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Abstract

The application of complex network modeling to analyze large co-expression data sets has

gained traction during the last decade. In particular, the use of the weighted gene co-

expression network analysis framework has allowed an unbiased and systems-level investi-

gation of genotype-phenotype relationships in a wide range of systems. Since mouse is an

important model organism for biomedical research on human disease, it is of great interest

to identify similarities and differences in the functional roles of human and mouse ortholo-

gous genes. Here, we develop a novel network comparison approach which we demon-

strate by comparing two gene-expression data sets from a large number of human and

mouse tissues. The method uses weighted topological overlap alongside the recently devel-

oped network-decomposition method of s-core analysis, which is suitable for making gene-

centrality rankings for weighted networks. The aim is to identify globally central genes sepa-

rately in the human and mouse networks. By comparing the ranked gene lists, we identify

genes that display conserved or diverged centrality-characteristics across the networks.

This framework only assumes a single threshold value that is chosen from a statistical anal-

ysis, and it may be applied to arbitrary network structures and edge-weight distributions,

also outside the context of biology. When conducting the comparative network analysis,

both within and across the two species, we find a clear pattern of enrichment of transcription

factors, for the homeobox domain in particular, among the globally central genes. We also

perform gene-ontology term enrichment analysis and look at disease-related genes for the

separate networks as well as the network comparisons. We find that gene ontology terms

related to regulation and development are generally enriched across the networks. In partic-

ular, the genes FOXE3, RHO, RUNX2, ALX3 and RARA, which are disease genes in either

human or mouse, are on the top-10 list of globally central genes in the human and mouse

networks.
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Introduction

Mouse is the dominant model organism in biomedical research focused on understanding

human disease. Despite this fact, humans and mice differ both in genome content and organi-

zation as well as gene expression profiles [1, 2]. Understanding similarities and differences in

system-level organization, and in particular regulatory mechanisms, for human and mouse

orthologs is therefore of great importance. In particular, the mammalian central nervous sys-

tem (CNS), which includes the brain and spinal cord, shows great species variation in terms of

cell types, physiology and function [3]. Knowledge about the similarities and differences in

functional organization of human and mouse brains, is thus important for interpreting the

results from mouse models for human neurodevelopment, cognitive function and behavior

[4].

Gene co-expression network analysis has recently been successfully applied to a wide range

of biological systems, providing insight into the regulatory nature of genes and gene products

(see e.g. [5–11]). The standard approach of gene co-expression network analysis, more well

known as weighted gene co-expression network analysis (WGCNA) [12–14], is most often

based on the three following steps [14]: (1) the application of a similarity measure (e.g. a corre-

lation measure, calculation of mutual information, or regression analysis) for each pairing of

genes to develop a similarity matrix, (2) implementation of a threshold value on the similarity

scores so that the resulting network exhibits scale-free topology and finally (3) performing

hierarchical clustering, e.g. with respect to functional organization. The resulting networks are

utilized to uncover information about potential regulatory pathways and functional gene clus-

ters. Consequently, the network role of transcription factors (TFs) and their interaction part-

ners are of particular interest because of their inherent importance in gene regulation.

The availability of large-scale gene-expression data sets in human and mouse has made sys-

tem-level studies of co-expression networks a promising avenue of investigation. Several

recent studies have compared human and mouse co-expression networks using a wide range

of network approaches [15–18]. Their results suggest that both tissue type and gene function

deeply affect evolutionary conserved gene clusters, predictability of disease-relevant relation-

ships between human and mouse, preservation of developmental stage-specific modules in

human and mouse embryos, and several conserved and diverging gene-expression network

properties.

Although the weighted gene co-expression network analysis (WGCNA) [12–14] is an estab-

lished and well-tested analysis framework that has provided several meaningful biological

insights, it is not without limitations. Applying correlation thresholds might skew the edge-

weights so that only the very strongest correlations are influential, which may not be beneficial

in gaining a wide systems understanding of the gene co-expression network. Even though vari-

ous biological networks display scale-free properties, that does not necessarily imply that infer-

ence networks, such as gene co-expression networks, need to be scale free in order to enabling

us gaining knowledge about the biological systems in question.

In this study, we analyze human and a mouse microarray data sets, consisting of normalized

gene-expression data for multiple tissue types, using an approach initially similar to WCGNA

[12–14] by generating four different networks: (1) Human network based on all available tissue

types, (2) mouse network based on all available tissue types, (3) human network based on tis-

sue types from CNS tissues and (4) mouse network based on CNS. In contrast to traditional

WGCNA, we employ the recently developed s-core network peeling approach [19–21] to iden-

tify ranked sets of genes of central importance in the networks. As a weighted generalization of

the k-core network decomposition method [22], the s-core decomposition method works in a

similar manner to that of k-core, by peeling off the outermost, non-central genes leaving
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central, highly connected sub-networks called cores. The s-core gene-ranking approach mainly

differs from the WGCNA counterpart in that it provides a global ranking of genes (i.e. a single

ranked list), while WGCNA ranks genes by hierarchical clustering. Throughout the analyses,

we aim to keep the number of free parameters and restrictions to a minimum, making the

method as data agnostic as possible. We first analyze the four networks individually before

conducting a comparative network analysis, utilizing novel network comparison metrics, both

within and across the two species. In agreement with previous studies that have shown that

most TFs are evolutionarily stable [23], we find enrichment of TFs among globally central

genes [24]. We also find strong patterns of enrichment in TF families such as the

homeobox protein-coding genes, which have been shown to be highly conserved within

human and mouse [25].

Results

We generated four gene-correlation networks from sets of gene-expression data in multiple

tissue types for human and mouse [26] using a weighted topological overlap (wTO)

approach (see Methods for details). After removing gene-pair links with weights that are not

statistically significant, we were left with gene co-expression networks that are extremely dense

(hki * 0.3 � N). In general, this is an often encountered challenge in gene co-expression analy-

ses. One suggestion to solve this problem, is to remove links until the remaining network is

scale-free, and thus a very sparse network [14]. However, with such an approach, we get little

insight into how the sum of many, relatively weak links may influence important network

characteristics, e.g. its community structure.

In contrast, we chose to use the generalization to weighted networks of the k-core method

for network peeling, s-core peeling [19–21], which is based on the sequential removal of the

weakest nodes. This approach allows the identification of the most centrally connected regions

of a dense network. Thus, we generated four networks that were decomposed into indexed

cores using the s-core+ method [20], obtaining a ranked node list with the s-core index n as

centrality measure.

Decomposition analysis of the weighted networks

In the following section, we will first discuss the properties of the four networks [HA (human

all tissues), HB (human only CNS, abbreviated “brain” below), MA (mouse all tissues), MB

(mouse only brain)] separately, before we discuss the within-species comparisons of HA vs. HB

and MA vs. MB, and the across-species comparisons (HA vs. MA and HB vs. MB). Finally, we

will discuss the positioning of disease-associated genes in these networks and network com-

parisons. Note that the HB and MB networks consists solely of TF nodes: Since the mouse brain

data only consisted of 10 samples, we focused on the (smaller) gene set of TFs to ensure statisti-

cally significant links (see Methods).

Here we should note that both human and mouse data sets are dominated by CNS-related

tissues; for example, 21 of the 73 human tissues represented in the arrays correspond to sepa-

rately analyzed, dissected brain regions [26]. Therefore, we expect the “All-tissues” networks

to be strongly influenced by gene relationships found in neuronal tissues. Nevertheless, these

networks are also tempered by gene interactions found more widely in the two species. The

brain networks, in contrast, should distill out the functions operating more specifically in CNS

tissues, and especially in brain.

