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Abstract

Stochastic models for forward electricity prices are of great relevance nowadays,
given the major structural changes in the market due to the increase of renew-
able energy in the production mix. In this study, we derive a spatio-temporal
dynamical model based on the Heath-Jarrow-Morton (HJM) approach under the
Musiela parametrization, which ensures an arbitrage-free model for electricity for-
ward prices. The model is fitted to a unique data set of historical price forward
curves. As a particular feature of the model, we disentangle the temporal from
spatial (maturity) effects on the dynamics of forward prices, and shed light on the
statistical properties of risk premia, of the noise volatility term structure and of the
spatio-temporal noise correlation structures. We find that the short-term risk pre-
mia oscillates around zero, but becomes negative in the long run. We identify the
Samuelson effect in the volatility term structure and volatility bumps, explained by
market fundamentals. Furthermore we find evidence for coloured noise and corre-
lated residuals, which we model by a Hilbert space-valued normal inverse Gaussian
Lévy process with a suitable covariance functional.

JEL Classification: C02, C13, C23
Keywords: spatio-temporal models, price forward curves, term structure volatility, risk
premia, electricity markets

∗Department of Mathematics, University of Oslo, PO Box 1053 Blindern, N-0316 Oslo, Norway,
fredb@math.uio.no, Fax: +47 22 85 43 49.
†*Corresponding author: Florentina Paraschiv, NTNU Business School, Norwegian University of Sci-

ence and Technology, 7491 Trondheim, florentina.paraschiv@ntnu.no and University of St. Gallen, Insti-
tute for Operations Research and Computational Finance, Bodanstrasse 6, CH-9000 St. Gallen, Switzer-
land



1 Introduction1

There exist two main approaches for modelling forward prices in commodity and en-2

ergy markets. The classical way goes by specifying a stochastic model for the spot3

price, and from this model derive the dynamics of forward prices based on no-arbitrage4

principles (see Lucia and Schwartz (2002), Cartea and Figueroa (2005), Roncoroni and5

Geman (2006), Benth, Kallsen, and Meyer-Brandis (2007), Garcia, Klüppelberg, and6

Müller (2011), Barndorff-Nielsen, Benth, and Veraart (2013), Weron and Zator (2014),7

and Benth, Klüppelberg, Müller, and Vos (2014)). The alternative is to follow the Heath–8

Jarrow–Morton approach and to specify the dynamics of the forward prices directly, as it9

has been done in Roncoroni and Guiotto (2001), Benth and Koekebakker (2008), Weron10

and Borak (2008) and Kiesel, Schindlmayr, and Boerger (2009). All these studies model11

the forward prices using multifactor models driven by Brownian motion. However, em-12

pirical findings in Koekebakker and Ollmar (2005), Frestad (2008) suggest that there is13

a substantial amount of variation in forward prices which cannot be explained by a few14

common factors. Furthermore, the models that directly specify the dynamics of forward15

contracts ignore the fact that the returns of forward prices in electricity markets are far16

from being Gaussian distributed and have possible stochastic volatility effects.17

The idea of modeling power forward prices with a random field model goes back to18

Audet, Heiskanen, Keppo, and Vehviläinen (2004), who studied theoretically a Gaussian19

model with certain mean-reversion characteristics. Their modelling framework is closely20

related to Kennedy (1994) and Goldstein (2000) who proposed random field models for21

the term structure of interest rates. Random-field models for forward prices in power22

markets have been explored statistically and mathematically by Andresen, Koekebakker,23

and Westgaard (2010). There the authors model electricity forwards returns for different24

times to maturity using a multivariate normal inverse Gaussian (NIG) distribution to25

capture the idiosyncratic risk and heavy tails behavior and conclude the superiority of26

this approach versus Gaussian-based multifactor models in terms of goodness of fit. Their27
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analysis seems to be based on the assumption that forward prices follow an exponential28

spatio-temporal stochastic process. When modeling forward prices evolving along time to29

maturity, the so-called Musiela parametrization, rather than time at maturity, one must30

be careful with how the time to maturity affects a price change. Indeed, in this so-called31

Musiela parametrization context of forward prices an additional drift term must be added32

to the dynamics to preserve arbitrage-freeness of the model. .33

In this paper we propose to model the forward price dynamics by a spatio-temporal34

random field based on the Heath-Jarrow-Morton (HJM) approach under the Musiela35

parametrization (see Heath, Jarrow, and Morton (1992)), which ensures an arbitrage-36

free dynamics. After discretizing the model in time and space, we can separate seasonal37

features in the risk premium and random perturbations of the prices, and apply this to38

obtain information of the statistical characteristics of the data. Our model formulation39

disentangles typical components of forward prices such as: the deterministic seasonality40

pattern and the stochastic component including the market price of risk and the noise.41

We show the importance of rigourously modeling each component in the context of an42

empirical application to electricity forward prices, in which a unique panel data set of43

2’386 hourly price forward curves is employed for the German electricity index PHELIX.44

The index is generated each day for a horizon of 6 years, ranging from 01/01/2009 until45

15/07/2015. Each day a new price forward curve (PFC) is generated based on the newest46

information from current futures prices observed at EPEX.147

The dynamics of price forward curves (PFCs) are modeled with respect to two48

dimensions: temporal and spatial (the space dimension here refers to time to maturity of49

the forward). In particular, the changes in the level of a PFC for one specific maturity50

point between consecutive days reflect two features:51

Firstly, as time passes, dynamics in time of on-going futures prices with a certain52

delivery period reflect changes in the market expectation. In particular, maturing futures53

1Electricity for delivery on the next day is traded at the European Power Exchange (EPEX SPOT) in
Paris.
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are replaced by new ones in the market.2 Changes in the market expectations reflect54

updates in weather forecasts, planned outages due to maintenance of power plants, en-55

ergy policy announcements or expected market structural changes. Germany adopted the56

Renewable Energy Act (EEG) in 2000, accordingly to which producers of renewable ener-57

gies (wind, photovoltaic etc.) receive a guaranteed compensation (technology dependent58

feed-in tariffs). Renewable energies are fed with priority into the grid, replacing thus in59

production other traditional fuels (oil, gas, coal). Given the difficulty of getting accurate60

weather forecasts, electricity demand/supply disequilibria became more frequent, which61

increased the volatility of electricity prices. Furthermore, it has been empirically shown62

that due to the low marginal production costs of wind and photovoltaic, the general level63

of electricity prices decreased over time (see Paraschiv, Erni, and Pietsch (2014)), which64

explains the shift in time of the general level of the analyzed PFCs.65

Secondly, as time passes, the time to maturity of one specific product decreases and66

maturing futures are replaced by new ones in the market. In the German electricity mar-67

ket, weekly, monthly, quarterly and yearly futures are traded. Given the small number of68

different exchange-traded futures, and thus different maturities, the stochastic component69

of the (deseasonalized) PFCs shows a typical step-wise pattern when depicted graphically.70

