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Abstract

Negative entropy in connection with the Casimir effect at uniform temperature is a phenomenon

rooted in the circumstance that one is describing a nonclosed system, or only part of a closed

system. In this paper we show that the phenomenon is not necessarily restricted to electromagnetic

theory, but can be derived from the quantum theory of interacting harmonic oscillators, most

typically two oscillators interacting not directly but indirectly via a third one. There are two such

models, actually analogous to the transverse magnetic (TM) and transverse electric (TE) modes in

electrodynamics. These mechanical models in their simplest version were presented some years ago,

by J. S. Høye et al., Physical Review E 67, 056116 (2003). In the present paper we re-emphasize

the physical significance of the mechanical picture, and extend the theory so as to include the

case where there are several mediating oscillators, instead of only one. The TE oscillator exhibits

negative entropy. Finally, we show explicitly how the interactions via the electromagnetic field

contain the two oscillator models.
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I. INTRODUCTION

Let us begin by recapitulating the conventional procedure for calculating the Casimir

force between two dielectric media, typically two half-spaces separated by a gap a: One

starts from the two-point function for the electric field at two neighboring spacetime points,

usually by using the fluctuation-dissipation theorem assuming uniform temperature, and

then uses Maxwell’s stress tensor to calculate the surface pressure, here called P . Then, the

free energy F per unit surface can be found by integration of P = −∂F/∂a, and the internal

energy U per unit area follows from the thermodynamical formula

U =
∂(βF )

∂β
, (1)

with β = 1/(kBT ). The corresponding entropy S then finally follows from

S =
U − F

T
= −∂F

∂T
. (2)

This procedure is considered in detail at various places, for instance in the standard sources

[1–3].

The following point here calls for attention: The theory is based upon the electrodynamics

of a non-closed physical system. That is, the force is calculated from the difference in the

electrodynamic stress tensor between the inside and the outside of a dielectric medium.

The properties of the medium itself are not accounted for. The fact that we are dealing

with an electromagnetic subsystem makes it not so unreasonable that we can encounter

unexpected properties when calculating physical properties of the subsystem such as the

Casimir entropy.

Consider for definiteness the two-slab system above, assuming the separation a to be

constant. We let the temperature T increase, from zero upwards. We further assume the

standard Drude dispersion relation

ε(iζ) = 1 +
ω2
p

ζ(ζ + ν)
, (3)

where ν is the dissipation parameter. As has been shown in detail by explicit calculations,

as long as ν is different from zero as always is the case for a real material, the slope ∂F/∂T

is zero at T = 0 [4–6]. That is, the Nernst theorem is satisfied for the Casimir entropy. We

ought to emphasize this point, because assertions to the contrary have often appeared in

2



the literature. An ambiguity might occur only if the parameter ν were exactly zero, which

is, however, only a fictitious case.

Then for increasing temperature the free energy starts to increase while for high temper-

atures it decreases in the usual way. This increase means that the entropy S = −∂F/∂T
becomes negative in this region. This special property has been subject to several studies

recently; cf., for instance, Refs. [7, 8] with further references therein.

In particular, for high temperature (with the separation a fixed) the TE contribution is

negative, but tends to zero. This means that the TE entropy is negative; in fact, it typically

is always negative for all values of T . Whether the total entropy is negative depends on the

balance with the TM entropy, which is typically (but not necessarily) positive. More often

that not, there is a region of low temperature when the total entropy goes negative.

Most previous studies have considered the negative entropy problem from the standpoint

of electrodynamics. This is quite a natural approach, as the effect is related to the circum-

stance that the relationship between canonical momentum p for a particle with mass m and

charge q and the electromagnetic vector potential A(r, t) is (p−qA)2/2m (as is known, this

is the reason for the absence of classical diamagnetism, the Bohr-van Leeuwen theorem1). It

is, however, possible to describe this effect in a different way which is simpler and does not

involve electromagnetism explicitly, namely as an interaction between two quantum mechan-

ical harmonic oscillators 1 and 2, mediated indirectly via a third oscillator 3. Actually we

presented this oscillator model in an earlier paper (cf. Sec. IV in Ref. [4]), but it seems that

this model has been left largely unnoticed. And then we have come to the main motivations

for the present paper:

• to re-emphasize the physical significance of the oscillator model;

• to generalize the theory so as to encompass the case where there are many interacting

oscillators, similar to the elctromagnetic field, instead of only one;

• to provide a general proof that the TE entropy is negative for high temperature.

