∀ z, y ∈ Rn, the vector x = z − y is non-zero, and thus,
G(z) = Az + b is strictly monotone on Rn.

Furthermore, consider equation (2.20), insert G(z) = Az+b and G(y) = Ay+b
as before, let the right hand side norm be the `2-norm, and let I be the identity
matrix of same dimensions as A. This gives:

(Az + b− Ay − b)T (z − y) ≥ c ‖z − y‖2
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⇓

(Az − Ay)T (z − y) ≥ c (z − y)T (z − y)

⇓

(z − y)TAT (z − y) ≥ c (z − y)T I(z − y)

⇓

(z − y)TAT (z − y) ≥ (z − y)T (cI)(z − y) (2.22)

Now, if AT is positive de�nite, the smallest eigenvalue, λmin, of A is positive. If
the constant c > 0 is c = λmin, the above equation (2.21) is satis�ed ∀ z, y ∈ Rn

(equality holds at z = y), and G(z) = Az + b is strongly monotone on Rn.



Chapter 3

Energy Market Modelling

In this chapter, the developed energy market model is described. The model has
several features in common with other examples in the literature, [9], [10] and [15]
are among the main sources of inspiration here. After the model presentation,
a generalized problem formulation is stated, and existence and uniqueness is dis-
cussed for this problem. The chapter ends with a small example that illustrates
the functionality of the model.

3.1 Modelling Approach - Overview of General Fea-

tures

This section describes a few key concepts of energy market models. Some of the
theory given in Chapter 2 is applied here. More intuitive concepts and details are
not covered, but introduced together with the actual model formulation.

A general approach is to describe the situation where all market participants
o�ering products (energy) aim to maximize their pro�ts [15]. As participants
are interacting and relying on others in a market, the optimization problems are
all interdependent. The dependency is speci�ed through common variables and
constraints including other supplier's variables. While the objective functions in
an energy market model are formulated to maximize pro�ts, the constraints to the
corresponding optimization problems describe the physical frame work as well as
economical relations between actors in the market.

3.1.1 Networks

Energy is often produced and consumed in di�erent localities. Hence, geographical
restrictions must be a part of the model. A common practice is to model regions
as nodes. Supply and demand or a combination thereof, can take place in a

15
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node. In this way, a single node has the potential to contain a market itself. A
global market is spanned by the graph containing all nodes and their connections.
Connections between nodes are arcs in the graph and represent transportation
possibilities between regions. Such transportation facilities are often operated by
a governmental agency or sometimes companies separated from production and
trade with energy.

3.1.2 Stochastic Elements

Several elements of an energy market model can be associated with uncertainties.
Examples can be factors such as weather, detection of new reservoirs, investments
in infrastructure, new technology and economical �uctuations. Politics may also
a�ect the supply and demand. As discussed in Section 2.2.1, discrete variations
in such stochastic elements can be stored in a scenario tree. To solve the problem
for the energy market model, the stochastic solution (SS) is aimed for, because
it is more informative. Hence, the solution is found by weighting all parameters
that vary in the scenario tree by the probability of the event(s) in the respective
scenario tree nodes to occur.

3.1.3 Participants

The Supply Side

In many energy sectors it is common that the trade includes more types of par-
ticipants than a set of suppliers and consumers only. Most energy market models
found in the up-to-date literature do at least include trading actors as a linking
function between producers and consumers. A trader buys and sells energy and is
in this fashion a demander of the producer's goods and a supplier of the �nal con-
sumers' demanded goods. Hence, a trader's objective to maximize his own pro�t
is included in many models. Other examples of participants that can be modelled
individually (with its own objective) are transformers and storage operators. A
transformer facilitates the transformation to and from di�erent types of energy, for
example a coal plant. Storage operators facilitates the storage of energy sources,
enabling sale at a later time than production.

Some participants or groups of participants are often assumed to behave simi-
larly, so that their optimization problem formulations can have the same form. In a
market with producers, traders and consumers it would for instance be convenient
to formulate two standard problems, one for producers and one for traders. The
participants' individual problem can later be customized by including participant-
speci�c parameters.
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The Demand Side

To �nd an equilibrium solution, the demand side must also be included in the
model. This is usually done by imposing a demand function for all regions where
consumers are present. In this way, it is ensured that the energy price and quanti-
ties supplied re�ects the consumers demand. If the regional demand functions are
linear and with slope slp, the unit price, u, that consumers are willing to pay at a

given quantity,
∑
p∈P

qSp , can be computed as:

u = int− slp ·
∑
p∈P

qSp . (3.1)

Where qSp is the supplied quantity by producer p, P is the set of producers, and

int is the unit price at
∑
p∈P

qSp = 0.

3.1.4 Market Clearing

At equilibrium, the market must be cleared. That means, as discussed in Section
2.1, that all supplied quantities are consumed. To a supply chain with more
participants than producers and consumers only, the joint interactions among the
intermediaries of participants must also be subject to clearing restrictions.

3.1.5 Other Physical Restrictions

Some physical restrictions can be generalized to apply to almost any energy supply
chain. One of those restrictions is the level of production, which can be reliant on
the resources available, the capacity of the production facilities or both. Another
general restriction describes the transition of a suppliers energy from one instance
of the supply chain to another. The energy produced must be consistent with the
amounts transported and consumed throughout the modelled system.

3.1.6 Competition

Competitiveness of a market is an essential and critical part of any energy market
model. Modern markets in the Western world do often have a few monopolistic
actors, but the general interpretation seems to be that most markets are somewhere
in between oligopolistic and perfectly competitive. Hence, it is of interest to aid
the inclusion of all these elements. Sometimes, varieties in competition is included
as an element of the model. In [11] such a variation is incorporated by a parameter
that assigns weights to each of the distinct competition elements. Competition is
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also a factor that complicates both the implementation and solution algorithms
signi�cantly.

Monopoly

Maximization of the sum of all objective functions in a model can be interpreted
as the the situation where all participant's roles are taken by a single player. In
other words, this approach will give a single optimization problem with a solution
that describes a monopoly.

Perfect Competition

As described in Section 2.1, the market price in a perfectly competitive market can
be found when the sum of suppliers pro�ts and consumer surplus is maximized.
Hence, a monopoly model can easily be extended to describe a perfectly competi-
tive market by adding a term for consumers surplus in the objective function. By
inserting the inverse demand function (3.1) to the de�nition of consumer surplus
given in equation (2.1), the consumer surplus term for this model becomes

CS =
1

2
slp ·

∑
p∈P

(qSp )2. (3.2)

In this way, equilibrium states for a perfectly competitive market can also be
found by solving a single optimization problem.

Oligopoly

The inclusion of oligopolistic behaviour among participants restricts the solution
possibilities of the model substantially. It is no longer possible to solve a single
optimization problem to model such a situation. Instead, a collection of dependent
optimization problems, one for each supplier, must be solved. A solution that
is a Nash equilibrium (see section 2.1) is optimal to all actors given the other
actors' solutions. Hence this solution approach is often referred to as equilibrium
modelling.

The dependency necessitates the optimization problems to be solved simulta-
neously, yielding a multi-objective problem [15]. To �nd a solution that is opti-
mal with respect to multiple objectives, the KKT conditions to all optimization
problems involved together with the market clearing conditions are are collected,
resulting in an MCP. This approach is taken for the energy market model to be
introduced next. As described in Chapter 2, a single optimization problem can
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also be solved as an MCP through the KKT conditions. Therefore, the model for-
mulation is �exible in the sense that other competition elements can be included
without causing massive changes.

3.2 A Stochastic Complementarity Model of an

Energy Market

3.2.1 Notational Matters

Table 3.1: Sets, variables, functions and parameters.

Sets
P Producers
N Nodes in network
N(p) Nodes operated by producer p ∈ P , N(p) ⊆ N
P (n) Producers producing and/or supplying at node

n ∈ N , P (n) ⊆ P
M Scenario tree nodes
S Scenarios
S(m) Scenario in which m ∈M is a member, S(m) ⊆

M
SA(m) Scenario tree nodes in S(m) ancestors to m ∈M
SO(m) Scenario tree nodes in S(m) o�spring of m ∈M
D Demand sectors
E Types of energy

Variables
qpm,n,p,e Quantity produced
qSm,n,p,d,e Quantity sold
qTm,n,n′,p,e Quantity transported
qCm,n,p,e,e′ Quantity transformed
fm,n,n′,e Flow by transporter
f Im,n,n′,e Investment in transportation capacity
xm,n,e,e′ Quantity transformed by transformer
xIm,n,e Investment in transformation output capacity

Dual Variables
Continued on next page. . .
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Table 3.1 � Continued
εm,n,p,e Lagrange multiplier to production capacity con-

straint (3.5)
ζm,n,p,e Lagrange multiplier to mass balance constraint

(3.6)
ιm,n,n′,e Lagrange multiplier to �ow capacity constraint

(3.11)
κm,n,n′,e Lagrange multiplier to �ow capacity investment

constraint (3.12)
νm,n,e Lagrange multiplier transformation capacity

constraint (3.14)
ξm,n,e Lagrange multiplier to transformation capacity

investment constraint (3.15)
υm,n,n′,e Lagrange multiplier to transportation market

clearing equation (3.16)
φm,n,e,e′ Lagrange multiplier to transformation market

clearing equation (3.17)

Functions

um,n,d,e

( ∑
p∈P (n)

qSm,n,p,d,e

)
Unit price of energy

cPm,n,p,e(q
P
m,n,p,e) Production cost

zp Producer p's pro�t
zt Transporter's pro�t
zx Transformer's pro�t

Parameters

qPm,n,p,e Max production capacity
intm,n,d,e Demand at um,n,d,e = 0
slpm,n,d,e Slope of inverse demand curve

fm,n,n′,e Max �ow capacity before extensions

f Im,n,n′,e Max �ow capacity investment at a scenario tree
node, m

xm,n,e Max transformation capacity before extensions

xIm,n,e Max transformation capacity investment at a
scenario tree node, m

discm Discount factor
probm Probability of scenario tree node m
Continued on next page. . .
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Table 3.1 � Continued
k1 Positive coe�cient in quadratic term of produc-

tion cost function
k2 Positive coe�cient in linear term of production

cost function
k3 Positive coe�cient in quadratic term of �ow cost
k4 Positive coe�cient in linear term of �ow capacity

expansion cost function
k5 Positive coe�cient in quadratic term of transfor-

mation cost
k6 Positive coe�cient in linear term of transforma-

tion capacity expansion cost function
lm,n,e,e′ E�ciency rate for transformation

3.2.2 The Market Participants' Optimization Problems

In the following, the optimization problems with the objective to maximize pro�ts
are described for all types of market participants. Afterwards the market clear-
ing conditions are stated. The KKT conditions which gives the energy market
equilibrium problem in the form of an MCP are given in Appendix A.

Producers

Producers, p ∈ P , of energy aim to maximize expected pro�ts, zp, described as
the following optimization problem:

max
qP ,qS

qC ,qT

zp =
∑
m∈M

∑
d∈D

∑
e∈E

∑
n∈N(p)

probm · discm ·

(
um,n,d,e

( ∑
p′∈P (n)

qSm,n,p′,d,e

)
· qSm,n,p,d,e

− cPm,n,p,e(qPm,n,p,e)−
( ∑
n′∈N(p)

υm,n,n′,e · qTm,n,n′,p,d,e
)

−
(∑
e′∈E

φm,n,e,e′ · qCm,n,p,e,e′
))

(3.3)
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st. qSm,n,p,d,e, q
P
m,n,p,e, q

T
m,n,n′,p,e, q

C
m,n,p,e,e′ ≥ 0 (3.4)

qPm,n,p,e ≤ qPm,n,p,e ∀ m,n, p, e(εm,n,p,e) (3.5)

qPm,n,p,e +
∑

n′∈N(p)

qTm,n′,n,p,e +
∑
e′∈E

lm,n,e′,e · qCm,n,p,e′,e −
∑
d∈D

qSm,n,p,d,e

−
∑

n′∈N(p)

qTm,n,n′,p,e −
∑
e′∈E

qCm,n,p,e,e′ = 0 ∀ m,n, p, e (ζm,n,p,e) (3.6)

Greek letters denote the Lagrange multipliers associated with a constraint. The
non-negativity conditions are not assigned any multiplier as such variables will not
be used explicitly in this work. The expected pro�t is calculated by summing the
pro�ts over all scenario tree nodes, m ∈ M , weighted by the probability probm
of each scenario. Pro�ts of a producer are the incomes from sales with costs of
production, transportation and transformation subtracted. By summing over all
nodes of the market network (n ∈ N), all types of energy (e ∈ E) and sectors
with di�erent demands (d ∈ D), the total pro�t, zp, of a producer's operations is
found. Income from sales of energy is each producers supplied quantities, qSm,n,p,d,e
times the unit price um,n,d,e. To �nd the unit price, an inverse demand function is
involved, based on the theory in Section 2.1:

um,n,d,e
( ∑
p∈P (n)

qSm,n,p,d,e
)

= intm,n,d,e − slpm,n,d,e ·
( ∑
p∈P (n)

qSm,n,p,d,e
)
. (3.7)

Production costs are described by the quadratic function:

cPm,n,p,e
(
qPm,n,p,e

)
= k1 ·

(
qPm,n,p,e

)2
+ k2 ·

(
qPm,n,p,e

)
. (3.8)

Costs associated with transportation from node n ∈ N is the sum of the cost of
transportation to any other node operated by producer p ( in n′ ∈ N(p)). Hence,
the summation over all n′ ∈ N is included in (3.3). The cost of transportation
on the arc (n, n′) is computed by taking the unit price of transportation, υm,n,n′,e,
times the quantity transported, qTm,n,n′,p,e.

Similarly, the costs of transformation from type e to any other type, e′ ∈ E,
are included in the producers objective function as the unit cost, phim,n,e,e′ times
the quantity transformed, qCm,n,p,e,e′ .

