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In this paper, we study the possibility of an inhomogeneous quark condensate in the (1þ 1)-dimensional
Nambu-Jona-Lasinio model in the large-Nc limit at finite temperature T and quark chemical potential μ
using dimensional regularization. The phase diagram in the μ–T plane is mapped out. At zero temperature,
an inhomogeneous phase with a chiral-density wave exists for μ > μc, where μc is a critical chemical
potential. Performing a Ginzburg-Landau analysis, we show that in the chiral limit, the tricritical point and
the Lifschitz point coincide. We also consider the competition between a chiral-density wave and a constant
pion condensate at finite isospin chemical potential μI . The phase diagram in the μI − μ plane is mapped out
and shows a rich phase structure.
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I. INTRODUCTION

Confinement and the spontaneous breaking of chiral
symmetry are two of the most important properties of the
vacuum of quantum chromodynamics (QCD). The chiral
condensate serves as an (approximate) order parameter for
the chiral transition: At sufficiently high temperature or
density, quarks are deconfined and chiral symmetry is at
least partly restored. At asymptotically high temperature,
QCD is a weakly interacting quark-gluon plasma, and at
asymptotically high density, QCD is in the color-flavor
locked phase and forms a color superconductor [1,2]. At
finite baryon chemical potential, lattice simulations are
difficult to perform due to the infamous sign problem so
one must use low-energy models for QCD. At low temper-
ature and high density, model calculations indicate that the
chiral transition is of first order. This picture of a transition
from a phase where chiral symmetry is broken by a
homogeneous chiral condensate to a phase where chiral
symmetry is (approximately) restored is probably too
simplistic. Model calculations also suggest that there is
an inhomogeneous phase in a relatively small region in the
μB − T plane including part of the μB axis. The idea of
inhomogeneous phases at low temperature and high density
dates back to the work by Fulde and Ferrell, and by Larkin
and Ovchinnikov in the context of superconductors [3,4],
density waves in nuclear matter by Overhauser [5], and
pion condensation by Migdal [6]. In recent years, inho-
mogeneous phases have been studied in, for example, cold
atomic gases [7], color superconducting phases [8–10],
quarkyonic phases [11,12], pion condensates [13,14] as

well as chiral condensates [15–26]; see Refs. [27,28] for
recent reviews.
In order to solve the problem of inhomogeneous phases in

its full generality, one must solve an infinite set of coupled
gap equations for the various Fourier modes. This has not
been done in three dimensions, but one hopes that a simple
ansatz for the inhomogeneity will show many of the same
features [28]. Inhomogeneities that have been considered in
(3þ 1) dimensions are, for example, one-dimensional mod-
ulations such as chiral-density waves and soliton lattices.
Field theories in (1þ 1) dimensions have been studied

extensively over the years as toy models for QCD since they
have several important properties in common. For example,
all Nambu-Jona-Lasinio (NJL) type models in (1þ 1)
dimensions are asymptotically free and show spontaneous
breakdown of chiral symmetry in the vacuum with a
dynamically generated mass scale. It should be pointed
out, however, that in theNJL-typemodels in two dimensions
the breakdown of a continuous symmetry only takes place in
the large-Nc limit, since the phase fluctuations that would
otherwise destroy a chiral condensate are of order 1=Nc
[29,30]. Although one is ultimately interested in (3þ 1)
dimensions, the models in (1þ 1) dimensions are ideal
testing grounds for new techniques. Calculations involving
inhomogeneous phases can be found in Refs. [31–40]. One
of the most important results in the past decade is the
construction of the exact phase diagram of the massive
Gross-Neveu model in the large-Nc limit [31,32].
In Ref. [41], we investigated systematically different

regularization schemes in effective models with inhomo-
geneous phases. The vacuum energy of the NJL model in
(1þ 1) dimensions was calculated in the large-Nc limit in
the background of a chiral-density wave. A naive applica-
tion of, for example, momentum cutoff regularization or
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dimensional regularization leads to an incorrect result for
the vacuum energy. The problem is that there is a residual
dependence on the wave vector b in the limit where the
magnitude M goes to zero [37,42]. This unphysical
behavior can be remedied by subtracting the vacuum
energy of a free Fermi gas after having performed a
b-dependent unitary transformation on the Hamiltonian.
We also showed that not all regulators are suited to perform
a Ginzburg-Landau (GL) analysis of the tricritical and
Lifschitz points; the proof of the equality of certain
coefficients of the GL functional sometimes involves
integration by parts and requires that the surface term
vanishes. This is guaranteed if one uses dimensional
regularization, but momentum cutoff regularization fails
in certain cases, typically when the GL coefficients are
divergent.
In this paper, we apply dimensional regularization and

the techniques developed in Ref. [41] to calculate the free
energy to leading order in Nc and map out the phase
diagram in the μ − T plane both in and away from the chiral
limit. We also consider the competition between a constant
pion condensate and a chiral density wave at finite isospin.
Our work is complementary to the study by Ebert et al.
[39], where the competition between a constant quark
condensate and an inhomogeneous pion condensate was
studied at T ¼ 0 as a function of μ and μI .
The paper is organized as follows. In Sec. II, we briefly

discuss the NJL model in (1þ 1) dimensions and we derive
the thermodynamic potential at finite temperature and
chemical potential using dimensional regularization. In
Sec. III, we present the phase diagram and a Landau-
Ginzburg analysis of the tricritical and Lifschitz points. In
Sec. IV, we discuss the competition between the chiral
density wave and a homogeneous pion condensate. Finally,
in Sec. V we summarize our results. In the appendices, we
provide the reader with some calculational details of two
sum-integrals that are needed to locate the tricritical point
and Lifschitz point. We also discuss the vacuum energy in
the special case of a finite pion condensate and a vanishing
chiral condensate.

