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Abstract

This paper examines the time-varying dependence structure of commodity futures
portfolios based on multivariate dynamic copula models. The importance of ac-
counting for time-variation is emphasized in the context of the Basel traffic light
system. We enhance the flexibility of this structure by modeling regimes with multi-
variate mixture copulas and by applying the dynamic conditional correlation model
(DCC) to multivariate elliptical copulas. The most suitable dynamic dependence
model in terms of in-sample and out-of sample valuation is the dynamic Student-t-
Clayton mixture copula, followed by the dynamic Student-t copula, and the dynamic
Gaussian-Clayton mixture. In comparison to the multivariate normal model, the
dynamic Clayton copula also scales down significantly the number of VaR(99%)
violations during the 2007/08 financial crisis period. The predictive performance
of our multivariate dynamic copula models confirms its superiority over bivariate
regime-switching copula models for various states of the economy.
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1 Introduction

Commodities have become an important asset class in the portfolios of institutional in-

vestors such as pension funds, insurance companies, and hedge funds over the last decade.

In particular, since the beginning of the millennium investments into commodities began

to increase substantially. The number of open contracts in commodity exchanges almost

doubled with volumes of exchange-traded derivatives being 20 to 30 times higher than the

physical production of many commodities (Silvennoninen and Thorp (2012); Paraschiv,

Mudry, and Andries (2015)). The growing interest in this asset class might be attributed

to the perceived opinion that commodities show low correlation with traditional assets,

and thus, provide diversification benefits in a mixed-asset portfolio (Paraschiv, Mudry,

and Andries (2015)).

There are several reasons why commodity prices behave differently from stock and

bond prices: On the one hand, commodities are not only driven by demand and supply

originating from the business cycle, but also by event risk like weather, geopolitical in-

fluences or macroeconomic factors. For example, the political instability of oil-exporting

countries and the lack of governmental control account for further variation in commodity

prices, besides the variation coming from demand/supply shocks (see, e.g., Driesprong,

Jacobsen, and Maat (2008); Füss, Adams, and Kaiser (2010); Delatte and Lopez (2013)).

With respect to the reaction to macroeconomic factors, in contrast to stocks and bonds

commodity prices tend to rise when inflation is accelerating, so that they offer a nat-

ural hedge against inflation (see, e.g., Geman (2005); Gorton and Rouwenhorst (2006);

Fabozzi, Füss, and Kaiser (2008)).

On the other hand, commodities are far from being a homogenous asset class, but

differ significantly in their properties. While some commodities like precious and industrial

metals are storable, others such as energy and livestock commodities may only be stored

at very high costs. As a consequence, several studies confirm that commodities differ in

1



their return distributions from traditional assets. Commodity returns tend to be positively

skewed, and thus, exhibit less downside risk, however, they also show fat tails. In addition,

the correlation among futures excess returns of commodities is positive, but on average

low (see, e.g., Bodie and Rosansky (1980); Kaplan and Lummer (1998); Greer (2000); Kat

and Oomen (2007a); Gorton and Rouwenhorst (2006); Kat and Oomen (2007b)).

The introduction of commodity indices along with the increasing number of long-only

commodity index traders, who aim at exploiting diversification potentials, had important

consequences on the price behavior of commodities. Tang and Xiong (2012) as well

as Silvennoninen and Thorp (2012) argue that the growing presence of index funds in

commodity markets led to an increasing integration of commodity futures markets with

stock and bond markets over the last years. Adams and Glück (2015) show empirically

that risk spillovers from stocks to commodities increased significantly since the 2007/08

financial crisis and that financialization has affected the traditional correlation structure

among commodities. Furthermore, Henderson, Pearson, and Wang (2014) argue that

institutional trades and holdings have influenced commodity prices and return dynamics.

They provide empirical evidence for the impact of hedging trades on commodity futures

prices. The significant shift in the dynamics of commodity risk and returns highlights the

need for the assessment of the joint dynamics of commodity futures prices (Ohashi and

Okimoto (2016)), which can serve as a basis for volatility forecasts of commodity prices,

and thus, for the risk management of commodity-based portfolios.

Our study aims at contributing to the literature on the pricing (see, e.g., Brooks,

Prokopczuk, and Wu (2013)) and volatility forecasting of commodity futures (see, e.g.,

Sadorsky (2006); Kang and Yoon (2013)), as well as the risk management of commod-

ity portfolios (see, e.g., Chkili, Hammoudeh, and Nguyen (2014); Ghorbel and Trabelsi

(2014)). Accordingly, we evaluate the in-sample estimation and forecasting performance

of time-varying copula models for portfolios of commodity futures. We test and compare

the performance of different multivariate dynamic copula models to capture the joint dy-

2



namics of the portfolio components and to forecast commodity futures prices by taking

into account asymmetries in the dependence structure between individual commodity re-

turns (see, e.g., Erb, Harvey, and Viskanta (1994), Longin and Solnik (2001); Ang and

Bekaert (2002); Ang and Chen (2002)). For instance, we use several mixture copulas to

control for the asymmetry in the dependence structure and employ dynamic and regime-

switching copulas to account for the fact that the dependence structure of commodity

markets is not constant over time, but changes in shape and intensity (see, e.g., Patton

(2006b); Longin and Solnik (2001); Ang and Bekaert (2002); Christoffersen (2009)).

To control for the above-mentioned changes in the behavior of commodities, an ex-

tensive evaluation of copula models sheds light on the joint dynamics between commodity

futures prices and is of great importance for the risk management of commodity-based

portfolios. In particular, financial regulators emphasize that the time-varying correlations

among portfolio assets are highly relevant for the derivation of consistent risk measures

(Basel Committee on Banking Supervision (2011), pp. 10). Some of the recent contribu-

tions which employ copulas to capture time-varying dependencies are Okimoto (2008), Ng

(2008), Guégan and Zhang (2010), Dias and Embrechts (2010), Silva Filho, Ziegelmann,

and Dueker (2012), and De Lira Salvatierra and Patton (2015). However, these stud-

ies and the majority of research on copulas are conducted on the bivariate level. In this

study, we extend the copula framework to higher dimensions. To model the time-variation

in the multivariate dependence structure we propose two approaches: regime-switching

technique where the states are modelled by multivariate mixture copulas and dynamic

elliptical copulas based on Engle’s (2002) dynamic conditional correlation (DCC) model.

The performance of the various models is ranked and discussed in the context of

the Basel traffic light system classification. According to the information criteria, the

most suitable dynamic in-sample dependence model is the dynamic Student-t followed by

the dynamic Student-t-Clayton mixture copula. The best-ranked copulas according to

the out-of-sample forecast performance confirm that dynamic copulas generally produce
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superior forecast accuracy compared to both static and regime-switching copula models.

These findings are confirmed when the performance accuracy is evaluated for the 2007/08

financial crisis and the European sovereign debt crisis period. In summary, the empir-

ical results derived from an extensive model comparison support the superiority of our

proposed dynamic copula models for commodity futures portfolios.

The remainder of the paper is organized as follows: In Section 2, we discuss the

multivariate dynamic copula methodologies. Section 3 introduces the data and presents

descriptive statistics. Section 4 shows the in-sample analysis by ranking the fits of dif-

ferent copula model specifications. Section 5 investigates the forecast accuracy for the

commodity portfolio’s risk by providing out-of-sample backtests. In addition, it evaluates

the models’ predictive power during the 2007/08 financial crisis as well as the European

sovereign debt crisis. Section 6 concludes.

2 Multivariate Dynamic Copula Models

Copula theory is based on the contribution of Sklar (1959), who showed that a multivariate

distribution can be divided into its d marginal distributions and a d-dimensional copula,

which completely characterizes the dependence structure between the variables. The

theorem provides an accessible way to build valid multivariate distributions from known

marginals.

Consider F (y1, . . . , yd) to be a continuous d-variate cumulative distribution function

with univariate margins Fi (yi). Sklar’s theorem states that there exists a function C

named a copula, which maps [0, 1]d into [0, 1] such that

F (y1, . . . , yd) = C(F1 (y1) , . . . , Fd (yd)). (1)

Forecasting in a multivariate setting is based on an extension of Sklar’s theorem (1) for
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conditional joint distributions presented in Patton (2006b). Considering some informa-

tion set Ft−1, Patton shows that the conditional distribution F (y1, . . . , yd|Ft−1) can be

decomposed into its conditional marginal distributions and the conditional copula such

that

F (y1, . . . , yd|Ft−1) = C(F1 (y1|Ft−1) , . . . , Fd (yd|Ft−1) |Ft−1). (2)

The d-dimensional conditional copula is:

C (u1,t, ...ud,t|Ft−1) = F (F−1
1 (u1,t|Ft−1) , . . . , F−1

d (ud,t|Ft−1)). (3)

A valid conditional multivariate distribution based on Sklar’s theorem and Patton’s ex-

tension can thus be created by first estimating the models for each of the conditional

marginal distributions, Fi(yi|Ft−1), i = 1, .., d, construct the probability integral trans-

formed variables ui,t = Fi(yi,t|Ft−1), i = 1, .., d, and then consider copula models for

the joint distribution of these variables. In analogy to the construction of unconditional

copulas, this procedure yields a valid d-dimensional model without the intricacy of a

simultaneous specification and estimation.1

2.1 Regime-Switching Copulas

There is a broad consensus in the literature regarding the increased dependence struc-

ture between assets in times of crises, compared to ”normal” markets (see, e.g., Garcia

and Tsafack (2011); Baur (2013); Delatte and Lopez (2013); Lombardi and Ravazzolo

(2016)). One approach to account for the different levels of dependence is to switch be-

tween different copula models. For instance, Stöber and Czado (2012) show that there are

structural breaks in the dependence structure of financial variables similar to the clusters

in univariate volatilities. Combinations of regime-switching models with bivariate copu-

1We do not discuss the main copula models such as the elliptical copulas (Gaussian and Student-t copulas),
the Archimedean copulas (Clayton and Frank copulas), and mixture copulas. For an overview of these
static copula models we refer the reader to the Internet Appendix A.
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las were proposed, for example, by Okimoto (2008), Rodriguez (2007), and Silva Filho,

Ziegelmann, and Dueker (2012), who estimate regime-switching copulas for bivariate in-

ternational stock market data.

However, in our approach we extend the dependence structure beyond the bivariate

level. We choose the methodology of Chollete, Heinen, and Valdesogo (2009), Garcia and

Tsafack (2011) and Braun (2011) which employ two dependence regimes that are different

in intensity and/or shape. The marginal distributions are modeled separately from the

dependence structure and are thus not dependent on the regime. This approach allows

applying separate copulas for different dependence regimes. Accordingly, the parameters

and the families of the copulas remain constant within a regime but differ across the

regimes. Switching between the regimes is governed by a latent Markov process which

determines the regime probabilities.

To model the dynamics of the data, we follow Hamilton (1989), who proposes a

method which allows switching between different density functions. While Hamilton con-

sidered univariate time series, our approach focuses on the joint density of multiple time

series as described by the copula functions. Since the modeled copulas only diverge with

regards to their dependence characteristics, the impact of the different regimes is concen-

trated on the dependence structure. The model thus expresses different fractions of the

joint density of the data by separate copula functions.

Conditional on being in regime j, the joint probability density is

f (Yt|Yt−1, st = j) = c(j)
(
F1(y1,t), . . . , Fd(yd,t); θ

(j)
c

) d∏
i=1

fi (yi,t; θm,i) , (4)

where Yt = (y1,t, ..., yd,t) with state variable st for the regime. The copula density function

c(j)(.) in regime j have the corresponding parameter set θ
(j)
c , where θc denotes the vector

of all parameters that describe dependence through the copula (c). Fi is the distribution

and fi the corresponding density function of the marginal yt with the parameters of the
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margins θm,i = (θm,1, . . . , θm,n). The model assumes the unobserved state variable to be

governed by the transition probability matrix

P = Pr(st = i|st−1 = j) = pi|j, (5)

where pi|j represent the probability that state j will be followed by state i. As the Markov

chain is latent and thus not observable, we apply Hamilton’s (1989) filter. Accordingly,

the transition probability matrix drives the regime probabilities which in turn define the

density function of the complete dataset. Explicitly, the filtered process for k regimes

obeys

ξt|t =
ξt|t−1

⊙
δt

1′(ξt|t−1

⊙
δt)′

, (6)

ξt+1|t = P ′ξt|t, (7)

δt =


c(1)(F1

(
y1,t|yt−1

1

)
, . . . , Fd

(
yd,t|yt−1

d

)
; θ

(1)
c

...

c(k)(F1

(
y1,t|yt−1

1

)
, . . . , Fd

(
yd,t|yt−1

d

)
; θ

(k)
c

 , (8)

where ξt|t is a (k x 1) vector with the regime probabilities at time t, conditional on the

observations until time t; 1 is a (k x 1) vector of ones and
⊙

stands for the Hadamard

product. The regime probabilities ξt+1|t at time t+1 conditional on information until time

t are captured by the transition probability matrix P . The copula densities at time t,

conditional on being in one of the regimes are contained in the vector δt. While Equation

(6) represents a Bayesian updating of the probability to be in a specific regime given all

observations δt up to the current time, Equation (7) comprises one forward iteration of the

Markov chain. With this recursive procedure it is straightforward to forecast the regime

probabilities (ξt+1|t).