Indeed, the different futures prices are represented as vertical lines over their respective71

delivery periods, with the hight of the lines being the prices. Hence, the change in the72

level of the PFC over a time step is impacted through a change in the market expectations73

as well as a change in time to maturity. Both effects are displayed in Figure 1.74

Our proposed model is fitted to the generated PFCs. We first perform a deseason-75

alization of the initial curves, where the seasonal component takes into account typical76

patterns observed in electricity prices (see Paraschiv (2013) and Paraschiv, Fleten, and77

Schürle (2015)). The stochastic component of the deseasonalized forward curves will78

consist of a risk premium and residual noise, where the risk premium is assumed to be79

2In the German electricity market, weekly, monthly, quarterly or yearly futures are traded.
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Figure 1: The effect of time and maturity change on the dynamics of forward prices.

proportional to the deseasonalized forward price by a term structure of market prices of80

risk. We estimate the market price of risk and examine the distribution of the residual81

noise volatility and its spatio-temporal correlations structures. Our results show that the82

short-term risk premia oscillates around zero, but becomes negative in the long run, which83

is consistent with the empirical literature (Burger, Graeber, and Schindlmayr (2007)). The84

descriptive statistics of the noise marginals reveals clear evidence for a coloured-noise with85

leptokurtic distribution and heavy-tails, which we suggest to model by a normal inverse86

Gaussian distribution (NIG).3 We further examine the term structure of volatility where87

we are able to identify the Samuelson effect and volatility bumps. The occurrence of88

volatility bumps are explained by the trading activity in the market for futures of specific89

maturities (delivery periods). The spatial correlation structure of the noise is station-90

ary with a fast-decaying pattern: decreasing correlations with increased distance between91

maturity points along one curve.92

Based on the empirical evidence, we further stylize our model and specify a spatio-93

temporal mathematical formulation for the coloured noise time series. After explaining the94

Samuelson effect in the volatility term structure, the residuals are modeled by a NIG Lévy95

3Similar results can be found in Frestad, Benth, and Koekebakker (2010), who analyzed the distribution
of daily log returns of individual forward contracts at Nord Pool and found that the univariate NIG
distribution performed best in fitting the return data.
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process with values in a convenient Hilbert space, which allows for a natural formulation96

of a covariance functional. We model, in this way, the typical fat tails and fast-decaying97

pattern of spatial correlations. Our modeling approach contributes in several ways beyond98

that of Andresen, Koekebakker, and Westgaard (2010): we disentangle the temporal from99

spatial (maturity) effects on the dynamics of forward prices honouring the no-arbitrage100

condition. This provides us with a data set in time and space where we can reveal and101

analyse the statistical properties of risk premia, of the noise volatility term structure and of102

the spatio-temporal noise correlation structures. Moreover, we introduce a mathematical103

framework for modelling the forward price dynamics which links to the empirics, including104

the Samuelson effect, the correlation structure along maturities and non-Gaussian price105

residuals. In conclusion, we formulate an arbitrage-free random field model for the power106

forward price dynamics in space and time which honours the statistical findings.107

A mathematical treatise of the more general random field models of HJM type108

as we propose in this paper can be found in Benth and Krühner (2014). The issue109

of pricing derivatives for such random field models is discussed in Benth and Krühner110

(2015), while Benth and Lempa (2014) analyse portfolio strategies in energy markets111

with infinite dimensional noise. Our proposed forward price dynamics is thus suitable for112

further applications to both derivatives pricing and risk management. Efficient numerical113

approaches for simulation are also available, see for example Barth and Benth (2014).114

Thus, exotic energy derivatives may be priced by Monte Carlo simulations from the model.115

One may also simulate scenarios for hedges and portfolio positions in energy forwards. The116

flexibility and practical applicability of our proposed space-time random field dynamics117

makes it accessible for stress testing with other, competing models. For example, many118

in-house forward price models are based on multi-factor spot price dynamics. One may119

compare investment decisions in the two models, as well as analyse robustness of valuation120

of derivatives prices. Ambit fields is an alternative class of random fields which can be used121

for dynamic modeling of forward prices in power markets, see Barndorff-Nielsen, Benth,122
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and Veraart (2014). In Barndorff-Nielsen, Benth, and Veraart (2015) and Benth and123

Krühner (2015), infinite-dimensional cross-commodity forward price models are proposed124

and analysed.125

The rest of the paper is organized as follows: In section 2 we present the mathe-126

matical formulation of the spatio-temporal random field model. In sections 3 and 4 we127

describe the data used for the application and present descriptive statistics on the risk128

premia, volatility, correlations and noise. The estimation results are shown in section 5,129

and in section 6 we specify a mathematical model for the residuals based on the statistical130

findings. Finally, section 7 concludes.131

2 Spatio-temporal random field modeling of forward132

prices133

The Heath-Jarrow-Morton (HJM) approach (see Heath, Jarrow, and Morton (1992)) has134

been advocated as an attractive modelling framework for energy and commodity for-135

ward prices (see Benth, Šaltytė Benth, and Koekebakker (2008), Benth and Krühner136

(2014), Benth and Krühner (2015), Benth and Koekebakker (2008), Clewlow and Strick-137

land (2000)). If Ft(T ) denotes the forward price at time t ≥ 0 for delivery of a commodity138

at time T ≥ t, we introduce the so-called Musiela parametrization x = T − t and let139

Gt(x) be the forward price for a contract with time to maturity x ≥ 0. The graphical140

representation in Figure 2 shows comparatively the difference between thinking in terms141

of “time at maturity”, T , versus “time to maturity” x. Note that Gt(x) = Ft(t + x).142

It is known (see e.g., Benth and Krühner (2014) and Benth and Krühner (2015)) that143

the stochastic process t 7→ Gt(x), t ≥ 0 is the solution of a stochastic partial differential144

equation (SPDE),145

dGt(x) = (∂xGt(x) + β(t, x)) dt+ dWt(x) (1)
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Figure 2: Theoretical model: time at maturity (first graph) versus time to maturity
(second graph).

where ∂x = ∂/∂x is the differential operator with respect to time to maturity x, β is146

a spatio-temporal process modelling the market price of risk and finally W is a spatio-147

temporal random field which describes the randomly evolving residuals in the dynamics.148

To make the model for the forward price dynamicsG rigorous, it has to be formulated149

as a stochastic process in time, taking values in a space of curves on the positive real line150

R+. By a curve on R+, we understand the graph of a function x 7→ f(x), where x ∈ R+.151