II. LAGRANGIAN AND THERMODYNAMIC
POTENTIAL

TheLagrangian of theNJLmodel in (1þ 1) dimensions is

L ¼ ψ̄

�
i∂ −m0 þ

�
μþ 1

2
τ3μI

�
γ0
�
ψ

þ G
Nc

½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�; ð1Þ

where Nc is the number of colors, τa are the three Pauli
matrices (a ¼ 1, 2, 3) in isospin space, m0 is the current
quarkmass.Moreoverψ is a colorNc-plet, a two-component
Dirac spinor, and a flavor doublet.

ψ ¼
�
u

d

�
: ð2Þ

The γ-matrices are γ0 ¼ σ2, γ1 ¼ iσ1, and γ5 ¼ γ0γ1 ¼ σ3,
where σi are the three Pauli matrices (i ¼ 1, 2, 3). Here μB ¼
3μ ¼ 3

2
ðμu þ μdÞ is the baryon chemical potential and μI ¼

μu − μd is the isospin chemical potential, where μf (with
f ¼ u, d) are the quark chemical potentials. The Lagrangian
(1) is a generalization of theoriginalGross-Neveumodel [43]
which has a single quark flavor and a single quark chemical
potential. The model (1) has a global SUðNcÞ symmetry and
for m0 ¼ μI ¼ 0, it is also invariant under UBð1Þ ×
SULð2Þ × SURð2Þ transformations. For nonzero m0 and
μI ¼ 0, the latter symmetry is reduced to the group
SUIð2Þ. For m0 ¼ 0 and nonzero μI , it is reduced to
UI3Lð1Þ × UI3Rð1Þ. Finally, for nonzero m0 and μI, the
symmetry is reduced to UI3ð1Þ.
We next introduce the bosonic fields σ and πa via

σ ¼ −2
G
Nc

ψ̄ψ ; ð3Þ

πa ¼ −2
G
Nc

ψ̄iγ5τaψ : ð4Þ

The Lagrangian (1) then becomes

L ¼ ψ̄

�
i∂ −m0 þ

�
μþ 1

2
τ3μI

�
γ0 − σ − iγ5πaτa

�
ψ

−
Ncðσ2 þ π2aÞ

4G
: ð5Þ

The chiral condensate we choose is a chiral-density wave of
the form

hσi ¼ M cosð2bzÞ −m0; ð6Þ

hπ3i ¼ M sinð2bzÞ; ð7Þ

where b is a wave vector. For b ¼ 0, it reduces to the
standard homogeneous condensate. With a nonzero
isospin chemical potential, there is also the possibility of
a pion condensate Δ. For simplicity, we take this to be
homogeneous

hπ1i ¼ Δ: ð8Þ

The last term in Eq. (5) is denoted by −V0, where V0 is the
tree-level potential. Inserting Eqs. (6)–(8) into V0 and
averaging over the spatial extent L of the system, we
obtain for L → ∞

V0 ¼ Nc
M2 þm2

0 − 2Mm0δb;0 þ Δ2

4G
: ð9Þ
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In the homogeneous case, the tree-level potential reduces to

the standard expression V0 ¼ Nc
ðM−m0Þ2þΔ2

4G .
The Dirac operator D can be written as

D ¼ ψ̄

�
i∂ þ

�
μþ 1

2
τ3μI

�
γ0 −Me2iγ

5τ3bz − iγ5τ1Δ
�
ψ :

ð10Þ

We next redefine the quark fields, ψ → e−iγ
5τ3bzψ and

ψ̄ → ψ̄e−iγ
5τ3bz, which corresponds to a unitary transforma-

tion of the Dirac Hamiltonian,H → H0 ¼ eiγ
5τ3bzHe−iγ

5τ3bz.
The Dirac operator then reads

D ¼ ½i∂ þ ðμþ b0τ3Þγ0 −M − iγ5τ1Δ�; ð11Þ

where b0 ¼ ðbþ 1
2
μIÞ. Going to momentum space, Eq. (10)

can be written as

D ¼ ½pþ ðμþ b0τ3Þγ0 −M − iγ5τ1Δ�: ð12Þ

Equation (12) shows that the effective chemical potential for
the u-quarks is μþ b0 ¼ μu þ b, while for the d-quarks, it is
μ − b0 ¼ μd − b. It is now straightforward to derive the
fermionic spectrum in the background (7)–(8). It is given by
the zeros of the Dirac determinant and reads [36,37]

p0u ¼ E−
Δ − μ; p0d ¼ Eþ

Δ − μ; ð13Þ

p0ū ¼ −ðEþ
Δ þ μÞ; p0d̄ ¼ −ðE−

Δ þ μÞ; ð14Þ

where

E�
Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
� þ Δ2

q
; E� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
� b0: ð15Þ

We note that the spectrum depends on the isospin chemical
potential μI via b0.
Going to Euclidean space, the one-loop contribution to

the thermodynamic potential is given by

V1 ¼ −Nc

XZ
fPg

log ½P2
0 þ ðE�

ΔÞ2�; ð16Þ

where the sum-integral is defined in Eq. (A1) and a sum
over � is implied. Summing over the Matsubara frequen-
cies, we can write

V1 ¼ −Nc

Z
p
fE�

Δ þ T log½1þ e−βðE�
Δ−μÞ�

þ T log½1þ e−βðE�
ΔþμÞ�g; ð17Þ

where the integral is defined in Eq. (A2). The first term in
Eq. (17) is ultraviolet divergent and requires regularization.
The two contributions from E�

Δ to this term are denoted by

Vvac
� . The second and third terms which depend on the

temperature and the chemical potential are finite.
After integrating over angles and changing variables,

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
, we can write

Vvac
� ¼ −

NcðeγEΛ2Þϵffiffiffi
π

p
Γð1

2
− ϵÞ

Z
∞

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� b0Þ2 þ Δ2

q

×
udu

ðu2 −M2Þ12þϵ
: ð18Þ

We cannot calculate analytically the vacuum energy for
nonzero Δ. In order to isolate the divergences, we expand
the dispersion relations around u ¼ ∞ and find appropriate
subtraction terms. We can then write