The filtered system needs initial values for the regime probabilities ξ1|0 from which

the optimization procedure is started. Iterations over the two Equations (6) and (7) yield
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the likelihood value

logL(θ) =
T∑
t=1

log(1′(ξt|t−1

⊙
δt)). (9)

Naturally one would like to test the null hypothesis that there are k regimes versus the

alternative of k + 1 regimes. However, Hamilton (2008) points out that likelihood ratio

tests of these hypotheses do not comply with the usual regularity conditions. Given for

example that there is only one regime, the maximum likelihood estimate for the probability

of staying in regime 1 fails to converge to a well-defined population value. Thus, the

likelihood ratio test does not have the χ2-limiting distribution. As a solution, Hamilton

(2008) proposes to establish model comparisons based on their ability to forecast.

With the estimated transition probabilities, one can form inference about the de-

pendence regime at date t based on the realized observations at a later date T (the

”posteriori” observation date T , when new information becomes available). In order to

calculate these inferences for the regime probabilities, the Kim filter is used, which rep-

resents a combination of the Kalman filter and the Hamilton filter, particularly designed

for Markov-switching models (see Hamilton (1988, 1989, 1994)).

The limitation on a number of different static dependence structures as modeled by

the regime-switching copulas may still be too restrictive. To increase the adaptability of

the dependence specification one might think of simply increasing the number of regimes.

However, a more flexible approach consists in allowing the dependence structure to be

dynamic, i.e. vary with every discrete time step.

2.2 Dynamic Copulas

Engle and Sheppard (2001) and Engle (2002) established the basis for the estimation of

time-varying dependence structure by introducing the dynamic conditional correlation

model. In the field of copulas, the seminal work of Patton (2006b) was among the first to
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allow copulas to be time-varying.2

Dynamic Gaussian Copula. Based on Engle (2002), the correlation matrix Σt of

the dynamic Gaussian copula is set to evolve through time as follows:

Qt = (1− α− β)Q̄+ αzt−1z
′
t−1 + βQt−1 (10)

Σt = Q̃−1
t QtQ̃

−1
t , (11)

where zt is the vector of transformed standardized residuals zi,t with a skewed t-

distribution, skewed − t−1
ν,λ(ui,t) where ν is the degrees of freedom and λ the asym-

metry parameter (see, e.g., Hansen (1994)). Q̄ is the sample correlation of zt, and

Q̃t = [q̃ii,t] = [
√
qii,t] is the diagonal square matrix with the square root of the ith di-

agonal element of Qt on its ith diagonal position. The constraints for the parameters α

and β are α + β < 1, with α, β ∈ (0, 1). Accordingly, the dynamic Gaussian copula is

defined as:

CGa
Σt

(u1, ...ud) = ΦΣt(Φ
−1 (u1) , . . . ,Φ−1 (ud)), (12)

where ΦΣt is the dynamic cumulative distribution function of the multivariate normal

distribution with a mean of zero and a covariance matrix Σ.

Dynamic Student-t Copula. The Student-t copula parameters consists of the

correlations and the degrees of freedom, ν. The dynamic process which drives the corre-

lations is identical to the one defined for the Gaussian copula in Equations (10) and (11).

We further allow the degrees of freedom parameter to vary over time (Jin and Lehnert

(2011)). The Student-t copula is therefore not only provided with the capability to adapt

the level of dependence, but also the strength of tail dependence over time. Fantazzini

(2008) proposes to model the evolution of the degrees of freedom parameter of a bivariate

2Some of the contributions to this field on the bivariate level include Guégan and Zhang (2010), Dias
and Embrechts (2010) and De Lira Salvatierra and Patton (2015), and on the multivariate level Jin and
Lehnert (2011), Braun (2011) and Christoffersen, Errunza, Jacobs, and Langlois (2012).
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Student-t copula as

νt = Λ(ς + ϕ|ui,t−1 − uj,t−1|), (13)

where Λ is a logistic transformation designed to keep the conditional degrees of freedom

in the interval of [2, 100] at all times. The mapping into the authorized domain (Lν =

2, Uν = 100) is ensured by the logistic transformation

Λ(x) = Lν +
(Uν − Lν)
1 + e−x

. (14)

Even if x is permitted to vary over the entire real line, Λ(x) will be constrained to lie in

the domain [Lν , Uν ].

We will not partition the observations into multiple clusters as in Braun (2011).

However, in this study we will compute the absolute distance (AD) between all obser-

vations in time t. Therefore, the number of clusters is set to k = 1, which means that

the AD`1-norm is the sum of absolute differences between the observations ut and their

median ũt at time t:

AD`1 =
k∑
j=1

d∑
i=1

|ui,t − ũj,t| =
d∑
i=1

|ui,t − ũt|. (15)

Replacing the bivariate absolute difference in Equation (13) with the multivariate abso-

lute difference AD`1 in (15) yields the dynamic process of the degrees of freedom of a

multivariate Student-t copula, given by:

νt = Λ(ς + ϕ
d∑
i=1

|ui,t−1 − ũt−1|). (16)

Hence, the dynamic multivariate Student-t copula is defined as

Ct
νt,Σt

(u1, ..., ud) = tνt,Σt(t
−1
νt (u1), ..., t−1

νt (ud)), (17)
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where tνt is the cumulative distribution function of the one dimensional tν-distribution

and tνt,Σt is the cumulative distribution function of the multivariate tν,Σ-distribution, both

with the same degree of freedom ν.

Dynamic Archimedean Copulas. Patton (2006b) adapts the idea of Engle (2002)

to model the dynamics of bivariate Archimedean copulas with an ARMA-type process.

He assumes that the functional form of the copula stays fixed over the sample, whereas

the transformed copula parameter as Kendall’s tau (ρτ ) varies according to the evolution

equation

ρτt = Λ

(
ω + β · ρτt−1 + α · 1

10

10∑
j=1

|ui,t−j − uj,t−j|

)
, (18)

where Λ(x) = (1+e−x)−1 is the logistic transformation to keep ρτt ∈ [0, 1] at all times and

(ui,t, uj,t) are two observations at time t.3 The Clayton respectively the Frank copula (see

Internet Appendix A.2) parameter in time t can then be obtained using the functional

relationship between Kendall’s tau and the Archimedean copula parameter

Copula ρτ

CCl
θ θ/(θ + 2)

CFr
θ 1− 4θ−1(1−D1(θ)),

(19)

where D1(θ) is the Debye function of order one D1(θ) = θ−1
∫ θ

0
t/(exp(t) − 1)dt (Hofert,

Mächler, and McNeil (2013)). For more information, we refer to the Internet Appendix.

The dynamic process of Patton (2006b) in Equation (18) is yet again limited to

bivariate applications through the absolute difference term |ut−1−vt−1|. To extend Equa-

tion (18) to the multidimensional world, this difference term is substituted with the mul-

tivariate absolute distance AD`1 in (15). This yields a multivariate extension of Patton

3Kendall’s tau is the rank correlation for two vectors of random variables Y1 and Y2, defined as
ρτ = E(sign((Y1 − Ỹ1)(Y2 − Ỹ2))), where (Ỹ1, Ỹ2) is an independent copy of (Y1, Y2) (McNeil, Frey,
and Embrechts (2005)).
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(2006b)’s parameter evolution process

ρτt = Λ

(
ω + β · ρτt−1 + α · 1

10

10∑
j=1

d∑
i=1

|ui,t−j − ũt−j|

)
, (20)

where ũt is the median of u1, ..., ud in time t and Λ(x) = (1+e−x)−1. With Equation (20),

the parameter of the multivariate Clayton copula in time t, θClt , is then given in closed

form through Equation (19). The Frank copula parameter θFrt in terms of Kendall’s tau,

however, is not available in closed form but has to be determined numerically. To achieve

an efficient estimation of the dynamic Frank copula, we directly model the dynamics of

θFrt as

θFrt = ω + β · θFrt−1 + α · 1

10

10∑
j=1

d∑
i=1

|ui,t−j − ũt−j|, (21)

where the constraint θFrt ≥ 0 ensures that the parameter remains in the permissible

range. Stationarity and invertibility is accounted for with the constraints |α| < 1 and

|β| < 1.

Dynamic Mixture Copulas. Ng (2008) adopts the dynamic process of Patton

(2006a) to create a time-varying specification of the weight in the mixture copula de-

pending on the natural filtration of the process. He suggests a dynamic bivariate mixture

copula model, where the parameters of the copulas are constant, but the weighting pa-

rameter is stochastic, following an ARMA-type model for the mixture weight:

wi,t = ωi + αi · hi,t−1(.) + β · wi,t−1. (22)

Equation (22) establishes a linear relationship between the mixture weight wi at time t

and the corresponding lagged value at t − 1 and h(.), which is a stochastic explanatory

variable or a function. In particular, Ng (2008) proposes to model wi,t with the special
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function being

hi,t−1(.) =
1

10

10∑
p=1

|ut−p − vt−p|. (23)

However, this model is also limited to the bivariate setting due to the absolute distance

measure |ut−p−vt−p|. Braun (2011) suggests an extension of Ng (2008)’s concept to higher

dimensions by replacing the absolute distance measure with the copula density relative

to the sum of all copula densities during the lag period. This results in a special function

of the following type:

hci,t−1(.) =
1

10

10∑
p=1

(
ci(u1,t−p, ..., ud,t−p; θi)∑n
j=1 cj(u1,t−p, ..., ud,t−p; θj)

)
. (24)

Generating weight forecasts by plugging Equation (24) into Equation (22), Braun (2011)

has to impose six different constraints on the weight process parameters in order to keep

the resulting weights wi,t within the unit interval. In contrast, we make use of the logistic

function Λ(x) = (1 + e−x)−1, which in combination with Equations (22) and (24) results

in:

wi,t−1 = Λ
(
ωi + αih

c
i,t−1(.) + βiwi,t−1

)
. (25)

Hence, the weight parameters are bounded on the unit interval without the need to impose

any constraints on the parameters. Note that Equation (25) also nests the static mixture

copula with α = β = 0. Employing the dynamic weights of Equation (25) in the mixture

copula yields the complete multivariate dynamic mixture copula model:4

C (u1, ..., ud;w1,t, ..., wn,t; θ1, ..., θn) =
n∑
j=1

[wj,t, Cj(u1, ..., ud, θj)]. (26)

It has to be emphasized that the parameters θj and wj,t have different functions within the

mixture copula construct, allowing a very flexible way of modeling dependence structures.

While the association parameter θ controls the degree of dependence, the weight parameter

4See the Internet Appendix A.3 for more details.
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w determines the structure of the dependence. The advantage of linking the weight

parameter to the copula densities lies in the difference of the copula density functions.

The Clayton copula for example is capable of modeling lower tail dependence and exhibits

its largest density in the lower tail. Thus, the weight parameter in the dynamic mixture

structure is directly coupled with the capabilities of the mixture copula constituents to

describe the dependence structure during the lag period.

Shifts in the dependence structure are expected to have an immediate effect on the

dynamic weights. A rise of one copula’s relative density signalizes its enhanced fit to the

current dependence pattern. Through the dynamic weighting process in Equation (25),

this copula’s weight in the mixture setting and its impact on the overall mixture den-

sity extends. Calibrating this model using maximum likelihood estimation ensures that

the parameters of each copula in the mixture are fitted most accurately to those data

fractions, where the dependence structure naturally concurs with the copula’s character-

istics.5 Every individual copula thus only captures the dependence in a specific part of

the data set in a optimal way, but merging the copulas into a mixture structure governed

by the dynamic weight process yields an overall accurate and flexible dependence model.