The constraints collected in (3.4) ensure that all decision variables are positive.
In addition, the produced quantities must not exceed the production capacity
available. Equation (3.5) enforces this. Lastly constraint (3.6), states that the
produced, transported and supplied quantities must be in compliance so that mass
balance is preserved for every producer and every type of energy at every node at
all times.
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Transporters

A transporter provides transport to producers at a unit price. In addition, its
operations include extensions of the transportation capacity if that is demanded.
The transporters objective function is:

max
f,fI

zt =
∑
m∈M

∑
e∈E

∑
n∈N

∑
n′∈N

probm · discm ·
(
υm,n,n′,e · fm,n,n′,e−

k3 · (fm,n,n′,e)2 − k4 · f Im,n,n′,e
) (3.9)

st. fm,n,n′,e, f
I
m,n,n′,e ≥ 0 (3.10)

fm,n,n′,e ≤ fm,n,n′,e +∑
m′∈SA(m)

f Im′,n,n′,e ∀m,n, n′, e (ιm,n,n′,e) (3.11)

f Im,n,n′,e ≤ f Im,n,n′,e ∀m,n, n′, e (κm,n,n′,e) (3.12)

Again, the expected pro�t is maximized. The transporters pro�t, zt, is the income
from providing transportation with cost of transportation and expanding the trans-
portation capacities subtracted. Income is the unit price of transporting energy,
υm,n,n′,e, times the total �ow, fm,n,n′,e, on each arc (n, n′). The cost of transporting
a unit is k3 · (fm,n,n′,e)2, and the costs of extensions k4 · f Im,n,n′,e. As for produc-
ers, the constraint (3.10) ensures that the decision variables in (3.9) are positive.
Expansions in the �ow capacity are prevented form exceeding some upper limita-
tion by constraint (3.12). The �ows are in a similar fashion constrained by the
initial maximal capacity, fm,n,n′,e, together with earlier investments in expansions,∑
m′∈SA(m)

f Im′,n,n′,e. Hence, the cost of increasing the transportation capacity applies

to the time stage before the expansion at �rst can be utilized. The expansion is
available at any later time stage.

Transformer

The transformer facilitates the transformation from one type of energy, e, to an-
other, e′ (e, e′ ∈ E). For the transformation of a quantity xm,n,e,e′ , an energy
speci�c unit price, φm,n,e,e′ , is charged and a unit cost k5 applies. The transforma-
tion also causes a certain waste speci�ed by the e�ciency rate parameter, lm,n,e,e′ .
As for the transporter, total transformations must not give outputs exceeding the
capacity limit, xm,n,e′ and it can be invested in future expansions in transformation
output capacity, xIm,n,e′ . Thus the transformer's optimization problem reads:
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max
x,xI

zx =
∑
m∈M

∑
e∈E

∑
n∈N

probm · discm ·
((∑

e′∈E

(
φm,n,e′,e · xm,n,e′,e−

k5 · (xm,n,e′,e)2
))
− k6 · xIm,n,e

)

st. xm,n,e′,e, xIm,n,e ≥ 0 (3.13)∑
e∈E

lm,n,e′,e · xm,n,e′,e ≤ xm,n,e +
∑

m′∈SA(m)

xIm′,n,e ∀m,n, e (νm,n,e) (3.14)

xIm,n,e ≤ xIm,n,e ∀m,n, e (ξm,n,e) (3.15)

Market Clearing

The producers and transporters are linked through the equation below. This
ensures that the �ow handled by the transporter equals the sum of all suppliers
transported quantities on all arcs.

fm,n,n′,e =
∑
p∈P (n)

qTm,n,n′,p,e (υm,n,n′,e). (3.16)

The equilibrium unit equilibrium price of transportation, υm,n,n′,e, is the Lagrange
multiplier for constraint (3.16). In the same way, producers are linked to the
transformer as follows:

xm,n,e,e′ =
∑
p∈P (n)

qCm,n,p,e,e′ (φm,n,e,e′), (3.17)

where φm,n,e,e′ is the Lagrange multiplier for constraint (3.17) and gives the unit
price of energy transformation.

3.3 Important Properties

For later, it is noted that all constraints together with the market clearing equa-
tions are linear equalities and inequalities. Hence the feasible region for each
problem is convex. Furthermore, the three objective functions are quadratic and
concave, and thus, each of the three optimization problems are convex.

It is easy to see that the feasible region to each separate problem is non-empty,
because all the included variables being equal to zero is a feasible point. The same
applies to the problem arising when the market clearing conditions are imposed so
that the three problems are interrelated.
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3.4 Generalized Notation

Due to the high level of details in the above notation, in the corresponding KKT
conditions given in Appendix A and in the resulting MCP, it is for the purpose
of further work, desirable to extract a generalized formulation of both the KKT
conditions forming the MCP and the equivalent VI problem. The generalized
notation is addressed in this section, leading to a form that is comparable with
the theory and later algorithms described in [16].

First, the primal variables are considered. These are grouped in two categories.
Investments in transformation and transportation capacities, xIm,n,e and f

I
m,n,n′,e,

are the only variables that (through the constraints (3.11) and (3.14)) connects
the solutions for more than one scenario tree node. Thus xIm,n,e and f

I
m,n,n′,e are

collected in the set y. All other variables are contained in the other set, which
again is divided in two components; (q, x). q is distinguished from x by causing
non-constant terms in the gradient of one of the objective functions (3.3), (3.9) and
(3.13). Hence qPm,n,p,e, q

S
m,n,p,d,e, fm,n,n′,e and xm,n,e,e′ are in q while qTm,n,n′,p,e and

qCm,n,p,e,e′ are in x. y, x and q are all non-negative variables because their elements
are so.

To express the MCP and corresponding VI problem, let each of the three
objective functions be zi(q, x, y). Then it is convenient to formulate the gradient
of each of the three objective functions as:

∇zi = Fi(q)
T + dTi + lTi ∀i ∈ {1, 2, 3}. (3.18)

As already mentioned, the variables in q are identi�ed as the only variables with a
non-constant gradient. Thus, the function F (q) describes the gradient with respect
to q, while the other variables have constant gradients, d and l. Note that none
of the elements in q, x and y appears in more than one of the three problems
explicitly. That is, qSm,n,p,d,e is only part of the producers problem etc.

The constraints and market clearing equations are associated with three di�er-
ent categories; inequalities involving the variable y only, the remaining inequalities,
and lastly all equalities (mass balance and market clearing equations). The �rst
group comprises the constraints (3.12) and (3.15), and has the general form:

D̃y ≥ c̃ (v1), (3.19)

where

D̃ =

[
−1 0
0 −1

]
, y =

[
f Im,n,n′,e
xIm,n,e

]
, c̃ =

[
−f Im,n,n′,e
−xIm,n,e

]
, and v1 =

[
κm,n,n′,e
ξm,n,e

]
,

and the variable v1 is the associated vector of Lagrange multipliers. This explicit
relation between the original and generalized equations are left out in the descrip-
tion of the two remaining categories. Group two summarizes the constraints (3.5),
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(3.11) and (3.14):
Aq +Dy ≥ c (v2). (3.20)

The last group, contains the equality constrains (3.6), (3.16) and (3.17). None
of these constraints involves constant terms, and hence, the generalized form is:

Âq + B̂x = 0 (v3). (3.21)

Altogether, the constraints to the three optimization problems are now reduced
to:

D̃y ≥ c̃ (v1)

Aq +Dy ≥ c (v2)

Âq + B̂x = 0 (v3)

q, x, y ≥ 0

(3.22)

By letting:

F (q) =

F1(q)
F2(q)
F3(q)

 , d =

d1d2
d3

 and l =

l1l2
l3

 .
The KKT conditions to (3.22) are:

0 ≤ q ⊥ F (q)− ATv2 − ÂTv3 ≥ 0 (3.23a)

0 ≤ x ⊥ d− B̂Tv3 ≥ 0 (3.23b)

0 ≤ y ⊥ l − D̃Tv1 −D
T
v2 ≥ 0 (3.23c)

0 ≤ v1 ⊥ D̃y − c̃ ≥ 0 (3.23d)

0 ≤ v2 ⊥ Aq +Dy − c ≥ 0 (3.23e)

v3 free, Âq + B̂x = 0 (3.23f)

The equations (3.23), yields an MCP, and has the following corresponding VI
problem:

For K = {(q, x, y) | D̃y ≥ c̃, Aq +Dy ≥ c, Âq + B̂x = 0, q ≥ 0, x ≥ 0, y ≥ 0},
�nd (q∗, x∗, y∗) ∈ K s.t.

F T (q∗)(q − q∗) + dT (x− x∗) + lT (y − y∗) ≥ 0, ∀(q, x, y) ∈ K.
(3.24)

To obtain an even more compact form, let the mapping G be

G

qx
y

 =

F (q)
d
l

 , (3.25)
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then the problem in (3.24) is V I(K,G).

Table 3.2: Overview of Generalized Notation

Generalized Pri-
mal Vectors

Contained Variables

y = [f Im,n,n′,e, x
I
m,n,e]

T

q = [qPm,n,p,e, q
S
m,n,p,d,e, fm,n,n′,e, xm,n,e,e′ ]

T

x = [qTm,n,n′,p,e, q
C
m,n,p,e,e′ ]

T

Generalized Ob-
jective Function
Elements

Contained Elements

F1(q) = probm·discm·


k1 · qPm,n,p,e + k2

−
(
intm,n,d,e − slpm,n,d,e ·

(
qSm,n,p,d,e +

∑
p′∈P (n)

qSm,n,p′,d,e
))

0
0


F2(q) = probm · discm ·


0
0

2 · k3 · fm,n,n′,e − υm,n,n′,e
0


F3(q) = probm · discm ·


0
0
0

2 · k5 · xm,n,e′,e − φm,n,e,e′


d1 = probm · discm ·

(
υm,n,n′e
φm,n,e,e′

)
d2 = probm · discm ·

(
0
0

)
d3 = probm · discm ·

(
0
0

)
l1 = probm · discm ·

(
0
0

)
l2 = probm · discm ·

(
k4
0

)
l3 = probm · discm ·

(
0
k6

)
Continued on next page. . .
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Table 3.2 � Continued
Generalized Dual
Vectors Contained Dual Elements
v1 = [κm,n,n′,e, ξm,n,e]

T

v2 = [εm,n,p,e, ιm,n,n′,e, νm,n,e]
T

v3 = [ζm,n,p,e, υm,n,n′,e, φm,n,e,e′ ]
T

3.4.1 The generalized Dual VI Problem

As mentioned in Section 2.4.2, [16] is followed to obtain a dual form of the problem
(3.24). The �rst step in this approach is to express the original VI problem as an
LP problem where the solution to q∗ is assumed to be known. Following the theory
in Section 2.4, gives:

min
q,x,y

F (q∗)T q + dTx+ lTy

st. D̃y ≥ c̃ (v1)

Aq +Dy ≥ c (v2)

Âq + B̂x = 0 (v3)

q, x, y ≥ 0

(3.26)

Next, linear duality theory (see [23]) can be applied to derive the dual VI problem.
As in (3.26), the solution to variables that occur in non-linear terms must be �xed
in the LP version of a VI problem. Hence, a new dual variable, f , is introduced,
together with the properties F (q) = f and F−1(f ∗) = q. Details regarding the
invertibility of F (q) are shown in Section 3.5. When f ∗ is �xed in F−1(f), the
dual problem becomes:

min
v1,v2,v3,f

− c̃Tv1 − cTv2 + F−1(f ∗)Tf

st. D̃Tv1 +D
T
v2 ≤ l (y)

A
T
v2 + ÂTv3 ≤ f (q)

B̂Tv3 ≤ d (x)

v1, v2 ≥ 0

(3.27)
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which is the linear optimization problem corresponding to the following VI prob-
lem:

Find (v∗1, v
∗
2, v
∗
3, f

∗) ∈ KD s.t.

− c̃T (v1 − v∗1)− cT (v2 − v∗2) + F−1(f ∗)T (f − f ∗) ≥ 0,

∀(v1, v2, v3, f) ∈ KD.

(3.28)

with

KD =



(v1, v2, v3, f) |
D̃Tv1 +D

T
v2 ≤ l (y)

A
T
v2 + ÂTv3 ≤ f (q)

B̂Tv3 ≤ d (x)
v1 ≥ 0, v2 ≥ 0


. (3.29)

Similarly to the notation in (3.27), the dual variables to the constraints in KD, y,
q and x, are entered in brackets just after the respective constraint.

The equivalence between the primal and dual form is de�ned in the following
theorem.

Theorem 3.4.1. (Theorem 1 in [14]). The vectors (q, x, y) and (v1, v2, v3) solve
the primal VI problem (3.24) if and only if (f, v1, v2, v3) with f = F (q) together
with the constraints multiplier vector (q, x, y), solves the dual VI problem (3.28).

3.5 Existence and Uniqueness

Fundamental theory of existence and uniqueness of an equilibrium solution to the
energy market model was introduced in Section 2.4.3. By use of Theorem 2.4.1,
it can be shown that a solution exists. The theorem applies to the VI problem
V I(K,G), and requires the feasible region K to be a compact and convex subset
of Rn. K ⊆ Rn is true because all involved variables are real-valued. The set K
is also convex and closed because it is de�ned by linear equality and inequality
constraints. K is thereby a convex polyhedron. In general, a set in Rn is compact
if it is bounded and closed, and thus it remains to investigate the boundedness.

All variables are ≥ 0, and hence bounded from below. Upper bounds on the
variables qPm,n,p,e, fm,n,n′,e, f

I
m,n,n′e, xm,n,e,e′ and x

I
m,n,e are de�ned in the equations

(3.5), (3.11), (3.12), (3.14) and (3.15) respectively. This means that qTm,n,n′,p,e and

qCm,n,p,e′,e also have an upper bound as these are related to fm,n,n′,e and xm,n,e,e′
through the market clearing equations (3.16) and (3.17) respectively. Lastly, the
same logic applies to qSm,n,p,d,e, which is related to the other producer variables
through the mass balance constraint (3.6). Therefore, it can be concluded that the
set K is bounded. The last requirement from Theorem 2.4.1 is that the mapping
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F is continuous. This can be observed in (3.24), where F (q) is a linear function,
and l and d are coe�cients. Thus, there exists at least one solution, (q∗, x∗, y∗), to
the VI problem (3.24) and therefore also to the MCP (3.23).