Vvac
� ¼ Vvac

div� þ Vvac
fin�; ð19Þ

where

Vvac
div� ¼ −

NcðeγEΛ2Þϵffiffiffi
π

p
Γð1

2
− ϵÞ

Z
∞

M

�
ju� b0j þ Δ2

2u

�
udu

ðu2 −M2Þ12þϵ
;

ð20Þ

Vvac
fin� ¼ −

NcðeγEΛ2Þϵffiffiffi
π

p
Γð1

2
− ϵÞ

Z
∞

M

�
E�
Δ − ju� b0j − Δ2

2u

�

×
udu

ðu2 −M2Þ12þϵ
: ð21Þ

We denote the sum of the two terms in (21) by Vvac
fin . Note

that Vvac
fin� ¼ 0 for Δ ¼ 0. In the chiral limit, the solutions to

the gap equations ∂V
∂M ¼ ∂V

∂Δ ¼ 0 (with V ¼ V0 þ V1) are
M ≠ 0 and Δ ¼ 0 or M ¼ 0 and Δ ≠ 0. In the latter case,
Eqs. (20) and (21) are infrared divergent. The IR diver-
gences of (20) cancel against those of (21). However, they
must be regulated separately, which is inconvenient. In
Appendix A, we discuss this case.
Vvac
div� can now be calculated using dimensional regu-

larization and the result is

Vvac
divþ ¼ Nc

4π

�
eγEΛ2

M2

�
ϵ

½M2Γð−1þ ϵÞ − Δ2ΓðϵÞ�; ð22Þ

Vvac
div− ¼ Vvac

divþ þ θðb0 −MÞfðM;b0Þ; ð23Þ

where the function fðM; b0Þ is defined by

fðM;b0Þ ¼−
Nc

π

�
b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02−M2

p
−M2 log

b0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02−M2

p

M

�
:

ð24Þ

The contribution Vvac
divþ to the vacuum energy is inde-

pendent of b, while the extra term fðM; b0Þ in Vvac
div− arises
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from the integral
R
∞
M ju − b0j where one must distinguish

between u < b0 and u > b0.
Expanding Vvac

div ¼ Vvac
divþ þ Vvac

div− in powers of ϵ, we find

Vdiv ¼ −
Nc

2π

�
Λ2

M2

�
ϵ
��

1

ϵ
þ 1

�
M2 þ 1

ϵ
Δ2

�

þ θðb0 −MÞfðM; b0Þ: ð25Þ

Equation (25) contains poles in ϵ that are removed by the
renormalization of the fermion mass m0 and the (inverse)
coupling constant G by making the substitutions m0 →
Zm0

m0 and 1
G → ZG−1

1
G, where

Zm0
¼

�
1þ 2G

πϵ

�
−1
; ð26Þ

ZG−1 ¼
�
1þ 2G

πϵ

�
: ð27Þ

Note that ZG−1 ¼ Z−1
G and that the ratio m0

G is the same for
bare and renormalized quantities since Zm0

Z−1
G ¼ 1. After

renormalization, making the substitutions Eqs. (26) and
(27), the vacuum energy V ¼ V0 þ V1 becomes

V ¼Nc
ðM2þm2

0− 2Mm0δb;0ÞþΔ2

4G
−
NcM2

2π

�
log

Λ2

M2
þ 1

�

−
NcΔ2

2π
log

Λ2

M2
þVvac

fin þ θðb0−MÞfðM;b0Þ: ð28Þ

Due to the term b0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02 −M2

p
in the function fðM; b0Þ,

the vacuum energy is unbounded from below. For m0 ¼ 0,
and Δ ¼ M ¼ 0, V ¼ − Nc

π b02 and depends on b0, which is
unphysical (the special case M ¼ 0 and Δ ≠ 0 is discussed
in Appendix B). The same problem occurs if one uses a
momentum cutoff and in [37] it was suggested to subtract
the term Vsub ¼ − Nc

π b02 þ Nc
4π μ

2
I , where the latter is neces-

sary to ensure correcting expression of the vacuum energy
in the limit b → 0.1

As explained in the Introduction, we suggest subtracting
the vacuum energy for the system of a free Fermi gas (after
a unitary transformation) in order to obtain a result that
is independent of b in the limit M → 0. Thus we subtract
the term

Vsub ¼ −
Ncm2

0

2π

�
log

Λ2

m2
0

þ 1

�
þ θðb0 −m0Þfðm0; b0Þ

− θ

�
1

2
μI −m0

�
f

�
m0;

μI
2

�
: ð29Þ

Equation (29) then reduces to Vsub ¼ − Nc
π b02 þ Nc

4π μ
2
I for

m0 ¼ 0. Moreover, the first term in Eq. (29) is independent
of the parameter b and the chemical potential μI and can
therefore be omitted. The final result for the vacuum energy
is therefore

V ¼Nc
ðM2þm2

0− 2Mm0δb;0ÞþΔ2

4G
−
NcM2

2π

�
log

Λ2

M2
þ 1

�

−
NcΔ2

2π
log

Λ2

M2
þVvac

fin þ θðb0−MÞfðM;b0Þ

− θðb0−m0Þfðm0;b0Þþ θ

�
1

2
μI −m0

�
f
�
m0;

1

2
μI

�
:

ð30Þ

The finite-temperature term is the second and third terms
from (17),

VT
1 ¼ −

NcT
π

Z
∞

0

flog½1þ e−βðE�
Δ−μÞ�

þ log½1þ e−βðE�
ΔþμÞ�gdp: ð31Þ

The complete free energy in the large-Nc limit is then given
by the sum of Eq. (30) and Eq. (31). In contrast to (3þ 1)
dimensions, we have no experimental input that allows us
to determine the constituent quark massm0 appearing in the
expression for the free energy. Following Ref. [36], we
demand that the ratio of the dynamical quark mass M and
the pion mass mπ be the same as in three dimensions for
μ ¼ μI ¼ 0. Choosing the values M ¼ 350 MeV and
mπ ¼ 140 MeV, one finds a ratio M

mπ
¼ 5

2
. Numerically,

this corresponds to values m0 ¼ 0.05M0, M ¼ 1.04M0,
and mπ ¼ 0.42M0, where M0 is the dynamical quark mass
for m0 ¼ 0. Introducing the dimensionless α ¼ π m0

M0
, this

corresponds to α ¼ 0.17. In the remainder of the paper. we
use this value for α. Moreover, since all contributions to the
effective potential and gap equations are proportional to
Nc, we omit this factor in all the numerical work.
We close this section by discussing the running param-

eters in the model and the solution in the vacuum. The
coupling constant G and the mass parameter m0 satisfy the
renormalization group equations

Λ
dG
dΛ

¼ −
4G2

π
; ð32Þ

Λ
dm0

dΛ
¼ −

4m0G
π

: ð33Þ

The solutions are

GðΛÞ ¼ GðΛ0Þ
1þ 4

πGðΛ0Þ log Λ
Λ0

; ð34Þ1If one uses an energy cutoff [37], there is no spurious b
dependence, but one still has to subtract a term Vsub ¼ Nc

4π μ
2
I .
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m0ðΛÞ ¼
m0ðΛ0Þ
GðΛ0Þ

GðΛÞ; ð35Þ

where Λ0 is some reference scale. These equations show
that the ratio m0

G is independent ofΛ. We also note thatGðΛÞ
decreases with Λ showing that the model is asymptoti-
cally free.
In the vacuum phase, we have Δ ¼ b ¼ 0, and in the

chiral limit, the solutionsM0 to the gap equation dV
dM ¼ 0 are

either M0 ¼ 0 or

M0 ¼ Λe− π
4G: ð36Þ

Using Eq. (32), it is straightforward to verify that M0 is
independent of the renormalization scale Λ. The nonana-
lytic behavior ofM0 as a function ofG shows that the result
is nonperturbative. Using for example the two-particle
irreducible action formalism, it can be shown that this
result corresponds to the summation of the daisy and
superdaisy graphs from all orders of perturbation theory
[44,45]. Using Eq. (36), we can tradeΛ forM0, which gives

V ¼ −
NcM2

2π

�
log

�
M2

0

M2

�
þ 1

�
; ð37Þ

in agreement with Ebert et al. [37]. It is easy to see that the
global minimum of V is at M ¼ M0. In the remainder of
this paper, we express all dimensionful quantities in
appropriate powers of the dynamically generated massM0.

III. CHIRAL-DENSITY WAVE AND NO PION
CONDENSATE (Δ= 0)

In the absence of a pion condensate, the vacuum energy
(30) reduces to

V ¼ Nc
ðM2 þm2

0 − 2Mm0δb;0Þ
4G

−
NcM2

2π

�
log

Λ2

M2
þ 1

�

þ θðb0 −MÞfðM; b0Þ − θðb0 −m0Þfðm0; b0Þ

þ θ

�
1

2
μI −m0

�
f

�
m0;

1

2
μI

�
; ð38Þ

where we have used that Vvac
fin ¼ 0 for Δ ¼ 0. The finite-

temperature term is given by Eq. (31) evaluated for Δ ¼ 0.

A. Zero temperature

In the limit T → 0 and for vanishing pion condensate,
Δ ¼ 0, one can obtain analytic results for the density-
dependent contributions to the effective potential given by
Eq. (31). The contributions from the first term in Eq. (31)
are denoted by Vmed

� and read

Vmed
� ¼ −

Nc

π

Z
∞

0

ðμ − E�Þθðμ − E�Þdp: ð39Þ

The contributions from the second term in Eq. (31) vanish
for μ > 0 and vice versa for μ < 0. Without loss of
generality we take μ > 0 in the remainder. The contribution
Vmedþ is straightforward to compute. After changing vari-

ables u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
and noting that the upper limit is

uf ¼ μ − b0 due to the step function, we find

Vmedþ ¼ −
Nc

π

Z
∞

0

ðμ−EþÞθðμ−EþÞdp

¼ −
Nc

π

Z
uf

M
ðμ− u− b0Þ uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 −M2
p

¼ −
Nc

2π

�
ðμ− b0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ− b0Þ2 −M2

q

−M2 log
μ− b0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ− b0Þ2 −M2

p
M

�
θðμ− b0 −MÞ:

ð40Þ

We next consider the contribution Vmed
− , which is given by

Vmed
− ¼ −

Nc

π

Z
∞

0

ðμ − E−Þθðμ − E−Þdp: ð41Þ

Here we must distinguish between several cases.
(1) M > b0. The dispersion relation is shown in the left

panel of Fig. 1. In this case, the integration is from
p ¼ 0 to pC ¼ pf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ b0Þ2 −M2

p
or u ¼ M to

u ¼ uf ¼ μþ b0,

Vmed
− ¼ −

Nc

π

Z
uf

M
ðμ − uþ b0Þ uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 −M2
p ; ð42Þ

where μ > M − b0. This yields

Vmed
− ¼ −

Nc

2π

�
ðμþ b0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ b0Þ2 −M2

q

−M2 log
μþ b0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ b0Þ2 −M2

p
M

�

× θðμþ b0 −MÞ: ð43Þ

This contribution is obtained from (40) by the
substitution b0 → −b0.