Human all-tissues network. The HA network consists of all the N = 11,896 genes con-

tained in the unperturbed correlation matrix, while the average degree has dropped from

hki = 11,895 (in the fully connected correlation network) to hki = 7,413 (in the wTO network).
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The innermost s-core (before application of s-core+ [20]) contains 5,846 genes, which is about

half of the genes of the initial network. Such networks are challenging to analyze and visualize

as they are large, dense and highly clustered; by applying s-core+, we untangle the network by

recursive removal of the smallest link-weights (see “s-core+ network decomposition method”).

The s-core+ network decomposition results in 8,986 distinct s-cores, providing the node-

centrality sequence HA, where the innermost ten genes (the genes with the highest associated

s-core index) are shown in Table 1. The s-core+ decomposition results follow the node ranking

obtained from Eigenvector centrality (EVC) analysis [27, 28] closely, with an overall rank cor-

relation of ρ = 0.98. However, among the 1000 innermost genes, there is an overlap of 0.86

between the two methods, signifying increasing disparity between s-core+ and EVC as we are

getting closer to the innermost part of the network. A scatter plot showing this trend is shown

in S1 Fig.

Mouse all-tissues network. All the original N = 15,720 genes are conserved for the MA

network after applying the wTO cutoff (see Methods). With an average degree of hki = 6,579,

the network is slightly sparser than the human network, but still extremely dense. The inner-

most s-core consist of 5,352 genes, but after s-core+ decomposition, we obtain a ranked list

over all genes, segmented into 9,474 distinct cores. Table 1 displays the 10 innermost genes.

The EVC comparison shows the same trend as for human, albeit more pronounced, with a

rank correlation of ρ = 0.96 of and an overlap of 0.42 among the 1000 innermost genes (see

also S2 Fig).

Human brain network. The HB network, constructed from 21 different tissue types from

CNS, consists of N = 858 nodes, all TFs (see Methods). Thus, some of the original 931 nodes

were removed after the wTO link-weight cutoff. The average degree is large, with hki = 253, so

the network is still dense even though some of nodes with small node strengths have been lost.

There are only TFs in the brain network due to statistical limitations (see “Network randomi-

zation provide statistically significant cutoff values”), but the information from connections

between TFs and other genes is kept implicitly due to the wTO approach. There are 306 genes

in the innermost s-core, and 732 distinct cores after s-core+. The top-10 innermost genes in

the HB-sequence are presented in Table 1. s-core+ gives almost the exact same ranking as EVC

for this network, with ρ> 0.99 and an overlap of 0.86 among the 100 innermost genes (see

S3 Fig).

Table 1.

HA MA HB MB

HPSE2 ZSCAN10 DLX4 FOXN1

RHO PAX9 ZNF669 FEV

NOX1 UBL4B NR1I2 POU2F3

HTR4 IFNA9 ARNT ALX4

FAM55D 4931428L18RIK NKX3-1 FOXE3

MC2R ZFP628 TP63 SIM2

GML PAG1 ALX3 ZFP41

RUNX2 WFIKKN1 IRF4 ZFP40

MTMR8 IL2 SPIB HAND1

OPRM1 FOXE3 TFAP2A ZFP36L2

The 10 innermost genes in the s-core+ decomposition for (left to right) the human all-tissues, mouse all-tissues, human brain, and mouse brain networks

presented in ascending order. For an extensive listing, see S1 Table.

https://doi.org/10.1371/journal.pone.0187611.t001
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Mouse brain network. Only 10 CNS tissues were available in the construction of the MB

network, resulting in a network with 1071 TF genes and average degree hki = 130, which is

considerably smaller than hki in the HB network. The number of nodes in the innermost

s-core testifies to this, with 167 nodes in the innermost s-core. The top-10 most central genes,

according to the s-core+ decomposition sequence for MB, are shown in Table 1. s-core+ and

EVC provide similar ranking for this network as well, although with a slightly lower correla-

tion value than the human counterpart, with ρ> 0.97. The overlap among the innermost 100

genes, is quite a bit smaller, on the other hand, with 0.46 (see also S4 Fig).

Transcription factor and gene ontology term enrichment in wTO

networks

When conducting enrichment analyses connected to the s-core network decomposition, it is

important to ensure that the network-peeling process does not have the unintended conse-

quence of removing clusters of genes with high biological significance early in the process. We

investigated this possibility by checking for enrichment of GO terms in the outer-most layers

of genes in the s-core+ sequences for HA, HB, MA and MB, finding no statistically significant

enrichment. This is an indication that the network decomposition process is initially removing

biologically unrelated genes.

Human all-tissues network. Fig 1(a) shows the enrichment of transcription factors

and selected TF families for the HA network, as function of the normalized s-core index. The

panels shows that TFs are central in the network, with steadily increasing enrichment from

n/nmax * 0.5, reaching a 1.5-fold enrichment for the 500 innermost genes. The subfamily of

transcription factor genes, homeobox (HOM), are strongly enriched in the network, reaching

a plateau of 2-fold enrichment for n/nmax > 0.85.

There are multiple, highly enriched GO terms (obtained from GOrilla [29–31]) in the cen-

tral-most parts of the network: According to the s-core+ sequence for HA, we uncovered sev-

eral enriched GO terms among the 1,000 innermost genes. The enriched process-related terms

with Benjamini-Hochberg corrected p-values (only those with p< 10−5) are shown in Table 2.

There are several highly enriched GO process terms related to ion- and transmembrane trans-

port, signaling and multicellular organismal processes. For the GO terms related to biological

functions, an extensive list is shown in S2 Table, with terms related to molecular transducer

activity and transporter activity dominating the list, many with p< 10−8. It should be noted

that the genes related to olfactory function are removed from the GO analysis for the human

and mouse all-tissues networks, that is 50 OR-genes for human and 36 OLFR-genes for

mouse, neither of which are TFs. These genes share large sequence similarities, likely causing

cross-hybridization, which alongside almost identical GO-terms makes them artificially

enriched in these particular GO analyses due to clustering in the networks.

Mouse all-tissues network. Fig 1(b) shows substantial enrichment of TFs, and particularly

the TF subfamilies of HOM and helix-loop helix (HLH). For n/nmax > 0.5 HLHs and HOMs

are greatly enriched, with fold changes > 2 for n/nmax = 0.8. This is in clear contrast to the

human networks, where we instead find that the HLHs are weakly suppressed.

We find multiple enriched GO process terms related to multicellular organismal processes,

and sensory perception in particular, among the innermost s-cores in MA. The process terms

with p< 10−3 are shown in Table 3. Details about the enriched GO function terms can be

found in S3 Table, where terms related to molecular transducer activity, and G-protein cou-

pled receptor activity in particular, sequence-specific DNA binding and transcription factor

activity top the list.
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Several of the significant terms in the mouse network are also present for the human all-tis-

sues network, indicating evolutionary conservation of tissue-wide expression of the genes reg-

ulating these processes and functions. It should also be noted that we have confirmed that the

enrichment profiles are robust with respect to node subset size for both the HA and the MA

networks.

Human brain network. In Fig 1(c), we observe a substantial enrichment of HOMs, which

is consistent with our findings for the HA network. The TF enrichment is trivially 1 for all n
since all the genes were selected to be TFs. Due to the limited network size, the GO enrichment

results are less likely to be deemed statistically significant, but several GO terms, including

anion and lipid binding, occur among the 200 innermost genes (see S4 Table).