In many similar applications, the Theorems 2.4.4, 2.4.5 and 2.4.6 are applied to
verify the existence of a unique solution, requiring strict and strong monotonicity
of the mapping, or parts of the mapping for the latter theorem. Theorem 2.4.6
is a natural choice for the present application. Recall that this theorem involves
a mapping of the form G(z) =

(
F (q)
∇c(x′)

)
(x′ is used here to avoid con�icts with the

generalized notation to the present application). From equation (3.25), it can be

seen that this form is obtained if ∇c(x′) =
(
d
l

)
. With c(x′) =

(
dT x
lT y

)
, the property

∇c(x′) =
(
d
l

)
is satis�ed, and therefore c(x′) is convex and the mapping G(z) can

be used to describe the problem speci�c VI in (3.24). Furthermore, since F (q) is
a linear mapping of the form F (q) = Cq + b, it is relevant to investigate if C is
symmetric positive de�nite. If that is the case, uniqueness of the solution follows
from Theorem 2.4.6.

In the three objective functions for the model, the variables that appear in
quadratic terms are members of q. Thus, matrix C consists of the coe�cients to
all quadratic terms in the objective functions. Except from qSm,n,p,d,e, all variables
in q are only multiplied by themselves and a coe�cient in the quadratic terms, and
therefore giving non-zero entries to the diagonal of C only. The coe�cients are all
positive; probm ·discm ·2 ·k1, probm ·discm ·2 ·k3 and probm ·discm ·2 ·k5. However,
the unit price function (3.7) for sold quantities, does lead to o�-diagonal terms in
C. The summation over p′ ∈ P (n) causes interaction terms among qSm,n,p,d,e and
every qSm,n,p′,d,e for p′ ∈ P (n), leaving the coe�cient probm · discm · slpm,n,d,e in
positions that are not on the diagonal of C. Nevertheless, all the diagonal terms
corresponding to qSm,n,p,d,e-variables are of the form probm·discm·2·slpm,n,d,e, leading
to a sub matrix in C that has positive eigenvalues only. As all other entries in C
are positive and located on the diagonal, it can be concluded that the matrix is
symmetric positive de�nite, and thus, by Theorem 2.4.6 and the result in equation
(2.21), the problem has a solution that is unique in q, x and y.

Another important consequence of the fact that C is symmetric positive de�-
nite, is that F (q) is invertible. This is used in the derivation of the dual VI problem
as shown in Section 3.4.1.

At this point it is worth mentioning, that if probabilities or discount rates or
possibly both are small, so that probm · discm → 0, then C may become singular.
To use data that has scenarios with 0 probability, may seem to be a neat short-cut
for a modeller testing various problems. But due to the above reasoning, such
cases should in stead be handled by constructing a new scenario tree where the
unattainable nodes are excluded. If the discount rate reaches zero, this is because
the total period of time stages considered is large relatively to the discount rate.
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In such cases, special attention should be paid to the respective factors in the
mapping F (q).

3.6 Implementation and Software

MCPs can be solved GAMS1 [24], using the PATH solver [3]. The solver is based
on a generalization of the Newton method to MCPs. For the present application,
the GAMS environment is well suited, facilitating a high-level language closely
related to the problem formulation. Thus, in terms of implementation of the
present application, the MCP formulation of the KKT conditions derived form
optimization problems and market clearing equations is a good starting point. As
mentioned earlier, the non-generalized KKT conditions are listed in Appendix A.

The GAMS code used to solve the entire model as a single MCP is available
on GitHub [25].

3.7 Test Experiments

To illustrate some of the functions in the energy market model, a small test example
is shown here.

3.7.1 Example Problem Description

The following tables (Table 3.3 and 3.4) shows the deterministic input data used.

Table 3.3: Input data, sets and parameters

Sets
P {1, 2}
N {1, 2}
N(1) {1, 2}
N(2) {2}
P (1) {1}
P (2) {2}
M {1, 2, 3, 4}
S {1, 2, 3}
S(1) {1, 2, 3}
Continued on next page. . .

1platform: win64, version: 24.0.2
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Table 3.3 � Continued
S(2) {2}
S(3) {3}
S(4) {4}
SA(2) {1}
SA(3) {1}
SA(4) {1}
SO(1) {2, 3, 4}
D {1, 2}
E {1, 2}

Parameters

qPm,n,p,e 30 ∀ m ∈M,n ∈ N, p ∈ P, e ∈ E
intm,n,d,e See Table 3.4 below
slpm,n,d,e 1 ∀ m ∈M,n ∈ N, p ∈ P, e ∈ E
fm,1,2,e 0.1 ∀ m ∈M, e ∈ E
f Im,1,2,e 5 ∀ m ∈M, e ∈ E
xm,2,e 0.1 ∀ m ∈M, e ∈ E
xIm,2,e 10 ∀ m ∈M, e ∈ E
disc1 1
discm 0.98 for m = 2, 3, 4
prob1 1
probm 0.3 for m = 2, 4
prob3 0.4
k1 1
k2 1
k3 1
k4 1
k5 1
k6 1
lm,2,1,2 0.4 ∀ m ∈M
lm,n,e,e′ 1 for n = 1 ∩ (n = 2, e = 2, e′ = 1), ∀ m ∈M

The data in Table 3.3 and 3.4 describes a market with two nodes, a trans-
portation facility from node 1 to 2 and a transformation facility in node 2. There
are two types of energy, and these can both be transported, but transformation is
only possible from type 1 to type 2 at a 40% e�ciency rate. Both the transforma-
tion and transportation can be expanded by making an investment one time stage
ahead. As there are only two time stages, this means that any investment should
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Table 3.4: Input data for the parameter intm,n,d,e ∀ m ∈M

{n, d} Energy type 1 Energy type 2
{1, 1} 10 10
{1, 2} 25 30
{2, 1} 20 10
{2, 2} 65 80

take place in stage one. In stage 2 there is no gain associated with an investment
as this is the last stage considered. From Table 3.4 it can be seen that the demand
for both energy types tends to be higher in node 2 than node 1. The network is
illustrated in Figure 3.1.

fm,n=1,n’=2,e=1    

fm,n=1,n’=2,e=2    

qP
m,n=2,p=2,e=1   q

P
m,n=2,p=2,e=2

qS
m,n=2,p=2,d=1,e=1  q

S
m,n=2,p=2,d=1,e=2 

qS
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S
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m,n=2,p=2,d=2,e=1  q

S
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qS
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Figure 3.1: Network structure of the example market with primal variables.

The example considered involves variations in the demand for the two types
of energy. From the initial state where int1,n,d,e is from Table 3.4, there are three
di�erent cases that may occur in the next time stage; a doubling in all values of
intm,n,d,e from stage 1 (scenario 1, m = 2), all values in stage 1 remain equal to
stage 1 (scenario 2, m = 3) or a 10% reduction in all values of intm,n,d,e from stage
1 (scenario 3, m = 4). The data is illustrated in the below �gure of the scenario
tree, including probabilities.

3.7.2 Results

The results for this experiment are listed in Table 3.6 below, and a selection of
results corresponding to Figure 3.1 are shown in Figure 3.3-3.6.
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TIME AXIS

t=1

    int 
doubled

     int 
constantm=1

m=2

 int
 10%

m=3

m=4

P=0.3

P=0.3

P=0.4

Scenario 1

Scenario 3

Scenario 2

t=2

Figure 3.2: Di�erent scenarios when intm,n,d,e varies, for n ∈ N, d ∈ D, e ∈ E.

Table 3.6: All non-zero results when varying intm,n,d,e

m,n, p, e Value of qPm,n,p,e m,n, p, d, e Value of qSm,n,p,d,e

{1, 1, 1, 1} 8.033 {1, 1, 1, 2, 1} 7.933
{1, 1, 1, 2} 9.700 {1, 1, 1, 2, 2} 9.600
{1, 2, 2, 1} 21.333 {1, 2, 1, 2, 1} 0.100
{1, 2, 2, 2} 26.333 {1, 2, 1, 2, 2} 0.100
{2, 1, 1, 1} 18.033 {1, 2, 2, 2, 1} 21.333
{2, 1, 1, 2} 21.367 {1, 2, 2, 2, 2} 26.333
{2, 2, 2, 1} 30.000 {2, 1, 1, 2, 1} 12.933
{2, 2, 2, 2} 30.000 {2, 1, 1, 2, 2} 16.267
{3, 1, 1, 1} 9.700 {2, 2, 1, 2, 1} 5.100
{3, 1, 1, 2} 11.367 {2, 2, 1, 2, 2} 5.100
{3, 2, 2, 1} 21.333 {2, 2, 2, 2, 1} 30.000
{3, 2, 2, 2} 26.333 {2, 2, 2, 2, 2} 30.000
{4, 1, 1, 1} 7.971 {3, 1, 1, 2, 1} 4.600
{4, 1, 1, 2} 10.367 {3, 1, 1, 2, 2} 6.267
Continued on next page. . .
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Table 3.6 � Continued
{4, 2, 2, 1} 7.700 {3, 2, 1, 2, 1} 5.100
{4, 2, 2, 2} 23.667 {3, 2, 1, 2, 2} 5.100

{3, 2, 2, 2, 1} 21.333
m,n, n′, e Value of f Im,n,n′,e {3, 2, 2, 2, 2} 26.333

{4, 1, 1, 2, 1} 5.558
{1, 1, 2, 1} 5.000 {4, 1, 1, 2, 2} 5.267
{1, 1, 2, 2} 5.000 {4, 2, 1, 2, 1} 0.732

{4, 2, 1, 2, 2} 5.772
m,n, e Value of xIm,n,e {4, 2, 2, 1, 1} 1.600

{4, 2, 2, 2, 1} 6.100
{1.2.2} 0.572 {4, 2, 2, 2, 2} 23.667

m,n, n′, p, e Value of qTm,n,n′,p,e m,n, n′, e Value of fm,n,n′,e

{1, 1, 2, 1, 1} 0.100 {1, 1, 2, 1} 0.100
{1, 1, 2, 1, 2} 0.100 {1, 1, 2, 2} 0.100
{2, 1, 2, 1, 1} 5.100 {2, 1, 2, 1} 5.100
{2, 1, 2, 1, 2} 5.100 {2, 1, 2, 2} 5.100
{3, 1, 2, 1, 1} 5.100 {3, 1, 2, 1} 5.100
{3, 1, 2, 1, 2} 5.100 {3, 1, 2, 2} 5.100
{4, 1, 2, 1, 1} 2.413 {4, 1, 2, 1} 2.413
{4, 1, 2, 1, 2} 5.100 {4, 1, 2, 2} 5.100

m,n, p, e, e′ Value of qCm,n,p,e,e′ m,n, e, e′ Value of xm,n,e,e′

{4, 2, 1, 1, 2} 1.681 {4, 2, 1, 2} 1.681

3.7.3 Discussion of Results

From the results table, the following observation can be made, supporting the
di�erences in demand in scenario 1, 2 and 3. In general, one can see that the total
production and supply are highest at m = 2, and lowest at m = 4. To see why,
summarize all produced quantities at m = 2, 3, 4 respectively, which gives: qPtotm=2 =
18.033+21.367+30+30 = 99.400, qPtotm=3 = 9.7+11.367+21.333+26.333 = 68.733
and qPtotm4 = 7.971 + 10.367 + 7.7 + 23.667 = 49.7050. This is realistic due to the
corresponding decline in demand.

At stage 1, there are made maximal investments in transportation facilities
for both energy types, and a relatively small investment in transformation output
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Table 3.5: Input data for the parameter intm,n,d,e in all scenarios.

{m,n, d} Energy type 1 Energy type 2
{1, 1, 1} 10 10
{1, 1, 2} 25 30
{1, 2, 1} 20 10
{1, 2, 2} 65 80
{2, 1, 1} 20 20
{2, 1, 2} 50 60
{2, 2, 1} 40 20
{2, 2, 2} 130 160
{3, 1, 1} 10 10
{3, 1, 2} 25 30
{3, 2, 1} 20 10
{3, 2, 2} 65 80
{4, 1, 1} 9 9
{4, 1, 2} 22.5 27
{4, 2, 1} 18 9
{4, 2, 2} 22.5 72

capacity (xI1,2,1,2 = 0.572) for transformations from energy type 1 to 2.

These decisions are reasonable in comparison to the amounts transported and
transformed at m = 2, 3 and 4. In scenario 1 and 2, the investments in transporta-
tion are fully utilized for both energy types, and at m = 4, the type 2 energy is
utilizing maximum possible �ow, while there is almost 50% idle capacity for type
1 (f4,1,2,1,1 = 2.413). The transformation capacity is only utilized at m = 4. After
the investments, the upper limit of transformation output is 0.100+0.572 = 0.672,
which corresponds to a maximum input quantity of 1.681 when the e�ciency rate
for transformations is 40%. This equals the total transformed quantities at m = 4,
x4,2,1,2 = 1.681, and hence it can be concluded that the maximum transformation
constraint (3.14) is binding. As this is the only scenario for which the transforma-
tion facility is used, it is however reasonable that no more investments were made
in the �rst stage.

The market has two demand sectors, but the only case where the demands
in sector 1 are met is for m = 4. In the other scenarios, quadratic production
costs and maximal transportation form network node 1 does probably make the
di�erence in demand in sector 1 and production costs negative. Hence, no sales
are made to demand sector 1. For m = 4, the quantities produced are lower, and
hence, costs are not growing that rapidly, and it is possible to make pro�ts on sales
that not pays that much as well.
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Figure 3.3: Selected non-zero results for m = 1.
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Figure 3.4: Selected non-zero results for m = 2.

The same reasoning can explain why transformation is suddenly utilized in
scenario 3. Quadratic costs on both transportation and transformation makes
it advantageous to transport and transform smaller quantities, rather than one
big. It is still only a small quantity that is transformed though, which makes
sense with respect to the relatively low e�ciency rate (40%) associated with the
transformation.

Other opportunities to verify the correctness of the model are limited, but this
discussion does at least show that the results seem meaningful.
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Figure 3.5: Selected non-zero results for m = 3.
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Figure 3.6: Selected non-zero results for m = 4.



Chapter 4

Decomposition Techniques

Decomposition techniques are methods where an original problem is reformulated
in such a way that several smaller separate problems can be solved iteratively
instead.

For suitable problem structures, there are many elements that may reduce to-
tal running times and memory demand. First of all, the speci�c structure of the
original problem formulation can be exploited to obtain partial problems that are
signi�cantly easier to solve. Sometimes the decomposition can give convex or con-
cave problems even though the original problem has neither of these properties
[17]. Another advantage can occur when some or all of the separate problems have
a formulation well suitable for especially e�ective algorithms [17]. Also, the de-
composition enables the algorithm for solving decomposed problems to make some
computations in parallel. Typically, the required communication between these
parallel processes is small relative to the problem sizes, amplifying the possibility
to increase speed-up.