(2) b0 > M. The dispersion relation is shown in the right
panel of Fig. 1 (blue curve). In this case E− ¼
b0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
for u < b0 and E− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
−

b0 for u > b0.
(a) If μ > b0 −M, the integration is from p ¼ 0 to

pC ¼ pf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb0 þ μÞ2 −M2

p
or u ¼ M to

u ¼ uf ¼ μþ b0. The green horizontal line
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indicates the value of the chemical potential and
the intersection with the dispersion relation gives
the upper limit of integration. This yields

Vmed
− ¼ −

Nc

π

�
1

2
ðμþ b0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ b0Þ2 −M2

q

− b0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02 −M2

p
þM2 log

b0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02 −M2

p

M

−
1

2
M2 log

μþ b0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ b0Þ2 −M2

p
M

�

× θðμ− b0 þMÞ: ð44Þ

(b) If μ < b0 −M, the integration is from pA¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb0−μÞ2−M2

p
to pB¼pf¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb0þμÞ2−M2

p
or u ¼ b0 − μ to u ¼ b0 þ μ. The value of the
chemical potential is indicated by the orange line
and the intersection with the dispersion relation
gives the upper and lower limits of integration.
This gives

Vmed
− ¼−

Nc

π

�
1

2
ðb0þμÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb0þμÞ2−M2

q

þ1

2
ðb0−μÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb0−μÞ2−M2

q
−b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02−M2

p

−
1

2
M2 log

b0þμþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb0þμÞ2−M2

p
b0þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02−M2

p

−
1

2
M2 log

b0−μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb0−μÞ2−M2

p
b0þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02−M2

p
�

×θðb0−μ−MÞ: ð45Þ

Combining the different cases discussed above, the result
for the full effective potential in the large-Nc limit can be
written as

V ¼ Nc
ðM2 þm2

0 − 2Mm0δb;0Þ
4G

−
NcM2

2π

�
log

Λ2

M2
þ 1

�

− θðb0 −m0Þfðm0; b0Þ þ θ

�
1

2
μI −m0

�
f

�
m0;

1

2
μI

�

−
Nc

2π

�
ðμþ b0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ b0Þ2 −M2

q

−M2 log
μþ b0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ b0Þ2 −M2

p
M

�
θðμþ b0 −MÞ

−
Nc

2π

�
jμ− b0j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ− b0Þ2 −M2

q

−M2 log
jμ− b0j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ− b0Þ2 −M2

p
M

�
θðjμ− b0j−MÞ:

ð46Þ

In Fig. 2, we show the magnitudeM (blue solid line) and
the wave vector b (red dashed line) both normalized to M0

as functions of μ=M0 at μI ¼ T ¼ 0 for nonzero m0. The
transition from a constant chiral condensate to a condensate
with a nonzero wave vector b is first order.

–pC pC

M–b'

p

E– when b'<M

b' M

pA pB pC

b'–M

–pA–pB–pC

p

E– when b'>M

FIG. 1. Dispersion relation E− for Δ ¼ 0 (blue curve) for b0 < M (left panel) and for b0 > M (right panel). The horizontal green line is
for the case μ > b0 −M and the horizontal orange line is for the case μ < b0 −M. See main text for discussion of the regions of
integration in the different cases.
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,b
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FIG. 2. Normalized magnitude of the quark condensate M=M0

(blue solid line) and wave vector b=M0 (red dashed line) as
functions of μ=M0 at μI ¼ T ¼ 0 away from the chiral limit.
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Since b ¼ bðμÞ is larger than M ¼ MðμÞ in the inho-
mogeneous phase, it is clear that the dispersion relation for
the u-quarks is that shown in the right panel of Fig. 1. This
implies that the energy of a u-quark is zero for the finite
momentum pmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 −M2

p
. This is in contrast to the

d-quarks, which are always gapped with a gap M þ b.

B. Finite temperature

The complete finite-temperature effective potential is
given by the sum of the vacuum term (30) and Eq. (31). In
Fig. 3, we show the phase diagram in the chiral limit. This
phase diagram was first obtained by Ebert et al. [37]. The
dashed black and red lines indicate second-order transi-
tions, while the solid red line indicates a first-order
transition. Note that the phase with nonzero M and b
extends to infinity for T ¼ 0. The red circular dot shows the
position of the Lifschitz point whose coordinates in the
chiral limit will be given below. The black solid line
indicates the first-order transition in the homogeneous
case. In the chiral limit, the tricritical point coincides with
the Lifschitz point as will be shown below.
In Fig. 4, we show the phase diagram away from the chiral

limit. Note that the position of the critical point (black) and
the Lifschitz point (red) do not coincide, in contrast to the
result in the chiral limit. In the chiral limit, the position of the
critical end point and the tricritical point can also be found
from a Ginzburg-Landau analysis. We then expand the
effective potential in powers of M and derivatives. In the
chiral limit, the first few terms of this expansion are

V ¼ NcM2

4G
− 2NcM2

XZ
fPg

1

P2
þ NcM4

XZ
fPg

1

P4

−
1

2
Ncð∇MÞ2

XZ
fPg

p2 − 3P2
0

P6
: ð47Þ

We denote by β1, β2, and β3 the coefficients ofM2,M4, and
ð∇MÞ2, respectively. It is easy to show by direct integration
over p or by partial integration, that the coefficients β2 and
β3 are equal. The coefficients are equal also if one uses
momentum cutoff regularization. This is in contrast to three
dimensions where only dimensional regularization [41] or
Pauli-Villars regularization [17] yield β2 ¼ β3 due to the
absence of surface terms. The tricritical point is given by
the condition that the quadratic and quartic terms vanish,
and the Lifschitz point is given by the condition that the
quadratic and gradient terms vanish. The equality of β2 and
β3 implies that the critical point and the Lifschitz point
coincide. The condition that these coefficients vanish
implies the coupled equations