Mouse brain network. In the MB network (Fig 1(d)) we find enrichment of HOMs until

we reach the most central nodes at n/nmax > 0.9. Among the 5 innermost nodes, we find the

Fig 1. Average enrichment of TFs and selected TF undergroups (see “Comparative enrichment and gene-ontology analysis”) as

function of s-core index n for: (a) Human all-tissues network HA, (b) mouse all-tissues network MA, (c) human brain network HB,

and (d) mouse brain network MB. Large s-core index values indicate high centrality in the network. TFs and HOMs are significantly

enriched for both human and mouse all-tissues networks. The enrichment of TFs is trivially 1 for the brain networks.

https://doi.org/10.1371/journal.pone.0187611.g001
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two HLH genes, HAND1 and SIM2, causing the enrichment increase in HLHs for large n-

values. HOM genes are highly enriched from n * 250 to n = 634, where six HOM genes dis-

appear in a cascade of 7 genes. Only a single enriched GO term was found: multicellular organ-

ismal development.

Comparisons of the networks

We have now reported results for the human and mouse network (all tissues or brain) sepa-

rately, observing similar behavior in some areas, such as enrichment of Homeobox TF genes,

while differences in other areas. Here, we will conduct a systematic comparison between the

ranked s-core+ decomposition sequences for the four wTO networks, using the comparison

measures defined in the “Methods” section. Within a species, i.e. when comparing the all-

tissues versus the brain networks, the only limiting factor for comparison is the overlapping

node content. Since the brain networks only contain TFs, the s-core+ sequence-comparisons

within a species is limited to TFs. Cross-species comparisons is performed using ortholog data

to identify genes to compare.

Table 2.

GO Term Description FDR p-value Enrichment

GO:0032501 multicellular organismal process 2.65E-10 1.47

GO:0055085 transmembrane transport 1.13E-7 1.80

GO:0007186 G-protein coupled receptor signaling pathway 8.14E-7 1.97

GO:0006811 ion transport 1.55E-6 1.68

GO:0007267 cell-cell signaling 1.87E-6 1.98

GO:0044700 single organism signaling 3.12E-6 1.90

GO:0023052 signaling 3.51E-6 1.89

GO:0034220 ion transmembrane transport 5.05E-6 1.83

GO:0099537 trans-synaptic signaling 5.28E-6 2.37

GO:0007600 sensory perception 5.38E-6 2.20

GO:0007268 chemical synaptic transmission 5.60E-6 2.38

GO:0099536 synaptic signaling 5.81E-6 2.37

GO:0098916 anterograde trans-synaptic signaling 6.07E-6 2.38

Enriched GO process terms among the 1,000 central-most genes in the human all-tissues network. p < 10−5 (Benjamini-Hochberg corrected).

https://doi.org/10.1371/journal.pone.0187611.t002

Table 3.

GO Term Description FDR p-value Enrichment

GO:0050953 sensory perception of light stimulus 4.56E-10 4.67

GO:0007601 visual perception 6.31E-10 4.65

GO:0007600 sensory perception 7.37E-10 2.78

GO:0050877 neurological system process 7.76E-6 1.98

GO:0007186 G-protein coupled receptor signaling pathway 2.18E-5 2.02

GO:0009583 detection of light stimulus 2.48E-5 6.40

GO:0032501 multicellular organismal process 1.50E-4 1.35

GO:0007606 sensory perception of chemical stimulus 2.72E-4 4.17

GO:0030901 midbrain development 7.34E-4 5.64

GO:0034587 piRNA metabolic process 7.82E-4 9.14

Enriched GO process terms among the 1,000 centralmost genes in the mouse all-tissues network. p < 10−3 (Benjamini-Hochberg corrected).

https://doi.org/10.1371/journal.pone.0187611.t003
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In order to quantify the difference and similarities in the pair-wise comparison of networks

that potentially have the same node content, we focus on using the following measures (see

“Methods” for details): The Jaccard index J(S1, S2) returns a number between zero and unity

that describes the fraction of identical nodes in the two sequences S1 and S2. Thus, it has a

focus on sequence content and not on sequence position.

Addressing position of nodes in two s-core+ sequences S1 and S2, we identify nodes (genes)

that are central to both sequences by calculating ti(S1, S2) for each node i (see Eq (2)). Since

nodes in the innermost cores will be given the largest values in the core-sequence, ti will only

be near its maximal value for nodes that are in the innermost cores of both networks. Similarly,

we calculate ui(S1, S2) (see Eq (3)) as the difference in node i’s sequence position in the two

sequences S1 and S2. Here, only nodes that are central in one of the two sequences will return

ui near the maximal or minimal value. Thus, by making a density plot of ti versus ui, we can

assess the distribution of genes central to only one or both of the networks.

Human all-tissues and brain networks. For the comparison between the HA and HB net-

works, we identify 855 genes common to the two networks, all being TFs since the brain net-

works only consist of TFs. The 10 genes with the largest ti(HA, HB) values, being most central

in both of the networks, are shown in Table 4, along with the corresponding results from the

three other network comparisons that will be presented in the subsequent paragraphs. The

top-10 genes with the largest ui(HA, HB) and ui(HB, HA) values are shown in Table 5, along

with the results from the (MA, MB)-comparison.

The plot of t(HA, HB) versus u(HA, HB) is shown as a node density plot in Fig 2(a), where

the gray-scale show the z-score value between the actual density plot and 1000 randomizations

(see “Methods”). There is a clear grouping of genes that are central in both the all-tissues and

brain networks (large ti-values), aggregated at the top of Fig 2(a). A maximum z-score * 8,

with a neighborhood of z� 4, for large ti-values, demonstrate that many TFs are strongly co-

expressed and central in both the human brain and all-tissues network. Another demonstra-

tion of this is shown in Fig 3(a), where the Jaccard index J(HA(m), HB(m)) between equally

sized subsets of HA and HB, is plotted as function of the node subset containing the m inner-

most nodes in the respective sequence.

Table 4.

t(HA, HB) t(MA, MB) t(HA, MA) t(HB, MB)

HOXB8 FOXL1 PCDHB1 SIM2

ESR1 HESX1 PROP1 FEV

DLX4 POU2F3 FPR3 NFATC1

NKX3-1 GCM1 RHO HOXA11

RUNX2 FOXN1 SLC14A2 NR4A3

TP63 PROX2 BEST2 DLX4

ZNF669 HAND1 PAX4 GATA1

ALX3 FEV NR4A3 ESR2

NR2E3 NR4A3 OPRM1 NKX3-1

NR1I2 FOXE3 CER1 NR1I2

Genes corresponding to the 10 largest t(S1, S2)-values (Eq (2)), i.e. the genes that are highly central in both

networks, as given by their s-core+ decomposition sequences S1 and S2. The four columns show (from left

to right) the 10 genes that are the most central in both: Human all-tissues and human brain, mouse all-

tissues and mouse brain, human all-tissues and mouse all-tissues and human brain and mouse brain. Only

TF genes are eligible for these comparisons, except for the third column, t(HA, MA), which compares the all-

tissues networks.

https://doi.org/10.1371/journal.pone.0187611.t004
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Mouse all-tissues and brain networks. Here, there are 1,024 overlapping TF genes,

which, like the (HA, HB)-comparison, show larger node densities in the top of Fig 2(b), though

with a smaller maximum z-score value * 5. From Fig 3(b), we see that there is a relatively

high degree of overlap between the innermost s-cores in mouse all-tissues and brain networks.