1 However, recall that the Langevin construction gives a reasonable model of diamagnetism for dielectrics–

see, for example, Ref. [9].
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II. TWO HARMONIC OSCILLATOR MODELS

As mentioned above, we assume the validity of the Drude dispersion relation (3), as this is

the most physical one. The competing dispersion relation, the plasma relation, corresponds

to setting ν = 0. The introduction of our harmonic oscillator model in Ref. [4] was actually

motivated by the current discussion about choosing between the Drude/plasma relations.

There are actually two different oscillator models, corresponding to the TM and TE modes

of the analogous electromagnetic theory.

Consider first the classical partition function of a harmonic oscillator with energy

H =
1

2m
p2 +

1

2
mω2x2 (4)

where x is the position, p is the momentum, ω is the eigenfrequency, and m is the mass.

Integrating both momentum and position the classical partition function is found to be

Z =
1

2π~

∞
∫

−∞

∞
∫

−∞

e−βH dp dx =
1

~βω
(5)

This gives the free energy and its frequency dependency as

F = − 1

β
lnZ = − 1

β
ln

(

1

~βω

)

∼ lnω. (6)

Thus for three non-interacting harmonic oscillators the inverse partition function is propor-

tional to
√
Q where

Q = a1a2a3, ai = ω2

i (i = 1, 2, 3). (7)

By quantization using the path integral method [10, 11], the classical system turns out to be

split into a set of classical harmonic oscillator systems described by Matsubara frequencies.

Then for each Matsubara frequency expression (7) is replaced by

Q = A1A2A3, Ai = ω2

i + ζ2 = ai + ζ2, (8)

where ζ = iω. (Depending upon convention ζ = −iω is often used.)

Assume now that there is no direct interaction between oscillators 1 and 2. The interac-

tion between them is mediated entirely by oscillator 3, which can be imagined to be situated

in an intermediate position. For simplicity we assume all oscillators one-dimensional. The
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interaction can now be represented as cxixj where xi and xj are coordinates and c a coupling

constant. With this the quantity Q becomes

Q =

∣

∣

∣

∣

∣

∣

∣

∣

∣

A1 0 c

0 A2 c

c c A3

∣

∣

∣

∣

∣

∣

∣

∣

∣

= A1A2A3 − c2(A1 + A2)

= A1A2A3(1−D1)(1−D2)

(

1− D1D2

(1−D1)(1−D2)

)

, (9)

where

Di =
c2

AiA3

(i = 1, 2). (10)

The quantum free energy F is obtained by summing over the Matsubara frequencies K =

~ζ = i~ω = 2πn/β with n integer

βF = lim
1

2

∑

n

lnQ(ζ) (+const.). (11)

Here lim refers to the limit of a discretization procedure. As pointed out in Ref. [4] this must

be carefully defined as in Ref. [10] to obtain correctly the well-known result for F . However,

we can skip this discussion here as only the last factor of (9) is of interest. The product

A1A2A3 represents the three non-interacting oscillators. Further the Ai(1 − Di) (i = 1, 2)

represent each of the two oscillators with their radiation reaction via the third oscillator.

Finally the last factor represents the induced Casimir energy.

The above model represents the situation analogous to the TM mode. To model the TE

mode we will need another model, which is the analogue to the electromagnetic interaction

where the third oscillator interacts with the momenta pi of the other two, i.e., the interaction

(pi − const × x3)
2/2mi [mi is the mass, i = 1, 2]). By evaluation of the classical partition

function one now will find that the interaction has no influence upon thermal equilibrium

(as mentioned, this is the analog of classical diamagnetism which is equal to zero). Quantum

mechanically the problem is less straightforward. But we can simplify the calculation by

exchanging the roles of momenta and coordinates of the first two oscillators, i.e., we use the

momentum representation. Then the interaction will get the form

const× ai(xi −
c

ai
x3)