1

8G
−
XZ

fPg

1

P2
¼ 0; ð48Þ

XZ
fPg

1

P4
¼ 0: ð49Þ

The coefficients βi (i ¼ 1, 2, 3) are all infrared safe since
the fermionic Matsubara frequencies are nonzero. If one
separates the sum-integrals in a vacuum term and a term
that depends on T and μ, they are both divergent in the
infrared, but the divergences cancel in the sum. The sum-
integral

PR
fPg

1
P2 is also UV divergent and Eq. (48) needs to

be renormalized. The sum-integrals appearing in Eqs. (48)–
(49) are calculated in Appendix A. Using the expression
(A8) and making the substitution 1

G → ZG−1
1
G, the renor-

malized version of Eq. (48) reads

1

8G
−

1

2π

�
log

Λ
2T

þγEþLi0−2ϵIRð−e−βμÞþLi0−2ϵIRð−eβμÞ
�
¼0;

ð50Þ
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μ /M0

T
/M

0

FIG. 3. Phase diagram in the chiral limit. The dashed black and
red lines indicate a second-order transition, while the solid red line
indicates a first-order transition. The red circular dot indicates the
tricritical point which coincides with the Lifschitz point. The solid
black line is the first-order transition in the homogeneous case.
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FIG. 4. Phase diagram away from the chiral limit. The dashed-
dotted line is a crossover and the solid red line is a first-order
transition. The black dot indicates the critical end point and the
red dot indicates the Lifshitz point, and the solid black line is the
first order transition in the homogeneous case.
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where Λ ¼ ΛUV and ϵ ¼ ϵUV. Using Eq. (36), we can trade
G for M0 and Eq. (50) can be written as

1

2π

�
log

M0

2T
þ γE þ Li0−2ϵIRð−e−βμÞþLi0−2ϵIRð−eβμÞ

�
¼ 0:

ð51Þ
Using Eq. (A11), Eq. (49) can be conveniently written as

1

32π2T3

�
ψ

�
1

2
þ iμ
2πT

�
þ ψ

�
1

2
−

iμ
2πT

��
¼ 0: ð52Þ

The solution to Eqs. (51) and (52) gives the position of
the Lifschitz point in the μ − T plane. The solution is
ðμ=M0; T=M0Þ ¼ ð0.6082; 0.3183Þ and equals the tricrit-
ical point in the chiral limit. The position agrees with the
numerical result from the phase diagram shown in Fig. 3. In
the same manner we can find the critical temperature for the
transition at μ ¼ 0. Equation (51) reduces to

1

2π

�
log

M0

πT
þ γE

�
¼ 0; ð53Þ

whose solution is T
M0

¼ eγE
π ≈ 0.567. The point (0.567,0) is

marked with a black square in Fig. 3.

IV. CHIRAL-DENSITY WAVE VERSUS
HOMOGENEOUS PION CONDENSATE

In this section, we include the possibility of a constant
pion condensate.

A. Zero temperature

In Fig. 5, we show the normalized quark and pion
condensates as functions of the isospin chemical potential
divided byM0 at zero baryon chemical potential and at zero
temperature. For μ ¼ 0, the wave vector b vanishes. The
pions condense for μI ≥ μcI , where μcI ¼ mπ is the pion
mass in the vacuum phase. In units of M0, this is

approximately 0.42. In this phase, the charged pion is a
massless Goldstone boson associated with the breaking of
the UI3ð1Þ symmetry. Once the pion condensate starts
increasing, the quark condensate drops, which can be
thought of as a rotation of the quark condensate into a
pion condensate as μI increases. In the chiral limit, the pion
condensate forms for μI infinitesimally larger than zero and
the quark condensate vanishes identically [39]. More
generally, in the chiral limit, there is no solution to the
gap equations with M ≠ 0 and Δ ≠ 0 simultaneously [39].
In Fig. 6, we show the phase diagram for nonzero quark

masses in the μI − μB plane at T ¼ 0. The values of M, b,
and Δ are shown for the different regions. The transition
from the vacuum phase to the phase with a homogeneous
pion condensate is second order. The other transitions are
all first order with a jump in the value of M and possibly a
jump in the value of b. This phase diagram generalizes
Fig. 5 of Ref. [36] in which only constant condensates were
considered. The phase with M ≠ 0 and b ≠ 0 for large
values of μ and small values of μI replaces the phase with a
constant chiral condensate. The region in the lower left
corner of the μ − μI plane where M ¼ M0 and Δ ¼ b ¼ 0
is the vacuum. In this region it can be shown by taking
appropriate derivatives of the partition function, physical
quantities are independent of the chemical potentials μ and
μI . This is an example of the silver blaze property [46]. As
mentioned above, in the chiral limit, the pion condensate
forms for μI infinitesimally small. Thus the vacuum phase
reduces to a line along the μ axis.
In the left panel of Fig. 7, we show the condensate

M=M0 as a function of μI=M0 for μ=M0 ¼ 0.9 in the
homogeneous case, i.e. we do not allow for a nonzero wave
vector b. The two transitions are of first order. In the right
panel of Fig. 7, we show the condensate M=M0 and b=M0

as functions of μI=M0 for μ=M0 ¼ 0.9 in the inhomoge-
neouos case, i.e. we allow for a nonzero wave vector b. The
two transitions are of first order. This plot corresponds to a
horizontal line in Fig. 6 with μ=M0 ¼ 0.9.
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FIG. 5. Normalized quark M=M0 (blue solid line) and pion
condensates Δ=M0 (red dashed line) as functions of μI=M0 at
μ¼T¼0.
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FIG. 6. Phase diagram away from the chiral limit. See main text
for details.
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Let us finally discuss the quark and isospin densities in the different phases. These are given by

nq ¼ −
∂V
∂μ ; nI ¼ −

∂V
∂μI ; ð54Þ

where V ¼ V0 þ V1 is the full zero-temperature effective potential. In the phases, where Δ ¼ 0, these expressions can be
obtained by differentiation of Eq. (46). This yields

nq ¼
Nc

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ b0Þ2 −M2

q
θðμþ b0 −MÞ þ Nc

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ − b0Þ2 −M2

q
θðjμ − b0j −MÞsignðμ − b0Þ; ð55Þ

nI ¼
Nc

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ b0Þ2 −M2

q
θðμþ b0 −MÞ − Nc

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ − b0Þ2 −M2

q
θðjμ − b0j −MÞsignðμ − b0Þ

−
Nc

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02 −m2

0

q
θðb0 −m0Þ þ

Nc

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
μ2I −m2

0

r
θ

�
1

2
μI −m0

�
: ð56Þ

In the vacuum phase, b ¼ 0 and so b0 ¼ 1
2
μI . More-

over, M > jμ� 1
2
μIj which implies that nq ¼ nI ¼ 0.