This is not that surprising, given the results depicted in Fig 1, where TFs are clearly enriched

for the all-tissues networks. The reason for the relatively small J-values in Fig 3(a) and 3(b) is

that the size of the compared networks are very different, resulting (most likely) in large

unions (MA [MB) compared to intersections (MA \MB). Since the network cores are very

dense, and the overlap is relatively small, intersection network approaches are not suitable for

our networks.

Human and mouse all-tissues networks. In this network comparison, we are not limited

to TFs only, as with the other comparisons, since both the human and mouse all-tissues net-

works contain all the genes provided by the data sets. Using orthologs as mapping between the

two s-core+ network decomposition sequences, we find 9,420 overlapping genes. The top-10

genes with the largest ui(HA, MA) and ui(MA, HA) values are shown in Table 5, along with the

results from the (HB, MB)-comparison.

The node density plot of the within-species all-tissues network comparison is shown in

Fig 2(c). With maximal z-scores z * 8 in the large-t region, this comparison also demonstrate

the same behavior as the human and mouse all-tissues and brain comparisons, namely that

there is an over-representation of orthologs that are central in both the s-core+ decomposition

sequence HA and MA. This result is not apparent given Fig 3(c), but there is a clear segment

where the actual overlap is larger than the expected, leading to the increased density of con-

served orthologs with large s-core index values in both species.

Human and mouse brain networks. These two networks consist of TFs only, and as

this is an within-species comparison, we are also restricted to ortholog data, resulting in 543

overlapping genes. Fig 2(d) is the single figure in the figure panel not showing an indication

towards conservation of innermost orthologs. This is probably caused by this network

comparison being the only comparison between two TF-only networks. We also see that the

J(HB, MB)-index shown in Fig 3(d), follow the random expectations quite closely. It should be

noted, however, that this similarity comes largely from the visualization of the J-index plot. The

Table 5.

u(HA, HB) u(HB, HA) u(MA, MB) u(MB, MA)

INSM1 RFX7 E130120F12RIK ZFP768

THRB ARID3A NFATC2 MEOX1

SOX10 ARNT GSX1 RARA

RXRG ZFP161 ZFP595 ZFP687

YY1 NFATC3 1700012C15RIK TRP63

PKNOX2 SPI1 DBX1 ESRRA

SOX11 ZSCAN18 ZFP541 BATF3

ZNF236 RUNX3 ZFP352 SOX13

ZFHX4 RFX5 OLIG3 VDR

HOXD1 ZNF134 T ZFP40

Transcription-factor genes corresponding to the 10 largest, positive ui-values (Eq (3)), i.e. the genes that are most central in the s-core+ network

decomposition sequence of network S1 compared to S2. The four columns show (from left to right) the 10 genes that are the most central in: Human all-

tissues compared to human brain, human brain compared to human all-tissues, mouse all-tissues compared to mouse brain and mouse brain compared to

mouse all-tissues.

https://doi.org/10.1371/journal.pone.0187611.t005
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other plots are based on the overlap of many thousands of genes, while there are * 700 ortho-

logs in max(|HB|, |MB|). This naturally result in larger J-values compared to the other figures.

TF and gene ontology term enrichment in network comparisons

Human all-tissues and brain networks. The enrichment of TF families within the node

set containing the r centralmost genes according to the s-core+ sequence comparison measures

t(HA, HB), u(HA, HB) and u(HB, HA) are shown in Fig 4(a), 4(c) and 4(e) respectively. In Fig 4

(a), we see significant enrichment of HOMs, even for large r-values, indicating that certain

HOMs have a similar regulatory role in both networks. The 10 genes with the largest ti(HA, HB)

values are shown in Table 4, and among them the HOM genes: HOXB8, DLX4, and ALX3.

Fig 2. Node density plots of u(S1, S2) versus t(S1, S2) for comparisons between the s-core+ sequences in: (a) human all-tissues

and brain networks, (b) mouse all-tissues and brain networks, (c) human and mouse all-tissues network and (d) human and

mouse brain networks. The densities are given by their z-score value (see “Methods”). There is a clear statistical over-representation of

genes that are central in both s-core+ sequence S1 and S2 for (a), (b) and (c). The brain-networks comparison in (d) show no clear trend.

https://doi.org/10.1371/journal.pone.0187611.g002
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Fig 4(c) depicts the enrichment of genes that are central in the all-tissues network, but not

in the brain network. The comparison of the reversed sequence difference, u(HB, HA), is dis-

played in Fig 4(e), and we observe significant under-representation of HOMs among the

≲30% of the innermost genes. HLHs are enriched among the 30% to 20% nodes that are most

central in brain compared to the all-tissues network.

The top-100 nodes that are central in both networks, i.e. T(100; HA, HB), are enriched for

GO function terms including receptor and transcription factor activity (see S5 Table), the latter

of which is an obvious consequence of the TF enrichment among brain nodes. Among the all-

tissues centric difference nodes, U(100; HA, HB), the GO terms related to vesicles and extracel-

lular exosome were more than 4-fold enriched. For the brain-centric case, U(100; HB, HA),

GOrilla reported significant enrichment of processes related to cell adhesion.

Fig 3. Jaccard index J(S1, S2) as function of node subsets of s-core+ sequence S1 and S2 consisting of their m respective

innermost nodes, for: (a) Human all-tissues and brain, (b) mouse all-tissues and brain, (c) human and mouse all-tissues and (d)

human and mouse brain network comparisons. The dashed lines are the expectation value for J(m; S1, S2). Both within-species

comparisons show large J-values for small m, while the within-species comparisons have a lesser extent of innermost core overlap.

https://doi.org/10.1371/journal.pone.0187611.g003
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Fig 4. Enrichment of TFs for the human and mouse all-tissues and brain network comparisons. The left column show

(HA, HB) comparison, while the right compare (MA, MB). HOMs dominate the ti enrichment, while being less prominent in the ui

comparisons. HLHs are enriched for (d) and (e). The x-axis is displayed in descending order, since r is the number of

innermost genes, meaning that r/N = 1 denote the entire gene set, while smaller r/N denote gene sets of increasing centrality.

https://doi.org/10.1371/journal.pone.0187611.g004

Comparative analysis of weighted gene co-expression networks in human and mouse

PLOS ONE | https://doi.org/10.1371/journal.pone.0187611 November 21, 2017 12 / 26

https://doi.org/10.1371/journal.pone.0187611.g004
https://doi.org/10.1371/journal.pone.0187611


Mouse all-tissues and brain networks. The within-species comparison of the mouse net-

works, provided TF enrichment results shown in Fig 4(b), 4(d) and 4(f) for T(r; MA, MB),

U(r; MA, MB) and U(r; MB, MA) respectively. There are many similarities between Fig 4(a) and

4(b) and HOMs are enriched in the mouse case as well. The enrichment results for the s-core

sequence differences, Fig 4(d) and 4(f), were not significant.

The GO term enrichment analysis did not provide many results for the mouse network

comparisons, with two significantly enriched terms: sequence-specific DNA binding, in

T(100; MA, MB) and multicellular organismal development.