It would be more precise to talk of functions rather than curves on R+, but we want152

to preserve the analogy to the frequently used notion of forward curves. Typically, this153

space of curves is endowed with a Hilbert space structure. Denoting this Hilbert space154

of curves by H, the SPDE (1) is interpreted as a stochastic differential equation in H.155

Moreover, the H-valued process Wt is a martingale, and encodes a correlation structure156

in space and time for the forward prices, as well as the distribution of price increments157

at fixed times to maturity x and the term structure of volatility. The latter includes158

the Samuelson effect, which is predominant in commodity markets where stationarity of159
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prices is an empirical characteristic. We refer to Benth and Krühner (2015) for a rigorous160

mathematical description and analysis of (1) in the Hilbert space framework, where a161

specific example of an appropriate space of curves H suitable for commodity markets is162

proposed.163

In this paper we will analyse a discrete-time version of the process Gt, obtained164

from an Euler discretization of (1). In particular, our focus will be on an analysis of the165

seasonal structure, the market price of risk and finally the probabilistic features of the166

noise component Wt. To this end, suppose that167

Gt(x) = ft(x) + st(x) , (2)

where st(x) is a deterministic seasonality function. We assume that R2
+ 3 (t, x) 7→ st(x) ∈168

R is a bounded and measurable function, typically positive. Note that if we construct169

the seasonality function from a spot price model, then naturally st(x) = s(t + x), where170

s is the seasonality function of the commodity spot price (see Benth, Šaltytė Benth, and171

Koekebakker (2008)). Indeed, it is reasonable that a seasonality function should depend172

on the actual maturity date (i.e., t + x = T ), which points to a specification where173

st(x) := s(t+ x) also in the general case. Motivated by (1), we furthermore assume that174

the deseasonalized forward price curve, denoted by ft(x), has the dynamics175

dft(x) = (∂xft(x) + θ(x)ft(x)) dt+ dWt(x) , (3)

with R+ 3 x 7→ θ(x) ∈ R is a bounded and measurable function modeling the risk

premium. Hence, we suppose that the risk premium is proportional to the deseasonalized

forward price, with proportionality varying with time to maturity. With this definition,
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we note that:

dGt(x) = dft(x) + dst(x)

= (∂xft(x) + θ(x)ft(x)) dt+ ∂tst(x) dt+ dWt(x)

= (∂xGt(x) + (∂tst(x)− ∂xst(x)) + θ(x)(Gt(x)− st(x))) dt+ dWt(x) .

As indicated above, naturally st(x) = s(t+x), and hence ∂tst(x) = ∂xst(x). Therefore, we176

see that Gt(x) satisfies (1) with β(t, x) := θ(x)ft(x), i.e., that the market price of risk is177

proportional to the deseasonalized forward prices. Note that we have implicitly assumed178

differentiability of st(x) in the above derivation.179

Let us next discretize the dynamics of ft in (3), in order to obtain a time series dy-

namics of the (deseasonalized) forward price curve. Let {x1, . . . , xN} be a set of equidis-

tant time-to-maturity dates with resolution ∆x := xi − xi−1 for i = 2, . . . , N . At time

t = ∆t, . . . ,M∆t, where M∆t = T for some terminal time T , we observe for each

time-to-maturity date x ∈ {x1, . . . , xN} a point on the price-forward curve Gt(x) and

a corresponding point on the seasonality curve st(x). A standard approximation of the

derivative operator ∂x is

∂xft(x) ≈ ft(x+ ∆x)− ft(x)

∆x

Next, after doing an Euler discretization in time of (3), we obtain the time series approx-180

imation for ft(x). With x ∈ {x1, . . . , xN} and t = ∆t, . . . , (M − 1)∆t,181

ft+∆t(x) = (ft(x) +
∆t

∆x
(ft(x+ ∆x)− ft(x)) + θ(x)ft(x)∆t+ εt(x) (4)

where εt(x) := Wt+∆t(x) −Wt(x). We define the time series Zt(x) for x ∈ {x1, . . . , xN}182

and t = ∆t, . . . , (M − 1)∆t,183

Zt(x) := ft+∆t(x)− ft(x)− ∆t

∆x
(ft(x+ ∆x)− ft(x)) (5)
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which implies184

Zt(x) = θ(x)ft(x)∆t+ εt(x) , (6)

where changes between the stochastic components of forward curves incorporate risk pre-185

mia and changes in the noise. Since we are interested in analysing the properties of the186

noise volatility, to account for Samuelson effect in forward prices, the model residuals187

εt(x) are further decomposed in:188

εt(x) = σ(x)ε̃t(x) (7)

where ε̃t(x) are the standardized residuals.189

The time series model (6) will be our object of study in this paper, where we are190

concerned with inference of the market price of risk proportionality factor θ(x) and the191

probabilistic structure of ε̃t(x). Since our concern is power markets, we aim at a (time and192

space) discrete curve Zt(x) from forward prices over a delivery period. How to recover193

data for Z in such markets will be discussed in the next section. We remark here that we194

will choose a procedure of constructing a seasonal function which provides information195

on st(x) at discrete time and space points. By smooth interpolation, we may assume that196

∂tst(x) = ∂xst(x).197

3 Generation of Price Forward Curves: theoretical198

background199

In our empirical analysis we employed a unique data set of hourly price forward curves200

(HPFC) Gt(x1), . . . , Gt(xN) generated each day between 01/01/2009 and 15/07/2015201

based on the latest information from the observed futures prices for the German elec-202

tricity Phelix price index. We choose the distance between the maturity points to be203

∆x = 1day, but will also in some instances consider longer maturity time steps in our204
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analysis. However, unless otherwise explicated, ∆x = 1day is the choice. In this section205

we describe how these curves were produced from market prices.206

For the derivation of the HPFCs we follow the approach introduced by Fleten and207

Lemming (2003). At any given time the observed term structure at EEX is based only on208

a limited number of traded futures/forward products. Hence, a theoretical hourly price209

curve, representing forwards for individual hours, is very useful but must be constructed210

using additional information. We model the hourly price curve by combining the infor-211

mation contained in the observed bid and ask prices with information about the shape of212

the seasonal variation.213

Recall that Gt(x) is the price of the forward contract with time to maturity x,214

where time is measured in hours, and let Ft(T1, T2) be the settlement price at time t of a215

forward contract with delivery in the interval [T1, T2]. The forward prices of the derived216

curve should match the observed settlement price of the traded futures product for the217

corresponding delivery period, that is:218

1∑T2
τ=T1

exp(−rτ/a)