Before describing the speci�c details of deriving a decomposition method for
the energy market model from Chapter 3, some common concepts and details that
apply to decomposition in general are described.

4.1 Introductory Concepts in Decomposition Tech-

niques

4.1.1 Suitable Problems

There are two types of structures that are especially well suited for basic decom-
position techniques; when a problem has either a small number of complicating
variables or constraints relative to the total number of variables or constraints re-
spectively. In this context, the word complicating means that the problem becomes

39



40 CHAPTER 4. DECOMPOSITION TECHNIQUES

remarkably easier to solve if these constraints were relaxed, or the variables were
�xed to a constant value. Ideally, the relaxation or �xation of variables breaks
the problem down to smaller, independent problems, but also in cases where de-
pendent problems arises, decomposition techniques can be bene�cial to apply. In
an optimization problem, either equality- or inequality constraints, or both can be
complicating or include complicating variables.

As an illustration, consider the optimization problem:

min
z

f(z)

st. Cz ≤ a (λ).
(4.1)

If there were a few variables complicating the problem, and these were organized
at the end of the vector z, the matrix C would have a shape similar to (a) in Figure
4.1. Similarly, if the problem (4.1) had a small number of constraints linking a
larger number of variables in z that otherwise are not connected, the matrix C
could have a form like (b) in the �gure.

 

(a) (b)

Figure 4.1: Constraint matrices with the presence of complicating variables in (a)
and complicating constraints in (b).

Assume that the objective function, f(z), is separable in the complicating
and non-complicating variables, and in the variables corresponding to C1, C2 and
C3 in case (a) and C4, C5 and C6 in case (b). Then the problem (4.1) would
consist of three separate problems that could be solved independently if either the
complicating variables in case (a) were �xed to some value, or the complicating
constraints in case (b) were relaxed. Such a separation can lead to a substantial
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reduction in the di�culty of solving the problem, which is a fact that decomposition
methods can bene�t from.

There are two main types of decomposition techniques that are suitable for
problems with decomposable structure as described above. Benders Decomposition
can be used for problems containing complicating variables (case (a) in Figure 4.1),
and a method called Dantzig-Wolfe Decomposition is appropriate for problems
with complicating constraints (case (b) in Figure 4.1). Lagrangian Relaxation is a
closely related alternative to Dantzig-Wolfe [7], but is not considered in this report.

Dantzig-Wolfe and Benders Decomposition are often abbreviated DWD and BD
respectively, and they are both widely applied to many models of energy markets
and in other applications involving optimization theory. In case of an even more
complex problem structure, a sort of nested algorithm combining several techniques
could also be constructed.

4.1.2 Benders Decomposition (BD) for Linear Optimization
Problems

The principles of Benders Decomposition (BD) were �rst formulated by Benders
himself in [6]. In [17], a more generalized method was proposed, often known as
Generalized Benders Decomposition. In BD, the complicating variables invoking
the application of BD are handled in a master problem (MP). The corresponding
subproblem (SP) consist of all terms of the objective function and all constraints
from the original problem that do not involve the complicating variables only. Still,
where complicating variables appear in the SP, these are �xed to a certain value
determined in the previous MP. The SP solution and the Lagrange multipliers to
the SP constraints where the MP parameters are present are returned to the MP.
Next, a new constraint is added to the MP, based on the information from the
SP. The constraint excludes non-optimal parts of the MP feasible region, and is
known as a Benders cut. As a result of this cut, the MP feasible region is reduced
for every iteration. The BD procedure is illustrated in Figure 4.2.

To show details in the MP and SP, reconsider the problem in (4.1) and Figure
4.1 (a), and let the variables in z be organized as follows:

z =


z1
z2
z3
z̃

 ,
where z̃ are the complicating variables. Accordingly, the vectors a and λ and the
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MP - Master Problem

SP - Sub Problem

Value of 
Complicating 
Variables

Duals to 
complicating 
constraints + 

SP solution 

Figure 4.2: Information �ow in Benders Decomposition.

function f(z) are;

a =


a1
a2
a3
ã

 , λ =


λ1
λ2
λ3
λ̃

 and f(z) =


f1(z1)
f2(z2)
f3(z3)

f̃(z̃)

 .
If the variables z̃ are �xed so that z̃ = z̃k, the problem in (4.1) can be written:

min
z1,z2,z3

f1(z1) + f2(z2) + f3(z3)

st. C1z1 ≤ a1 − C̃1z̃
k (λ1)

C2z2 ≤ a2 − C̃2z̃
k (λ2)

C3z3 ≤ a3 − C̃3z̃
k (λ3).

(4.2)

This is clearly separable in three independent problems for i = 1, 2, 3:

min
zi

fi(zi)

st. Cizi ≤ ai − C̃iz̃k (λi),
(4.3)

which are the SPs. When each of the SPs are solved, the objective function value

of all SPs,
3∑
i=1

fi(zi), and the Lagrange multipliers of the constraints in the SPs,

λi, are passed to the MP. The MP consists of the complicating elements of (4.1),
which without any adjustments from the SP would read:

min
z̃

f̃(z̃)

st. C̃z̃ ≤ ã.
(4.4)
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The SP information is included in a new variable α, which approximates the SP
solution. To obtain a z̃k+1 that is better than the previous in terms of optimizing
the SP, α is limited in the MP by the so called Benders cut. This cut is a plane
tangent to the previous SP solution, and it prevents the MP from choosing a new
z̃k+1 that would exacerbate the previous SP solution. Hence the MP becomes:

min
z̃,α

f̃(z̃) + α

st. C̃z̃ ≤ ã

α ≥
3∑
i=1

fi(zi) +
3∑
i=1

λi(z̃
k − z̃).

(4.5)

At every iteration, a new cut is added, consecutively narrowing the feasible region
of the MP. An example plot of such cuts, is shown below. Observe how the cuts
become more and more equal throughout the iterations.

Figure 4.3: Illustration of how the cuts are added in a BD method running in 8
iterations.
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To summarize this brief description of BD for a generic optimization problem,
the variable names are added to Figure 4.2 as shown below.

MP - Master Problem

SP - Sub Problem

Figure 4.4: Information �ow with variables in Benders Decomposition.

Dantzig-Wolfe Decomposition (DWD) for Linear Optimization Prob-
lems

Dantzig-Wolfe Decomposition (DWD) by Dantzig and Wolfe [8] was �rst developed
for linear optimization problems.

In brief, DWD has the relaxed problem (according to situation (b) in the
previous section) in a the SP. The solution to the SP is passed to the MP where the
complicating constraints are represented. When solving the MP, the SP solutions
are considered, taking the complicating constraints into account. The MP solution
is a convex combination of SP solutions, and this combination has the possibility
to include a new element at every iteration as new SP solutions are found. Next,
the solution of the dual variables representing the complicating constraints in the
MP are passed to the SP so that a better solution (i.e. closer to global optimum)
can be found in the next iteration. In this fashion, the SP is considering the
complicating constraints as constants, reducing the complexity of the problem. As
for BD, the DWD procedure is illustrated in Figure 4.5.

Among extensions to this method, [13] proposed a method for variational in-
equalities based on the DWD principles, and showed its application to a model of
competitive Canadian energy markets. A detailed description of this extension is
given later in this chapter.



4.2. DECOMPOSITION METHODS FOR VI PROBLEMS 45

MP - Master Problem

SP - Sub Problem

Dual Variables 
to Complicating 
Constraints

Suggested 
Solution 

Figure 4.5: Information �ow in Dantzig-Wolfe Decomposition.

4.1.3 Relation Between BD and DWD

By investigating the primal and dual problems in Section 2.2.3 (problem (2.2) and
(2.4) respectively), one can notice a certain relationship among the variables of one
problem and the constraints of the opposite. The variables in the dual problem
represent the constraints in the primal and vice versa. Hence the principles of
BD and DWD can be interpreted as interconnected in the sense that they are the
preferred methods to one version of a problem each. This fact can be exploited to
combine the DWD and BD elements, and to develop new methods, which is the
key to the following theory.

4.2 Decomposition Methods for VI Problems

The principles of BD and DWD can be used to derive decomposition methods
for VI problems. Among papers of relevance to this thesis, [13] describes a DWD
procedure for a general class of VI problems, as mentioned earlier. This work was
later extended in [14], to a BD method by using duality theory. More speci�cally,
the DWD method was applied to the dual version of a VI problem suited for
BD. Furthermore, [16], extended the work in [13] and [14] by formulating a BD
procedure that is suitable to stochastic VI problems with complicating variables.
Application of this method is appropriate to the energy market model in this
report. Details are shown later in this chapter, but to provide a good understanding
of the underlying concepts, the details in [13] [14] are described �rst.

4.2.1 DWD for VI Problems

This section gives a summary of the DWD method for VI problems by [13].
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With the intent to decompose a VI problem with complicating constraints, a VI
problem notation that includes a separation of complicating constraints, h(z) ≥ 0,
and non-complicating constraints, g(z) ≥ 0, is convenient. For the set K = {z ∈
Rn | g(z) ≥ 0, h(z) ≥ 0} and G : Rn → Rn, the problem considered, V I(K,G), is:

Find z∗ ∈ K s.t. G(z∗)T (z − z∗) ≥ 0, ∀z ∈ K. (4.6)

Before stating the algorithm, a few assumptions are made for the problem (4.6);

• A solution exists.

• g(z) ≥ 0 and h(z) ≥ 0 are concave and continuously di�erentiable.

The above assumptions are true in many applications and will be accepted without
any further discussion. In addition, a few more assumptions are made regarding
the robustness of the algorithm.

• The SP has a feasible solution.

• The �rst MP has a feasible solution, and therefore all MPs are feasible.

The above assumptions are discussed later in this section.

Subproblem

The �rst instance investigated is the SP at iteration k (k will denote iteration
counter throughout the report). This problem is like the original (4.6), but the
complicating constraint, h(z) ≥ 0, is evaded. Hence, the feasible region to the SP
is:

K = {z ∈ Rn | g(z) ≥ 0}. (4.7)

The set K remains constant throughout the entire process. The mapping in
the SP, GS, takes the dual variables, βk−1, form the most recent solution of the
MP for k− 1 into account, multiplied with the gradient of h(z) at the most recent
MP solution, zk−1M . In this way, the SP can take the complicating constraints into
account implicitly through the information in ∇h(zk−1M )Tβk−1. The SP mapping
is:

GS = G−∇h(zk−1M )Tβk−1. (4.8)

And thereby, the SP at iteration k is:

Find zkS ∈ K s.t.
(
G(zkS)−∇h(zk−1M )Tβk−1

)T
(z − zkS) ≥ 0, ∀z ∈ K. (4.9)

At k = 1, there is no MP solution, and thus ∇h(z0M)Tβ0 = 0. Therefore, the
�rst SP is a relaxation of the original problem (4.6) in which no penalty occurs.
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Master Problem

The MP solution is a convex combination of all SP solutions obtained so far that is
feasible with respect to the complicating constraint h(z) ≥ 0. Recall that feasibility
of the MP is an assumption already made.

For the purpose of obtaining a convex combination, it is convenient to store
all SP solutions obtained at k in a matrix, Φk

S. In Φk
S, a new column is added

containing the latest SP solution, zkS, at every iteration.

Φk ≡
[
z1S · · · ziS · · · zkS

]
. (4.10)

To express the convex combination of SP solutions, the vector λ of length k that
assigns weight to each of the SP solutions is introduced. At every iteration, the
elements of λk sum up to 1. Accordingly, the MP solution, zkM is zkM = Φk

Sλ
k, and

the MP feasible region is:

Λk = {λ ∈ Rn | h(Φk
Sλ

k) ≥ 0, ekTλ = 1, λ ≥ 0}, (4.11)

where ek ∈ Rk is a vector of all ones. In contrast to the set K, Λk is dynamic, in
the sense that it is enlarged at every iteration as new SP solutions are added to
Φk. If the MP was solved for zkM explicitly, the mapping G from (4.6) would also
apply to the MP, but because the MP is solved for λk, the notation of the mapping
can be modi�ed. Without modi�cation, the kth MP would read:

Find λk ∈ Λk s.t. G(Φk
Sλ

k)T (Φk
Sλ− Φk

Sλ
k) ≥ 0, ∀λ ∈ Λk.

Instead, let H(Φk
Sλ)T = G(Φk

Sλ)TΦk
S, so that the MP becomes:

Find λk ∈ Λk s.t. Hk(λk)T (λ− λk) ≥ 0, ∀λ ∈ Λk. (4.12)

From this point, the dual variable βk to the complicating constraint h(z) ≥ 0 is
passed to the SP together with the gradient of h(Φk

Sλ
k), so that the next SP can

be generated and solved.

Convergence Gap

For this method, a convergence gap, CGk, is de�ned as:

CGk =
(
G(zk−1M )−∇h(zk−1M )Tβk−1

)T
(zkS − zk−1M ). (4.13)

This scalar quantity is used to determine when a solution of su�cient precision is
obtained. That is when CGk > −ε, where ε is a speci�ed scalar determining the
tolerance level. The ε enables the algorithm to stop when a solution proposal is
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su�ciently close to equilibrium. It should be noted that the convergence gap not
necessarily increases monotonically.

The above convergence gap is a generalization of the stopping conditions used
in DWD for optimization problems. Furthermore, [13] shows that if the considered
VI problem is actually an optimization problem, the two methods have the same
convergence gap. For optimization problems, this scalar quantity is meaningful in
the sense that it measures the gap between the primal and dual solutions. For VI
problems, there is no such counterpart, but the above CGk can be interpreted as
a quantity describing the proximity to an equilibrium solution. The convergence
gap and properties for which convergence can be attained, is described after the
below discussion of feasibility.

Feasibility

In the above description, it is assumed that the MP is feasible, and in particular
that the very �rst MP is feasible. It is worth noting that if the �rst MP solution
is feasible, the same applies to the remaining iterations. This is because the �rst
MP feasible region, Λ1 is a subset of any later Λk. In the opposite case, if the �rst
MP is infeasible, there are a few technicalities that could be introduced to make
the feasibility assumption hold, see [13] and [16]. This involves the introduction of
some arti�cial variables in the MP and arti�cial bounds in the SP. The arti�cial
bounds in the SP does also provide boundedness of K, so that feasibility of the
SP is ensured.