Human and mouse all-tissues networks. For the cross-species comparison between

human and mouse all-tissues networks, we are no longer limited to TFs in the enrichment

analyses, which can be seen in Fig 5(a), 5(c) and 5(e) depicting the results for T(r; HA, MA),

U(r; HA, MA) and U(r; MA, HA) respectively. Fig 5(a) show very high enrichment of TFs, and

particularly HOMs, among the genes that are central in both human and mouse all-tissues net-

works. HLHs are enriched, but the result is barely significant, with p-values * 0.01. The

enrichment results for the human-centric difference measure, U(r; HA, MA), shown in Fig 5(c),

display highly significant HOM enrichment for r/N< 0.9, which perhaps is surprising given

the individual results for human and mouse displayed in Fig 1(a) and 1(b).

For the mouse-centric comparison, U(r; MA, HA), Kruppel-type zinc finger TF genes

(KZNFs) are significantly enriched for r≲500, while HLHs are enriched for r≲50. HOMs are

under-represented, which is not surprising given the human-centric results.

For the GOrilla gene ontology analysis we used the results from the human genes in

the within-species analyses, as discussed in this and the following paragraph. There are multi-

ple enriched GO terms for the 1,000 centralmost orthologs, according to the sum measure

T(1000; HA, MA). The full list of GO function terms are shown in S6 Table, where cytokine

activity and receptor activity (with sub-terms) are the most highly enriched terms. Process-wise,

GO terms related to sensory perception (p = 1.5 � 10−12), G-protein coupled receptor signaling

pathway (5.3 � 10−9) and multicellular organismal process (5.3 � 10−7) are the most prominent.

For the human-centric comparison U(2000; HA, MA), several enriched sub-terms related to

transporter activity were found, as shown in S7 Table. This also led to enrichment of processes

related to synaptic signaling (p = 7.2 � 10−6). Among the orthologs central in mouse, but not

human, U(2000; MA, HA), several process terms, including immune system process, cell cycle

and DNA metabolic process, were significantly enriched (S8 Table).

Human and mouse brain networks. The comparison between human and mouse brain

networks comprise the nodes contained in both networks that are both TFs and orthologs.

The TF enrichment results, according to the comparison measures T(r; HB, MB), U(r; HB, MB)

and U(r; MB, HB), are shown in Fig 5(b), 5(d) and 5(f) respectively. HOMs are enriched, while

KZNFs are significantly under-represented for small r-values in T(r; HB, MB). From this, the

KZNFs do not show central activity in both networks, but they are central in human brain rela-

tive to mouse, as can be seen in Fig 5(b). A significant subset of the KZNF genes, encoding

KRAB zinc-finger TFs (KRAB-ZNFs), are known to be rapidly evolving in mammals [32, 33],

and their rapid evolution has bee suggested to be related to human brain evolution [8]. The

mouse-centric TF enrichment provide no statistically significant results. No highly enriched

GO terms were found in the network comparisons.

Enrichment of disease-associated genes

Similar to the TF and GO term enrichment studies, enrichment experiments were also per-

formed for genes associated with diseases according to OMIM [34] and MGI [35]. The result-

ing enrichment profiles are shown in Figs 1, 4 and 5. In the entire human all-tissues network,
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Fig 5. Enrichment of TFs for the all-tissues and brain comparison across species. The left column show (HA, MA)

comparison, while the right compare (HB, MB). Note (d), comparison of human and mouse brain network. For the innermost

10% of the genes, KZNFs are enriched in the comparison sequence ui(HB, MB). (e) Enrichment of KZNFs according to ui(MA,

HA), which contrasts with (d). The x-axis is displayed in descending order, since r is the number of innermost genes, meaning

that r/N = 1 denote the entire gene set, while smaller r/N denote gene sets of increasing centrality.

https://doi.org/10.1371/journal.pone.0187611.g005
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there were identified 2858 disease-associated genes, while 1171 were identified for mouse. In

the ortholog comparisons, an orthologous gene is said to be associated with a disease if it is a

disease gene in either species; this definition yielded 2543 disease genes in the comparison of

the human and mouse all-tissues networks, which consist of 9420 genes in total.

The innermost s-cores in the human all-tissue network show significant enrichment for the

1000 innermost genes or so, which can be seen by an upswing on the rightmost side of the

curve in Fig 1(a). The same trend appears for the mouse network as well, though not with high

statistical significance (p * 0.05). For the human brain network, on the other hand, there is

highly significant enrichment of disease genes in the innermost cores (p * 10−5 for the inner-

most few hundreds of genes), shown in Fig 1(c). A similar trend is seen in the mouse brain net-

work, though, again, with poorer significance.

In Fig 4, the within-species network comparisons are shown, and in both Fig 4(a) and 4(b),

for genes central in brain and all-tissues networks, for both human and mouse, we see a clear

enrichment of disease-associated genes. The enrichment among the innermost 100 genes in

the human within-species comparison, T(100; HA, HB), has p< 10−4, while the corresponding

mouse comparison, T(100; MA, MB), yields p< 10−3. The difference comparisons provide no

significant results, aside from a clear under-representation of disease genes in the u(MA, MB)

comparison, with p< 0.01, seen in Fig 4(d). This implies that the TFs that are the most central

in the mouse all-tissues network relative to the brain network are not associated with disease-

related phenotypes in mouse, which can also be seen as a slight, but significant, bulge in Fig 4(e)

for the leftmost, peripheral genes.

The across-species comparisons, shown in Fig 5, give some further insight into the role of

disease genes in the central parts of the networks. Especially, there is strong enrichment of

the orthologous genes that are central in both human and mouse, depicted in Fig 5(a). The

curve is deceptively gentle in the rightmost part of the figure, since more than a quarter of

all the genes in the comparison are associated with a disease in either mouse or human. For

T(500; HA, MA), a p-value of p< 10−8 is calculated, and the enrichment stays significant for

values larger than 500 as well, even including the innermost 5000 genes. Due to the smaller

number of genes in the brain comparisons, Fig 5(b) is more prone to stochasticity, and though

the trend is clear, the enrichment only translates to p-values of 0.01< p< 0.05 among the cen-

tralmost hundred genes, approximately. Fig 5(d) displays significant enrichment for r/N> 0.2,

though no significant enrichment for the innermost 150 genes, even though the curve has a

steep ascent as it approaches 0. The same trend is seen for the opposite comparison in Fig 5(e),

as an under-representation of disease genes, though these results are statistically dubious with

p≳0:95.

Discussion

In this article, we have applied a novel, data-agnostic network comparison method to gene-

expression data from human and mouse. We studied the transcription factor (TF) and gene

ontology (GO) term enrichment of single networks and comparisons of networks recon-

structed from the data. Networks based on all available tissue types, or from only the brain and

central nervous system tissue types, respectively, were used to construct two weighted gene co-

expression networks for each species. These four networks were s-core+ decomposed into cen-

trality-ranked gene sequences using the s-core index as rank parameter, analysed, and subse-

quently compared within and across species using novel comparison metrics, which are

functions of the rank parameters of the compared networks.

The four weighted topological overlap networks, human and mouse, all-tissues and brain

and CNS tissues networks, were all very dense and inter-connected, some with average degree
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of about half of the total number of nodes. After s-core+ decomposition, ranked node lists

were obtained for the networks. Eqs (2)–(5) were used to compare the centrality of the nodes

(genes) in the networks: A direct comparison for the within-species, and through ortholog

mapping for the across-species comparison.