T2∑
τ=T1

exp(−rτ/a)Gt(τ − t) = Ft(T1, T2) (8)

where r is the continuously compounded rate for discounting per annum and a is the num-219

ber of hours per year. A realistic price forward curve should capture information about220

the hourly seasonality pattern of electricity prices. For the derivation of the seasonality221

shape of electricity prices we follow Paraschiv (2013) and Paraschiv, Fleten, and Schürle222

(2015). Basically we fit the HPFC to the seasonality shape by minimizing223

min

[
N∑
x=1

(Gt(x)− st(x))2

]
(9)

224

subject to constraints of the type given in equation (8) for all observed instruments, where225
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st is the hourly seasonality curve (we refer to Fleten and Lemming (2003) for details).4226

We offer a detailed description of the methodology used to derive the seasonality shape227

for the Phelix electricity prices in the internet appendix A. To keep the optimization228

problem feasible, we follow the standard procedure (see Benth, Koekebakker, and Ollmar229

(2007)) to remove overlapping contracts as well as contracts with delivery periods which230

are completely overlapped by other contracts with shorter delivery periods. From no-231

arbitrage relationships (see Benth, Šaltytė Benth, and Koekebakker (2008, Eq. (6.6) on232

p. 165)), there is no information loss in removing a futures contract with delivery period233

that is overlapped by one or more other futures contracts.234

An alternative approach to extract power forward curves from a discrete set of235

traded contract using spline interpolation is suggested by Benth, Koekebakker, and Ollmar236

(2007). Recently, Caldana, Fusai, and Roncoroni (2016) proposed a method combining237

non-parametric filtering with convex interpolation.238

4 Empirical analysis239

The original input to our analysis are 2’386 hourly price forward curves for PHELIX,240

the German electricity index, generated each day between 01/01/2009 and 15/07/2015,241

for a horizon of 5 years. The curves have been provided by the Institute of Operations242

Research and Computational Finance, University of St. Gallen and have been generated243

consistently based on the approach described in section 3. In a first step, we eliminated244

the deterministic component of the hourly price forward curves, as shown in Equation245

(2). To keep the analysis tractable, we chose to work with daily, instead of hourly curves.246

Thus, the stochastic component of each hourly price forward curve, ft(x), has been filtered247

4In the original model, Fleten and Lemming (2003) applied, for daily time steps, a smoothing factor
to prevent large jumps in the forward curve. However, in the case of hourly price forward curves,
Bloechlinger (2008) (p. 154) concludes that the higher the relative weight of the smoothing term, the
more the hourly structure disappears. We want that our HPFC reflects the hourly pattern of electricity
prices and therefore in this study we have set the smoothing term in Fleten and Lemming (2003) to 0.
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out for hour 12 of each day over a horizon of 2 years.5 The choice of hour 12 is intuitive,248

since it has been empirically shown that over noon electricity prices are more volatile,249

due to the increase in the infeed from renewable energies over the last years in Germany250

(Paraschiv, Erni, and Pietsch (2014)). It is interesting, therefore, to analyse the volatility251

of the noise εt(x) (Equation (6)) for this particular traded product.252

We analyse the stochastic component of price forward curves and examine further253

the market price of risk, the distribution of the noise volatility and its spatio-temporal254

correlations structures. In the internet appendix B we show a more detailed analysis255

of the stochastic component of PFCs including a visual inspection and discuss the eco-256

nomical background of fundamental variables which determined changes in the stochastic257

component over time.258

4.1 Analysis of the risk premium259

In the case of storable commodities, arbitrage-based arguments imply that the forward260

price is equal to the spot price times discount factors involving the risk-free interest rate,261

storage costs and the convenience yield (see Geman (2005)). However, electricity is non-262

storable, so this link does not exist here. Therefore, it can be expected that forward prices263

are formed as the sum of the expected spot price plus a risk premium that is paid by risk-264

averse market participants for the elimination of price risk. We estimated Equation (6)265

for each time-series Zt(x) and ft(x), t ∈ {1, . . . , T} of each point x ∈ {x1, . . . , xN}. For266

taking ∆t = 1day and ∆x = 1day, the estimated risk premia will be a (1 × (N − 1))267

vector. Estimation results are shown in Figure 3.268

We observe that the risk premia take values between a minimum of −0.086 and269

maximum 0.017. They oscillate around zero and have a higher volatility over the first270

three quarters of the year along the curve, so for shorter time to maturities. However,271

5For the generation of PFCs on horizons longer than 2 years, only yearly futures are still observed, so
the information about the market expectation becomes more general. We therefore decided to keep the
analysis compact and analyse 2 years long truncated curves.
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on the medium/long-run the risk premia are predominantly negative and their volatility272

seems to stabilize for the second year.273

The finding that the short-term risk premia oscillate around zero is consistent with274

the findings in the literature. For example Pietz (2009) found that the risk premium275

may be positive or negative, depending on the average risk aversion in the market. It276

may vary in magnitude and sign throughout the day and between seasons. Furthermore,277

Paraschiv, Fleten, and Schürle (2015) found that short-term risk premia are positive278

during the week and decrease or become negative for the weekend. The disentangled279

pattern of risk premia between seasons, working/weekend days cannot be investigated280

here directly, though, since we used for the estimation a time-series of each point along281

one curve, making use of all generated PFCs used as input. We are in fact interested282

to examine the evolution of risk premia with increasing time to maturity. In the long-283

run, the negative risk premia confirm previous findings in the literature (see e.g.,Burger,284

Graeber, and Schindlmayr (2007)): producers accept lower futures prices, as they need285

to make sure that their investment costs are covered.286

4.2 Analysis of term structure volatility287

In Figure 4 we plot the term structure volatility σ(x), for x ∈ {x1, . . . , xN}, as defined288

in Equation (7). Overall we observe that the volatility decreases with increasing time289

to maturity. In particular, it decays faster for shorter time to maturity and it shows a290

bump around the maturity of 1 month. Around the second (front) quarter the volatility291

starts increasing again, showing a second bump around the third quarter. The reason is292

that for time to maturities longer than one month, in most of the cases weekly futures293

are not available anymore, so the next shortest maturity available in the market is the294

front month future. That means: if market participants are interested in one sub-delivery295

period within the second month, there are no weekly futures available to properly price296

their contracts, but the only available information is from the front month futures price.297
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It is known that the volume of trades for this front month future increases, thus inducing a298

higher volatility of the corresponding forward prices. In Figure 5 we observe that indeed,299

the front month future has the highest and the most volatile volume of trades over the300

investigated time period, compared to the other monthly traded contracts. A similar301

effect is around the front quarter, when monthly futures are not observed anymore, but302

the information about the level of the (expected) price is given by the corresponding303

quarterly future contract. In consequence, the volume of trades for the front quarterly304

future and for the 2nd available quarterly future increases, these being the most traded305

products in the market, as shown in Figure 6. This explains the increase in the volatility306

during the front quarter segment of the forward curve and the second bump.307

The jigsaw pattern of the volatility curve reflects the weekend effect: the volatility308

of forwards is lower during weekend versus working days. A similar pattern is observed309

in the spot price evolution, as shown in Paraschiv, Fleten, and Schürle (2015).310