Convergence

It is proved in [13] (Theorem 5) that if there is a SP solution, zkS, such that

CGk =
(
G(zk−1M )−∇h(zk−1M )Tβk−1

)T
(zkS − zk−1M ) < 0 for zkS ∈ K, the solution of

the next SP will expand the set Λk+1. Therefore, the algorithm should continue
if CGk < 0. It is also proved that if an MP solution, zk−1M , solves the SP at
iteration k, zk−1M is also a solution to the initial problem, V I(K,G). That is(
G(zk−1M )−∇h(zk−1M )Tβk−1)

)T
(z − zk−1M ) ≥ 0 ∀z ∈ K.

So far, nothing has been required for G, and it cannot be guaranteed that an
MP solution that solves the next SP will ever be found. To consider convergence,
[13] provides two more theorems of relevance. First, if G is strictly monotone, or if
G is such that G(z) =

(
F (q)
∇c(x)

)
, and F is strictly monotone and c(x) is continuous,

it is proved that a solution is obtained if CGk ≥ 0. Next, it is proved that if
CGk ≥ 0 not occurs within a �nite number of iterations, and if G is continuous
and any in�nite sub sequence of {(zkM , βk, zk+1

S )}∞k=1 has at least one limit point,
then limk→∞CG

k = 0.
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4.2.2 Benders Decomposition for VI Problems

The �rst studies of Benders Decomposition applied to a class of problems where
both the MP and SPs are VI problems was published by [20]. Later, and with sev-
eral other contributions in between, [14] introduced a similar method that requires
milder assumptions, and provided a proof of convergence for realistic problems
found in many applications. Because it is a good presentation of BD for general
VI problems, and because it is the main source for the supplementary work in [16],
a short summary is given here.

As mentioned, the BD method in [14] is derived by applying the DWD method
from [13] to the Lagrangian dual version of the original problem (with complicat-
ing variables). Hence, convergence is attained according to the discussion in the
previous section, and when the following assumptions hold:

• The primal VI problem has a solution.

• F is invertible.

• F is continuous.

These assumptions are necessary to make the transformation from primal to dual
form without abandoning essential properties of the problem. The dual version of
the involved VI problem is obtained through the KKT conditions, similarly to the
steps discussed in Section 2.4.2 and shown in Section 3.4.1.

The feasible region to the primal problem considered is:

KP = {(q, x, y) | Aq +Bx+Dy ≥ c, x ≥ 0, y ≥ 0}. (4.14)

Note that the above constraints are linear, in contrast to the de�nition of K in
(4.6).

In (4.14) the vectors x and y are non-negative, while q is free in sign and occurs
in non-constant terms of the mapping for the considered VI problem. All compli-
cating variables are contained in y. The matrices A, B and D are of dimension
suiting their respective variables in (4.14). With the mapping (F (q)T , dT , lT ), the
primal VI problem is:

Find (q∗, x∗, y∗) ∈ KP s.t.

F (q∗)T (q − q∗) + dT (x− x∗) + lT (y − y∗) ≥ 0, ∀(q, x, y) ∈ KP .
(4.15)

In order to derive the dual of (4.15), the variable f ∗ = F (q∗) and the inverse
mapping, F−1(f ∗) = q∗, is introduced as described in Section 3.4.1. Inserting f
into the KKT conditions for (4.15) gives the following dual VI problem:
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for KD = {(f, v) | −ATv + fT = 0, vTB ≤ dT , vTD ≤ lT , v ≥ 0}, (4.16)

�nd (f ∗, v∗) ∈ KD s.t.

F−1(f ∗)T (f − f ∗)− cT (v − v∗) ≥ 0, ∀(f, v) ∈ KD.
(4.17)

Subproblem

According to the variables y being the primal complicating variables, the constraint
vTD ≤ lT is a complicating constraint in (4.17). Application of the DWD method
from Section 4.2.1 gives the following SP corresponding to (4.9) in the previous
section:

KD = {(f, v) | vTA− fT = 0, vTB ≤ dT , v ≥ 0}, (4.18)

�nd (fTS , v
T
S ) ∈ KD s.t.

F−1(fkS)T (f − fkS)− (c−Dyk−1M )T (v − vkS) ≥ 0, ∀(f, v) ∈ KD,
(4.19)

where the superscript k, as before, denotes the iteration counter. The matrix of
SP solutions corresponding to Φk

S in problem (4.12) becomes:

Φk ≡
[
f 1
S · · · f iS · · · fkS
v1S · · · viS · · · vkS

]
≡
[
Φk
f

Φk
v

]
. (4.20)

Master Problem

Like in equation (4.11), the vector ekT of all ones and length k is introduced, so
that the (dynamic) feasible region to the restricted MP is:

Λk = {λ | DTΦk
vλ ≤ lT , ekTλ = 1, λ ≥ 0}. (4.21)

Furthermore, the dual master problem becomes:

Find λk ∈ Λk s.t.

(F−1(Φk
fλ

k)TΦk
f − cTΦk

v)(λ− λk) ≥ 0, ∀ λ ∈ Λk.
(4.22)

Now, the above dual MP (4.22) and SP (4.19) can be converted back to primal
form. This is again done following Section 3.4.1. For the SP, the feasible region is
de�ned as follows, with the complicating variable y �xed to yk−1M :

KP (yk−1M ) = {(q, x) | Aq +Bx ≥ c−Dyk−1M , x ≥ 0}, (4.23)

and the SP is:

Find (qkS, x
k
S) ∈ KP (yk−1M ) s.t.

F (qkS)T (q − qkS) + dT (x− xkS) ≥ 0, ∀(q, x) ∈ KP (yk−1M ).
(4.24)
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The transformation of the MP back to primal form entails the introduction of a
new variable, θ. This is the Lagrange multiplier, which together with ykM occurs in
the KKT conditions to the dual MP. θ is associated with the constraint ekTλ = 1
in the set Λk, while ykM is the vector of multipliers associated with λTΦkT

v D ≤ lT .
Thus, the set Kk

P is de�ned:

Kk
P = {(q, y, θ) | ΦkT

f q + ΦkT
v Dy + ekθ ≥ ΦkT

v c, y ≥ 0}, (4.25)

and the primal MP becomes:

Find (qkM , y
k
M , θ

k) ∈ Kk
P s.t.

F T (qkM)(q − qkM) + lT (y − ykM) + (θ − θk) ≥ 0, ∀(q, y, θ) ∈ Kk
P .

(4.26)

Convergence Gap

Corresponding to the convergence gap for DWD in equation (4.13), this BD algo-
rithm terminates when:

CGk = F−1(fkM)Tfk+1
S − (c−DykM)T (vk+1

S − vkM) > −ε. (4.27)

Again, ε is a scalar de�ning when the accuracy of the solution is su�cient.

This concludes the BD method in [14]. Details on convergence will be provided
later when discussing the further extensions of BD for VI problems.

4.3 BD for Stochastic Equilibrium Problems

Based on [13] and [14], [16] complement the BD algorithm for VI the problems in
[14] by introducing a few changes that tailor the method to stochastic equilibrium
problems. More precisely, there are three changes of major importance. Firstly,
the notation of the DWD from [13] is changed to facilitate a decomposition where
the only original primal variables that appear in the MP are complicating. Such
a separation allows for a better performance of the algorithm by reducing the MP
as much as possible. In terms of the notation in the previous section, this means
that the qkM in the primal MP (4.26) is evaded. The variables in q (both qkM and
qkS) are instead solved in the SP, while y is the only primal variable to be solved
in the MP. Details of this extension are shown in a separate subsection below.

The second change of relevance is to allow for constraints that, due to the
decomposition, appear in the MP only. With the notation in [14], such a separation
is not possible, because the original (primal) problem does not explicitly distinguish
between di�erent types of constraints.
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Lastly, [16] formulates a distinction between equality and inequality constraints
of the primal problem. The proposed BD algorithm is applicable to the problem
described in Chapter 3, which is similar to the example problem given in [16].

In the following, the extensions to the DWD method facilitating the desired
split of MP and SP variables and constraints assigned to the MP only are shown.
Next, the BD method from [16] is described by applying it to the generalized
problem (3.24). In this way, the level of complexity is reduced by leaving out a
few elements that are redundant to the present application. The distinction of
inequality and equality constraints in the primal problem does not involve any
new theory, and is therefore only shown through the application.

4.3.1 Extensions to the DWD

Recall the initial VI problem (4.6) in the DWD from Section 4.2.1. Now, the
variable z ∈ Rn is separated to z1 ∈ Rn1 and z2 ∈ Rn2 . The vector z1 will
be a variable in the MP, while z2 is determined in the SP. With respect to this
separation, the mapping G(z) : Rn → Rn is G(z) =

(
G1(z1)
G2(z2)

)
, where G1(z1) : Rn1 →

Rn1 and G2(z2) : Rn2 → Rn2 . Furthermore, the (non-complicating) constraint
g(z) ≥ 0 is only dependent on z2, while the complicating constraint h(z) ≥ 0
depends on both z1 and z2. It is assumed that h(z) is separable in z1 and z2 so
that h(z) = h1(z1) + h2(z2), and the dual variable to this constraint is still β.

Due to the above distinctions, the SP corresponding to (4.9) is:

Find zk2S ∈ K s.t.
(
G2(z

k
2S)−∇h2(zk−12M )Tβk−1

)T
(z2 − zk2S) ≥ 0, ∀z ∈ K. (4.28)

Where K = {z2 | g(z2) ≥ 0}, and zk−12M and βk−1 are �xed to the previous solutions
from the MP at iteration k − 1. The SP solutions are collected in a matrix Zk

2S =
[z12S, z

k
2S, ..., z

k
2S] and passed to the MP.

The MP variable λ gives the weights to the SP solutions in Zk
2S, so that z

k
2M =

Φk
2Mλ

k. In addition, the variable z1 is also a variable in the MP. Hence, the feasible
region to the current MP is:

Λk = {z1 ∈ Rn1 , λ ∈ Rk | h1(z1) + h2
(
Zk

2Sλ
)
≥ 0, ekTλ = 1, λ ≥ 0}, (4.29)

and the MP is:

Find (zk1 , λ
k) ∈ Λk

s.t. G1(z
k
1 )T (z1 − zk1 ) +G2(Z

k
2Sλ

k)TZk
2S(λ− λk) ≥ 0, ∀(z1, λ) ∈ Λk.

(4.30)
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4.3.2 BD Applied to the Energy Market Model

The generalized VI problem for the energy market from Section 3.4 is considered:

For K =


(q, x, y) |

D̃y ≥ c̃ (v1)
Aq +Dy ≥ c (v2)

Âq + B̂x = 0 (v3)
q ≥ 0, x ≥ 0, y ≥ 0

 ,

�nd (q∗, x∗, y∗) ∈ K s.t.

F T (q∗)(q − q∗) + dT (x− x∗) + lT (y − y∗) ≥ 0, ∀(q, x, y) ∈ K.

(4.31)

Again, the dual variables are included in the notation of KD in order to emphasize
the correspondence with each of the constraints, according to the notation in
equation (3.29). From earlier, it is known that BD is appropriate to problems with
a complicating variable. Looking back at the derivation of the general notation
for the energy market model in Section 3.4, it should be clear that complicating
variables are present here. More precisely, the variables f Im,n,n′,e and x

I
m,n,e stored

in y, prevent the problem form being separated into a multiple of distinct problems,
one for each scenario tree node. Thus, y complicates the problem.

As described in Section 4.2.2 the �rst step is to obtain the dual version of the
considered problem. From the Sections 3.3 and 3.5, it is already known that the
objective functions in the optimization problems are continuous, and invertible,
and thus the same applies to F (q) in (4.31). Furthermore it is shown in Section
3.5 that the original VI problem has at least one solution, and hence it can be
concluded that the assumptions in [14] and Section 4.2.2 regarding the primal-
dual transformation are satis�ed. The dual VI problem is already found in Section
3.4.1:

Find (v∗1, v
∗
2, v
∗
3, f

∗) ∈ KD s.t.

− c̃T (v1 − v∗1)− cT (v2 − v∗2) + F−1(f ∗)T (f − f ∗) ≥ 0,

∀(v1, v2, v3, f) ∈ KD,

(4.32)

with

KD =



(v1, v2, v3, f) |
D̃Tv1 +D

T
v2 ≤ l (y)

A
T
v2 + ÂTv3 ≤ f (q)

B̂Tv3 ≤ d (x)
v1 ≥ 0, v2 ≥ 0


. (4.33)

To derive the MP and SP, the dual variables v1 are categorized into z1, and z2 =
[vT2 , v

T
3 , f

T ]T . Hence the complicating constraint, involving both z1 and z2 variables
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is D̃Tv1 + D
T
v2 ≤ l. To suit the form h(z) ≥ 0 let h(z) = l − D̃Tv1 −D

T
v2 ≥ 0.

As the complicating constraint is relaxed in the SP, but present in the MP, v1 is
solved in the MP along with the weight variables λ. In the primal problem (4.31),

the constraint D̃y ≥ c̃, for which v1 is the associated multiplier vector, involves
complicating variables (y) only. Hence, the presence of v1 in the MP is natural in
a BD algorithm. It is the separation of z1 and z2 that facilitates this adaptation.

The Dual Subproblem

When the constraint D̃Tv1 + D
T
v2 ≤ l is relaxed, the feasible region to the SP

becomes:

KD =


(v2, v3, f) |

A
T
v2 + ÂTv3 ≤ f (q)

B̂Tv3 ≤ d (x)
v2 ≥ 0

 , (4.34)

and the mapping in (4.32) is separated as follows:

G(v1, v2, v3, f) =

(
G1(v1)

G2(v2, v3, f)

)
=


−c̃
−c
0

F−1(f)


}
G1G2.

(4.35)

The dual variable to h(v1, v2, v3, f) is y, and the gradient of h(v1, v2, v3, f) is

∇h(v1, v2, v3, f) = [−D̃,−D, 0, 0]. This is used together with equation (4.35) so
that the SP mapping corresponding to (4.28) becomes:

G2(z
k
2S)−∇h(zk−12M )βk−1M =

 −c
0

F−1(fkS)

−
−Dyk−1M

0
0

 . (4.36)

Thereby, the dual SP is:

Find (vk2,S, v
k
3,S, f

k
S) ∈ KD s.t.