2 = const× (aix
2

i − 2cxix3 +
c2

ai
x2
3
). (12)
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Compared with the first model considered above an extra x2
3
term has appeared with the

consequence that the previous coefficient a3 has changed to

a3 → a3 +
c2

a1
+
c2

a2
, (13)

and in the quantum case

A3 → A3 +
c2

a1
+
c2

a2
. (14)

Inserted in expression (9) this means that the coefficient Di has changed to

Di =
c2

A3

(

1

Ai

− 1

ai

)

= − ζ2c2

aiAiA3

. (15)

Again the free energy due to the interaction follows by summation of the logarithm of the

last factor of expression (9). In the classical high temperature limit (β → 0) only the term

~ζ = 2πn/β = 0 is present, but with expression (15) its contribution is zero. This is similar

to what happens for the TE zero mode (in the Drude model) for the Casimir effect. For

finite temperatures the corresponding free energy must be negative. But since it approaches

zero when T → ∞, there will be a temperature interval for which the Casimir free energy

increases with increasing temperature, corresponding to a Casimir entropy S = −∂F/∂T
being negative.

III. INTERACTIONS VIA MANY OSCILLATORS

In the models of Sec. II two oscillators interacted via a third one. This situation we can

extend and generalize to interactions via many oscillators. Such a situation is the analogue

of electromagnetic interactions which have a continuum of frequencies. Then the a3 and A3

of Eqs. (6) and (8) are generalized to

a3 → ai, A3 → Ai, i = 3, 4, 5, 6. · · · , (16)

with ai = ω2
i and Ai = ai + ζ2 as before.

Again oscillators 1 and 2 interact via oscillators i (i ≥ 3) where the coefficient c of Eq. (9)

becomes coefficients ci. [Different coefficients c1i and c2i for the two oscillators 1 and 2 will

also be possible.] With this one will find that the inverse partition function will be the
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determinant that generalizes Eq. (9) to

Q =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A1 0 c3 c4 · · ·
0 A2 c3 c4 · · ·
c3 c3 A3 0 · · ·
c4 c4 0 A4 · · ·
· · · · · · · · · · · · · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A1(1−D1) −A1D1 c3 c4 · · ·
−A2D2 A2(1−D2) c3 c4 · · ·

0 0 A3 0 · · ·
0 0 0 A4 · · ·
· · · · · · · · · · · · · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= A1A2(1−D1)(1−D2)

(

1− D1D2

(1−D1)(1−D2)

)

(

∏

i≥3

Ai

)

, (17)

where now

Dj =
1

Aj

∑

i≥3

c2i
Ai

, (j = 1, 2). (18)

Here, to evaluate the determinant, columns i = 3, 4, · · · have been multiplied with ci/Ai and

subtracted from columns 1 and 2.

The second model is again the analogue of the electromagnetic interaction for the TE

mode. Then the momenta of oscillators 1 and 2 interact with all the oscillators of the

electromagnetic interaction. Thus the interaction will have the form (pj−
∑

i≥3
(cixi))

2/(2mj)

(j = 1, 2), and again one finds that the interaction has no influence upon the classical

partition function. To simplify in the quantum case we again can exchange the roles of

momenta and coordinates of oscillators 1 and 2. Like Eq. (12) the interaction then ends up

with the form

aj

(

xj −
1

aj

∑

i≥3

(cixi)

)2

= ajx
2

j − 2xj
∑

i≥3

(cixi) +
1

aj

∑

i≥3

∑

l≥3

(ciclxixl). (19)

The coefficients ci can be extended to the more general cji (j = 1, 2), but to simplify the

matrices below a bit this is not done. With Eq. (19) and short hand notations µ = 1/a1+1/a2

and qj = Aj(1/Aj − 1/aj), Eq. (9) will be generalized to (Ai = ai + ζ2)