4.3 Statistical properties of the noise time series311

The analysis of the noise time-series ε̃t (see Equation (7)) is twofold: First, we examine312

the statistical properties of individual time series ε̃t(xi) and in particular we check for313

stationarity, autocorrelation and ARCH/GARCH effects. Secondly, we examine patterns314

in the correlation matrix with respect to the time/maturity dimensions. Thus, we are315

interested in the correlations between ε̃t(xi) and ε̃t(xj), for i, j ∈ {1, . . . , N}, t = 1, . . . , T316

to examine the effect of the time to maturity on the joint dynamics between the noise317

components. Furthermore, we are interested in the correlations between noise curves,318

with respect to the points in time where these have been generated: correlations be-319

tween ε̃m(x1), . . . , ε̃m(xN) and ε̃n(x1), . . . , ε̃n(xN), for m,n ∈ {1, . . . , T}. The analysis is320

performed initially for taking ∆x = 1day and ∆t = 1day, as defined in Equation (5).321

We are further interested to see whether the statistical properties of the noise as322

well as the correlations between its components change, if we vary the maturity step323
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Figure 5: The sum of traded contracts for the monthly futures at EPEX (own calculations,
source of data: ems.eex.com).
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tions, source of data: ems.eex.com).
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∆x in Equation (5) (and implicitly ∆t). When changing ∆x, we are also changing the324

numerical differentiation in Equation (5) with respect to x, and in particular the range325

(in the maturity direction) for when information is accounted for. Various maturity326

steps may lead to slightly different properties of the noise, given the stepwise pattern327

of the deaseasonalized price forward curves ft(x), as shown in Figures 1 and 2 in the328

internet appendix B. The stepwise pattern comes from the different level of futures prices329

of different maturities taken as input for the generation of price forward curves. Futures330

have different delivery periods, weekly, monthly, quarterly, yearly, and at each point when331

a new future is observed, the level in the generated price forward curve changes (recall332

Figure 1). As the choice of ∆x dictates when information from observed futures contracts333

is accounted for, it will impact the generated price forward curve. This is taken over in334

the stochastic component ft(x). Furthermore, within one week, we observe the weekend335

effect: the price level is different between working/weekend days. All these cause sparse336

matrices in the noise, given the many values of “zero” obtained after differentiating.337

To assess the impact of stepwise changes in the stochastic component of price for-338

ward curves ft(x), we replicated the analysis for one additional case study: We further339

investigated the effect of a change between consecutive weekly futures prices by taking340

∆x = 7days. This choice of maturity step further affects the impact from monthly and341

quarterly products on the level of the generated curve.342

4.3.1 Stationarity, Autocorrelation, ARCH/GARCH effects343

The stationarity, autocorrelation pattern and ARCH/GARCH effects are computed for344

each case study of ∆x/∆t, namely 1 day and 7 days shifts in maturity (and time). To345

reduce the complexity, we compute these statistics for time series of equidistant points346

along the curve’s length: ε̃t(xk), where k ∈ {1, . . . , N}. In choosing k we increment over347

90 days (approximately one quarter) along one noise curve. To test for stationarity, we348

applied the Augmented Dickey-Fuller (ADF) and Phillips-Perron tests for a unit root in349
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each univariate time series ε̃t(xk). Results are confirmed when applying the Kwiatkowski-350

Phillips-Schmidt-Shin test statistic for stationarity (with intercept, no trend). Results are351

available in Tables 1 and 2 for the case studies ∆x = 1day and ∆x = 7days, respectively.352

For h = 0, we fail to reject the null that series are stationary. Unit root test results are353

shown in detail in Table 3. Thus, all statistical tests conclude that time series ε̃t(xk) are354

stationary.355

We further tested the hypothesis that the ε̃t(xk) series are autocorrelated. Autocor-356

relation test results are shown in Tables 1 and 2. We replicated the test for the level of357

the noise time series and for their squared values (columns 2 and 3, respectively). h1 = 0358

indicates that there is not enough evidence to suggest that noise time series are autocor-359

related. In Figures 7 and 8 we display the autocorrelation function for series ε̃t(xk) for360

k ∈ {90, 180, 270, 360}, for the level and squared residuals, respectively. In the first case,361

the pattern of the autocorrelation function for the level of residuals shows a typical white362

noise pattern. Still, as expected, the autocorrelation function shows a slight decaying pat-363

tern in the second case (Figure 8), where we look at the squared residuals. The decaying364

pattern becomes more obvious when we move to the case study two, where the change in365

maturity (and time) is set to 7 days, as shown in Figure 9. This is not surprising, since366

an increment of maturity points and time of 7 days leads to less zero increments in the367

noise time series overall, which allows a more visible pattern of autocorrelation. Results368

of the autocorrelation test conclude our findings from the visual inspection: if in the basic369

case study of ∆x = 1day we did not find evidence for autocorrelation in all time series of370

the noise (Table 1, second and third columns), there is clear evidence for autocorrelation371

in all series with increasing maturity step ∆x = 7days.372

We further tested the hypothesis that there are significant ARCH effects in the373

ε̃t(xk) series by employing the Ljung-Box Q-Test. Results are shown in the last columns374

of Tables 1 and 2. h2 = 1 indicates that there are significant ARCH effects in the noise375

time-series. Independent of the maturity/time step chosen, time series are characterized376
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by ARCH effects, and thus by a volatility clustering pattern. In Equation (7) we filter377

the volatility out of the marginal noise εt(x). However, the volatility is not time-varying378

in our model, which explains that there is evidence for remaining stochastic volatility379

(conditional heteroscedasticity) in the standardized residuals ε̃t(x). We tested for a unit380

root in the unobserved volatility process by testing for a unit root in the log of the squared381

time series. Standard unit root tests (ADF, PP, KPSS) are known to suffer from extreme382

size distortions in the presence of negative mean average (MA) roots which are expected383

to occur, given the identified ARCH/GARCH results (see Wright (1999)). We therefore384

apply the methodology in Perron and Ng (1996) who have proposed modified unit root385

tests which are robust to large negative MA roots. As shown in Table 4, NG-Perron test386

statistics show evidence for a unit root in the volatility process.387

In the light of the identified ARCH/GARCH effects in the marginals ε̃t(xk), we388

inspect their tail behavior by plotting the kernel smoothed empirical densities versus389

normal distribution for series k ∈ {1, 90, 180, 270}, as shown in Figure 11. We observe390

the strong leptokurtic pattern of heavy tailed marginals.391

Overall we conclude that the model residuals are coloured noise, with heavy tails392