(−c+Dyk−1M )T (v2 − vk2,S)

+ F−1(f)T (f − fkS) ≥ 0, ∀(v2, v3, f) ∈ KD.

(4.37)

The solutions to (4.37) are stored in a matrix like Zk
2S, but to simplify notation,

the matrix is denoted Φk, as in (4.20) and (4.10). The structure of Φk is:

Φk =

[
v12,S · · · vi2,S · · · vk2,S
f 1
S · · · f iS · · · fkS

]
=

[
Φk
v2

Φk
f

]
. (4.38)

For later use, the dual variables to (4.37), i.e. q and x are stored in a similar
matrix, where Φk

q and Φk
x are the rows.
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The Dual Master Problem

The set Λk according to (4.11) which is the feasible region to the not yet described
MP:

Λk = {(v1, λ) | l − D̃Tv1 −D
T

Φk
v2λ ≥ 0, ekTλ = 1, v1 ≥ 0, λ ≥ 0}. (4.39)

Let θ be the Lagrange multiplier to the constraint ekTλ = 1. At this point, the
original G2 mapping is kept in its original form for consistency with G1 in the MP.
Hence, by giving (Φkλ) as input to the mapping G2 from (4.35), the MP is:

Find (vk1 , λ
k) ∈ Λk

s.t. − c̃T (v1 − vk1)− cT (Φk
v2λ− Φk

v2λ
k)

+ F−1(Φk
fλ

k)T (Φk
fλ− Φk

fλ
k) ≥ 0, ∀(v1, λ) ∈ Λk

(4.40)

The Primal Subproblem

The primal SP is found by following the steps in Section 3.4.1:

Find (qkS, x
k
S) ∈ KP (yk−1M )

s.t. F (qkS)T (q − qkS) + dT (x− xkS) ≥ 0, ∀(q, x) ∈ KP (yk−1M ),
(4.41)

with

KP (yk−1M ) = {(q, x) | Aq ≥ c−Dyk−1M , Âq + B̂x = 0, q ≥ 0, x ≥ 0}.

MCP formulation of SP and MP

The KKT conditions to the primal SP (4.41) are:

0 ≤ q ⊥ F (q)− ATv2 − ÂTv3 ≥ 0 (4.42a)

0 ≤ x ⊥ d− B̂Tv3 ≥ 0 (4.42b)

0 ≤ v2 ⊥ Aq +Dyk−1M − c ≥ 0 (4.42c)

v3 free, Âq + B̂x = 0 (4.42d)

It turns out, that both the primal SP and its KKT conditions have several sim-
ilarities with the original problem (4.31). Comparison with (3.23) shows that the
only di�erence in (4.42) is that the variable y is �xed to its MP solution yk−1M . This
is not surprising, but a valuable fact in terms of implementing the algorithm.

The transformation of the MP back to its primal form does not reveal the same
similarities. Nor is the primal version presented in [16], because the primal MP
would invoke the variable q back into the MP, breaking down the advantage of
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having a MP with complicating variables only. Hence this section is con�ned to
deriving the KKT conditions of the dual MP:

0 ≤ ykM ⊥ l − D̃v1 −DΦk
v2λ

k ≥ 0 (4.43a)

0 ≤ λk ⊥− ΦkT
v2 c+ ΦkT

f F−1(Φk
fλ

k) + ΦkT
v2Dy

k
M + θ ≥ 0 (4.43b)

0 ≤ v1 ⊥ − c̃+ D̃ykM ≥ 0 (4.43c)

θ free, − ekTλk + 1 = 0 (4.43d)

Convergence Gap

The last step to complete the method description is to �nd the convergence crite-
rion. This is de�ned for DWD in (4.13) and gives:

CGk =
(
F (qk)− F (Φk

qλ
k)
)T

Φk
qλ

k −
(
v2 − Φk

v2λ
k
)T

(c−DykM). (4.44)

The criteria to guarantee convergence in this BD method are the same as in
[13] and Section 4.2.1, but the additional requirements concerning the primal-dual
transformation in [14] and Section 4.2.2 must also be included.

All the convergence results given in [16] are in compliance with the preced-
ing papers, but one of the proofs is di�erent, due to the separation in z1 and z2
and in G1 and G2. It turns out that it is su�cient to require either G2 strictly
monotone, or F (q) in G2 =

(
F (q)
∇c(x)

)
strictly monotone and c(x) a convex func-

tion to guarantee that a solution is found when CGk ≥ 0. Furthermore, to pro-
vide the limit limk→∞CG

k = 0, the requirement that any in�nite subsequence
of {(zkM , βk, zk+1

S )}∞k=1 has at least one limit point remains unchanged, but it is
su�cient to require G2 continuous.

A discussion of how the convergence criteria applies to the present application
is given later, after the discussion of a few summarizing features.

Stepwise Description of Algorithm

To summarize and provide overview, the algorithmic steps are listed below.

Step 0 - Initialization
Set ε > 0 and let k = 0, Φ0 = 0 and ∇h(z02M)β0 = 0

Step 1
Solve the SP (4.42) at k + 1.
If: k = 0 and SP infeasible; Stop
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Else: Update the matrix Φk+1 in (4.38) by adding the latest SP solution as
a new column to Φk.
If: k = 0; go to step 3

Step 2
Stop if CGk > −ε.

Step 3
Set k = k + 1.
Solve MP (4.43) at k.
Go to step 1.

The steps above are also applicable to the DWD from Section 4.2.1 and BD from
Section 4.2.2.

Relationship to BD for Linear Problems

To see that the DWD method described in Section 4.2.1 follows the information
�ow chart in Figure 4.5 is quite easy. An interesting question at this point is
whether the same link applies to the BD methods. According to the presentation
above, the MP provides the SP with yM , the complicating variable. This is in
accordance with Figure 4.2 and the description in Section 4.1.2. Furthermore, the
SP information passed to the MP is v2,S, v3,S and f . These are the dual variables
to the constraints not handled in the MP, and in this fashion, one could say that
the information �ow in the above algorithm is similar to Figure 4.2, but not exactly
the same.

In [10], it was shown for a problem similar to the present application that de-
riving the KKT conditions to the problems in a BD algorithm for optimization
problems results in the same procedure as in [16], except for one point; the equa-
tion (4.43b), di�ers from the alternative in [10]. Of course, nothing else can be
expected as the original MCP is not eligible to be represented as a single opti-
mization problem. It is however a neat way to derive some parts of the algorithm
equations for implementation in GAMS, as it evades some of the rather com-
plicating concepts described above, and it is more intuitively connected to the
application formulations.

Convergence for the Energy Market Model

To summarize, there are two requirements that must be met in order to ensure
convergence of the BD method. Firstly, to guarantee that a solution is found when
CGk ≥ 0, the mapping G2 must either be strictly convex, or G2 =

(
F (q)
∇c(x)

)
, with

F (q) strictly monotone and c(x) a convex function. The second requirement arises
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if CGk < 0 for all k. In this case, if any in�nite subsequence of {(zkM , β, zk+1
S )}∞k=1

has at leas one limit point, and if G2 is continuous, then

limk→∞CG
k = 0.

First, G2 =
(
F (q)
∇c(x)

)
is considered. As in equation (4.35), the mapping G2 is:

G2(v2, v3, f) =

 −c
0

F−1(f)

 = G2(v2, f). (4.45)

One can see that G2 is separable in v2 and f , and that −c is the gradient
of the function c(v2) = −cTv2 which is convex. To verify that F−1(f) is strictly
monotone, its inverse, which is the more familiar function F (q), will be studied. In
Section 3.5, it is found that F (q) is an a�ne mapping of the form F (q) = Cq + b,
and the matrix C is symmetric positive de�nite. Due to these facts, the inverse
of F is also an a�ne function: F−1(f) = C−1f − C−1b, where the matrix C−1 is
symmetric positive de�nite. Hence, by the result in equation (2.21), F−1(f) is a
strictly monotone function, and the �rst convergence criterion is satis�ed.

Next, for the sequence {(zkM , βk, zk+1
S )}∞k=1, generated through the iterations,

it is su�cient to �nd a limit point for every triple (zkM , β
k, zk+1

S ) of this sequence.
This veri�es that the method will converge, as G is clearly a continuous function
(see. equation (4.35)). A limit point of this sequence would exist if the feasible
region to the original dual problem, KD, and the SP, KD, both were bounded.
Boundedness of KD implies that KD is also bounded as KD is a relaxation of KD.
Recall that boundedness of K, which corresponds to KD in this application, is one
of the convergence criteria in [13] given in Section (4.2.1).

To investigate the SP, reconsider equation 4.34:

KD =


(v2, v3, f) |

A
T
v2 + ÂTv3 ≤ f (q)

B̂Tv3 ≤ d (x)
v2 ≥ 0

 .

The set KD provides the feasible region to the VI problem (4.37):

Find (vk2,S, v
k
3,S, f

k
S) ∈ KD s.t.

(−c+Dyk−1M )T (v2 − vk2,S)

+ F−1(f)T (f − fkS) ≥ 0, ∀(v2, v3, f) ∈ KD.

(4.46)

According to Section 2.4, the problem in (4.46) can be interpreted as the following
minimization problem, when f ∗ is a known solution to the variable f in (4.46).
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min
v2,v3,f

(−c+Dyk−1M )Tv2 + F−1(f ∗)Tf

st. A
T
v2 + ÂTv3 ≤ f (q)

B̂Tv3 ≤ d (x)

v2 ≥ 0

(4.47)

By investigating the equations in KD or the problem in (4.47), one can see
that the constraints are not su�cient to provide a bounded set. For instance, the
variable v2 is the only one with a lower bound.

Therefore, it cannot be guaranteed that CGk in the BD algorithm approach
0 for the considered energy market model. As a natural consequence, it would
be desirable to add some limitation in number of iterations to the algorithm de-
scription on page 56. More interestingly, the arti�cial variables to the MP and
arti�cial bounds for the SP suggested in [13] provide any in�nite subsequence of
{(zkM , βk, zk+1

S )}∞k=1 with a limit point. This also ensures boundedness of K, which
is a requirement to ensure feasibility of the dual SP. In this fashion it can be assured
that limk→∞CG

k = 0, when the suggested additions also are implemented.
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Chapter 5

Numerical Experiments with

Decomposition

In this chapter, the performance of the previously described algorithm is addressed
through the results of numerical experiments. Not surprisingly, the performance
depends on the characteristics of the solved problems, and in this regard, the test
examples are tailored to present result a�ected by of variations in these character-
istics.

In the �rst section below, details of the implementation is described, together
with some workarounds for an arising issue with the stopping condition. Next,
two examples are given, one of a small model where the number of scenarios is
increased, and one that is more realistic in its application. By the �rst example,
running times and computational technicalities are addressed, while the second
example emphasizes the connection between model features and algorithm perfor-
mance. Results of the model variables for the examples are not included in this
section, as the algorithm performance is the most important here, and because
the representation of such solutions requires an extensive amount of details. The
chapter ends with a discussion of the results obtained for the two examples.

5.1 Implementation and Computational Technical-

ities

As before, the PATH solver in GAMS was used to solve the partial MCP problems
in the algorithm. The computer used in all tests has the following speci�cations;
Intel Processor of 1.80 GHz and 4.00 GB RAM.

The algorithm is designed to obtain an SP that is separable with respect to
scenarios, a structure that is well suited for parallel processing. GAMS allows for
grid computing, but when tested for BD in [9], this did not provide any speed-

61
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up due to time consuming �le- I/O. Hence, this was not done for the current
application. In stead, the individual SPs are solved sequentially. For practical
purposes, the iteration counter was in this implementation initialized with the
value 1 rather than 0 as described in the previous chapter. As for the previous test
experiment, the implemented GAMS codes are available at GitHub [25], together
with a selection of input datasets.

Initial testing revealed that the algorithm did not always stop before a stopping
criterion concerning maximum number of iterations was met. Still, the algorithm
seemed to �nd a solution that was in compliance with the solution obtained with-
out decomposition. Other tests stopped within a few iterations, before the solution
was obtained. This indicates that the implementation of the previously de�ned
CGk, with problem speci�c details given in Appendix B, equation (B.17), was
insu�cient to use as stopping metric. More speci�cally, the convergence gap ap-
peared to have varying values, both negative and positive, before the solution was
found, explaining why the algorithm stopped too early. If it did not stop early,
it was discovered that the value of CGk at the later iterations did approach zero.
However, at some point before the precision requirement, initially ε = 0.0001, was
met, the decline in CGk stopped, and for the remaining of iterations the value of
CGk simply stayed small and constant.

The rapid changes in sign of CGk might be due to some implementation error,
or because direct application of the gap function found in [16] among others is
insu�cient for the present problem test. To provide a more functional stopping
condition, the absolute value of CGk was introduced in stead, and it was required
that this value should be smaller than 0.001, a threshold value ten times larger
than the previously de�ned ε. Further testing for a problem with 2380 variables
revealed that this stopping condition made the iterations stop at a solution that
deviated from the 'direct solution' with no more than the threshold. This deviation
represents an error of 0.0056% of the largest value in the MP decision variables
and 0.029% of the smallest value of MP decision variables. Such deviations should
be acceptable for problem with this level of complexity. However, when not im-
posing the stopping condition and letting the algorithm proceed for several more
iterations, no better value of CGk was discovered. Hence it can be concluded that
the algorithm is not capable of providing solutions of unlimited accuracy. This is
reasonable as both the convergence gap and the Benders Cuts added to every MP
contains several elements that could cause numerical instabilities, due to the many
subtractions and multiplications with small numbers and numbers varying in size.

The use of absolute value of CGk in the stopping criterion could still be func-
tional if limk→∞CG

k = 0. According to the discussion in Section 4.3.2, this
property can be guaranteed if some additions are made to the implementation.
No such additions were made to the present implementation as no further issues
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concerning convergence were observed. Instead, an alternative stopping condition
inspired by [9], who also describes issues with the previously de�ned CGk, was
implemented. The additional condition allows the iterations to stop when the
largest absolute di�erence in each of the expansion variables from one iteration to
the next was su�ciently small. This means

|f Ikm,n,n′,e − f
I(k−1)
m,n,n′,e| < ε2

|xIkm,n,e − x
I(k−1)
m,n,e | < ε2

}
∀m ∈M,n, n′ ∈ N, e ∈ E. (5.1)

The value of ε2 was set to be ten times smaller than ε used for the modi�ed
original criterion. It can be argued that if the MP solution will not change much
from one step to another, nor will the SP, and in this situation, no further changes
will take place. This justi�es the use of the conditions in (5.1). Alternatively,
one could have used the variations in the variable λk to determine whether the
variations in the MP solutions form one iteration to the next are su�ciently small.