3 Data and Summary Statistics

The commodity data set used in this paper consists of commodity futures subindices

of the Standard & Poors Goldman Sachs Commodity Index (SPGSCI), which together

with the Bloomberg Commodity Index (former DJ-UBSCI) is by far the most influential

commodity index. The series were chosen based on the length of their data history and

their weight in the main index. The data set contains the following commodity futures

excess return indices: crude oil (OIL), heating oil (HOL), unleaded gasoline (GAS), gold

5We estimate the model parameters and the corresponding standard errors for the regime-switching
model and for the dynamic multivariate copulas by using a multi-stage maximum likelihood estimation
procedure as shown in Internet Appendix B.
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(GLD), silver (SLV), copper (CPP), wheat (WHT), as well as corn (CRN). It thus covers

the commodity sectors energy, precious and industrial metals, as well as agriculture. The

excess return measures the return from investing in nearby commodity futures and rolling

them forward each month to avoid the cost of holding physical commodities. In this way,

the selected commodity indices yield returns comparable to passive long positions in listed

commodity futures contracts.6

All returns are computed as continuously compounded returns, log(Pt/Pt−1), where

Pt is the value of the index at time t. The data consists of Wednesday weekly returns, to

avoid any day-of-the-week effects. The sample covers the period from June 30, 1988 until

June 5, 2013, yielding 1’300 weekly returns. Table 1 presents the descriptive statistics

of the commodity futures data. Energy sector index returns display the largest standard

deviations while gold returns have the smallest standard deviation among the commodity

indices. With the exception of wheat and corn, all weekly commodity returns are nega-

tively skewed.All series display excess kurtosis ranging from 4.73 to 7.64. The Jarque-Bera

test clearly rejects the hypothesis of a normal distribution for all commodity index returns.

[Table 1 about here]

The largest unconditional sample correlations are detected between the fossil fuel

returns, followed by the correlation between the agricultural returns. Further tests shown

in Table 1 reveal that returns are stationary series and we find clear evidence for ARCH-

effects. In order to remove the heteroscedasticity from our return series, each individ-

ual risk factor is modeled by a GARCH specification. The univariate model for each

index return series is determined by selecting the AIC and BIC optimal model consid-

ering ARMA(p,q) specifications for the conditional mean up to order (p=3, q=3) and

6More precisely, the return consists of a spot and a roll component. The spot return is the percentage
change in the near-month futures contract. To keep a long futures position the futures contracts are
rolled forward to the next-month futures contract. The roll return is positive when the market is in
backwardation and negative when the market is in contango. The roll return therewith comes from
rolling up or down the term structure of futures prices.
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GARCH(P,Q), EGARCH(P,Q), and GJR-GARCH(P,Q) volatility models up to order

(P=3, Q=3). The initial autocorrelation present in the squared returns has been suc-

cessfully removed by the GARCH models. To account for potential asymmetries in the

distribution of standardized residuals we employ Hansen’s (1994) skewed Student-t dis-

tribution.7

4 In-Sample Analysis

In this section, we investigate the joint dynamics of commodity futures within a portfolio

framework. We firstly estimate three static mixture copulas to the data by combining

the asymmetric Clayton copula with three symmetric copulas: Gaussian, Student-t, and

Frank copulas.8 In particular, we examine the six months rolling Kendall’s tau computed

via the one-to-one mapping of Frank’s multivariate copula parameter θF and Kendall’s

tau (see Figure 1). We find that there are substantial changes in both structure and level

of dependence during the observation period. Neglecting this time-variation might result

in inaccurate risk forecasts. To capture the dynamics in the dependence structure among

a portfolios’ assets, the two proposed multivariate copula models, regime-switching and

dynamic copula model, are evaluated.

4.1 Static Copulas

To calibrate the static copulas, the filtered standardized residuals from the univariate

models are transformed to uniform variates by inversion using the corresponding cumu-

lative skewed-t distribution function.9 Three static mixture copulas are constructed by

combining the asymmetric Clayton copula with the other three (symmetric) copulas. The

7To conserve space, the results on GARCH specifications and the skewed Student-t distribution of stan-
dardized residuals are not shown here. However, they are available in the Internet Appendix C.1.

8Note that a comparative in-sample evaluation of the performance of static mixture copulas is not in the
scope of this study. However, the results are available from the authors upon request.

9The results of the univariate models are shown in the Internet Appendix C.
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combination of the two Archimedean copulas into a mixture construct yields a parsimo-

nious model which is able of capturing lower tail dependence. Mixing the Clayton with

the Gaussian copula combines the parameter plurality of the elliptical copula with the

lower tail dependence feature of the Clayton copula and creates a flexible model which

is capable of capturing asymmetries in the dependence structure. Adding the Clayton to

the Student-t copula finally results in an adaptive model capable of modeling different

degrees of upper and lower tail dependence. The results are shown in Table 2.

Using the information criteria to rank the fit of the static models, the Student-

t-Clayton mixture fits best according to both AIC and BIC, followed by the Student-t

copula and the Gauss-Clayton mixture. Overall, the in-sample analysis shows that the

best fitting static dependence model is the Student-t-Clayton mixture copula. The two

models with the second-best fit are the Gaussian-Clayton mixture copula and the Student-

t copula. All Archimedean copulas rank far behind with the stand-alone Archimedean

copulas having the largest AIC/BIC values and the lowest likelihood value, respectively.

Following Dias and Embrechts (2010) and Guégan and Zhang (2010), the informa-

tion criteria are used to rank the fit of the different models. The comparison of the fit of the

two Archimedean copulas reveals that the Clayton copula is more suitable to describe the

dependence structure compared to the Frank copula, which indicates that the commodity

index returns are lower tail dependent. There is a large difference in the likelihood values

and the two information criteria values when comparing the purely Archimedean copulas

with the other dependence models based on an elliptical copula. The Archimedean cop-

ulas’ likelihood values range from 661 for the Frank copula to 788 for the Frank-Clayton

mixture while the other copulas’ likelihood are more than three times as large, all ex-

ceeding the value of 2746. This substantial difference can be attributed to the fact that

the standalone Archimedean and pure Archimedean mixture copulas have to capture the

dependence structure with only one or three parameters, respectively. Thus, the rea-

son lies in the dependence structure which is diverse as indicated by the large difference
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in parameter values ranging between 0.082 (OIL:WHT) and 0.875 (OIL:HOL). The low

likelihood values of the Archimedean copulas express the difficulty of these dependence

models to capture such a diverse structure with only one or three parameters. Based on

a correlation matrix, the rest of the models have at least 28 parameters to characterize

the dependence structure among the eight indices. This allows a more precise fit which

materializes in higher likelihood values and in lower values of both information criteria.

Overall, the ranking of the model fit based on both the AIC and BIC criterion is

as follows: the Student-t-Clayton mixture is best capable to characterize the commodity

indices’ dependence followed by the Student-t copula and in third place the Gaussian-

Clayton mixture. The degrees of freedom of the Student-t copula of 16.804 indicate tail

dependence which is substantiated by the improved fit (i.e., lower AIC and BIC values)

of the Student-t compared to the Gaussian copula. In the Student-t-Clayton mixture ν is

estimated as 18.579 which shows that the Clayton copula, even though it only accounts

for 2.7% of the overall mixture, covers a part of the lower tail dependence. This part

allows for increased degrees of freedom in the Student-t fraction. Although θC is lower

compared to the Student-t-Clayton mixture, the Gaussian-Clayton mixture substantiates

the conclusion of lower tail dependence in the data with a higher mixture weight wC .

[Table 2 about here]

4.2 Regime-Switching Copulas

In this sub-section, we show the estimation results of two-regime and three-regime switch-

ing copula models calibrated to the entire sample data. All copula models are estimated

using the same residuals which result from the filtering with univariate EGARCH mod-

els. We derive three regime-switching copula models which combine the elliptical copulas

into a two-regime setup. One Gaussian/Gaussian (G/G) model version allows for two

regimes with different levels of dependence, but it does not capture tail dependence in
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any of them. The Gaussian/Student-t (G/T) copula allows for tail dependence in one

regime. The G/G model describes presumably tranquil periods without tail dependence

in returns, while the G/T version is more suitable in presumably turbulent periods with

tail dependence. The Student-t/Student-t (T/T) regime-switching model then allows for

tail dependence in both regimes.

To allow for asymmetry, the Gaussian/Student-t model is enhanced by mixing one

of them with the asymmetric Clayton which firstly results in the Gaussian/Student-t-

Clayton mixture (G/TC). This setup is thus capable of capturing different levels of lower

and upper tail dependence in one regime. Secondly, the Student-t/Gaussian-Clayton

mixture copula (T/GC) allows for symmetric (lower and upper) tail dependence in one

regime and an asymmetric dependence with a probability of joint negative extreme returns

in the other regime.

In addition to the two-state models, regime-switching copulas with three separate

regimes are constructed. Firstly, the Gaussian/Clayton/Frank copula (G/C/F), which has

an elliptical and an Archimedean regime modeling the interrelation between the returns

without tail dependence and one asymmetric regime with lower tail dependence. Secondly,

the Gaussian/Student-t/Clayton copula (G/T/C), which has one regime with asymptotic

independence in the tails (Gaussian), a second regime with equal lower and upper tail

dependence (Student-t), and a third regime with only lower tail dependence (Clayton).

Table 3 presents the parameter estimates of two- and three-regime models of which

three contain only elliptical copulas. The regimes’ parameters are listed in the order

indicated by the abbreviated name, i.e. for the G/T regime switch copula, the Gaussian

regime parameters are listed under Regime 1 and the Student-t copula parameters under

Regime 2. In all commodity regime switching models with two states, the parameter

estimates indicate one high and one low dependence regime. Some copula correlations

which are low already in the static Gaussian copula are now close to zero in the low

dependence regime. This is the case for example for the copula correlation between crude
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oil and wheat in the Gaussian regime of the G/T model, where it is as low as 0.025. The

degrees of freedom of 9.557 in the high dependence Student-t regime of the G/T copula

suggests that tail dependence is a feature of this state of the economy. This is consistent

with the results shown in Figure 1. However, in the T/T model both ν parameters are

equally low suggesting tail dependence in both regimes.

For the G/C/F model, the θC of 0.304 transformed into a rank correlation measure,

which yields a Kendall’s tau of 0.1319. The Frank copula parameter of θF = 0.506

corresponds to a value of 0.056, while the average Gaussian copula correlation translates

to a Kendall’s tau amounting to 0.184. The second regime (Clayton) thus forms the

midpoint dependence regime. However, the importance of the Clayton regime is negligible

which can be seen in both the probability p2|2 of virtually zero and the according minimal

expected regime duration listed in Table 3. This suggests that the Clayton regime in

the G/C/F structure is irrelevant and that the other two regimes would be sufficient

to capture the dependence structure of the commodity futures indices. This finding is

confirmed by the two information criteria, which display the highest values for the G/C/F

model, as well as the low log-likelihood value.

[Table 3 about here]

As shown in Tabel 3, the ranking of the model fit according to both BIC and

AIC is: Student-t/Gaussian-Clayton mixture in the first, the Gaussian/Student-t-Clayton

mixture in the second and the Gaussian/Student-t in the third place. The expected regime

durations in weeks for each model are shown in the lower part of Table 3. We observe

that the persistence of the regimes in the purely elliptical models is identical for the G/G

and the T/T, while being only one week apart in the G/T copula. As soon as asymmetric

dependence is introduced to the model, the differences in expected duration become larger.

Figure 1 depicts the level of dependence of commodity returns over time. The

evolution can be fragmented into two distinct periods: from 1988 until about 2005, the
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level of dependence remained very low, at around 0.1 with little variation. From the

year 2005 onwards, variations in the level of dependence surged, along with a significant

increase of the rank correlation. The two periods are also clearly shown by the lower

tail dependence coefficient over time in the lower panel of Figure 1. Until about 2005,

there was virtually no lower tail dependence among the returns of the commodity futures

indices. Starting in 2005, substantial spikes in tail dependence can be observed, indicating

that along with the level of dependence, the structure of dependence was as well subject

to change.

[Figure 1 about here]

The recent literature on the financialization of commodities ascribes this change to

the emergence of commodities as an asset class, which has become increasingly held by

institutional investors in search for diversification benefits (see, e.g., Basak and Pavlova,

2016; Büyükşahin and Robe, 2014; Singleton, 2014). Indeed, beginning in the year 2004,

institutional investors have been building up substantial positions in commodity futures.

