
PHYSICAL REVIEW A 90, 054502 (2014)

Nonperturbative theory for the dispersion self-energy of atoms
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We go beyond the approximate series expansions used in the dispersion theory of finite-size atoms. We
demonstrate that a correct, and nonperturbative, theory dramatically alters the dispersion self-energies of atoms.
The nonperturbed theory gives as much as 100% corrections compared to the traditional series-expanded theory
for the smaller noble gas atoms.
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Until recently most work, using either the quantum electro-
dynamic (QED) or the semiclassical formalism of dispersion
energies, have relied upon a point dipolar description. Previous
work that indeed did incorporate the finite atomic size was
based on series expansions, and suggested that the van
der Waals interaction contributed to a short-range attractive
binding energy [1,2]. The aim of a recent work [3] was to
demonstrate how keeping the full nonperturbative theory and
taking the finite atomic size into account strongly alter the
nonretarded van der Waals force and resonance interaction
energy at contact distances. Including finite atomic size effects
in a nonperturbative theory opens up for the possibility of
having van der Waals repulsion when two atoms come very
close. Series expansion is a valid approach if the coupling is
very weak.

In the present Brief Report we present a derivation of
the nonperturbative retarded self-energy of atoms and ions in
vacuum. Within our theory, taken without series expansions,
we find substantial corrections to the self-energy of an atom.
A useful analytical asymptote is derived and we present
some illuminating numerical results considering the finite-size
effects for different atoms and ions.

In the contributions by Mahanty and Ninham [1,2] they
demonstrated that the secular equation that gives the perturbed
eigenmodes of the electromagnetic field due to the presence
of a polarizable particle with finite size is

[Ī + 4πG̃(r̄ ,r̄ ′,ξ )] = 0, (1)

where

G̃(r̄ ,r̄ ′,ξ ) = [ξ 2/c2Ī + ∇r∇r ]
∫

G̃(r̄ − r̄ ′,ξ )

×α(r̄ ′′ − r̄ ′,ξ )d3r ′′, (2)

and the free space Green function has the form [2]

G̃(r̄ − r̄ ′,ξ ) = Ĩ

(2π )3

∫
d3k

exp[ik̄(r̄ − r̄ ′)]
(ξ 2/c2 − k2)

, (3)

where Ĩ is the unit tensor.
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The dispersion self-energy of a finite-size isotropic
molecule with a Gaussian spread was derived by Mahanty and
Ninham [1,2] in a series-expanded theory. Here, we present a
nonperturbative theory that can be used for atoms and ions in
vacuum, and we show that there are often large corrections to
the results from the approximate series-expanded theory. The
dispersion self-energy is [1,2]

Es = �

∫ ∞

0

dξ

2π
ln[Ĩ + 4πG̃(r̄ ,r̄,iξ )]. (4)

As was pointed out by Mahanty and Ninham the finite
spread of the polarization make the Green function, G̃(r̄ ,r̄,iξ ),
convergent (here r̄ is the position of the polarization). The
polarization cloud of real atoms has a finite spread and we
consider as an interesting case a spatial distribution of the
atom following an isotropic Gaussian function. This gives a
Green’s tensor where the diagonal elements are equal (i.e.,
j = x, y, and z components are equal) [2,4]. The choice for
the polarizability tensor is

α̃(r̄ ,ξ ) = Ĩ (π−3/2a−3)e−r2/a2
α(ξ ), (5)

where a is the Gaussian radius. The fully retarded expression
can be shown to be

GRet
j (iξ ) = α(iξ )

3(2π )3 I (iξ ), (6)

where

I (iξ ) = π3/2

(a/2)3

(
1 + ξ 2a2

c2

)

− 4π2 ξ 3

c3
e(ξa/2c)2

[
1 − erf

(
ξa

2c

)]
. (7)

In the nonretarded limit this is reduced to

GNR
j (iξ ) = [α(iξ )]/[3π3/2a3]. (8)

The traditional way to treat these integrands is to make a
series expansion of the logarithm in Eq. (4) and keep only the
lowest-order term, i.e., ln(1 + x) ≈ x. However, the energy
from the eigenmodes for an isotropic atom in vacuum is given
by the sum of the equal j = x, y, and z contributions from the
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TABLE I. Finite-size dispersion self-energy, Es, for noble gas
atoms and two ions. The subscript expanded indicates that the result
is from using series expansion of the logarithm in the integrand. All
energies are in eV. The input data were taken from Refs. [5–8].