The introduced stopping condition is not problem speci�c. It should work for
the complicating variables solved in the MP of any BD algorithm for VI problems.
Furthermore, this is probably a practical condition as the number of complicating
variables preferably is small relative to the total problem size. Hence this condition
is also relatively easy to compute in comparison to CGk.

It was found that no changes within the displayed output of four digits pre-
cision occurred after the conditions in (5.1) were satis�ed. In other words, the
new stopping condition worked well. Furthermore, it was discovered that the two
convergence criteria were satis�ed in the same iteration in the wast majority of
test examples. In the opposite case, it was su�cient to make at most two more
iteration before both conditions were satis�ed.

Based on the above reasoning and observations, it can be assumed that the
additional criterion and the absolute value of CGk can be used as convergence
metrics. In fact, the latter of the two conditions provides an alternative that is
easier to compute and possibly not subject to the same occurrence of numerical
instabilities. Hence this alternative may contribute to a reduction in running times
when used alone as stopping criterion. However, a short test for the 2380 variable
test experiment showed that the times it take to compute the original and the
new metric constitutes 0.016% and 0.0058% of the total running time measured in
wall time. This shows that it is more than twice as time consuming to compute
the original CGk, but none of the computations are of signi�cance for the total
running time. Therefore, no further investigations were made concerning time
consumption in the computation of convergence metrics, and both the conditions
were used throughout the tests preformed.

Figure 5.1 below shows the development of the two metrics throughout the
iterations for the 2380-variable test example. For this particular case the new
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convergence criterion was met after 12 iterations, and the old was met after 14.
The �gure also illustrates how neither of the metrics are monotonically decreasing.
According to the code on page 56, no convergence check is carried out in the �rst
iteration, and therefore no such metric is plotted at iteration 1.

Figure 5.1: Value of convergence metrics throughout the iterations of a test exam-
ple.

5.2 Test Examples and Results

5.2.1 Two-stage Problem with Increasing Number of Sce-
narios

The scenario-wise separation in the SP is the feature that the algorithm is expected
to gain the most speed form. Hence, it seems reasonable that a test example with
many independent scenarios is among the types of problems with the best possi-
bility to reduce running times relative to a non-decomposed solution alternative.
More precisely, with a large number of independent scenarios, the MP does not
need to suggest many changes before a global equilibrium is obtained, because
there are not that many variables to suggest adjustments for.
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To investigate these assumptions, a test case similar to the one in Section
3.7.1 was considered. First a problem with two time stages and two scenarios was
constructed. As before, the demand was the only uncertain factor in stage 2, but
it was now varying between a 50% reduction and a 5 times increase in the values of
intm,n,d,e relative to stage 1. The probabilities of each scenario were also changed
to be 0.5 for each case. From this basic example, new problems were generated
by doubling the number of scenarios, and letting the probability of each scenario
follow a normal distribution with expected value 2.75. In this way, the number
of data-points describing the uncertain elements were increased. The set-up is
illustrated in Figure 5.2, and inspired by a similar test found in [10], which allows
for comparison of the results.

T=1 T=2

M=1

M=2
P=0.177 Scenario 1

Scenario 4

Scenario 3

Scenario 2M=3
P=0.323

M=4
P=0.323

M=5
P=0.177

T=1 T=2

M=1

Scenario 2

Scenario 1M=2
P=0.5

M=3
P=0.5

1st Test Example 2nd Test Example

Figure 5.2: Illustration of how larger test examples were generated.

The �rst round of testing revealed that the running times are highly dependent
on the number of binding constraints at the solution that involves complicating
variables only. It was observed that the �rst iterations of the algorithm suggest
solutions that are either bounded by these constraints, or the non-negativity con-
straints. In this regard it is reasonable to believe that the algorithm can �nish in
a fewer number of iterations when the upper bounds on transportation and trans-
formation capacities are active, or when the solution not suggests any expansions
at all.

To obtain a test problem that is slightly more interesting when discussing algo-
rithm performance, some other input parameters (initial �ow and transformation
capacities and costs) were also changed from the Section 3.7.1 example, until the
none of the investments were bounded by constraints in any of the solutions. At
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this point, the meaning of the model and its results were not stressed. Never-
theless, the correctness of the solutions were veri�ed with the solutions obtained
without decomposition for the smallest problems (number of scenarios in the range
2 to 128). The largest problem instances (256 and 512 scenarios) were not solvable
without use of the decomposition algorithm within a reasonable amount of time.

The table below (Table 5.1) shows details of the input such as number of
scenarios and total number of variables in the original problem formulation. The
performance results listed in the same table include wall time measured for the
total execution of the entire algorithm, all MPs and all SPs. Execution time is
de�ned as the time it takes to generate the problem, solve it, write output to
screen and generate an report �le, while solution time is simply the time it takes
the solver to �nd a solution only. For comparison with the results shown in [9],
the number of iterations for each test and total CPU times (obtained using the
.resUsd function in GAMS) spent to solve the MPs and SPs are given as well. In
Figure 5.3 the running times are also plotted for increasing number of scenarios for
all tests. Figure 5.4 is the last presented plot of the 2-stage problem results. This
plot shows the increase in total execution time (wall time), and total time (both
wall time and CPU time) spent solving the SPs for each test of the decomposition
algorithm.

Figure 5.3: Wall times for all tests.
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Figure 5.4: Total time spent solving SPs in the decomposition algorithm, measured
in both CPU time and wall time, and total execution time spent on SPs measured
in wall time.

5.2.2 Three-stage Case for North-western Europe

To investigate the performance for a more realistic case, an example of trade with
natural gas and electricity in Norway, France, the UK, Belgium, Netherlands, and
Germany was investigated over a three stage period, including the years 2004,
2008 and 2012. Each of the countries was modelled as one node in each, and each
country was considered as a single produced/consumer. Indicative input data
such as production, transformation and consumption of natural gas and electricity
and heat were inspired by statistics from the International Energy Agency [5].
For transportation networks, data was found at ENTSOE (European Network
of Transmission System Operators for Electricity) [4] and ENTSOG (European
Network of Transmission System Operators for Gas) [2]. As the aim of this example
is to show performance, the details in the input data were slightly simpli�ed for
easy handling.
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According to statistics found in a survey provided by BP [1], the production of
natural gas in the UK has declined with more than 50% from 2004 to 2012, due to
depletion in reservoirs. Based on this fact, a scenario tree was designed to include
uncertainties related to the production in the UK and the Netherlands (NL) in
2008. More speci�cally, three cases for 2008 were featured;

(a) Decline in UK production, NL production constant.

(b) UK production constant, small decline in NL production.

(c) Extensive decline in UK production, small increase in NL production.

Furthermore, the fact that there in 2004 were no pipelines for gas transportation
from Norway (NOR) to the UK and from NL to the UK, was included in the
network, by allowing for expansions on the arcs connecting these countries, but
with no initial transportation capacity in 2004.

In the third stage, in 2012, the scenario tree covers uncertainties in German
(GER) demands for electricity. Two cases were considered:

(i) A 20% reduction in the parameter int.

(ii) A 20% increase in the parameter int.

In total the considered uncertainties over three time stages gives a scenario tree
with 10 nodes. An illustration is given in Figure 5.5.

With six countries included, the network structure describing the market has
six nodes. Norway and the UK are the only producers of both natural gas and
electricity. France (FRA), Belgium (BEL) and Germany produces electricity only,
while the Netherlands has production of natural gas only. The network is shown in
Figure 5.6 where the modelled arcs are indicated. The last feature included is the
facility to produce electrical power with natural gas as input fuel and electricity
as output. These facilities are located in the UK and Germany, as these are the
countries where the largest volumes of such transformations take place according
to [5].

Adding all the features explained and showed in the Figures 5.5 and 5.6, the
MCP problem deriving from the model consists of 13 080 variables, out of which
24 are complicating. Even at this size (measured in number of variables), the
model lacks from the somewhat simpli�ed input data and the exclusion of other
elements of signi�cance such as energy from coal and oil, as well as more trading
companies rather than single counties. Nevertheless, the results were reasonable in
comparison to the statistics. For example, the building of pipelines from Norway
and the Netherlands both ending in the UK, was among the results.
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TIME AXIS

t=1 t=2 t=3

(a)

(b)

(c)

(ii)

(i)

(ii)

(i)

(ii)

(i)

Figure 5.5: Illustration of the scenario tree.

The solution was obtained both by applying the MCP solver in GAMS directly,
and by use of the implemented decomposition algorithm. In this way it could be
veri�ed that the two approaches gave the same results for the variables. The per-
formance results are shown in the table below. In addition it should be noted that
the solution did not indicate any other expansions than the ones for natural gas
from Norway and the Netherlands to the UK. This simpli�es the solution proce-
dure for both the decomposition algorithm and the direct application of the PATH
solver, in contrast to the previous 2-stage experiment, where such an situation was
evaded on purpose.

5.3 Discussion of Results

5.3.1 The 2-stage Problem

The results in Table 5.1 and the plot in Figure 5.3 show that the implemented
algorithm in most cases is faster, in terms of both wall time and CPU time, than
the alternative with direct application of the PATH solver for MCPs in GAMS. For
the largest tested problems, the decomposition algorithm was also the only solver
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Table 5.2: Running time results for the 3-stage problem .

All times are in seconds.
Total number of variables 13 080
Total number of SP variables 11 400
Number of iterations 7
Total running time
(wall time) 126.984
SP running time
(wall time) 123.814
SP running time
(CPU time) 102.097
MP running time
(wall time) 3.002
MP running time
(CPU time) 0.518
Running time without decomposition
(wall time) 268.640
Running time without decomposition
(CPU time) 268.172
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Figure 5.6: Illustration of the network of trade with natural gas and electricity in
North-Western Europe. The colors on the country names (abbreviated) indicate
the production of electricity, natural gas or both.

option that actually could provide a solution within a reasonable amount of time.
However, and not unexpectedly, the smallest test problems where the number of
scenarios are in the range 2 − 32, solved the fastest without utilization of the
implemented algorithm. All problems have the same ratio of number of variables
in the full size problem relative to the total number of variables in the SP, and thus,
the observation cannot be explained by this ratio. It must be the PATH solver
that is su�ciently e�ective for the smallest problems, making it disadvantageous
to run multiple iterations with the decomposition algorithm.

When the problem size increases, the PATH execution time grows, as one
can see from the red lines in Figure 5.3. For smaller problems (2-16 scenarios)
the growth seems to be linear, but for the larger tests that were �nished (16-128
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scenarios) the growth in running times shifts to a cubic tendency. This fact is what
makes the decomposition algorithm bene�cial for large problems. As the number
of scenarios gets larger, the SP element corresponding to a single scenario tree
node is still constant in size. Hence, the SP solution time should grow according
to a linear pattern relatively to the number of scenarios in the problem. This
pattern, or rather patterns, are shown in Figure 5.4, verifying that the growth
when measured both in wall time and CPU time is at least close to linear for the
SPs. The blue line in Figure 5.3 shows that the total running times, in which SPs
is the most demanding task, also is close to linear. Irregularities in this blue line
can be explained by the variations in growth of number of iterations carried out
for each test case.

Yet, the plot in Figure 5.4 does not show perfect linearity in total execution
time of each SP. A reason for this may be that the time spent reading/writing to
�le and generating the problem grows more rapidly. The increasing gap between
the execution time and solution time (both in wall time) veri�es this. Inspired by
this observation, it was discovered that the largest output �le produced by GAMS
for the 512-scenario problem contained 230 MB of data, which is large enough to
a�ect running time. It should be noted that there are provided options in GAMS
for reducing the size and amounts of contents in an output �le. As mentioned, the
time it takes to generate every SP may also have a growth rate more rapid than
linear, but without more options to measure this, nothing can be concluded.

The di�erence in total execution time and solution time for the SPs is, as shown
in Figure 5.4 not that big, despite the rapid growth in non-solution related tasks.
In the most extreme case, with 512 scenarios, the solution time measured in wall
time constitutes 66% of the total SP execution time, and this is clearly more than
for any other test. Still, if the algorithm was solved in parallel, the solution time
for the SP would decrease substantially, letting the other aforementioned factors
represent a much larger share of the execution times. Hence, the possibilities found
in GAMS to reduce the volume of outputted �les would have been of interest to
investigate more. The problem generation at every iteration cannot be evaded
when using GAMS, so to optimize this part of the code, one would have to use an-
other programming language that facilitates the handling of each SP as a function.
Based on the experiments with a parallel GAMS implementation in [9], the use of
another language may seem to be a necessity to obtain e�cient grid computing in
any way.

The experiment set-up for the 2-stage problem was inspired by a similar pre-
sentation of results for a global natural gas market model found in [10], to allow
for comparison. In comparison to the present experiment, the problems in [10] are
signi�cantly larger, with 7313 variables for 2 scenarios, and 620 215 for the largest
test problem consisting of 256 scenarios. Among the results in [10], 'Net calcula-
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tion time' is measured as the sum of total MP and SP CPU times, and these are
comparable with the sum of the corresponding MP and SP CPU times found in
Table 5.1. When comparing the two experiments, the di�erence in running times
is largest for the problems with the most scenarios. This seems reasonable when
considering the previous �ndings of a slight tendency of a growth rate more rapid
than linear for larger problems. Hence it can be concluded that the present test
experiments have solutions that are identi�able with what is found in [10]. The
relatively large di�erences in number of variables for each instance of the tests
should, however, be taken into account, precluding any further analysis.

5.3.2 The North-western European Problem

The results in Table 5.2 shows that the decomposition algorithm was capable of
detecting a solution in less than 50% of the wall time spent by the direct option.
This shows that the decomposition algorithm is a good alternative for models
and input data like the tested example, and possibly also for even more complex
models and for a higher level of details in the input dataset. As the problem in
total consisted of 13 080 variables, it is interesting to compare the results with
the results in the 2-stage cases with 64 and 128 scenarios, consisting of 9 100 and
18 060 variables respectively (see Table 5.1). It appears that the running times
for the three stage example are signi�cantly less than the same results for the 64-
scenario, 2-stage example. This is for both the decomposition algorithm (126.984
vs. 277.475 seconds) and the full MCP option (268.640 vs. 386.315 seconds).
These di�erences can be explained by the fact that only two of the complicating
variables were non-zero in the solution, and that the number of scenarios is much
smaller for the three stage example (10 vs. 64). The di�erences in running times
are not surprising, but rather illustrative in terms of showing the level of variations
that may occur in many similar energy market models.