The U.S. Commodity Futures Trading Commission (CFTC) estimates in its staff report

(2008) that institutional holdings have increased from USD 15 billion in 2003 to over

USD 200 billion in 2008. Many of the institutional investors hold commodities through

commodity futures indices, such as the Standard & Poors Goldman Sachs Commodity

Indices (SPGSCI) (Basak and Pavlova, 2016).

Figure 2 depicts the Kim filtered evolution of the state probabilities over the entire

sample period. The G/T regime probability paths in Figure 2 differentiates itself as it

gives the least clear idea about which regime the system was in at any point in time until

about 2007. At first sight it becomes apparent that the plot for the G/C/F model is

different to the other six, as the probability of the Gaussian regime is close to one almost

all the time. The Clayton and the Frank copula probabilities in this G/C/F model are

virtually zero, which is also reflected by their minimal expected regime duration in Table
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3. With two of three regimes being insignificant, the G/C/F regime switch copula is

evidently an inadequate model for the data at hand. The G/T regime probability paths

in Figure 2 differentiates itself as it gives the least clear idea about which regime the

system was in at any point in time until about 2007. However, all regime probability

paths capture the spikes in dependence identified in Figure 1 by the high dependence

regime. The regime switching models do not show a consensus shift from the low to the

high dependence regime over the observation period even if such a shift could be expected

from analyzing Figure 1.

[Figure 2 about here]

4.3 Dynamic Copulas

We again start to calibrate the dynamic copula models to the residuals obtained from the

univariate EGARCH models. While in the regime switching models the copula parameters

remain static, the parameters of dynamic copulas will change in discrete time steps.

Dynamic copula are built on the well-known static copulas from the literature by adding

the time-varying feature. We employ the dynamic versions of both Archimedian and

elliptical copulas, and further built dynamic mixture copulas of those.

The estimation results for the portfolio returns derived from the dynamic copula

models are listed in Table 4. The comparison of the Akaike and Bayesian information

criteria with the values of their static counterparts in Table 2, reveals that the dynamic

version of each of the copulas has a better fit to the portfolio than the version with

constant parameters. As with the static versions, the purely Archimedean copulas attain

significantly lower likelihood values compared to the models with elliptical copulas. This

results in higher AIC and BIC values indicating an inferior fit.

For the elliptical copulas, both the lower standard errors and their lower AIC / BIC

values indicate that these are better models for the commodities portfolio. The standard
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errors shows that the dynamic mixture weight parameters are not significantly different

from zero. Mixing the dynamic copulas with a static weight may hence be sufficient to

capture the dynamics in the dependence structure.

The degrees of freedom parameters for the dynamic Student-t copula induce an

evolution ranging between ν = 16.493 and ν = 21.870, with a mean of 18.703. The static

Student-t copulas ν is with 16.804 (see Table 2) below the average dynamic ν providing

support for the conclusion that ignoring time-variation in the copula parameters might

induce spuriously increased conditional tail dependence.

[Table 4 about here]

[Table 5 about here]

Table 5 shows the overall ranking of the in-sample model fit among the static,

regime-switching, and dynamic copulas according to AIC and BIC. The criteria agree

on the first four ranks, and indicate superiority of the time-varying copulas’ in-sample

fit compared to the static versions for the portfolio. The only static copula to attain

a top five ranking is the static Student-t-Clayton mixture, which ranks fifth according

to the BIC. The dynamic Student-t and the dynamic Student-t-Clayton mixture stand

out as they dominate the top two ranks for the portfolio (according to both AIC and

BIC). This result indicates the importance of accounting for time-variation, and highlight

that positive tail dependence is a crucial feature of a well-fitting model for a commodity

portfolio.

5 Forecast Evaluation

To test the predictive power of the different copula models, we present the methodology

and results of out-of-sample backtests. Monte Carlo simulations are performed to obtain
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forecasted profit and loss distributions. The same univariate models are coupled with

different copulas, so that differences in the return distribution forecasts are attributable

to the copula functions only. In this way, we can assess which copula function is most

suitable for describing the multivariate dependence structure. In the context of back-

testing scheme, we compare forecasts based on individual copula models with the observed

historical portfolio returns. We use a broad range of backtesting risk measures to evaluate

the predictive performance. These risk measures are VaR, Unconditional Coverage Test

and Independence Test (and a Joint Test of both), Basel Three-Zone Approach, as well

as Expected Shortfall Evaluation. We also backtest the Entire and Entire Lower Tail

forecasted profit and loss distribution derived from these risk models.10

5.1 Backtesting Procedure

The backtesting procedure is based on a rolling window scheme with 520 returns. The

univariate models and the copula functions are calibrated to the t − 520 until t − 1 re-

turns with the multi-stage maximum likelihood estimation.11 Subsequently, dependent

uniform variates are simulated with specific copulas. These are further transformed to

obtain standardized residuals which will be employed as i.i.d. noise processes of the cor-

responding GARCH-models. We thus simulated 10’000 weekly returns for each portfolio

component and computed the portfolio’s profit and loss. The return of the simulated

equally weighted portfolio is further compared to the historical value. Taking advantage

of the entire forecasted portfolio return distributions, both risk measure forecasts and

density forecasts are evaluated.12

For the commodity data set, the GJR specification replaces the EGARCH as optimal

10A detailed description of these backtesting risk measures together with the related literature are pro-
vided in Internet Appendix D.

11See Internet Appendix B for the estimation procedure and the standard error computation.
12The univariate models employed in the backtesting procedure differ from the ones outlined in Section

4. While the latter were found using the entire data set, the univariate models for the backtesting
procedure are determined by choosing those specifications which reveal the lowest AIC/BIC value for
the first 520 returns in the respective data set.
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specification for the heating oil, unleaded gasoline, silver, copper and wheat series. The

information criteria select a lag of one to be optimal for all univariate commodity series

(See Internet Appendix D.1).

5.2 Overall Forecast Performance

We use a multivariate normal model as benchmark for the backtest results. The model

employs the same univariate GARCH processes but assumes the resulting standardized

residuals to be distributed according to a multivariate normal distribution. The depen-

dence structure between the different series is described by a static Gaussian copula. The

results for the static models are listed in Table 6.13

[Table 6 about here]

According to the hit ratios and the expected shortfall ratios, the static mixture

copulas are ranked in the rearmost positions. None of the mixture passes the unconditional

coverage or the joint test, and all static mixture models are rated as red according to the

model classification of the Basel regulatory framework. Despite the Frank-Clayton and

the Student-t-Clayton mixture copulas, which both pass the χ2-test, the comparatively

high test statistics of the Anderson-Darling, Kolmogorov-Smirnov, and Christoffersen’s

Lower Tail test confirm that for our portfolio static mixture copulas are not suitable

to forecast neither the entire profit and loss distribution nor its lower tail. The static

Frank and the Gaussian copula are two further models with no predictive power of the

commodity data’s return distribution. Both traffic lights are red and even though the

violation of their VaR forecasts are independent in time according to the independence

coverage tests, they both fail the remaining tests altogether.

13To conserve space, the histograms of the probability integral of the forecasted portfolio profit and
loss distribution are not shown here, however, they are available from the authors upon request. The
histogram shows that the static mixtures fail to adequately forecast both lower and upper tail of the
profit and loss distribution.
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The backtest comparison of the static Gaussian model with the multivariate nor-

mal benchmark model indicates that modeling the standardized residuals with a skewed-t

distribution does not improve the hit ratios at any of the three confidence levels. The

benefit of the more elaborate marginals comes forward with the improved expected short-

fall ratios, which are particularly meaningful on α = 99% and α = 95%, since the two

compared models have identical hit ratios for these confidence levels. Among the two yel-

low classified models Clayton and Student-t, the former is substantially more successful

in forecasting the lower tail of the portfolio’s return distribution. This is documented by

the hit and ES ratios at confidence levels of α = 99% and α = 95%, and by the fact that

the Clayton is the only static model to pass the Lower Tail test.

While incorporating skewness and kurtosis in the marginal distributions does not

improve the 90% and 95% hit ratios for the commodity data (documented by the com-

parison of the Gaussian copula with multivariate normal model results), the capability

of modeling lower tail dependence (as in the Student-t and Clayton copula) results in

substantially better hit ratios at the 99% confidence level. Applying the static Clayton

copula setup instead of the multivariate normal model reduces the 99% hit ratio by more

than 50%. The χ2-test even indicates that the Clayton copula is the best static model to

forecast the entire profit and loss distribution of the commodity futures index portfolio.

The backtesting results of the regime-switching models are listed in Table 7. Fore-

casting the profit and loss distribution of the commodity futures index portfolio by means

of the regime-switching copulas with three states yields worse results than with two-state

models. The inclusion of a mixture copula to characterize one of the two regimes does not

produce better forecasts compared to the regime-switching structures with two standalone

copulas.14

[Table 7 about here]

14The histograms of the three-state regime-switching models visualize also their incapability to forecast
either tail of the portfolio return distribution. To conserve space, the histograms are not shown but are
available upon request.
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The G/G and the T/T regime-switching copulas are the only two Markov-chain

models to achieve a yellow rating. The former’s hit ratios compared to those of the static

Gaussian model in Table 6 show that allowing for regime-switches results in preferable

VaR forecasts. The results of the χ2-tests further suggest that the two-state Gaussian

setup yields better forecasts for the entire return distribution than the one-state Gaussian

model and the multivariate normal benchmark. The regime-switching copula models are

not accurately forecasting the lowest 1% and 5% quantiles of the commodities’ profit

and loss distribution as they fail the unconditional coverage test and the joint test on

the corresponding α levels and further do not pass the Lower Tail test. The backtesting

outcomes of the G/G and the G/T models at the confidence level of α = 90%, however,

allude to their predictive power for the VaR at the conventional significance level. Note

that the information criteria for the in-sample fit relegate the latter two models to the

rear positions among the regime-switching models whilst the models with the best in-

sample fit perform rather poorly in the backtesting procedure. This result again points

to a limited use of the in-sample rankings to gauge the predictive power.

Next, the performance of the dynamic models is shifted into focus with the results

listed in Table 8. Comparing the backtest performance of the dynamic copulas to those

of their static counterparts in Table 6 shows that allowing for time-variation in the de-

pendence structure improves most of the backtest results for all the copula models under

consideration. Four models which are classified as red in their static versions rank as

yellow under the Basel regulatory framework in their dynamic specification. The dy-

namic Frank copula, however, does not produce materially different results than its static

version, indicating that the Frank copula is in neither static nor dynamic form an appro-

priate dependence model to forecast commodity portfolio returns. Adding the Clayton

to the Frank copula in the form of a dynamic convex combination of both models im-

proves the performance to the degree that the dynamic Frank-Clayton mixture reaches a

yellow traffic light ranking, but still yields the second poorest results among the dynamic
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models.15

The model with the highest predictive power for the negative extreme returns of

the portfolio is the dynamic Clayton copula. Even though the dynamic version only

improves the VaR forecasts at the 90% confidence level compared to the static Clayton

copula, the dynamic version passes the Lower Tail test with a p-value twice as large.

This outperformance of the multivariate Clayton copula, both static and dynamic, in

forecasting the lowest portfolio return quantiles is due to its capability to model lower

tail dependence.16 This highlights the importance of modeling lower tail dependence to

forecast the risk of a commodity futures index portfolio. The second poorest in-sample fit

of the dynamic Clayton copula among the dynamic models according to both information

criteria put the usefulness of AIC and BIC rankings to identify a powerful risk forecasting

model into question.

[Table 8 about here]

5.3 Crisis Forecast Performance

Risk management models employed by the financial industry turned out to be inadequate

during times of financial stress (see, e.g., Skoglund, Chen, and Erdman (2010); Das,

Embrechts, and Fasen (2013)), leading to a sharp increase of the number of VaR violations.

In this sub-section, we assess the performance of the various copula models during the

last financial crisis and the European sovereign debt crisis. To ensure comparability,

we use the same backtest procedures including the same univariate model specifications

as in Sub-section 5.2. The performance of the models is analyzed in the light of the

15Furthermore, the histograms of the probability integral of forecasted profit and loss distribution derived
from the dynamic models (not shown here) indicates that the forecasted return distribution of the
dynamic Frank-Clayton mixture copula concentrates too much probability mass in the center of the
distribution.