(leptokurtic distribution) and with a tendency for conditional volatility.393

4.3.2 Spatial Correlation394

In the autocorrelation functions examined above, we show that there are temporal corre-395

lations between forward curves produced at different points in time. In addition, we are396

interested in the spatial correlation structure between ε̃t(xi) and ε̃t(xj), for i, j ∈ 1, ..., N ,397

to examine how noise correlations change with increasing distance between the matu-398

rity points along one curve. In Figure 10 we observe that correlations oscillate between399

positive and negative, which is expected, given the nature of the (coloured) noise time400

series (stationary, oscillating around 0). As expected, spatial correlations between matu-401

rity points of up to 1 month (about 30 day) decay fast with increasing distance between402
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ε̃t(xk) Stationarity Autocorrelation ε̃t(xk) Autocorrelation ε̃t(xk)
2 ARCH/GARCH

h h1 h1 h2

Q0 0 1 1 1
Q1 0 0 0 0
Q2 0 1 1 1
Q3 0 0 1 1
Q4 0 1 0 0
Q5 0 1 1 1
Q6 0 1 1 1
Q7 0 1 1 1

Table 1: The time series are selected by quarterly increments (90 days) along the maturity
points on one noise curve. Hypotheses tests results, case study 1: ∆x = 1day. In
column ’Stationarity’, if h = 0 we fail to reject the null that series are stationary. For
’Autocorrelation’, h1 = 0 indicates that there is not enough evidence to suggest that
noise time series are autocorrelated. In the last column, h2 = 1 indicates that there are
significant ARCH effects in the noise time-series.

ε̃t(xk) Stationarity Autocorrelation ε̃t(xk) Autocorrelation ε̃t(xk)
2 ARCH/GARCH

h h1 h1 h2

Q0 0 1 1 1
Q1 0 1 1 1
Q2 0 1 1 1
Q3 0 1 1 1
Q4 0 1 1 1
Q5 0 1 1 1
Q6 0 1 1 1
Q7 0 1 1 1

Table 2: The time series are selected by quarterly increments (90 days) along the maturity
points on one noise curve. Hypotheses tests results, case study 2: ∆x = 7days. In
column ’Stationarity’, if h = 0 we fail to reject the null that series are stationary. For
’Autocorrelation’, h1 = 0 indicates that there is not enough evidence to suggest that
noise time series are autocorrelated. In the last column, h2 = 1 indicates that there are
significant ARCH effects in the noise time-series.
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Figure 7: Autocorrelation function in the level of the noise time series ε̃t(xk), by taking
k ∈ {1, 90, 180, 270}, case study 1: ∆x = 1day.
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Figure 8: Autocorrelation function in the squared time series of the noise ε̃t(xk)
2, by

taking k ∈ {1, 90, 180, 270}, case study 1: ∆x = 1day.
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Figure 9: Autocorrelation function in the squared time series of the noise ε̃t(xk)
2, by

taking k ∈ {1, 90, 180, 270}, case study 2: ∆x = 7days.
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Test Null hypothesis Q0 Q1 Q2 Q3
ADF test Unit root -4.476* -4.701* -3.504* -3.600*
PP test Unit root -52.550* -51.755* -52.623* -52.720*
KPSS test Stationarity 0.564 0.399 0.329 0.367

Table 3: Unit root test results for series ε̃t(xk) for quarterly increments in k ∈ 1, 90, 180, 270.
Note: One star denotes significance at the 1% level. ADF refers to Augmented Dickey-Fuller
test, PP to the Philips-Peron test and KPSS to the Kwiatkowski-Phillips-Schmidt-Shin test. The
lag structure of the ADF test is selected automatically on the basis of the Bayesian Information
Criterion (BIC). For PP and KPSS tests the bandwidth parameter is selected according to the
approach suggested by Newey and West (1994).

NG-Perron test Q0 Q1 Q2 Q3
MZa -2.457 -1.719 -1.901 -1.382
MZt -0.967 -0.837 -0.891 -0.731

Table 4: NG-Perron unit root test results for series log(ε̃t(xk)
2) for quarterly increments in

k ∈ 1, 90, 180, 270. Note: We test the null hypothesis: series has a unit root. One star denotes
significance at the 1% level. MZa and MZt are the three modified Z-test statistics of Perron and
Ng (1996). The lag length of the NG-Perron test is selected automatically on the basis of the
Spectral GLS-detrended AR based on Schwarz Information Criteria (SIC).

them. This reflects the higher interest of market participants for maturing contracts. The403

correlations between maturity points situated at distances longer than 30 days are very404

low, oscillating around zero. However, correlations between 1 year distant maturity points405

slightly increase. This shows that the stochastic component of forward prices is driven by406

common factors at the same time of the year, which is reflected in a higher correlation407

between yearly futures products.408

5 Modeling approach and estimation of the noise409

Given the heavy tails of marginals identified in Figure 11, we model the noise marginals410

ε̃t(x) by a Normal Inverse Gaussian distribution (NIG). The NIG distribution is a special411

case of the Generalized Hyperbolic Distribution for λ = −1/2 and its density reads (see412
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Figure 10: Correlation matrix with respect to different maturity points
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Parameter Q0 Q1 Q2 Q3

δ 1.115 0.252 0.193 0.226
(0.102) (0.007) (0.005) (0.006)

α 1.083 0.188 0.116 0.195
(0.152) (0.046) (0.052) (0.037)

β 0.111 -0.012 0.000 -0.001
(0.054) (0.024) (0.022) (0.021)

µ -0.011 0.000 -0.004 -0.002
(0.049) (0.004) (0.007) (0.007)

Table 5: Maximum likelihood estimates of NIG to ε̃t(xk) by taking k ∈ {1, 90, 180, 270}
for Q0,...,Q3, respectively.
Standard errors are shown in parentheses.