TF enrichment analysis of the centralmost genes, and their within- and across-species com-

parisons, led to the following observations: (1) TFs share co-expression profiles in a highly

conserved manner across tissue types for human and mouse, as supported by e.g. Ref. [23]. (2)

The homeobox, or HOM, family of TFs are universally co-expressed across tissues and species,

which is in concordance with Ref. [25]. (3) KZNF genes are more central in the human brain

and CNS network than for the corresponding mouse network. (4) Basic helix-loop-helix TFs

are more central in the mouse all-tissues wTO network than in the human counterpart. The

GO term enrichment analysis provided several terms that were enriched for both human and

mouse all-tissues networks separately, and in particular processes related to regulation and

general development: multicellular organismal process, cell-cell signaling and G-protein cou-

pled receptor signaling pathway.

We also note that several of the genes that are among the top-10 centralmost genes in their

respective network or network comparison (displayed in Tables 1, 4–6) are ranked top-10 in

more than one s-core+ sequence or sequence comparison u or t. For instance, the TF FOXE3

is central in both mouse all-tissues and brain network, and thereby in the comparison

t(MA, MB) as well. FOXE3 is involved in the regulation of lens epithelial cell growth and is

related to the rare eye diseases: anterior segment mesenchymal dysgenesis in human and

mouse, and Peters anomaly in mouse (OMIM [34] and MGI [35]). Mutations in FOXO3 also

predispose to aortic aneurisms, suggesting a broader role throughout the body [36]. The gene

RHO, involved in photoreception, is central in both HA and t(HA, MA), and is also related to

eye diseases, including night blindness [34]. RUNX2, ALX3 and RARA are also central in mul-

tiple sequences and related to diseases in both human and mouse: cleidocranial dysplasia, fron-

tonasal dysplasia 1 and acute promyelocytic leukemia respectively [34, 35]. Additionally,

RARA plays an important role in synaptic transmission and plasticity in the brain [37, 38].

In the mouse brain network, the ALX gene ALX4 was found to be central, which is related

to the inherited disorders frontonasal dysplasia 2 and parietal foramina. For the human brain

Table 6.

u(HA, MA) u(MA, HA) u(HB, MB) u(MB, HB)

ATP6AP2 HSPBAP1 IRF5 CASZ1

STRAP DSPP ARNT GATA4

SYDE1 TNFRSF8 IKZF1 FOXN3

S100G ID1 ZSCAN12 CUX1

EBF2 MSH5 RUNX2 EGR3

VPS53 RRP7A RELB FOXO3

PIGR PLAG1 HOXB8 BCL6

SOX13 PLCB2 WT1 ZHX3

DLX2 RMI1 HNF1B ZFP36L2

MMACHC DCLRE1C TUB IRF7

The orthologs corresponding to the 10 largest, positive u(S1, S2) values (Eq (3)), i.e. the orthologs that are most central in the s-core+ network

decomposition sequence of network S1 compared to S2. The four columns show (from left to right) the 10 orthologs that are the most central in: Human all-

tissues compared to mouse all-tissues, mouse all-tissues compared to human all-tissues, human brain compared to mouse brain and mouse brain

compared to human brain.

https://doi.org/10.1371/journal.pone.0187611.t006
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network, TP63, the gene coding for tumor protein p63, is found to be central. It regulates stem

cell maintenance, stress response, and tissue repair, and is associated with a number of malfor-

mations and syndromes, including cleft lip/palate syndrome, split-hand/foot malformation.

TP63 is also associated with a variety of human age-related pathologies [39]. The TRP63 gene,

coding for p63 in mouse, is central in the u(MB, MA) network comparison, meaning that it is

found to be one of the centralmost genes in the mouse brain network, while being one of the

most peripheral genes in the mouse all-tissues network. TP63 is also central in the t(HA, HB)

comparison, i.e. central in both human networks. Genes central in both mouse networks,

include FOXN1 and HESX1, related to T-cell immunodeficiency and septo-optic dysplasia

respectively. For the human all-tissues network, the genes MC2R and HPSE2 are central and

related to diseases: glucocorticoid deficiency and urofacial syndrome respectively. The mouse

all-tissues network, on the other hand, provided no diseases related to the top-10 centralmost

genes, apart from FOXE3 discussed above.

Among the orthologous genes that are central in the human all-tissues network, but not in

the mouse all-tissues network, we found these disease-associated genes: MMACHC, VPS53,

DLX2 and ATP6AP2. The latter two of these genes are related to dyslexia and mental retarda-

tion and Parkinson’s disease respectively. For the opposite case, u(MA, HA), the gene DSPP,

related to deafness and tooth abnormalities (dentin dysplasia and dentinogenesis imperfecta)

were found alongside PLAG1, DCLRE1C and PLCB2 to be associated with adenomas, severe

immunodeficiency and platelet deficiency respectively. For the human-centric brain network

comparisons, u(HB, MB), the genes IKZF1 and HNF1B, which are related to acute lymphoblas-

tic leukemia and diabetes mellitus type 2 respectively, were found among the centralmost

genes. In the brain, IKZF1 is a regulator of pituitary gene expression and lack of this TF leads

to widespread dysregulation of glucorticoid signaling, an essential component of whole-organ-

ism stress response. For the mouse-centric counterpart, u(MB, HB), BCL6 and GATA4 were

central genes, associated with B-cell lymphoma and atrioventricular diseases respectively;

GATA4 has also recently been linked to stress response and age-related inflammation in multi-

ple tissues including the brain [40].

Another result, which at first appear counter-intuitive, is that the disease genes are enriched

in the central cores of many of the networks and network comparisons. Considering the gen-

eral enrichment of TFs, this might make sense, since it is reasonable that regulatory elements

would be associated with a disease, if not directly, then, to some extent, by proxy. Some of the

enrichment results can possibly be explained by such mechanisms, e.g. the results shown in

Figs 1(a), 1(b) and 5(a). Others may not, such as the results depicted in Fig 1(c), and Fig 4(a)

and 4(b) in particular.

Our results suggesting that central, highly connected genes in the network have a strong

tendency to be associated with diseases is counter to the more intuitive expectation that disease

genes should be localized in the network periphery [41–43]: central genes are highly connected

genes, involved in multiple essential functions. However, disease phenotype is not synony-

mous with null-mutation, and should therefore not be directly correlated to gene essentiality

and the known centrality of essential proteins. Rather, our results indicate that highly central

genes are more likely to be associated to diseases because they have large influence on the net-

work. Thus, a perturbation of a central gene’s expression profile (ie. not it’s removal) is likely

to have non-catastrophic, yet significant and widespread downstream consequences [8].

Our result is in agreement with recent studies suggesting that it is likely for disease genes to

occur centrally in the human protein interaction network, because essential disease genes are

more highly connected, as well as being more numerous, than the non-essential disease genes

[44].
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Conclusion

In this paper, we have developed and applied a novel network comparison approach, applica-

ble to arbitrary network structures and edge-weight distributions, by analyzing gene co-

expression networks of human and mouse. The method is based on weighted core-decomposi-

tion approaches, and we have demonstrated some of the benefits this methodology has in mak-

ing comparisons between highly connected complex networks. The methods are widely

applicable to other network types, be it from biological or non-biological data, for sparse or

dense network, and provides a data-agnostic, parameter-choice minimalistic alternative to

established methods. By use of weighted topological overlap and the s-core+ core-decomposi-

tion method, we found that transcription factors, and homeobox domain transcription factors

in particular, display highly similar co-expression profiles in a conserved manner for human

and mouse, across tissue types and within and across species. Disease-associated genes were

found to be overrepresented among the centralmost genes in the gene co-expression network.