Q =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A1 0 c3 c4 · · ·
0 A2 c3 c4 · · ·
c3 c3 A3 + c23µ c3c4µ · · ·
c4 c4 c4c3µ A4 + c4c4µ · · ·
· · · · · · · · · · · · · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A1 0 c3 c4 · · ·
0 A2 c3 c4 · · ·
c3q1 c3q2 A3 0 · · ·
c4q1 c4q2 0 A4 · · ·
· · · · · · · · · · · · · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (20)
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In Eq. (20) rows j = 1, 2 have been multiplied with ci/a1 and ci/a2 respectively and sub-

tracted from rows i = 3, 4, · · · . Next, similar to Eq. (17) columns i = 3, 4, · · · are multiplied

with qjci/Ai for j = 1, 2 and subtracted from columns 1 and 2. The resulting contributions

to the inverse partition function is again (17), now with Dj given by

Dj =
qj
Aj

∑

i≥3

c2i
Ai

= − ζ2

ajAj

∑

i≥3

c2i
Ai

. (21)

Altogether, this is just a straightforward generalization of result (9) for Q with Dj either

given by Eqs. (10) or (15) in the two cases. The main difference lies in the quantities Dj

that in the present section contain many contributions. Thus with Dj given by Eq. (21) as

with Eq. (15) the corresponding Casimir entropy will be negative in an interval as concluded

at the end of Sec. II. This constitutes a proof that the TE entropy must always be negative

at high temperature. Typically, in fact, it is negative at all temperatures [8, 12].

An additional notable and interesting feature of the inverse partition function, which is

the square root of Eq. (17) for each Matsubara frequency, is the product term for i ≥ 3.

Clearly this part is not affected by the presence of oscillators 1 and 2 and their influence

upon the resulting eigenfrequencies of the coupled system of all oscillators. Thus oscillators

i ≥ 3 can without any approximation be eliminated or disregarded to be replaced by the

interaction quantities Dj at thermal equilibrium. Correspondingly, with polarizable media

the quantized electromagnetic field can be eliminated to be replaced by the radiating dipole-

dipole interaction. This simplification we have utilized in Ref. [11] and later works.

IV. INTERACTION VIA THE ELECTROMAGNETIC DIPOLE RADIATION

FIELD

For two oscillators interacting via the electromagnetic field it should now be possible

to identify this situation with Eq. (17) where Dj is expression (18) for the TM mode and

expression (21) for the TE mode. The free energy of interaction (Casimir energy) follows

from the logarithm of the penultimate factor of (17) when inserted in Eq. (11). As we

will see, the radiating dipole interaction has the form and structure consistent with the

expressions for Dj .

For two oscillators interacting via the potential ψ(r)s1s2 with oscillator coordinates si,

which can be identified with polarization (here in one dimension for simplicity). The Casimir
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free energy F in the classical case is given by Eq. (3.4) in Ref. [11] as

βF =
1

2
ln(1− (αψ)2) ≈ −1

2
(αψ(r))2 (22)

where α is polarizability. In the quantum case one sums over Matsubara frequencies as in

Eq. (5.8) of that reference by which

βF =
1

2

∑

K

ln(1− (αKψK)
2). (23)

With two equal oscillators (same α) it should be possible to make the identification

Dj

1−Dj

→ αKψK . (24)

It is clear that 1/Aj corresponds to αK ∝ 1(aj+ζ
2) for a simple oscillator with eigenfrequency

ω =
√
aj not interacting with its surroundings. As pointed to below Eq. (9) the Aj(1−Dj)

represent s oscillator j = 1 or 2 alone and their interactions with oscillator 3. Thus in

Eq. (17) the same factor represent the interaction of oscillator j with the electromagnetic

field represented by oscillators i ≥ 3. So 1/(Aj(1 −Dj)) corresponds to αK with radiation

reaction taken into account. With this the remaining part AjDj of (23) should represent ψK .

According to Eqs. (18) or (21) this gets contributions from the oscillators through which

oscillators 1 and 2 interact. Then the remaining crucial question is whether the radiating

dipole interaction ψK is consistent with the two expressions for Dj . Thus we must look for

the eigenmodes of the electromagnetic field. In free space these modes are plane waves of

wave vector k and frequency

ω = ck (25)

where c is light velocity. These waves should, if possible, be identified with the oscillators

i ≥ 0 of Sec. III. And this identification we find from the Fourier transform of the radiating

dipole interaction. This interaction is given by Eq. (6.1) in Ref. [13] (ζ = iω)

φ̃(12) =
4π

3
s1s2

1

(ck)2 + ζ2
[(ck)2D̃(12) + 2ζ2 ŝ1 · ŝ2] (+const.), (26)

with D̃(12) = 3(k̂ · ŝ1)(k̂ · ŝ2)− ŝ1 · ŝ2. The hats denote unit vectors. Here sj are the polar-

izations of the two oscillators. The constant term can be disregarded as it only contributes

to a δ-function δ(r) in r-space and is thus zero anyway with r 6= 0.