This reflects the silver blaze property of the vacuum,
namely that its properties are independent of the chemical
potential(s) up to some critical value(s) abovewhich there is a
phase transition. In the pion-condensed phase, the expres-
sions for nq and nI follow from (54) and the zero-temperature
limit of Eq. (17) [since b ¼ 0, the subtraction term (29)
vanishes] [36]

nq ¼
Nc

π

Z
∞

0

½θðμ − Eþ
ΔÞ þ θðμ − E−

ΔÞ�dp; ð57Þ

nI ¼
Nc

2π

Z
∞

0

�
Eþ

Eþ
Δ
θðEþ

Δ − μÞ − E−

E−
Δ
θðE−

Δ − μÞ
�
dp: ð58Þ
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FIG. 7. Left: Normalized quark condensate M=M0 at T ¼ 0 as function of μI=M0 for μ=M0 ¼ 0.9 for b ¼ 0. Right:
Normalized magnitude of the quark condensate M=M0 (blue line) and wave vector b=M0 (green line) at T ¼ 0 as functions of μI=M0

for μ=M0 ¼ 0.9.
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FIG. 8. Phase diagram away from the chiral limit for
T=M0 ¼ 0.1. See main text for details.
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Since E�
Δ > μ in this phase, we immediately obtain nq ¼ 0.

The expression for nI can be found analytically only in the
chiral limit. From Eq. (B5), we find

nI ¼
Nc

2π
μI: ð59Þ

B. Finite temperature

In Fig. 8, we show the phase diagram for finite quark
masses for T=M0 ¼ 0.1. The inhomogeneous phase now
has become an island which shrinks as the temperature
increases further and eventually it disappears. The chiral
condensate M is continuous through the corridor. The two
phases withM ≠ 0 and b ¼ Δ ¼ 0 in the upper right part of
Fig. 6 have now merged into a single phase. The transitions
are all first order.
In Fig. 9, we show the normalized quark condensate

M=M0 and wave vector b=M0 as functions of μ=M0 for
μI ¼ 0 and T=M0 ¼ 0.1. The two transitions are first order.
In Fig. 10, we show the normalized quark condensate

M=M0 as a function of μI=M0 for μ=M0 ¼ 0.9 and

T=M0 ¼ 0.1 with the restriction of a constant condensate
i.e. for b ¼ 0. In contrast to the case at T ¼ 0, cf. Fig. 7,
M=M0 is continuous.
In Fig. 11, we show the normalized quark condensate

M=M0 (blue line) and b=M0 (green line) as functions of
μI=M0 for μ=M0 ¼ 0.9 and T=M0 ¼ 0.1. M=M0 is dis-
continuous only for one value of μI showing that the phases
with M=M0 ≠ 0 and b ¼ Δ ¼ 0 have merged into a single
phase; cf. the upper right part of Fig. 8.

V. SUMMARY

In this paper, we have studied various aspects of the
phase diagram of the NJL model in (1þ 1) dimensions in
the large-Nc limit as a function of T, μ, and μI using
dimensional regularization. The calculations are done with
finite quark masses and generalize the results of [36] in
which only homogeneous condensates were considered.
We have also carried out a GL analysis of the tricritical

and Lifschitz points and derived a set of equations that
determine their position in the μ − T plane. In the chiral
limit they coincide, while they are separated away from it;
cf. Figs. 3 and 4. Dimensional regularization proved to be
very useful in their calculation since it can be conveniently
used to regulate infrared divergences, which cancel in the
final result.
In this paper, we restricted ourselves to a constant pion

condensate. The related problem of a constant chiral
condensate and an inhomogeneous pion condensate was
considered in Ref. [39]. It would be of interest to extend our
calculations to allow for spatially modulated chiral and
pion condensates at the same time. Equation (8) would then
be replaced by

hπ1i ¼ Δ cosð2kzÞ; hπ2i ¼ Δ sinð2kzÞ; ð60Þ

where k is another wave vector. One complication that
arises in the case of an inhomogeneous pion condensate is
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FIG. 9. Normalized quark condensate M=M0 and wave vector
b=M0 as functions of μ=M0 for μI ¼ 0 and T=M0 ¼ 0.1.
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FIG. 10. Normalized chiral condensate M=M0 as a function of
μI=M0 for μ=M0 ¼ 0.9 and T=M0 ¼ 0.1 in the homogeneous
case, i.e. we do not allow for nonzero b.
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FIG. 11. Normalized chiral condensate M=M0 (blue line) and
wave vector b=M0 (green line) as functions of μI=M0 for μ=M0 ¼
0.9 and T=M0 ¼ 0.1.
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that one can no longer find simple analytic expressions for
the dispersion relations, which means that the problem
must be solved numerically in its entirety. Somework along
these lines has been done in the chiral limit by Ebert et al.
[39], but a complete mapping of the phase diagram with
nonzero quark masses is still missing.
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APPENDIX A: SUM-INTEGRALS

In this appendix, we evaluate the relevant one-loop sum-
integrals that we need. The sum-integral is defined by