Methods

We analyzed a published protein-coding transcriptome data set consisting of Affymetrix

microarray data from 73 human and 72 mouse tissue types [26]. The human data sets contains

expression data from 11896 genes, of which 931 are TFs, whereas the mouse data contain

15720 genes, 1147 of which are TFs. There are 21 different tissue types from brain and central

nervous system (CNS) in the human data set and 10 in mouse. There are 9420 confirmed

orthologs between human and mouse contained in both data sets [45, 46].

Gene-correlation analysis

To construct networks from the gene expression data sets, we generated gene-correlation

matrices, in which genes sharing similar patterns of expression over the samples, receive large

pair-wise correlation values. There exist many mathematical measures that can be used to

quantify the co-expression similarity, and we chose to use the Spearman rank correlation coef-

ficient, as it is powerful in discovering trends rather than focusing on numerically similar

number sequences.

We created two gene-correlation matrices for each species: a matrix based on the expression

data from all tissue types, and a matrix constructed solely from the expression data from the

tissue types from brain and central nervous system (21 for human and 10 for mouse). The raw

gene-expression data sets are matrices of N mRNA probes, a term we will use interchangeably

by genes in the following, measuring the gene expression in samples from T tissue types. The

Spearman correlation values aij between node i and j, which compare the ranked expression

similarity of node i and j over the T tissues, are calculated for all node pairs, yielding symmetri-

cal N × N gene-correlation matrices A = [aij], with aij 2 [−1, 1].

Weighted gene co-expression network

The resulting networks are large, fully connected (all-to-all) correlation networks, and a means

for separating central from un-central nodes is needed. For this, we use the weighted topologi-

cal overlap (wTO) link-weight measure [8, 12, 13, 47], which robustly integrates the neighbor-

hood-similarity of pairs of connected nodes. Contrary to common practice in weighted gene

co-expression network analysis, we proceeded with the wTO analysis without using a cutoff of

any kind. We want to use a minimum of assumptions and mathematical manipulations, rather

including the weak and medium correlation values in our analysis as they indeed constitute

the bulk of the links. Also, hard cutoffs lower the statistical significance of the wTO matrix
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elements if the correlation matrix is constructed from few samples [12, 48] (as for the mouse

brain network based on 10 tissue types). This choice implies the usage of the non-negative ver-

sion of the wTO metric, since the signed version [8] would break the transitivity between trip-

lets of small correlation values. Then [12, 13],

wij ¼

P
kjaikakjj þ jaijj

minðsi; sjÞ þ 1 � jaijj
; ð1Þ

where si = ∑ i|aij| is the node strength of node i, sj = ∑ j|aij| is the node strength of node j and

the sum over k denotes the shared neighbors of node i and j, which are all the other nodes in

our case. min(si, sj) is the smallest of the two node-strength values, and wij therefore range

from 0 to 1.

Network randomization provide statistically significant cutoff values

Randomization tests of the correlation matrices, with subsequent wTO calculations, were per-

formed in order to find suitable cutoff values for the link-weights in the wTO networks. With

T = 73 and T = 72 tissues for human and mouse respectively in the all-tissues networks, the

maximal randomized wTO-values are small (maximal values of wij * 0.15) compared to the

majority of the link-weights. A conservative cutoff of wcut = 0.30, was chosen for these two

networks.

For the networks based on brain and CNS tissues, however, there is greater uncertainty in

the correlation values due to the smaller number of tissues, increasing the false positive rate.

This is particularly problematic for the mouse brain correlation matrix as it is constructed

from only 10 tissue types. This problem can partly be circumvented by the use of a smaller set

of genes i and j in Eq (1). We chose i and j to include all the TFs for the two brain networks,

while k still sums over all the genes, thus including the information of the neighboring non-TF

genes in the TF-to-TF wTO network. For the human brain network, the maximal wTO-values

after randomization studies was wij * 0.25. For the mouse brain network, however, the

maximal generated wTO-value from randomization was wij = 0.41. For tens of millions of gen-

erated values, we found p = 1.5 � 10−5 for wij� 0.40. For the brain networks, we therefore

chose wcut = 0.40, which is conservative for the human case, and reasonable for the mouse

brain network.

After applying the cutoffs to the wTO networks, we are left with four robust networks with

high statistical power, where similarly co-expressed genes with strong neighborhoods are cen-

tral in the network. These are the four networks we will analyze and compare, i.e. the human

and mouse networks from all tissues or brain and CNS tissues, which will be denoted by the

species and “all-tissues” or “brain” for simplicity.

s-core+ network decomposition method

The main analysis tool in the network analyses, was s-core+ network decomposition, a

weighted core decomposition method [20]. s-core [19] is the k-core equivalent network

decomposition method for weighted networks, whereas s-core+ is a further modification of

the s-core method.

The s-core algorithm removes the node with the smallest node strength value from the net-

work, using that value as a threshold for which neighboring nodes are gauged against. If the

node strength of any neighboring nodes falls below the gauging threshold, that node, with all

corresponding links, is also removed. This continues until no remaining nodes have node

strength values below the threshold. The procedure repeats until an innermost s-core is
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reached, meaning that removal of the single weakest node inevitably causes all remaining

nodes to fall beneath the threshold, thus collapsing the network.

When an innermost s-core is reached, s-core+ commences, removing the link with the low-

est absolute weight value from the core recursively, until a node strength falls beneath the

threshold. This node strength becomes the new threshold value for the s-core algorithm,

which will run until a new innermost s-core is reached (it could be the same set of nodes as the

previous innermost core). This alternation between node and link removal continues until

every node is removed. The nodes are labeled by an s-core index n, indicating the last distinct

s-core they were a part of (analogous to k in k-core analysis). The s-core index n serves as a

centrality measure, where a small n-value relates to low centrality, and thereby low inferred

importance in the network, while large n-values appear for nodes that are strongly connected

to central clusters, and thereby deemed to have high importance in the network. By use of this

method, the network is decomposed into indexed cores, providing a list of centrality-ranked

nodes. Other methods can be used to provide centrality ranking of nodes in complex weighted

networks. Among these, Eigenvector centrality (EVC) [27, 28] is perhaps the most sensible to

use for comparison with s-core+, as it also favors high-strength nodes that are situated near

the topological center(s) of the network. In the Results section, we will briefly compare the two

approaches, by also calculating the EVC rank for the four networks. In short, we find an overall

high concurrence between the methods. However, the EVC and s-core+ methods rank the

innermost/centralmost nodes in the network somewhat differently; a trend which is more

prominent for the mouse networks than the human counterparts.

In the case of dense and highly interconnected weighted networks, where the degree distri-

bution is dominated by large degrees relative to N, the s-core network decomposition method

is more suitable than the k-core decomposition method. Also, if the innermost s-cores are

large, the link-pruning s-core+ method is applied in order to distinguish between the nodes in

the innermost s-core. We will denote the s-core+ sequences for the human all-tissues, human

brain, mouse all-tissues and mouse brain network by HA, HB, MA and MB respectively.