16The histogram of the dynamic copula models visualizes the Clayton’s superiority in this regard with
the low bar for the 2% quantile. The results are not shown here, however, they are available from the
authors upon request
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Basel supervisory framework (Basel Committee on Banking Supervision (2013)), which

demands backtests of the risk model based on the VaR measure at the 99% confidence

level.

Firstly, we show the out-of-sample accuracy of the risk forecasts of the different

models during the crisis period from January 7, 2007 until January 5, 2011. The time

period covers the unfolding of the financial turmoil from the disruptions in the subprime

mortgage market to the virulent global financial crisis as well as the subsequent European

debt crisis. Secondly, the changes in VaR violations of the presented models in reaction

to the outbreak of the crises are investigated over time.

Table 9 summarizes the models’ backtest performance results for all presented copula

models during the crisis period. The therein reported measures refer to the 99%-confidence

level with the exception of the Lower Tail test, which assesses the model’s capability to

forecast the density of the profit and loss distribution below the 10%-quantile. None of

the copula models attains a green classification according to the Basel regulatory frame-

work. 19 out of 21 tested models rank red, which means that the accuracy of their VaR

forecasts for the commodities between 2007 and 2011 is not acceptable. Even though all

are labeled red, the differences in the results of the static Gaussian, G/G regime-switching

and dynamic Gaussian copula highlight the advantages of a time-varying specification of

the Gaussian copula as the static version shows the most inaccurate hit ratio among the

three models. The G/G regime-switching version and the dynamic version of the Gaus-

sian copula produce VaR forecasts of identical accuracy. However, the value of dynamic

Gaussian’s ES ratio is closer to 1 and its Lower Tail test statistic shows that the dynamic

version’s forecast of the profit and loss distribution’s density in the lowest quantiles is

more accurate. For the Student-t copula, the ability to switch between two states (T/T)

does not result in a better hit ratio compared to the static setup. The dynamic form,

however, clearly beats the static and regime-switching form in terms of hit ratio, ES ratio,

and Lower Tail test statistic.
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The best models, both achieve a yellow classification, are the static and the dynamic

Clayton copula model. The dominance of this asymmetric copula is manifested by far

more accurate hit ratios compared to all other models. Furthermore, both static and

dynamic Clayton are the only two copulas to pass the Lower Tail test, which shows the

importance of capturing lower tail dependence. Indeed, ranks three and four in terms

of hit ratio and Lower Tail test statistic are taken by the dynamic Gaussian-Clayton

mixture and the Student-t Clayton mixture, whose Clayton component enables them to

model asymmetries and lower tail dependence.

The dynamic version of the Clayton copula does not increase the accuracy of com-

modity portfolio return forecasts compared to its static version. The former yields a

less accurate hit ratio and further overforecasts the loss given a VaR violation. Figure

3 depicts the evolution of the hit ratios for selected models from the outbreak to the

aftermath of the last financial crisis. The depicted hit ratios based on commodity in-

dex data are taken from those models which qualified as green according to the Basel

regulatory framework at the outbreak of the financial crisis: the dynamic Gaussian, the

dynamic Student-t, and the dynamic Clayton with their static counterparts, as well as

the regime-switching models with two regimes (Gaussian/Gaussian, Gaussian/Student-t,

and Student-t/Student-t), and finally the dynamic Gaussian-Clayton mixture. None of

these models preserves its Basel traffic light category during the crisis, however, there are

subtle differences in the reaction to the outbreak of the financial turmoil.

Only two of the ten models do not become classified as red in their immediate re-

action to the beginning of the financial turmoil: the dynamic and static Clayton copula.

While the dynamic Clayton was better capable of handling the initial impacts of the crisis

from 2008 to 2010, the static version shows the best hit ratio in the aftermath of the crisis.

Note that these two models are also the closest to the expected hit ratio of 1% in the first

half of the year 2008. The dynamic Gaussian-Clayton mixture also faces a deterioration

from green to yellow and manages to maintain the yellow classification until the end of
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2010, when it becomes red for most of the remaining observation period. All the other

models in the figure deteriorated from an acceptable model (green) to an unacceptable

one (red) in just a few months. The most pronounced deterioration during the outbreak

of the crisis is shown by the Gaussian and the regime-switching Gaussian/Student-t cop-

ula models, which prove to be least capable to appropriately forecast the commodity

portfolios’ returns with the onset of financial crisis.

Among all considered dependence structures, the three models which performed best

for our commodity futures portfolio in terms of hit ratio during the times of crises are

asymmetric models, all of which are capable of capturing lower tail dependence. Note

that the models whose hit ratio deteriorated drastically at the outbreak of the financial

crisis are all combinations of elliptical copulas. The superiority of the static and dynamic

Clayton copula established in the analysis of the backtesting results over the entire data

set, covering an out-of-sample period of more than 16 years, is thus confirmed by the

analysis of models’ reaction to the outbreak of financial crises.

[Table 9 about here]

[Figure 3 about here]

Table 10 relates the results of the models for the financial crisis period (upper

panel) to the overall performance of the models documented in the previous Sub-section

5.2 (lower panel) by listing the top rankings of the models for all portfolios according

to the accuracy of their VaR(99%) forecasts. The comparison shows that the models’

ranking during the financial crisis is largely consistent with the overall ranking, where the

Clayton copula stands out. One can see that the static Clayton is ranked first followed

by the dynamic copulas.

[Table 10 about here]
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6 Conclusion

In this study, we evaluate the importance of modeling time-variation and asymmetries in

the dependence structure of a commodity futures portfolio to account for the substantial

change in the dynamics of commodity prices over the last decade. We firstly implement a

regime-switching copula model to account for time-variation in the dependence structure

of portfolio constituents. To enhance the flexibility of this set-up, we employ multivariate

mixture copulas to characterize the different regime states. As a second approach, we ac-

count for time-varying dependencies by introducing multivariate dynamic copula models.

Finally, the dynamic copulas were combined into dynamic mixture structures.

The in-sample analysis reveals the superiority of dynamic copulas compared to their

static counterparts for our commodity portfolio. This result is of great importance, as it

confirms the findings in the Basel III regulatory framework, that rigorous risk measures

should be based on a model which accounts for time-varying dependence structures. While

the static Student-t-Clayton mixture is the only static copula to attain a top five ranking,

the dynamic Student-t and the dynamic Student-t-Clayton mixture stand out as they

dominate the top two ranks for the chosen portfolio. The dominance of these models

highlights not only the importance of time-variation, but also accentuates that positive

tail dependence is a crucial feature of a well-fitting model for a commodity portfolio.

Comparing the backtest performance of the dynamic copulas to those of their static

counterparts reveals that allowing for time-variation in the dependence structure improves

most of the backtest results for all the copula models under consideration. Four models

which are classified as red in their static versions rank as yellow under the Basel regulatory

framework in their dynamic specification. Finally, the most accurate forecasts for the

commodity futures index portfolio during the financial crisis were produced by the static

Clayton copula, followed by the dynamic Clayton model. Both yield the single most

accurate forecasts among all models for the commodity data at all times during the crisis.
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Their hit ratios only displayed a minor increase in reaction to the outbreak of the global

financial crisis, while the hit ratios of most other models surged drastically.

Our results bring evidentiary support for the critics in Basel III concerning the

overreliance on historical correlations: in times of financial stress, the correlations between

the risk factors of one commodity-based portfolio have a different structure than in normal

regimes, which requires risk managers to recalibrate the models on a regularly base.

However, it becomes obvious that, overall, dynamic copula models are more flexible tools

to describe asymmetries and the time-varying feature of dependence structures and lead

to more robust backtesting results. The comparative assessment of the performance of

copula models offers portfolio risk managers an important indication of accurately forecast

profits and losses. This is a very important input for the implementation of rigorous risk

measures. Furthermore, the ranking in- and out-of-sample of various static, dynamic,

regime-switching copula models shed more transparency on the Basel traffic light system

classification, which bridges the link between regulators and practitioners.
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Tables and Figures

Table 1: Summary Statistics
OIL HOL GAS GLD SLV CPP WHT CRN

Mean 0.001 0.001 0.002 0.000 0.000 0.002 -0.002 -0.002
Std 0.046 0.044 0.047 0.022 0.039 0.035 0.037 0.035
Max 0.232 0.205 0.241 0.129 0.148 0.170 0.190 0.153
Min -0.318 -0.276 -0.266 -0.132 -0.295 -0.171 -0.177 -0.169
Skew -0.498 -0.278 -0.286 -0.242 -0.660 -0.109 0.297 0.001
Kurt 6.774 5.667 5.891 7.518 7.638 5.399 4.734 5.411
JB 825.0a 401.9a 470.6a 1118.2a 1259.8a 314.4a 182.0a 315.0a

Correlations

OIL 0.882 0.858 0.261 0.264 0.246 0.113 0.163
HOL 0.833 0.243 0.244 0.225 0.123 0.164
GAS 0.212 0.217 0.231 0.104 0.140
GLD 0.731 0.284 0.157 0.193
SLV 0.331 0.164 0.220
CPP 0.174 0.171
WHT 0.594

Stationarity Tests

LMC(1) 0.067c 0.059c 0.047c 0.050c 0.050c 0.144b 0.051c 0.062c

LMC(5) 0.043c 0.043c 0.036c 0.090c 0.058c 0.112b 0.054c 0.059c

LMC(10) 0.038c 0.057c 0.039c 0.196a 0.073c 0.082c 0.060c 0.045c

ADF(1) -37.2a -36.4a -36.9a -36.7a -37.1a -36.3a -36.2a -36.5a

ADF(5) -14.3a -15.1a -14.5a -18.6a -17.6a -14.2a -16.0a -15.5a

ADF(10) -9.6a -10.1a -11.2a -13.2a -12.7a -9.9a -11.5a -10.0a

Heteroscedasticity Tests

LBQ(1) 67.8a 72.5a 107.4a 31.5a 11.5a 69.3a 60.6a 29.4a

LBQ(5) 140.0a 154.7a 184.2a 181.2a 75.5a 356.8a 239.3a 129.3a

LBQ(10) 312.9a 237.1a 297.9a 272.4a 132.9a 463.3a 288.8a 241.0a

ELM(1) 67.8a 72.5a 107.4a 31.5a 11.5a 69.3a 60.6a 29.4a

ELM(5) 140.0a 154.7a 184.2a 181.2a 75.5a 356.8a 239.3a 129.3a

ELM(10) 312.9a 237.1a 297.9a 272.4a 132.9a 463.3a 288.8a 241.0a

This table shows the summary statistics of the weekly returns over the full sample period from June 30, 1988 to June 5,
2013 for the Standard & Poors Goldman Sachs Commodity excess return subindices: crude oil (OIL), heating oil (HOL),
unleaded gasoline (GAS), gold (GLD), silver (SLV), copper (CPP), wheat (WHT), and corn (CRN). Mean, Std, Skew,
and Kurt denote the mean, standard deviation, skewness, and kurtosis for the different commodity futures indices. JB is
the test statistic of the Jarque-Bera test for normality of the unconditional distribution of the returns. The correlations
report Pearson’s linear unconditional sample correlations between the weekly returns over the full sample period. LMC(k)
is the statistic of Leybourne and McCabe’s (1999) test assessing the null hypothesis of a trend stationary AR(k) process
against the alternative of a nonstationary ARIMA(k,1,1) process. ADF(k) is the statistic of the augmented Dickey-Fuller
(1979) test for a unit root against a trend-stationary alternative augmented with k lagged difference terms. LBQ(k) is the
statistic of the Ljung-Box (1978) portmanteau Q-test assessing the null hypothesis of no autocorrelation in the squared
(mean-subtracted) residuals at k lags. ELM(k) is Engle’s (1982) Lagrange multiplier statistic for heteroscedasticity obtained
by regressing the squared returns on k lags. Significance is denoted by superscripts at the 1% (a), 5% (b) and 10% (c)
levels.
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Table 2: Static Copula Parameters