Element ENR,full
s E

NR,expanded
s

He 71.2 131.5
Ne 104.9 220.3
Ar 37.6 62.1
Kr 29.9 47.5
Na+ 20.2 22.4
Cl− 5.2 6.0

secular equation. We find

Es =
∑

j=x,y,z

�

∫ ∞

0

dξ

2π
ln[1 + 4πGj (iξ )]. (9)

Mahanty demonstrated that when the retarded Green’s
function is substituted into the series-expanded expression,
the main contribution in the integration must come from the
characteristic absorption frequencies of the atomic system. For
the corresponding values of aξ/2c ≈ a/2λc, where λc is the
wavelength of a characteristic absorption line, the retardation
effects are negligible. In the retarded limit one must use a
cutoff as proposed by Mahanty in similar calculations for the
Lamb shift [1]. However, we focus on the nonretarded limit
where there is no need for a cutoff and we obtain the following
expression:

ENR
s = 3�

∫ ∞

0

dξ

2π
ln

[
1 + 4π

3π3/2a3
α(iξ )

]
. (10)

To illustrate the point we use a simple one oscillator model for
the atomic polarizability, α(iξ ) = α(0)/(1 + ξ 2/ω2

0). We find
that a nonperturbative theory gives the following expression
for the dispersion self-energy of isotropic polarizable particles
(with a Gaussian polarization spread) in vacuum:

ENR
s = 3�ω0

2
[−1 +

√
1 + 4α(0)/(3a3

√
π )]. (11)

We give in Table I the results found when using our nonpertur-
bative theory and as comparison also the results from using the
approximate series-expanded theory. As input we have used
atomic radii and static polarizabilities given by Hohm and
Thakkar [5] and characteristic frequencies given by Mahan
and Subbaswamy [6]. For the ions we use the input data from
Parsons and Ninham [7,8].

The effects of a nonperturbative theory ought in principle
to be detectable experimentally, although it is a challenge to
measure self-energies directly. What is practically possible
is to verify our results indirectly in experiment. Solvation
energies of atoms and ions in a dielectric medium (i.e., changes
of the self-energy in a vacuum compared to in a medium)
can be measured [9–11]. Latimer et al. [12] were able to fit
experimental solvation energies (or rather the related heats
of solvation) to the Born equation by increasing the effective
radius of the ions. Self-energy changes have also been shown to
influence permeabilities across dielectric membranes [13,14].
The difference between perturbative and nonperturbative
theories will be much reduced in a dielectric medium due to
the factor 1/ε (where ε is the frequency-dependent dielectric
function of a medium). Hence the results obtained for instance
for the permeability of atoms across a membrane will be
changed mainly due to changes in the self-energy in vacuum.
A factor of 2 difference for these self-energies compared to
those obtained from a series-expanded theory ought therefore
to be measurable with existing experimental equipment for
solvation free energies and permeabilities. Large corrections
have been overlooked in the past when performing series
expansions of the logarithmic terms before including the finite
atomic size [4]. The self-energy is also known to give a
contribution to the Lamb shift [1]. When series expanding
Eq. (10), we rederive the dispersion self-energy found by
Mahanty [1]. However, the validity of a series expansion
assumes that α(0)/a3 is much smaller than unity which is
not always the case.

M.B. and C.P. acknowledge support from the Research
Council of Norway (Project No. 221469). C.P. acknowledges
support from the Swedish Reseach Council (Contract No.
C0485101). P.T. acknowledges support from the European
Commission.