It is now easily seen that expression (26) has precisely the form where both expressions

(18) and (21) for AjDj are present with Ai given by (8). The D̃(12) and ŝ1 · ŝ2 terms of
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expression (26) correspond to expressions (18) and (21) respectively. With Fourier transform

(26) the frequency dependent dipole interaction ψ(k) → φ(12) is given by

φ(12) =
1

(2π)3

∫

φ̃(12)eikr dk = s1s2 [ψDK(r)D(12) + ψ∆K(r)∆(12)] , (27)

where from Eq. (5.10) of Ref. [11]

ψDK(r) = −e
−τ

r3

(

1 + τ +
1

3
τ 2
)

and ψ∆K(r) = −2e−τ

3r3
τ 2 (+const. δ(r)), (28)

with τ = iωr/c.

Thus altogether, interactions via the electromagnetic field contain both the two oscillator

models considered in Sec. III. The dipole-dipole interaction (26) is then a sum (→ integral)

of eigenmodes (Fourier components) that induce the resulting interaction between the two

oscillators. An implication of this, as we have seen, is that the contribution to the entropy

can be negative in some regions.

V. SUMMARY

We have studied the reason for possible negative entropy related to the Casimir interaction

between two media. This negative entropy may seem unphysical. To show that this is not so,

we have studied two harmonic oscillator models where two oscillators interact via a third one.

For one of the models the momenta of the two oscillators interact with the amplitude of the

third one in a way similar to the interaction with the electromagnetic vector potential, and

in fact corresponds to the TE polarization. Then a negative entropy contribution is found.

This shows that this type of behavior is not unphysical. Then the situation with the third

oscillator is generalized to a set of oscillators that mediates the induced interaction between

the two oscillators. Finally it is noticed that the induced radiating dipole-dipole interaction

between a pair of oscillating dipole moments can be identified with a combination of the

induced ones of the two oscillator models. This paper gives a proof that the TE contribution

to the entropy must be negative for large T , being typically negative for all T . The TM

contribution is typically positive. The total entropy, therefore, is likely to contain a negative

entropy region.
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Appendix A: Field theory approach

The point of this appendix is to show that the considerations of the main text have a

close correspondence with the field theoretic approach in quantum electrodynamics. The

latter starts from the expression for the free energy as a sum over Matsubara frequencies

(here ~ = c = 1)

F = −T
2

∞
∑

n=−∞

Tr lnΓΓ−1

0 , (A1)

where Γ0 is the free electromagnetic Green’s dyadic, and Γ is that in the presence of bodies

which interact with the electromagnetic field, e.g., dielectric or metallic bodies. For the case

of dielectrics, we can define a potential in terms of the permittivity ε, V = ε− 1, and then

we can readily show for two disjoint bodies, for which V = V1 + V2, that the free energy is

F =
T

2

∑

n

Tr ln[(1− Γ0V1)(1− Γ0T1Γ0T2)(1− Γ0V2)], (A2)

in terms of the scattering matrices

Ti = Vi(1− Γ0Vi)
−1. (A3)

Evidently, Eq. (A2), sometimes called the TGTG formula, is identical with Eq. (17) inserted

into Eq. (11), which was derived long before the modern renaissance of multiple-scattering

formulations of Casimir problems. Here the Ai’s have been disregarded, as not involving

interaction with the electromagnetic field, and the Di are identified with

Di ↔ Γ0Vi. (A4)

And the break-up into electromagnetic modes, detailed in Sec. IV, is just the well-known

decomposition

Γ0(r) = (∇∇− 1∇2)
e−|ζn|r

r

=

[

(3r̂r̂− 1)

(

1 + |ζ |r + 1

3
ζ2r2

)

− 1
2

3
ζ2r2

]

e−|ζ|r

r3
, (A5)

which restates Eqs. (27) and (28). So the correspondence is not merely analogous, it is

precise.
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