Copula Clayton Frank Gaussian Student-t FC Mix GC Mix TC Mix
OIL:HOL 0.875 (0.010) 0.879 (0.010) 0.892 (0.010) 0.887 (0.011)
OIL:GAS 0.846 (0.014) 0.852 (0.013) 0.866 (0.013) 0.864 (0.014)
OIL:GLD 0.222 (0.038) 0.231 (0.037) 0.236 (0.038) 0.231 (0.039)
OIL:SLV 0.214 (0.036) 0.224 (0.038) 0.234 (0.038) 0.231 (0.039)
OIL:CPP 0.207 (0.043) 0.208 (0.044) 0.210 (0.045) 0.208 (0.045)
OIL:WHT 0.082 (0.031) 0.088 (0.032) 0.080 (0.034) 0.086 (0.033)
OIL:CRN 0.120 (0.031) 0.122 (0.032) 0.115 (0.034) 0.119 (0.033)
HOL:GAS 0.817 (0.015) 0.822 (0.015) 0.837 (0.015) 0.831 (0.016)
HOL:GLD 0.209 (0.036) 0.213 (0.035) 0.215 (0.038) 0.213 (0.037)
HOL:SLV 0.200 (0.037) 0.206 (0.037) 0.212 (0.038) 0.212 (0.038)
HOL:CPP 0.196 (0.042) 0.191 (0.044) 0.197 (0.044) 0.191 (0.044)
HOL:WHT 0.101 (0.030) 0.111 (0.030) 0.107 (0.032) 0.111 (0.031)
HOL:CRN 0.126 (0.033) 0.127 (0.033) 0.121 (0.035) 0.124 (0.034)
GAS:GLD 0.167 (0.037) 0.175 (0.036) 0.186 (0.038) 0.178 (0.038)
GAS:SLV 0.172 (0.036) 0.183 (0.037) 0.194 (0.038) 0.190 (0.038)
GAS:CPP 0.190 (0.039) 0.191 (0.040) 0.199 (0.041) 0.193 (0.041)
GAS:WHT 0.085 (0.029) 0.091 (0.031) 0.087 (0.032) 0.091 (0.031)
GAS:CRN 0.109 (0.032) 0.111 (0.032) 0.108 (0.034) 0.110 (0.033)
GLD:SLV 0.728 (0.022) 0.739 (0.020) 0.763 (0.020) 0.755 (0.021)
GLD:CPP 0.251 (0.035) 0.266 (0.035) 0.267 (0.039) 0.271 (0.037)
GLD:WHT 0.127 (0.032) 0.133 (0.033) 0.136 (0.033) 0.134 (0.033)
GLD:CRN 0.164 (0.033) 0.169 (0.034) 0.169 (0.036) 0.171 (0.034)
SLV:CPP 0.287 (0.033) 0.297 (0.033) 0.305 (0.037) 0.305 (0.035)
SLV:WHT 0.141 (0.032) 0.143 (0.033) 0.145 (0.034) 0.144 (0.034)
SLV:CRN 0.171 (0.035) 0.172 (0.035) 0.173 (0.037) 0.175 (0.036)
CPP:WHT 0.133 (0.035) 0.136 (0.037) 0.135 (0.038) 0.134 (0.037)
CPP:CRN 0.127 (0.041) 0.132 (0.041) 0.131 (0.043) 0.132 (0.042)
WHT:CRN 0.598 (0.026) 0.599 (0.025) 0.618 (0.027) 0.606 (0.026)
ν 16.804 (1.804) 18.579 (2.556)
θF 1.565 (0.143) 0.632 (1.745)
θC 0.321 (0.029) 0.548 (0.133) 0.163 (0.091) 0.303 (0.215)
wC 0.598 (0.069) 0.043 (0.013) 0.027 (0.012)
logL 717 661 2747 2815 788 2785 2824
AIC -1432 -1319 -5439 -5574 -1570 -5510 -5586
BIC -1427 -1314 -5294 -5423 -1555 -5355 -5426

This table shows the estimates of the static copulas with standard errors in parentheses. The mixture copulas are abbrevi-
ated: Frank-Clayton mixture (FC Mix), Gaussian-Clayton mixture (GC Mix) and Student-t-Clayton mixture (TC Mix). ν,
θF , θC , and wC denote the degrees of freedom parameter of the Student-t copula, the Frank and Clayton copula parameter,
as well as the weight of the Clayton copula in the mixture, respectively.
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Table 3: Regime Switching Copula Parameters

Copula G/G G/T T/T T/GC G/TC G/T/C G/C/F
Regime 1

OIL:HOL 0.797 (0.071) 0.819 (0.059) 0.946 (0.070) 0.782 (0.054) 0.936 (0.030) 0.942 (0.034) 0.894 (0.010)
OIL:GAS 0.751 (0.095) 0.771 (0.082) 0.924 (0.077) 0.763 (0.062) 0.910 (0.040) 0.923 (0.039) 0.867 (0.014)
OIL:GLD 0.102 (0.153) 0.093 (0.113) 0.301 (0.114) 0.163 (0.126) 0.284 (0.083) 0.272 (0.093) 0.234 (0.038)
OIL:SLV 0.090 (0.138) 0.030 (0.100) 0.332 (0.112) 0.187 (0.117) 0.247 (0.081) 0.252 (0.086) 0.231 (0.038)
OIL:CPP 0.143 (0.114) 0.093 (0.103) 0.217 (0.112) 0.242 (0.129) 0.156 (0.090) 0.153 (0.092) 0.208 (0.045)
OIL:WHT 0.060 (0.069) 0.025 (0.064) 0.083 (0.072) 0.153 (0.085) 0.055 (0.060) 0.039 (0.057) 0.097 (0.034)
OIL:CRN 0.104 (0.062) 0.050 (0.058) 0.095 (0.065) 0.160 (0.073) 0.047 (0.056) 0.034 (0.054) 0.111 (0.034)
HOL:GAS 0.725 (0.092) 0.746 (0.076) 0.886 (0.076) 0.729 (0.065) 0.878 (0.039) 0.887 (0.042) 0.842 (0.015)
HOL:GLD 0.108 (0.139) 0.093 (0.101) 0.269 (0.107) 0.162 (0.108) 0.260 (0.076) 0.263 (0.082) 0.210 (0.039)
HOL:SLV 0.079 (0.131) 0.028 (0.092) 0.310 (0.109) 0.169 (0.106) 0.227 (0.077) 0.226 (0.081) 0.207 (0.039)
HOL:CPP 0.149 (0.107) 0.090 (0.102) 0.203 (0.120) 0.215 (0.122) 0.143 (0.095) 0.146 (0.096) 0.196 (0.045)
HOL:WHT 0.082 (0.070) 0.043 (0.067) 0.083 (0.070) 0.216 (0.083) 0.064 (0.059) 0.045 (0.059) 0.125 (0.033)
HOL:CRN 0.107 (0.060) 0.053 (0.058) 0.086 (0.063) 0.168 (0.072) 0.051 (0.056) 0.038 (0.055) 0.117 (0.036)
GAS:GLD 0.056 (0.140) 0.065 (0.113) 0.239 (0.111) 0.084 (0.112) 0.245 (0.075) 0.238 (0.080) 0.186 (0.038)
GAS:SLV 0.051 (0.138) 0.020 (0.106) 0.294 (0.120) 0.099 (0.120) 0.241 (0.072) 0.245 (0.077) 0.192 (0.039)
GAS:CPP 0.124 (0.114) 0.091 (0.104) 0.197 (0.119) 0.192 (0.118) 0.169 (0.088) 0.156 (0.087) 0.196 (0.042)
GAS:WHT 0.081 (0.072) 0.029 (0.070) 0.056 (0.073) 0.184 (0.087) 0.045 (0.061) 0.027 (0.057) 0.101 (0.033)
GAS:CRN 0.094 (0.064) 0.040 (0.063) 0.082 (0.066) 0.150 (0.079) 0.034 (0.052) 0.014 (0.052) 0.103 (0.035)
GLD:SLV 0.612 (0.103) 0.663 (0.082) 0.688 (0.068) 0.820 (0.061) 0.692 (0.046) 0.696 (0.042) 0.765 (0.020)
GLD:CPP 0.091 (0.182) 0.145 (0.111) 0.210 (0.112) 0.301 (0.125) 0.237 (0.087) 0.243 (0.092) 0.270 (0.039)
GLD:WHT 0.093 (0.086) 0.081 (0.097) 0.097 (0.092) 0.178 (0.103) 0.085 (0.077) 0.069 (0.075) 0.136 (0.034)
GLD:CRN 0.089 (0.098) 0.081 (0.084) 0.143 (0.068) 0.254 (0.083) 0.102 (0.073) 0.123 (0.070) 0.170 (0.037)
SLV:CPP 0.125 (0.168) 0.161 (0.107) 0.227 (0.100) 0.344 (0.116) 0.244 (0.082) 0.279 (0.086) 0.306 (0.036)
SLV:WHT 0.127 (0.083) 0.110 (0.101) 0.104 (0.091) 0.187 (0.096) 0.097 (0.082) 0.081 (0.077) 0.143 (0.036)
SLV:CRN 0.119 (0.095) 0.096 (0.096) 0.152 (0.075) 0.261 (0.086) 0.105 (0.071) 0.136 (0.071) 0.175 (0.038)
CPP:WHT 0.153 (0.081) 0.092 (0.086) 0.161 (0.082) 0.210 (0.097) 0.095 (0.075) 0.082 (0.074) 0.151 (0.039)
CPP:CRN 0.057 (0.110) 0.030 (0.094) 0.162 (0.091) 0.181 (0.114) 0.069 (0.085) 0.091 (0.087) 0.129 (0.043)
WHT:CRN 0.649 (0.123) 0.675 (0.111) 0.480 (0.130) 0.728 (0.089) 0.515 (0.071) 0.483 (0.070) 0.620 (0.026)
ν1 10.304 (1.135) 9.729 (1.060)

Continued on next page

This table shows regime-switching copula parameters with standard errors in parentheses. The copulas are abbreviated
as follows: Frank (F), Clayton (C), Gaussian (G), Student-t (T), Gaussian-Clayton mixture (GC) and Student-t-Clayton
mixture (TC). ν1, ν2 are the degrees of freedom parameters of the Student-t copula in the two regimes and wC denotes the
weight of the Clayton copula in the mixture. The forward slash indicates the separate regimes i.e. G/T/C and G/C/F are
three-state models. pi|i denotes the probability of staying in regime i.
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Table 3 continued
Regime 2