[1] J. Mahanty, Nuovo Cimento 22B, 110 (1974).
[2] J. Mahanty and B. W. Ninham, J. Chem. Phys. 59, 6157 (1973).
[3] M. Boström, P. Thiyam, C. Persson, D. F. Parsons, S. Y.

Buhmann, I. Brevik, and B. E. Sernelius (unpublished).
[4] J. Mahanty and B. W. Ninham, Dispersion Forces (Academic,

London, 1976).
[5] U. Hohm and A. J. Thakkar, J. Phys. Chem. A 116, 697 (2012).
[6] G. D. Mahan and K. R. Subbaswamy, Local Density Theory

of Polarizability (Plenum, New York and London, 1990),
Table 4.11.

[7] D. F. Parsons and B. W. Ninham, J. Phys. Chem. A 113, 1141
(2009).

[8] D. F. Parsons and B. W. Ninham, Langmuir 26, 1816 (2010).
[9] A. A. Rashin and B. Honig, J. Phys. Chem. 89, 5588

(1985).
[10] M. Boström and B. W. Ninham, J. Phys. Chem. B 108, 12593

(2004).
[11] T. Duignan, D. F. Parsons, and B. W. Ninham, J. Phys. Chem. B

118, 3122 (2014).
[12] W. M. Latimer, K. S. Pitzer, and C. M. Slansky, J. Chem. Phys.

7, 108 (1939).
[13] A. Parsegian, Nature (London) 221, 844 (1969).
[14] M. Boström and B. W. Ninham, Biophys. Chem. 114, 95

(2005).

054502-2

http://dx.doi.org/10.1007/BF02737463
http://dx.doi.org/10.1007/BF02737463
http://dx.doi.org/10.1007/BF02737463
http://dx.doi.org/10.1007/BF02737463
http://dx.doi.org/10.1063/1.1679985
http://dx.doi.org/10.1063/1.1679985
http://dx.doi.org/10.1063/1.1679985
http://dx.doi.org/10.1063/1.1679985
http://dx.doi.org/10.1021/jp2094438
http://dx.doi.org/10.1021/jp2094438
http://dx.doi.org/10.1021/jp2094438
http://dx.doi.org/10.1021/jp2094438
http://dx.doi.org/10.1021/jp802984b
http://dx.doi.org/10.1021/jp802984b
http://dx.doi.org/10.1021/jp802984b
http://dx.doi.org/10.1021/jp802984b
http://dx.doi.org/10.1021/la902533x
http://dx.doi.org/10.1021/la902533x
http://dx.doi.org/10.1021/la902533x
http://dx.doi.org/10.1021/la902533x
http://dx.doi.org/10.1021/j100272a006
http://dx.doi.org/10.1021/j100272a006
http://dx.doi.org/10.1021/j100272a006
http://dx.doi.org/10.1021/j100272a006
http://dx.doi.org/10.1021/jp048517a
http://dx.doi.org/10.1021/jp048517a
http://dx.doi.org/10.1021/jp048517a
http://dx.doi.org/10.1021/jp048517a
http://dx.doi.org/10.1021/jp410956m
http://dx.doi.org/10.1021/jp410956m
http://dx.doi.org/10.1021/jp410956m
http://dx.doi.org/10.1021/jp410956m
http://dx.doi.org/10.1063/1.1750387
http://dx.doi.org/10.1063/1.1750387
http://dx.doi.org/10.1063/1.1750387
http://dx.doi.org/10.1063/1.1750387
http://dx.doi.org/10.1038/221844a0
http://dx.doi.org/10.1038/221844a0
http://dx.doi.org/10.1038/221844a0
http://dx.doi.org/10.1038/221844a0
http://dx.doi.org/10.1016/j.bpc.2004.11.003
http://dx.doi.org/10.1016/j.bpc.2004.11.003
http://dx.doi.org/10.1016/j.bpc.2004.11.003
http://dx.doi.org/10.1016/j.bpc.2004.11.003