Comparative network analysis using s-core+ node sequences

We use two different measures when comparing the position of node i in two s-core+ network

decomposition sequences S1 and S2 (e.g. HA and HB): The difference ui and the sum ti in

core-sequence position of node i. Since the sequences S1 and S2 do not contain the same

number of nodes, in general, we use a normalized version of the s-core index n, denoted by

n0, which is the reordered mapping of n after only the overlapping nodes between sequence

S1 and S2 (S1 \ S2) have been kept. The number of nodes in the intersection of the s-core+

sequences S1 and S2 is NS1\S2
, and n0 is normalized so that n0 2 [1, NS1\S2

]. The expression for

the sequence sum ti and the difference ui for the nodes i contained in both sequence S1 and S2

is then:

tiðS1; S2Þ ¼ tiðS2; S1Þ ¼ n0i;S1
þ n0i;S2

; ti 2 ½0; 2NS1\S2
�; ð2Þ

uiðS1; S2Þ ¼ � uiðS2; S1Þ ¼ n0i;S1
� n0i;S2

; ui 2 ½� NS1\S2
;NS1\S2

�: ð3Þ

A large, positive ui(S1, S2) value, corresponds to a node i that is among the innermost s-cores

in sequence S1, but among the outermost in sequence S2. Nodes with large, negative ui(S1, S2)

values have large n-values in the s-core+ network decomposition sequence S2, while small

n-values in S1. A large ti-value imply that node i is a member of the innermost s-cores in both

S1 and S2, while small ti-values correspond to the opposite.
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Fig 6 shows the possible ui(S1, S2)/NS1\S2
and ti(S1, S2)/NS1\S2

coordinates for any node i.
For small ti(S1, S2)-values, neither n0i;S1

nor n0i;S2
can be large, so |ui(S1, S2)| is limited to the max-

imal value of maxðn0i;S1
; n0i;S2
Þ. This is the single limitation of ti and ui until ti/NS1\S2

> 1. Then, |

ui(S1, S2)| is limited by the sum of n0i;S1
and n0i;S2

. Therefore, we are left with the diamond-shaped

box as shown in Fig 6.

Fig 6. Relationship between t(S1, S2) and u(S1, S2) normalized according to the number of nodes N = NS1\S2
. A node i must be within

the gray, diamond-shaped area because of the limitations from Eqs (2) and (3). The dark gray areas contain nodes where: (A) n0i;S1
and n0i;S2

are large, i.e. the node is central in both s-core+ sequences 1 and 2. (B) n0i;S1
is large, while n0i;S2

is small, i.e. the node is central in s-core+

sequence 1 and peripheral in sequence 2. (C) n0i;S2
is large, while n0i;S1

is small, which is the opposite of the (B) criteria, i.e. the node is central

in s-core+ sequence S2, but peripheral in sequence S1.

https://doi.org/10.1371/journal.pone.0187611.g006
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To ascertain statistical significance in the node density scatterplots between ti(S1, S2) and

ui(S1, S2), we calculated the z-scores (standard scores, z = (x − μ)/σ) for the (t(S1, S2), u(S1, S2))

node density histograms. The scores were based on 1000 node randomizations on the inherent

s-core+ sequence structure.

We also apply the Jaccard index as node overlap measure. The Jaccard index is defined as

J(S1, S2) = |S1 \ S2|/|S1 [ S2|, where the |. . .| denote the set cardinality, i.e. number of nodes in

the set within the operator.

Comparative enrichment and gene-ontology analysis

For the human and mouse all-tissues and brain networks, we use the centrality-ranked s-core+

sequence to pick subsets of innermost (largest n-values) and outermost (smallest n-values)

nodes to compare. For the comparative networks, we use Eqs (2) and (3) to define node impor-

tance in the network comparisons. In Fig 6, this relates to an arrow of increasing node-

importance: going from 0 to A along increasing t(S1, S2)-values, going from C to B along

increasing u(S1, S2)-values, and finally going from B to C, along increasing u(S2, S1)-values (i.e.

decreasing u(S1, S2)-values).

We are also interested in the number of nodes r with the largest ti or ui values. E.g. the top

100 nodes, or genes, that are central in human brain, but peripheral in mouse brain. Conse-

quently, we define the node sets:

Tðr; S1; S2Þ : the r nodes with largest tiðS1; S2Þ� values for all nodes i 2 S1 \ S2; ð4Þ

Uðr; S1; S2Þ : the r nodes with largest uiðS1; S2Þ� values for all nodes i 2 S1 \ S2: ð5Þ

Here, r is as a cutoff defining the size of the node subsets T and U, where r 2 [1, NS1\S2]. We

can visualize Eqs (4) and (5) by use of the dark gray triangles A, B and C shown in Fig 6.

Assuming that a of the nodes are contained in triangle A, b in B and c in C, then, triangle A

envelops the node subset T(a; S1, S2), B envelops U(b; S1, S2) and C envelops U(c; S2, S1). Also

note that U(r; S1, S2) = U(NS1\S2
− r; S2, S1).

The enrichment analysis is done using the TF under-groups [49, 50]: KRAB zinc-finger

genes (KZNFs), homeobox genes (HOMs) and basic helix-loop-helix genes (HLHs), where

enrichment is calculated as: Fraction of under-group in subset divided by fraction of under-

group in full set.

For discovering significantly enriched gene ontology (GO) terms in the central gene sub-

sets, we use the web-based gene ontology analysis tool GOrilla [29–31], which is a tool for

identifying enriched GO terms related to process, function and component, organizing the

results in hierarchies. As we are interested in the big picture, and not only the few innermost

nodes, we use gene-subset target sizes of 10% to 20% in general, with default r-values of

r = 100 for the TF-only comparisons, and r = 1000 for the all-genes comparisons (r from

Eqs (2) and (3)). For a term to be considered significant, the Benjamini-Hochberg [51] multi-

ple testing false discovery rate (FDR) corrected p-values must provide p< 0.05. Unless speci-

fied, all p-values are Benjamini-Hochberg corrected.
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S2 Fig. Scatter plot between s-core+ rank and eigenvector centrality rank for mouse all-tis-

sues network. The rank is sorted so that a rank of 1 is the innermost/centralmost gene.
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S3 Fig. Scatter plot between s-core+ rank and eigenvector centrality rank for human brain

network. The rank is sorted so that a rank of 1 is the innermost/centralmost gene.
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S4 Fig. Scatter plot between s-core+ rank and eigenvector centrality rank for mouse brain

network. The rank is sorted so that a rank of 1 is the innermost/centralmost gene.
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S1 Table. Top 200 innermost genes in (from left to right) human all-tissues, mouse all-tis-

sues, human brain and mouse brain network. The list is ranked so that rank 1 denote the two

innermost genes according to the s-core+ sequences. For some of the sequences the gene with

rank i is contained in the same s-core as the gene with rank i + 1, so that they actually share

rank (2i + 1)/2. This degenerative effect is small since most innermost s-shells consist of single

genes. One exception is the mouse brain network, where there is a cascade between the s-core

containing 317 genes and the next, containing 171 genes.

(PDF)

S2 Table. GO function term enrichment among the 1000 centralmost genes in the human

all-tissues network.
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S3 Table. GO function term enrichment among the 1000 central-most genes in the mouse

all-tissues network.
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S4 Table. GO function term enrichment among the 200 central-most genes in the human

brain network.

(PDF)

S5 Table. GO function term enrichment according to the sum measure T(100; HA, HB) in

the human all-tissues and brain network comparison.

(PDF)

S6 Table. GO function term enrichment according to the sum measure T(1000; HA, MA) in

the human and mouse all-tissues network comparison.
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S7 Table. GO function term enrichment according to the human-centric difference mea-
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