OIL:HOL 0.946 (0.073) 0.945 (0.062) 0.788 (0.070) 0.942 (0.049) 0.778 (0.065) 0.768 (0.061)
OIL:GAS 0.935 (0.098) 0.939 (0.069) 0.761 (0.078) 0.918 (0.050) 0.765 (0.074) 0.741 (0.067)
OIL:GLD 0.365 (0.149) 0.380 (0.110) 0.091 (0.100) 0.243 (0.117) 0.120 (0.135) 0.165 (0.140)
OIL:SLV 0.359 (0.134) 0.416 (0.100) 0.057 (0.103) 0.226 (0.105) 0.173 (0.131) 0.209 (0.128)
OIL:CPP 0.269 (0.124) 0.324 (0.115) 0.190 (0.096) 0.147 (0.104) 0.266 (0.148) 0.252 (0.148)
OIL:WHT 0.140 (0.074) 0.145 (0.079) 0.023 (0.061) 0.046 (0.072) 0.151 (0.110) 0.148 (0.102)
OIL:CRN 0.138 (0.063) 0.177 (0.071) 0.064 (0.054) 0.049 (0.064) 0.192 (0.090) 0.145 (0.083)
HOL:GAS 0.904 (0.096) 0.907 (0.071) 0.718 (0.079) 0.890 (0.056) 0.733 (0.075) 0.732 (0.073)
HOL:GLD 0.335 (0.131) 0.349 (0.096) 0.106 (0.092) 0.224 (0.104) 0.119 (0.110) 0.174 (0.118)
HOL:SLV 0.338 (0.122) 0.388 (0.091) 0.066 (0.100) 0.216 (0.099) 0.182 (0.115) 0.231 (0.113)
HOL:CPP 0.242 (0.114) 0.297 (0.112) 0.151 (0.103) 0.131 (0.106) 0.236 (0.144) 0.234 (0.140)
HOL:WHT 0.159 (0.075) 0.162 (0.076) 0.068 (0.060) 0.051 (0.072) 0.204 (0.106) 0.224 (0.100)
HOL:CRN 0.143 (0.060) 0.178 (0.070) 0.088 (0.051) 0.052 (0.062) 0.200 (0.087) 0.167 (0.080)
GAS:GLD 0.297 (0.134) 0.299 (0.107) 0.044 (0.097) 0.211 (0.105) 0.050 (0.113) 0.081 (0.115)
GAS:SLV 0.306 (0.135) 0.349 (0.112) 0.012 (0.114) 0.219 (0.096) 0.093 (0.129) 0.111 (0.128)
GAS:CPP 0.253 (0.121) 0.294 (0.115) 0.152 (0.101) 0.153 (0.100) 0.191 (0.141) 0.180 (0.137)
GAS:WHT 0.116 (0.079) 0.135 (0.082) 0.070 (0.060) 0.036 (0.073) 0.180 (0.106) 0.181 (0.098)
GAS:CRN 0.120 (0.061) 0.159 (0.076) 0.074 (0.052) 0.037 (0.062) 0.192 (0.090) 0.160 (0.086)
GLD:SLV 0.840 (0.104) 0.823 (0.070) 0.796 (0.066) 0.700 (0.058) 0.826 (0.062) 0.832 (0.055)
GLD:CPP 0.403 (0.184) 0.382 (0.121) 0.247 (0.094) 0.221 (0.115) 0.314 (0.144) 0.311 (0.146)
GLD:WHT 0.185 (0.094) 0.168 (0.097) 0.110 (0.090) 0.079 (0.100) 0.220 (0.119) 0.219 (0.119)
GLD:CRN 0.257 (0.097) 0.247 (0.066) 0.146 (0.068) 0.094 (0.085) 0.245 (0.100) 0.212 (0.091)
SLV:CPP 0.436 (0.167) 0.434 (0.108) 0.279 (0.090) 0.254 (0.110) 0.400 (0.129) 0.324 (0.130)
SLV:WHT 0.179 (0.084) 0.158 (0.095) 0.138 (0.086) 0.090 (0.100) 0.242 (0.125) 0.222 (0.118)
SLV:CRN 0.241 (0.088) 0.243 (0.075) 0.157 (0.070) 0.096 (0.090) 0.265 (0.106) 0.229 (0.098)
CPP:WHT 0.167 (0.080) 0.166 (0.094) 0.061 (0.073) 0.082 (0.092) 0.228 (0.118) 0.186 (0.117)
CPP:CRN 0.205 (0.104) 0.216 (0.106) 0.032 (0.077) 0.072 (0.104) 0.198 (0.139) 0.155 (0.135)
WHT:CRN 0.564 (0.123) 0.539 (0.089) 0.667 (0.123) 0.506 (0.106) 0.735 (0.083) 0.763 (0.085)
ν2 9.557 (0.954) 9.132 (1.153) 8.132 (1.063) 9.527 (0.848)
θC 0.572 (0.295) 0.317 (0.295) 0.309 (0.239) 0.304 (0.579)
θF 0.506 (0.647)
wC 0.027 (0.020) 0.046 (0.038)
p1|1 0.738 (0.087) 0.825 (0.110) 0.876 (0.082) 0.893 (0.142) 0.900 (0.074) 0.860 (0.074) 0.959 (0.012)
p2|2 0.764 (0.088) 0.785 (0.132) 0.878 (0.072) 0.922 (0.105) 0.867 (0.149) 0.794 (0.159) 0.000 (0.200)
p3|3 0.205 (0.073) 0.176 (0.158)

logL 2880 2883 2879 2904 2899 2892 2789
AIC -5644 -5648 -5638 -5686 -5676 -5662 -5512
BIC -5344 -5343 -5328 -5371 -5361 -5347 -5341

E(DR1
) 4 6 8 9 10 7 24

E(DR2 ) 4 5 8 13 8 5 1
E(DR3

) 1 1

This table shows regime-switching copula parameters with standard errors in parentheses and the expected regime durations
(in weeks) under the regime switching models. The expected duration of the high dependence regime is marked in bold.
The copulas are abbreviated as follows: Clayton (C), Gaussian (G), Student-t (T), Gaussian-Clayton mixture (GC) and
Student-t-Clayton mixture (TC). ν1, ν2 are the degrees of freedom parameters of the Student-t copula in the two regimes
and wC denotes the weight of the Clayton copula in the mixture. The forward slash indicates the separate regimes. pi|i
denotes the probability of staying in regime i.
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Table 4: Estimation Results of Multivariate Dynamic Copula Models

Copula DC DF DG DT DFC DGC DTC
α 0.019 0.019 0.019 0.020

(0.005) (0.005) (0.006) (0.005)
β 0.948 0.951 0.947 0.951

(0.051) (0.045) (0.056) (0.048)
αC -0.542 -0.659 -2.221 -2.032

(0.295) (0.661) (3.089) (3.364)
βC -0.385 -8.581 2.691 1.737

(1.073) (4.964) (3.830) (3.859)
ωC -0.987 -0.411 2.212 0.519

(0.516) (1.103) (4.643) (4.618)
αF -0.078 -0.054

(0.862) (1.987)
βF 0.981 0.850

(0.848) (0.530)
ωF 0.143 0.965

(0.273) (0.227)
αW -2.746 6.081 0.321

(22.250) (7.048) (30.436)
βW -1.024 0.415 -3.036

(1.678) (14.788) (31.267)
ωW -0.891 4.464 7.926

(1.497) (14.443) (28.447)
ς -0.862 -1.748

(0.432) (0.412)
ϕ 0.162 0.153

(0.278) (0.264)
logL 737 686 2856 2910 889 2853 2907
AIC -1468 -1365 -5708 -5811 -1759 -5689 -5795
BIC -1452 -1350 -5698 -5791 -1713 -5648 -5743

This table shows the parameters of dynamic copula parameters. Standard errors are listed in parentheses. The prefixed D
stands for ’dynamic’ and the copula models are abbreviated as follows: Frank (F), Clayton (C), Gaussian (G), Student-t
(T), Frank-Clayton mixture (FC), Gaussian-Clayton mixture (GC), and Student-t-Clayton mixture (TC). The subscript
W indicates the parameters of the dynamic mixture weight process. ς and ϕ are the parameters of the dynamic Student-t
copula’s degrees of freedom process.
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Table 5: In-Sample Model Fit Ranking

1. 2. 3. 4. 5.
AIC DT DTC DG DGC T/GC
BIC DT DTC DG DGC TC

This table presents the top in-sample model fit rankings for the static, regime-switching, and dynamic copulas according
to the Akaike (AIC) and the Bayesian (BIC) information criteria. The copulas are abbreviated as follows: Gaussian
(G), Student-t (T), Clayton (C), Gaussian-Clayton mixture (GC) and Student-t-Clayton mixture (TC). The forward slash
indicates the separation of the regimes in the Markov switching models while the prefixed D denotes dynamic copula models.
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Table 6: Static Models Backtest Results

α Benchmark F C G T FC GC TC

Hit Ratio 99% 0.037 0.056 0.018 0.037 0.029 0.099 0.100 0.097
95% 0.078 0.100 0.077 0.078 0.078 0.172 0.172 0.164
90% 0.122 0.144 0.141 0.127 0.122 0.227 0.233 0.228

ES Ratio 99% 0.902 0.847 1.025 0.989 0.956 0.794 0.793 0.803
95% 0.918 0.839 1.044 0.935 0.964 0.804 0.800 0.787
90% 0.943 0.857 1.060 0.975 0.973 0.807 0.825 0.819

Traffic Light Red Red Yellow Red Yellow Red Red Red
Ind. Cov. 99% 2.567 2.281 5.264 2.567 4.780 1.792 3.698 3.200

(0.109) (0.131) (0.022) (0.109) (0.029) (0.181) (0.054) (0.074)
95% 3.806 2.605 1.369 2.328 2.197 3.049 2.269 3.269

(0.051) (0.107) (0.242) (0.127) (0.138) (0.081) (0.132) (0.071)
90% 3.131 5.009 4.625 2.950 4.298 0.042 0.547 0.100

(0.077) (0.025) (0.032) (0.086) (0.038) (0.837) (0.460) (0.752)
Unc. Cov. 99% 34.351 81.570 4.028 34.351 19.644 220.606 225.388 215.854

(0.000) (0.000) (0.045) (0.000) (0.000) (0.000) (0.000) (0.000)
95% 11.232 32.221 10.295 11.232 11.232 153.523 153.523 137.393

(0.001) (0.000) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)
90% 3.877 14.715 13.111 5.840 3.877 106.751 116.647 108.701

(0.049) (0.000) (0.000) (0.016) (0.049) (0.000) (0.000) (0.000)
Joint Test 99% 36.918 83.851 9.292 36.918 24.424 222.399 229.086 219.053

(0.000) (0.000) (0.010) (0.000) (0.000) (0.000) (0.000) (0.000)
95% 15.038 34.826 11.664 13.559 13.429 156.572 155.792 140.662

(0.001) (0.000) (0.003) (0.001) (0.001) (0.000) (0.000) (0.000)
90% 7.008 19.724 17.736 8.790 8.175 106.793 117.193 108.801

(0.030) (0.000) (0.000) (0.012) (0.017) (0.000) (0.000) (0.000)
χ2-Test 42.118 78.975 36.276 54.768 53.183 64.295 72.233 65.630

(0.088) (0.000) (0.363) (0.005) (0.008) (0.015) (0.003) (0.011)
AD Test 5.441 14.708 17.319 5.859 5.605 118.621 123.705 118.060

(0.002) (0.000) (0.000) (0.001) (0.001) (0.000) (0.000) (0.000)
KS Test 0.056 0.065 0.079 0.061 0.063 0.175 0.174 0.175

(0.014) (0.002) (0.000) (0.006) (0.004) (0.000) (0.000) (0.000)
Lower Tail 97.262 259.651 4.548 66.008 52.095 474.543 518.550 427.286

(0.000) (0.000) (0.208) (0.000) (0.000) (0.000) (0.000) (0.000)

This table reports the backtest evaluation results for the static copula models. The copula models are abbreviated as follows:
Benchmark model, Frank (F), Clayton (C), Gaussian (G), Student-t (T), Frank-Clayton mixture (FC), Gaussian-Clayton
mixture (GC), and Student-t-Clayton mixture (TC). α denotes the confidence level of VaR(α). The hit ratio reflects the
percentage of times when the portfolio return exceeds VaR(α). ES ratio shows whether the mean of the returns, when
VaR(α) is violated, corresponds to the average expected shortfall in these weeks. The traffic light is the model classification
of the Basel regulatory framework. The mid and lower panel lists test statistics and p-values (in parentheses) for multiple
backtesting evaluation tests. Independence (unconditional) coverage is abbreviated with Ind. Cov. (Unc. Cov.). Joint
Test is the joint test for conditional coverage. The lower panel reports the test statistics with p-values in parentheses of
density forecast evaluation tests. χ2-Test is Pearson’s χ2-test with 10 evenly spaced bins. AD and KS are the tests of
Anderson-Darling and Kolmogorov-Smirnov. Lower Tail is the test of Christoffersen (2012) assessing the models’ ability to
forecast the entire lower tail (losses below the 10%-quantile) of the P&L distribution.
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Table 7: Regime-Switching Models Out-of-Sample Backtest Results

α G/G G/T T/T T/GC G/TC G/T/C G/C/F
Hit Ratio 99% 0.029 0.036 0.031 0.082 0.053 0.094 0.095

95% 0.077 0.078 0.078 0.141 0.092 0.164 0.168
90% 0.114 0.115 0.126 0.195 0.145 0.232 0.231

ES Ratio 99% 0.922 0.927 0.973 0.832 0.840 0.766 0.787
95% 0.930 0.940 0.954 0.799 0.836 0.779 0.797
90% 0.929 0.928 0.975 0.826 0.905 0.823 0.822

Traffic Light Yellow Red Yellow Red Red Red Red
Ind. Cov. 99% 4.780 5.754 4.343 2.845 3.157 1.597 1.492

(0.029) (0.016) (0.037) (0.092) (0.076) (0.206) (0.222)
95% 2.600 2.328 2.328 2.569 3.140 3.269 2.359

(0.107) (0.127) (0.127) (0.109) (0.076) (0.071) (0.125)
90% 3.959 3.613 1.442 1.047 3.534 0.190 0.109

(0.047) (0.057) (0.230) (0.306) (0.060) (0.663) (0.741)
Unc. Cov. 99% 19.644 31.706 21.891 161.202 71.123 201.772 206.436

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
95% 10.295 11.232 11.232 93.153 23.779 137.393 145.375

(0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000)
90% 1.656 1.964 5.314 62.910 15.548 114.639 112.645