XZ
fPg

¼ T
X
fP0g

Z
p

ðA1Þ

where the integral is defined by
Z
p
¼

�
eγEΛ2

4π

�
ϵ Z ddp

ð2πÞd ; ðA2Þ

and d ¼ 1�2ϵ, P0 ¼ ð2nþ 1ÞπT þ iμ are the fermionic
Matsubara frequencies, and Λ is the renormalization scale
associated with the MS scheme.
We first consider the sum-integral

I1 ¼
XZ

fPg

1

P2
: ðA3Þ

After summing over Matsubara frequencies, we can write

I1 ¼
1

2

Z
p

1

p

�
1 −

1

eβðp−μÞ þ 1
−

1

eβðpþμÞ þ 1

�
: ðA4Þ

The first integral in Eq. (A4) which is independent of μ andT
has logarithmic divergences in the infrared and in the
ultraviolet. The integral vanishes if the same scale is used
in the regularization of the ultraviolet and infrared divergen-
ces [47]. If different scales are used, thevalue of the integral is

Z
p

1

p
¼ 1

4π

�
1

ϵUV
−

1

ϵIR
þ log

Λ2
UV

Λ2
IR

�
; ðA5Þ

where the subscripts UV and IR indicate the different
scales. The second and third integrals in Eq. (A4) which
depend on μ and T have logarithmic infrared divergences.
The integrals can also be calculated in dimensional regu-
larization and read

1

2

Z
p

1

p

�
1

eβðp−μÞ þ 1
þ 1

eβðpþμÞ þ 1

�

¼ −
�
eγEΛ2

IR

T2

�
ϵIR Γð−2ϵIRÞ

2
ffiffiffi
π

p
Γð1

2
− ϵIRÞ

×

�
Li−2ϵIRð−e−βμÞ þ Li−2ϵIRð−eβμÞ

�
; ðA6Þ

whereLisðzÞ is the polylogarithmic functionwith argument z
and the subscript IR indicates the dimensional regularization
is used to regulate the infrared divergences. Expanding in
powers of ϵIR to order ϵ0IR yields

1

2

Z
p

1

p

�
1

eβðp−μÞ þ 1
þ 1

eβðpþμÞ þ 1

�

¼ −
1

4π

�
1

ϵIR
þ log

Λ2
IR

T2
þ 2γE − 2 log 2

þ 2Li0−2ϵIRð−e−βμÞ þ 2Li0−2ϵIRð−eβμÞ
�
; ðA7Þ

where Li0−2ϵIRð−e�βμÞ ¼ ∂Li−2ϵIR ð−e�βμÞ
∂ϵIR jϵIR¼0. Subtracting

Eq. (A7) from Eq. (A5), we find

I1 ¼
1

4π

�
1

ϵUV
þ log

Λ2
UV

T2
þ 2γE − 2 log 2

þ 2Li0−2ϵIRð−e−βμÞ þ 2Li0−2ϵIRð−eβμÞ
�
: ðA8Þ

We note that the poles in ϵIR cancel. Equation (A8)

simplifies in the case μ ¼ 0. Using
∂Li−2ϵIR ð−1Þ∂ϵIR jϵIR¼0¼1

2
log2

π,
we find

I1 ¼
1

4π

�
1

ϵUV
þ log

Λ2
UV

π2T2
þ 2γE

�
: ðA9Þ

The second sum-integral we need is

I2 ¼
XZ

fPg

1

P4
: ðA10Þ

I2 is finite in the infrared as well as in the ultraviolet.
Integration in d ¼ 1 dimension then yields

I2¼
T
4

Xn¼∞

n¼−∞

1

jP0j3

¼ 1

32π3T2

Xn¼∞

n¼−∞

1

jnþ 1
2
þ iμ

2πT j3

¼ 1

32π3T2

�
ζ

�
3;
1

2
þ iμ
2πT

�
þζ

�
3;
1

2
−

iμ
2πT

��
; ðA11Þ

where ζðn; zÞ is the Hurwitz zeta function.
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APPENDIX B: VACUUM ENERGY
FOR M = 0, Δ ≠ 0

We next show that the vacuum energy is independent of
b in the limit M → 0. We therefore set m0 ¼ M ¼ 0 (if m0

is nonzero, so is M). The dispersion relation reduces
to E�

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� b0Þ2 þ Δ2

p
.

After integrating over angles, we write the one-loop
contributions to the effective potential as Vvac¼Vvac

divþVvac
fin ,

where

Vvac
div ¼ −

2NcðeγEΛ2Þϵffiffiffi
π

p
Γð1

2
− ϵÞ

Z
∞

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ Δ2

q
p−2ϵdp; ðB1Þ

Vvac
fin ¼ −

NcðeγEΛ2Þϵffiffiffi
π

p
Γð1

2
− ϵÞ

Z
∞

0

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ b0Þ2 þ Δ2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − b0Þ2 þ Δ2

q
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ Δ2

q i
p−2ϵdp:

ðB2Þ

Integration gives

Vvac
div ¼ Nc

2π

�
eγEΛ2

Δ2

�
ϵ

Δ2Γð−1þ ϵÞ; ðB3Þ

Vvac
fin ¼ −

Nc

π
b02; ðB4Þ

where we have evaluated Vvac
fin in d ¼ 1 dimensions. The

term Vvac
fin is exactly equal to the subtraction term fð0; b0Þ

and so V is independent of b0. After renormalization and
adding the term fð0; 1

2
μIÞ, we find

V ¼ NcΔ2

4G
−
NcΔ2

2π

�
log

Λ2

Δ2
þ 1

�
−
Nc

4π
μ2I : ðB5Þ

For μI ¼ 0, this result is identical to the vacuum energy
(37), which is a consequence of the fact that the vacuum
energy depends on the quantity M2 þ Δ2.
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