Benth, Šaltytė Benth, and Koekebakker (2008)):413

fNIG(x) =
α

π
exp(δ

√
α2 − β2 + β(x− µ))

K1(αδ
√

1 + (x−µ
δ

)2)√
1 + (x−µ

δ
)2

(10)

We have firstly fitted a NIG by moment estimators. We observed that the fitted414

density performs visibly better than a normal distribution in explaining the leptokurtic415

pattern of time series. In a second step, we estimated NIG by maximum likelihood (ML).416

The mathematical formulation of the likelihood function and related gradients as input417

to the numerical optimization procedure are given in the internet appendix C.418

The ML estimates improved further the fit of the NIG density. In Table 5 we show419

the ML estimates for the NIG distribution fitted to ε̃t(xk) by taking k ∈ {1, 90, 180, 270}.420

In Figure 11 we show the kernel density estimates versus normal and the two versions421

of the NIG estimation. We confirm a realistic performance of the NIG distribution in422

explaining the heavy tail behavior of noise marginals.423
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6 Revisiting the spatio-temporal model of forward424

prices425

In our empirical analysis of EPEX electricity forward prices, we have made use of a time426

series discretization of the deseasonalized term structure dynamics ft(x) defined in (3).427

We have estimated the parameter of the market price of risk θ(x), and have analysed428

empirically the noise residual dWt(x) expressed as εt(x) = σ(x)ε̃t(x) in a discrete form429

in (7). The purpose of this Section is to recover an infinite dimensional model for Wt(x)430

based on our findings.431

To this end, we recall that H is a separable Hilbert space of real-valued functions on432

R+, where Wt is a martingale process. As suggested by the notation, a first model could433

simply be to assume that W is a H-valued Wiener process. However, this would mean434

that we expect t 7→ Wt(x) to be a Gaussian process for each x ≥ 0, which is at stake435

with our empirical findings showing clear non-Gaussian (or, coloured noise) residuals.436

After explaining the Samuelson effect, the residuals could be modelled nicely by a NIG437

distribution.438

In stochastic modelling of financial price dynamics, it is common to scale the random439

variations by a volatility factor. We follow this idea, and propose a model of W of the440

form441

Wt =

∫ t

0

Σs dLs , (11)

where s 7→ Σs is an L(U ,H)-valued predictable process and L is a U -valued Lévy process442

with zero mean and finite variance. We refer to (Peszat and Zabczyk, 2007, Sect. 8.6)443

for conditions to make the stochastic integral well-defined. As a first case, we can choose444

Σs ≡ Ψ time-independent, being an operator mapping elements of the separable Hilbert445

space U into H. An increment in Wt can be approximated (based on the definition of the446
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stochastic integral, see (Peszat and Zabczyk, 2007, Ch. 8)) as447

Wt+∆t −Wt ≈ Ψ(Lt+∆t − Lt) (12)

Choose now U = L2(R), the space of square integrable functions on the real line equipped448

with the Lebesgue measure, and assume Ψ is an integral operator on L2(R), i.e., for449

g ∈ L2(R), the mapping450

R+ 3 x 7→ Ψ(g)(x) =

∫
R
σ̃(x, y)g(y) dy (13)

defines an element in H. Furthermore, if supp σ̃(x, ·) is concentrated in a close neighbor-451

hood of x, we can further make the approximation Ψ(g)(x) ≈ σ̃(x, x)g(x). As a result,452

we find453

Wt+∆t(x)−Wt(x) ≈ σ̃(x, x)(Lt+∆t(x)− Lt(x)) . (14)

In view of the definition of εt(x) in (7), we can choose σ(x) = σ̃(x, x) to be the model for454

the Samuelson effect that we identified and discussed in Subsect. 4.2, and we let Lt be a455

NIG Lévy process with values in L2(R) to model the standardized residuals ε̃t (see Benth456

and Krühner (2015) for a definition of such a process).457

Recall from Fig. 10 the spatial correlation structure of ε̃t(x). This provides the

empirical foundation for defining a covariance functional Q associated with the Lévy

process L. In general, we know that for any g, h ∈ L2(R),

E[(Lt, g)2(Lt, h)2] = (Qg, h)2

where (·, ·)2 denotes the inner product in L2(R) (see (Peszat and Zabczyk, 2007, Thm. 4.44)).458

The covariance functional will be a symmetric, positive definite trace class operator from459
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L2(R) into itself. It can be specified as an integral operator on L2(R) by460

Qg(x) =

∫
R
q(x, y)g(y) dy , (15)

for some suitable “kernel-function” q. If q is symmetric, positive definite and continuous461

function, then it follows from Thm. A.8 in Peszat and Zabczyk (2007) that Q is a covari-462

ance operator of L if we restrict ourselves to L2(O), where O is a bounded and closed463

subset of R. Indeed, we can think of O as the maximal horizon of the market, in terms464

of relevant times to maturity (recall that we have truncated the forward curves in our465

empirical study to a horizon of 2 years).466

If we assume g ∈ L2(R) to be close to δx, the Dirac δ-function, and likewise, h ∈467

L2(R) being close to δy, (x, y) ∈ R2, we find approximately468

E[Lt(x)Lt(y)] = q(x, y) . (16)

This shows that we may interpret the function q as the spatial correlation function of469

L. Unfortunately, the Dirac δ-function δx is not an element in L2(R), so we can only470

obtain the relationship in Equation (16) in an approximative manner. Note that we can471

approximate δx arbitrary well by smooth functions in L2(R), so for practical applications472

we may use the relation in Equation (16). From the spatial correlation study of ε̃t, we473

observe that the correlation is stationary in space in the sense that it only depends on the474

distance |x−y|. Hence, with a slight abuse of notation, we let q(x, y) = q(|x−y|). A simple475

choice resembling to some degree the fast decaying property in Fig. 10 is q(|x − y|) =476

exp(−γ|x−y|) for a constant γ > 0. We further note that from Benth and Krühner (2015),477

it follows that t 7→ (Lt, g)2 is a NIG Lévy process on the real line. If g ≈ δx, then we see478

that Lt(x) for given x is a real-valued NIG Lévy process. With these considerations, we479

have established a possible model for W which is, at least approximately, consistent with480

our empirical findings for εt.481
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Let us briefly discuss why we suggest to use U = L2(R) and introduce a rather

complex integral operator definition of Ψ. As mentioned in Sect. 2, the Hilbert space H

to realize the deseasonalized forward price dynamics ft should be a function space on R+.

L2(R) is a space of equivalence classes, and the evaluation operator δx(g) = g(x) is not

a continuous linear operator on this space. A natural Hilbert space where indeed δx is

a linear functional (e.g., continuous linear operator from the Hilbert space to R) is the

so-called Filipovic space. The Filipovic space was introduced and studied in the context

of interest rate markets by Filipovic (2001), while Benth and Krühner (2014, 2015) have

proposed this as a suitable space for energy forward curves. From Benth and Krühner

(2014) we have a characterization of the possible covariance operators of Lévy processes

in the Filipovic space, which, for example, cannot be stationary in the form suggested for

q above. Using U = L2(R) opens for a much more flexible specification of the covariance

operator, which matches nicely the empirical findings on our electricity data. On the

other hand, we need to bring the noise L over to the Filipovic space, since we wish to

have dynamics of the term structure in a Hilbert space for which we can evaluate the

curve at a point x ≥ 0, that is, δx(ft) = ft(x) makes sense. We recover the actual forward

price dynamics t 7→ F (t, T ) in this case by

F (t, T ) = f(t, T − t) = δT−t(ft) .