Chapter 6

Conclusions

In this thesis, a stochastic energy market equilibrium model has been developed.
With the aim of obtaining a fast solution procedure to this model, a Benders De-
composition algorithm was designed and implemented in GAMS. Testing showed
that the implemented algorithm, after some adjustments, provided solutions in
compliance with the solutions obtained by direct application of the MCP solver in
GAMS.

Due to issues with the intentional implemented convergence criterion found
in the literature, an alternative, and easier convergence criterion was proposed
and successfully tested for the present application. This convergence metric was
inspired by a similar approach in [9] and is a substantial simpli�cation of the
convergence metric found in [13], [14] and [16]. Furthermore, this alternative
stopping condition should be applicable to any Benders Decomposition algorithm
for MCPs or VI problems.

For the tested examples, the developed decomposition algorithm provided a
good and e�cient solution method in comparison to the alternative of using the
PATH solver in GAMS directly. It was also found that the results were in com-
pliance with an experiment found in [10]. The algorithm proved to be the most
e�cient relative to the non-decomposition option for the test cases that were the
largest in terms of input data and number of variables. Also for the most realis-
tic test experiment, the developed algorithm was the fastest to obtain a solution.
This is probably the most promising of the results obtained though testing. As
the example represents a minimum of details in input data to be in accordance
with reality, it can be concluded that the decomposition algorithm is likely to be
ideal for problems of a larger scale as well.

Among other important �ndings in this thesis, the results verify that the al-
gorithm has a good potential to gain speed-up when customized for parallel com-
puting.

75
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Future Work

A natural continuation of the work presented in this thesis would be to proceed
in studying possibilities to reduce running time, either for the suggested model or
a similar problem. In this regard, the following list contains good starting points
for further research.

• Study alternative formulations of the model equations that can reduce the
number of variables. For instance, one could let transportation arcs be de-
�ned as a distinct entity in stead of de�ning all arcs by their start and end
node, as done in [10].

• Make use of the grid computing facilities in GAMS to study how this works
for the current application. The experience of no speed-up for smaller prob-
lems in [9] does not provide su�cient information to conclude that this will
not prove to be an e�cient alternative for the present application.

• Explore the possibilities of reducing the outputted report �les after each
execution of the PATH solver. This may reduce both running time and
demand for memory.

• In general, and especially in light of the fact that the algorithm seemed to
have limited capabilities of providing solutions of a high level of accuracy, it
would be of interest to carry out a thorough stability analysis. No such thing
is mentioned in any of the main sources to this work: [13], [14] and [16].

• Of course, when seeking fast and e�cient solution strategies, the use of a fast
and e�cient programming language such as C, is an option that is likely to
provide a successful result. However, this shift would entail a much harder
implementation of the application, and it would require that some other
suitable solver was found and utilized for the MCPs or VI problems arising
in the studied Benders Decomposition algorithm.
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Appendix A

KKT Conditions

In this appendix, the KKT conditions for the energy market model described in
Chapter 3 are presented.

A.1 KKT Conditions for the Producers

0 ≤ qPm,n,p,e ⊥ probm · discm · (2 · k1 · qPm,n,p,e + k2)

+ εm,n,p,e + ζm,n,p,e ≥ 0 (A.1)

0 ≤ qSm,n,p,d,e ⊥ − probm · discm ·
(
intm,n,d,e − slpm,n,d,e · qSm,n,p,d,e

− slpm,n,d,e ·
∑

p′∈P (n)

qSm,n,p′,d,e

)
− ζm,n,p,e ≥ 0 (A.2)

0 ≤ qTm,n,n′,p,e ⊥ probm · discm · υm,n,n′,e − ζm,n,p,e + ζm,n′,p,e ≥ 0 (A.3)

0 ≤ qCm,n,p,e,e′ ⊥ probm · discm · φm,n,e,e′
− ζm,n,p,e + lm,n,e′,e · ζm,n,p,e′ ≥ 0 (A.4)

0 ≤ εm,n,p,e ⊥ qPm,n,p,e − qPm,n,p,e ≥ 0 (A.5)

ζm,n,p,e free, qPm,n,p,e +
∑

n′∈N(p)

qTm,n′,n,p,e +
∑
e′∈E

lm,n,e′,e · qCm,n,p,e′,e

−
∑
d∈D

qSm,n,p,d,e −
∑

n′∈N(p)

qTm,n,n′,p,e −
∑
e′∈E

qCm,n,p,e,e′ = 0 (A.6)

A.2 KKT Conditions for the Transporter

This section contains the KKT conditions to the optimization problems described
in Chapter 3.
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0 ≤ fm,n,n′,e ⊥ probm · discm · (2 · k3 · fm,n,n′,e − υm,n,n′,e) + ιm,n,n′,e ≥ 0 (A.7)

0 ≤ f Im,n,n′,e ⊥ probm · discm · k4 + κm,n,n′,e −
∑

m′∈SO(m)

ιm′,n,n′,e ≥ 0 (A.8)

0 ≤ ιm,n,n′,e ⊥ fm,n,n′,e +
∑

m′∈SA(m)

f Im′,n,n′,e − fm,n,n′,e ≥ 0 (A.9)

0 ≤ κm,n,n′,e ⊥ f Im,n,n′,e − f Im,n,n′,e ≥ 0 (A.10)

A.3 KKT Conditions for the Transformer

0 ≤ xm,n,e′,e ⊥ probm · discm · (2 · k5 · xm,n,e′,e − φm,n,e′,e) +

lm,n,e′,e · νm,n,e ≥ 0 (A.11)

0 ≤ xIm,n,e ⊥ probm · discm · k6 + ξm,n,e −
∑

m′∈SO(m)

νm′,n,e ≥ 0 (A.12)

0 ≤ νm,n,e ⊥ xm,n,e +
∑

m′∈SA(m)

xIm′,n,e −
∑
e∈E

lm,n,e′,e · xm,n,e′,e ≥ 0 (A.13)

0 ≤ ξm,n,e ⊥ xIm,n,e − xIm,n,e ≥ 0 (A.14)

A.4 KKT Conditions for the Market Clearing Equa-

tions

υm,n,n′,e free, fm,n,n′,e −
∑
p∈P (n)

qTm,n,n′,p,e = 0 (A.15)

φm,n,e,e′ free, xm,n,e,e′ −
∑
p∈P (n)

qCm,n,p,e,e′ = 0 (A.16)



Appendix B

Application of BD in Full Notation

This appendix shows the subproblem, master problem and convergence gap in full
notation for the energy market model. For readability, the iteration counter is not
included in the notation.

B.1 Subproblem

The SP is presented here according to equations (4.42), with f Ikm′,n,n′,e and x
Ik
m′,n,e

denoting the �xed values suggested by the previous MP.

0 ≤ qPm,n,p,e ⊥ probm · discm · (2 · k1 · qPm,n,p,e + k2)

+ εm,n,p,e + ζm,n,p,e ≥ 0 (B.1)

0 ≤ qSm,n,p,d,e ⊥ − probm · discm ·
(
intm,n,d,e − slpm,n,d,e · qSm,n,p,d,e

− slpm,n,d,e ·
∑

p′∈P (n)

qSm,n,p′,d,e

)
− ζm,n,p,e ≥ 0 (B.2)

0 ≤ qTm,n,n′,p,e ⊥ probm · discm · υm,n,n′,e − ζm,n,p,e + ζm,n′,p,e ≥ 0 (B.3)

0 ≤ qCm,n,p,e,e′ ⊥ probm · discm · φm,n,e,e′
− ζm,n,p,e + lm,n,e′,e · ζm,n,p,e′ ≥ 0 (B.4)

0 ≤ fm,n,n′,e ⊥ probm · discm · (2 · k3 · fm,n,n′,e − υm,n,n′,e) +

ιm,n,n′,e ≥ 0 (B.5)

0 ≤ xm,n,e′,e ⊥ probm · discm · (2 · k5 · xm,n,e′,e − φm,n,e′,e) +

lm,n,e′,e · νm,n,e ≥ 0 (B.6)

0 ≤ εm,n,p,e ⊥ qPm,n,p,e − qPm,n,p,e ≥ 0 (B.7)

ζm,n,p,e free, qPm,n,p,e +
∑

n′∈N(p)

qTm,n′,n,p,e +
∑
e′∈E

lm,n,e′,e · qCm,n,p,e′,e
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−
∑
d∈D

qSm,n,p,d,e −
∑

n′∈N(p)

qTm,n,n′,p,e −
∑
e′∈E

qCm,n,p,e,e′ = 0 (B.8)

0 ≤ ιm,n,n′,e ⊥ fm,n,n′,e +
∑

m′∈SA(m)

f Ikm′,n,n′,e − fm,n,n′,e ≥ 0 (B.9)

0 ≤ νm,n,e ⊥ xm,n,e +
∑

m′∈SA(m)

xIkm′,n,e −
∑
e∈E

lm,n,e′,e · xm,n,e′,e ≥ 0(B.10)

υm,n,n′,e free, fm,n,n′,e −
∑
p∈P (n)

qTm,n,n′,p,e = 0 (B.11)

φm,n,e,e′ free, xm,n,e,e′ −
∑
p∈P (n)

qCm,n,p,e,e′ = 0 (B.12)

B.2 Master Problem

The master problem according to (4.43), is given below in full notation. From the
previous SP, the following parametrized variables are extracted: qSkm,n,p,d,e, q

Pk
m,n,p,e,

fkm,n,n′,e, x
k
m,n,e,e′ , ε

k
m,n,p,e, ι

k
m,n,n′,e and ν

k
m,n,e. To simplify the notation, the summa-

tion over several sets is abbreviated. That is
∑

n,p,d,e,k′

means
∑
n∈N

∑
p∈P (n)

∑
d∈D

∑
e∈E

∑
k′∈{1,...,k}

,

and
∑
n′,e′

means
∑
n′∈N

∑
e′∈E

etc.

0 ≤ f Im,n,n′,e ⊥ probm · discm · k4 + κm,n,n′,e −
∑

m′∈SO(m)

ιm′,n,n′,e ≥ 0

0 ≤ xIm,n,e ⊥ probm · discm · k6 + ξm,n,e −
∑

m′∈SO(m)

νm′,n,e ≥ 0
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0 ≤ λk ⊥ θ +
∑
m∈M



∑
n,p,e

εkm,n,p,e
(
qPm,n,p,e

)
+

∑
n,n′,e

ιkm,n,n′,e
(
fm,n,n′,e +

∑
m′∈SA(m)

f Im′,n,n′,e
)

+
∑
n,e

νkm,n,e
(
xm,n,e +

∑
m′∈SA(m)

xIm′,n,e
)

− probm · discm
∑

n,p,d,e,k′

(
intm,n,d,e − slpm,n,d,e·(

qSkm,n,p,d,e +
∑

p′∈P (n)

qSkm,n,p′,d,e
))
λk
′
qSk

′

m,n,p,d,e

+ probm · discm
∑
n,p,e,k′

(2 · k1 · qPkm,n,p,e + k2)λ
k′qPk

′

m,n,p,e

+ probm · discm
∑

n,n′,e,k′

(2 · k3 · fkm,n,n′,e − υkm,n,n′,e)λk
′
fk
′

m,n,n′,e

+ probm · discm
∑

n,e,e′,k′

(2 · k5 · xkm,n,e,e′ − φkm,n,e,e′)λk
′
xk
′

m,n,e,e′



≥ 0

(B.13)

0 ≤ κm,n,n′,e ⊥ f Im,n,n′,e − f Im,n,n′,e ≥ 0 (B.14)

0 ≤ ξm,n,e ⊥ xIm,n,e − xIm,n,e ≥ 0 (B.15)

θ free, −ekTλk + 1 = 0 (B.16)
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B.3 Convergence Gap

CGk =
∑
m∈M

probm·discm·



∑
n,p,d,e

(((
intm,n,d,e − slpm,n,d,e · (qSkm,n,p,d,e +

∑
p′∈P

qSkm,n,p′,d,e)
)

−
(
intm,n,d,e − slpm,n,d,e ·

( ∑
k′∈K

qSk
′

m,n,p,d,e +
∑
p′∈P

qSk
′

m,n,p′,d,e · λk
′
)))

∑
k′∈K

qSk
′

m,n,p′,d,e · λk
′

)

+
∑
n,p,e

((
(2 · k1 · qPkm,n,p,e + k2)−(

2 · k1 ·
( ∑
k′inK

qPk
′

m,n,p,e · λk
′)

+ k2

))
·
∑
k′inK

(qPk
′

m,n,p,e + k2) · λk
′

)

+
∑
n,n′,e

((
(2 · k3 · fkm,n,n′,e − υkm,n,n′,e)−(

2 · k3 ·
( ∑
k′∈K

fk
′

m,n,n′,e · λk
′
)
− υkm,n,n′,e

))
·
∑
k′∈K

fk
′

m,n,n′,e · λk
′

)

+
∑
n,e,e′

((
(2 · k5xkm,n,e,e′ − φkm,n,e,e′)−(

2 · k5 ·
( ∑
k′∈K

xk
′

m,n,n′,e · λk
′
)
− φkm,n,e,e′

))
·
∑
k′∈K

xk
′

m,n,e,e′ · λk
′

)

+
∑
n,n′,e

((
ιkm,n,n′,e −

∑
k′∈K

ιk
′

m,n,n′,e · λk
′)

·
(
fm,n,n′,e +

∑
m′∈SA(m)

f I k−1m,n,n′,e

))

+
∑
n,e,e′

((
νkm,n,e,e′ −

∑
k′∈K

νk
′

m,n,e,e′ · λk
′)

·
(
xm,n,e,e′ +

∑
m′∈SA(m)

xI k−1m,n,e,e′

))

+
∑
n,p,e

((
εkm,n,p,e −

∑
k′∈K

εk
′

m,n,p,e · λk
′
)
· xm,n,p,e

)


(B.17)