(0.198) (0.161) (0.021) (0.000) (0.000) (0.000) (0.000)
Joint Test 99% 24.424 37.460 26.234 164.047 74.280 203.369 207.928

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
95% 12.894 13.559 13.559 95.723 26.919 140.662 147.734

(0.002) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000)
90% 5.615 5.578 6.756 63.958 19.082 114.829 112.754

(0.060) (0.061) (0.034) (0.000) (0.000) (0.000) (0.000)
χ2-Test 33.755 49.988 34.938 44.981 58.597 84.563 91.784

(0.383) (0.029) (0.286) (0.271) (0.010) (0.000) (0.000)
AD Test 4.773 5.478 6.287 82.530 15.924 121.344 121.996

(0.004) (0.002) (0.001) (0.000) (0.000) (0.000) (0.000)
KS Test 0.058 0.057 0.066 0.142 0.074 0.179 0.177

(0.010) (0.012) (0.002) (0.000) (0.000) (0.000) (0.000)
Lower Tail 65.859 60.530 35.474 344.719 212.651 562.397 519.691

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

This table reports the backtest evaluation results for the regime-switching copula models. The copula models are abbreviated
with Gaussian (G), Student-t (T), Frank (F), Clayton (C), Gaussian-Clayton mixture (GC), and Student-t-Clayton mixture
(TC). G/T/C and G/C/F are three-regime models. α denotes the confidence level of VaR(α). The hit ratio reflects the
percentage of times when the portfolio return exceeds VaR(α). ES ratio shows whether the mean of the returns, when
VaR(α) is violated, corresponds to the average expected shortfall in these weeks. The traffic light is the model classification
of the Basel regulatory framework. The mid and lower panel lists test statistics and p-values (in parentheses) for multiple
backtesting evaluation tests. Independence (unconditional) coverage is abbreviated with Ind. Cov. (Unc. Cov.). Joint
Test is the joint test for conditional coverage. The lower panel reports the test statistics with p-values in parentheses of
density forecast evaluation tests. χ2-Test is Pearson’s χ2-test with 10 evenly spaced bins. AD and KS are the tests of
Anderson-Darling and Kolmogorov-Smirnov. Lower Tail is the test of Christoffersen (2012) assessing the models’ ability to
forecast the entire lower tail (losses below the 10%-quantile) of the P&L distribution.
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Table 8: Dynamic Models Out-of-Sample Backtest Results

α DF DC DG DT DFC DGC DTC
Hit Ratio 99% 0.053 0.018 0.029 0.024 0.033 0.026 0.026

95% 0.104 0.078 0.079 0.072 0.082 0.074 0.078
90% 0.136 0.135 0.122 0.118 0.138 0.119 0.122

ES Ratio 99% 0.839 1.065 0.972 0.954 0.953 0.950 0.983
95% 0.863 1.049 0.965 0.939 0.942 1.072 0.975
90% 0.851 1.052 0.974 0.960 0.981 1.011 0.984

Traffic Light Red Yellow Yellow Yellow Yellow Yellow Yellow
Ind. Cov. 99% 3.157 5.264 4.780 6.870 3.557 2.702 6.290

(0.076) (0.022) (0.029) (0.009) (0.059) (0.100) (0.012)
95% 1.835 0.395 3.305 3.687 1.609 3.039 2.328

(0.176) (0.530) (0.069) (0.055) (0.205) (0.081) (0.127)
90% 1.941 4.201 2.136 1.982 2.253 2.677 2.136

(0.164) (0.040) (0.144) (0.159) (0.133) (0.102) (0.144)
Unc. Cov. 99% 71.123 4.028 19.644 11.595 26.639 13.458 13.458

(0.000) (0.045) (0.000) (0.001) (0.000) (0.000) (0.000)
95% 36.831 11.232 12.204 6.914 14.254 8.530 11.232

(0.000) (0.001) (0.000) (0.009) (0.000) (0.003) (0.001)
90% 10.159 9.475 3.877 2.656 11.592 3.038 3.877

(0.001) (0.002) (0.049) (0.103) (0.001) (0.081) (0.049)
Joint Test 99% 74.280 9.292 24.424 18.465 30.196 16.160 19.748

(0.000) (0.010) (0.000) (0.000) (0.000) (0.000) (0.000)
95% 38.666 11.627 15.509 10.600 15.863 11.569 13.559

(0.000) (0.003) (0.000) (0.005) (0.000) (0.003) (0.001)
90% 12.099 13.676 6.013 4.638 13.845 5.716 6.013

(0.002) (0.001) (0.049) (0.098) (0.001) (0.057) (0.049)
χ2-Test 71.852 65.422 38.637 38.480 42.313 44.958 31.116

(0.000) (0.002) (0.163) (0.200) (0.128) (0.064) (0.410)
AD Test 13.972 15.284 4.910 4.745 14.748 4.108 4.801

(0.000) (0.000) (0.003) (0.004) (0.000) (0.008) (0.004)
KS Test 0.063 0.079 0.058 0.059 0.087 0.057 0.060

(0.004) (0.000) (0.009) (0.008) (0.000) (0.013) (0.007)
Lower Tail 302.755 2.295 41.068 36.010 57.616 37.133 21.853

(0.000) (0.513) (0.000) (0.000) (0.000) (0.000) (0.000)

This table reports the backtest evaluation results for the dynamic copula models. The models are abbreviated as follows:
Dynamic (D), Frank (F), Clayton (C), Gaussian (G), Student-t (T), Frank-Clayton mixture (FC), Gaussian-Clayton mixture
(GC), and Student-t-Clayton mixture (TC). α denotes the confidence level of VaR(α). The hit ratio reflects the percentage
of times when the portfolio return exceeds VaR(α). ES ratio shows whether the mean of the returns, when VaR(α) is
violated, corresponds to the average expected shortfall in these weeks. The traffic light is the model classification of
the Basel regulatory framework. The mid and lower panel lists test statistics and p-values (in parentheses) for multiple
backtesting evaluation tests. Independence (unconditional) coverage is abbreviated with Ind. Cov. (Unc. Cov.). Joint
Test is the joint test for conditional coverage. The lower panel reports the test statistics with p-values in parentheses of
density forecast evaluation tests. χ2-Test is Pearson’s χ2-test with 10 evenly spaced bins. AD and KS are the tests of
Anderson-Darling and Kolmogorov-Smirnov. Lower Tail is the test of Christoffersen (2012) assessing the models’ ability to
forecast the entire lower tail (losses below the 10%-quantile) of the P&L distribution.
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Table 9: Financial Crisis Out-of-sample Backtest Results (for α = 99%)

Static F C G T FC GC TC

Hit Ratio 0.086 0.024 0.072 0.062 0.120 0.124 0.115
ES Ratio 0.807 1.050 1.010 0.978 0.702 0.723 0.716
Traffic Light Red Yellow Red Red Red Red Red
Ind. Cov. 3.459 9.187 2.859 4.326 0.509 0.299 0.779

(0.063) (0.002) (0.091) (0.038) (0.475) (0.584) (0.377)
Unc. Cov. 46.951 2.944 34.129 26.288 80.901 86.145 75.749

(0.000) (0.086) (0.000) (0.000) (0.000) (0.000) (0.000)
Joint Test 50.410 12.131 36.989 30.614 81.411 86.444 76.528

(0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000)
Lower Tail 162.158 5.792 39.675 32.527 221.283 215.249 196.192

(0.000) (0.122) (0.000) (0.000) (0.000) (0.000) (0.000)

Regime-Switching G/G G/T T/T T/GC G/TC G/T/C G/C/F

Hit Ratio 0.053 0.072 0.067 0.120 0.115 0.086 0.095
ES Ratio 0.956 0.952 1.015 0.713 0.677 0.928 0.787
Traffic Light Red Red Red Red Red Red Red
Ind. Cov. 6.258 5.992 3.542 0.509 0.779 3.459 1.492

(0.012) (0.014) (0.060) (0.475) (0.377) (0.063) (0.222)
Unc. Cov. 19.105 34.129 30.132 80.901 75.749 46.951 206.436

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Joint Test 25.363 40.122 33.674 81.411 76.528 50.410 207.928

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Lower Tail 41.192 49.911 26.440 254.503 259.490 61.174 519.691

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Dynamic DF DC DG DT DFC DGC DTC

Hit Ratio 0.081 0.029 0.053 0.048 0.062 0.038 0.043
ES Ratio 0.798 1.144 1.002 1.009 0.993 0.986 1.035
Traffic Light Red Yellow Red Red Red Yellow Yellow
Ind. Cov. 4.203 7.440 6.258 7.451 4.770 4.924 8.837

(0.040) (0.006) (0.012) (0.006) (0.029) (0.026) (0.003)
Unc. Cov. 42.547 4.910 19.105 15.795 26.288 9.827 12.694

(0.000) (0.027) (0.000) (0.000) (0.000) (0.002) (0.000)
Joint Test 46.750 12.350 25.363 23.245 31.058 14.750 21.532

(0.000) (0.002) (0.000) (0.000) (0.000) (0.001) (0.000)
Lower Tail 176.480 5.981 28.031 20.838 63.014 13.762 18.770

(0.000) (0.113) (0.000) (0.000) (0.000) (0.003) (0.000)

This table reports the backtest evaluation results for the forecasting period from January 2007 until January 2011 for all
copula models. The copula models are abbreviated as follows: Gaussian (G), Student-t (T), Frank (F), Clayton (C), Frank-
Clayton mixture (FC), Gaussian-Clayton mixture (GC), and Student-t-Clayton mixture (TC). The prefixed D denotes
dynamic copulas. The confidence level of VaR is α = 99%. The hit ratio reflects the percentage of times when the portfolio
return exceeds VaR(α). ES ratio shows whether the mean of the returns, when VaR(α) is violated, corresponds to the
average expected shortfall in these weeks. The traffic light is the model classification of the Basel regulatory framework.
Independence (unconditional) coverage is abbreviated with Ind. Cov. (Unc. Cov.). Joint Test is the test for conditional
coverage. Lower Tail is the test of Christoffersen (2012) assessing the models’ ability to forecast the lowest decile of the
P&L distribution. P-values are given in parentheses.
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Table 10: Out-of-sample Forecast Accuracy Ranking

1. 2. 3. 4. 5.

Financial Crisis C DC DGC DTC DG
Overall C DC DT DTC DGC

This table presents the top rankings of the out-of-sample VaR(99%) forecast accuracy for the static, regime-switching, and
dynamic copulas. The rankings for models with identical hit ratios are determined by the accuracy of their ES ratio. The
upper panel refers to the financial crisis out-of-sample performance (see Sub-section 5.3) while the lower panel refers to the
overall out-of-sample performance of the models (see Sub-section 5.2). The copulas are abbreviated as follows: Gaussian
(G), Student-t (T), Clayton (C), Frank-Clayton mixture (FC), Gaussian-Clayton mixture (GC) and Student-t-Clayton
mixture (TC). The prefixed D denotes dynamic copula models.
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Figure 1: Dependence Level and Lower Tail Dependence over Time
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This figure shows Kendall’s tau implied by the multivariate Frank copula (upper graph) and lower tail dependence implied
by the multivariate Clayton copula (lower graph) of the commodity portfolio over a six months rolling window along with
90% bootstrap confidence intervals obtained from 500 bootstrap replications of the data.
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Figure 2: Regime Probabilities
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This figure shows Kim filtered regime probabilities of the various regime-switching copula models over the entire sample
period. The copulas are abbreviated as follows: Gaussian (G), Student-t (T),Gaussian-Clayton mixture (GC), Student-t-
Clayton mixture (TC), Clayton (C) and Frank (F). The solid black line marks the high dependence regime.
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Figure 3: Hit Ratio Evolution during the 2007/08 Financial and European Debt Crisis

2008 2009 2010 2011 2012 2013

0.01

Green

0.03

Yellow

0.05

0.07

 

 

C

G

T

RSGG

RSGT

RSTT

DC

DG

DT

DGC

The plot shows the evolution of the hit ratios of several copula models starting from the outbreak of the financial crisis.
Depicted are the hit ratios at the 99% level over a rolling window of 250 returns of all those models which classified as
“Green” by the Basel II framework at the beginning of 2008. Hit ratios below the dotted line labeled “Green” respectively
“Yellow” are classified accordingly by the Basel regulatory framework. The models with ratios above the line “Yellow” are
categorized as “Red” according to the Basel traffic light approach.
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