We remark that for elements f in the Filipovic space, x 7→ f(x) will be continuous, and482

weakly differentiable. To specify Ψ as an integral operator on L2(R), we can bring any483

element of L2(R) to a smooth function. Indeed, the convolution product of a square484

integrable function with a smooth function will yield a smooth function (see (Folland,485

1984, Prop. 8.10)). This enables us to select ”volatility” functions σ̃ ensuring that Wt486

becomes an element of the Filipovic space. Unfortunately, a simple multiplication operator487

Ψ(g)(x) = σ(x)g(x) will not do the job, as this will not be an element of the Filipovic488

space for general g ∈ L2(R). In conclusion, with H being the Filipovic space, we choose a489
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different space for the noise L to open up for flexibility in modelling the spatial correlation,490

and an integral operator for Ψ to ensure that we map the noise into the Filipovic space,491

at the same time modeling the Samuelson effect.492

To follow up on the integral operator, we know the function σ̃(x, y) on the diagonal493

x = y, since here we want to match with the observed curve for the Samuelson effect. In494

a neighborhood around x, we smoothly interpolate to zero such that σ̃(x, ·) has a support495

close to {x}, and such that the function defines an integral operator being sufficiently496

regular. One possibility is to define σ̃(x, y) = η(x)σ̄(|x − y|), where σ̄ : R+ → R+ is497

smooth, σ̄(0) = 1, and supp σ̄ is the interval (−a, a) for a small. With this definition, we498

have that η models the Samuelson effect, the operator Ψ is a convolution product with σ̄,499

followed by a multiplication with η. With η being an element of the Filipovic space, we500

have specified Ψ as desired. By inspection of the curve for the volatility term structure501

in Figure 4, a first-order approximation of it could be a function η(x) = a exp(−ζx) + b,502

for constants a, ζ and b, where b > 0 is the long-term level and ζ > 0 measures the503

exponential decay in the short end. We note that η(0) = a+ b will be the spot volatility.504

With such a specification, η will be an element of the Filipovic space since it is smooth and505

asymptotically constant. As we see, this simple model fails to account for the pronounced506

bumps in the curve that we have discussed earlier. By a more sophisticated model, one507

can take these into account as well.508

Our empirical analysis also show indications of stochastic volatility effects. We will509

not discuss possible GARCH/ARCH specifications in continuous time, but briefly just510

mention that we can choose Σs = VsΨ, where s 7→ Vs is a R+-valued stochastic process.511

For example, we can define V to be the Heston stochastic volatility dynamics (see Hes-512

ton (1993)) or the BNS stochastic volatility model (see Barndorff-Nielsen and Shephard513

(2001)). In this case, it would be natural to suppose L to be a Wiener process in L2(R),514

since the additional stochastic volatility process V will induce non-Gaussian distributed515

residuals. We leave the further discussion on stochastic volatility models in infinite di-516
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mensional term structure models for future research (see however, Benth, Rüdiger, and517

Süss (2015) for a Hilbert-valued Ornstein-Uhlenbeck processes with stochastic volatility).518

7 Conclusion and future work519

In this study, we derived a spatio-temporal dynamical model based on the Heath-Jarrow-520

Morton (HJM) approach under the Musiela parametrization (see Heath, Jarrow, and521

Morton (1992)), which ensures an arbitrage-free model for electricity forward prices. A522

discretized version of the model has been fitted to electricity forward prices to examine523

the probabilistic characteristics of the data. We disentangled the seasonal pattern from524

the market price of risk and random perturbations of prices and analysed empirically their525

statistical properties.526

As a special feature of our model, we further disentangled the temporal from spatial527

(time to maturity) effects on the dynamics of forward prices, which marks one of the main528

contributions of this study to the academic literature (see Andresen, Koekebakker, and529

Westgaard (2010)). After filtering out both temporal and spatial effects of price forward530

curves and the market price of risk, we estimated the term structure volatility. Finally, our531

model residuals show a white-noise pattern, which validates our modeling assumptions.532

The model has been fitted to a unique data set of historical daily PFCs for the533

German electricity market. We firstly performed a deseasonalization of the initial curves,534

where the seasonal component takes into account typical deterministic dynamics observed535

in the German electricity prices (see Paraschiv, Fleten, and Schürle (2015), Paraschiv536

(2013)). We further estimated the risk premia in the deseasonalized curves (stochastic537

component) and examined, in this context, the distribution of the noise: term structure538

volatility and its spatio-temporal correlations structures. Our results show that the short-539

term risk premia oscillate around zero, but become negative in the long run, which is540

consistent with the empirical literature (Paraschiv, Fleten, and Schürle (2015), Burger,541
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Graeber, and Schindlmayr (2007)). We found that the noise marginals are coloured-noise542

with a strong leptokurtic pattern and heavy-tails, which have been successfully modeled543

by a normal inverse Gaussian distribution (NIG). There were signs of stochastic volatility544

effects as well. The high performance of the NIG distribution in modeling the noise545

marginals of forward electricity prices confirms previous findings of Frestad, Benth, and546

Koekebakker (2010). The term structure of volatility decays overall with increasing time547

to maturity, a typical Samuelson effect. However, the term structure of volatility in our548

data set has additionally clear bumps around the maturity of 1 month and third quarter,549

both being related to an increased activity in the market for the corresponding futures550

contracts. Our analysis also detects a fast decaying pattern in the spatial correlations as551

a function of distance between times to maturity.552

Our empirical findings mark an additional contribution over existing related lit-553

erature Andresen, Koekebakker, and Westgaard (2010): we shed light on the statistical554

properties of risk premia, of the noise, volatility term structure and of the spatio-temporal555

noise correlation structures. Notably, we look at price residuals where the maturity effect556

is corrected for, unlike the approach of Andresen, Koekebakker, and Westgaard (2010).557

Based on the empirical insights, we revisited the spatio-temporal model of forward558

prices and derived a mathematical model for the noise. After explaining the Samuelson559

effect in the volatility term structure, the residuals are modeled by an infinite dimensional560

NIG Lévy process, which allows for a natural formulation of a covariance functional. We561

model, in this way, the typical fat tails and fast-decaying pattern of spatial correlations.562

Still, our empirical findings show some slight remaining volatility clustering effects in563

the standardized residuals, which can be described by a stochastic volatility model for-564

mulation. However, we will discuss and develop stochastic volatility models in infinite565

dimensional term structure models in future research.566
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