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Abstract – A non-expanded theory is used for dispersion potentials between atoms and ions
dissolved in a medium. The first order dispersion interaction between two atoms in an excited
state must account for the fact that the two atoms are coupled via the electromagnetic field and
must include effects from background media, retardation and finite size. We show that finite size
corrections when two particles are close change the dispersion interactions in water by several
orders of magnitude. We consider as four illustrative examples helium atoms, krypton atoms,
phosphate ions, and iodide ions. We demonstrate that due to large cancellation effects retardation
dominates the interaction for helium atom pairs in an isotropic excited state down to the very
small atom-atom separations where finite size corrections are also important.

We aim in the present letter at calculating the Casimir-
Polder interaction energy between atoms (helium and
krypton) and ions (phosphate and iodine) dissolved in wa-
ter and to study what effects the finite atomic size has on
this interaction. We also give results for the resonance in-
teraction energy between He atoms. The calculations pre-
sented are for very small interatomic distances (lower than
ten Ångströms) at which effects beyond dipole-dipole dis-
persion interactions are important. The interaction energy
between ground state helium and krypton atoms, in vac-
uum, are well known from standard ab initio calculations.
They show a potential energy minimum (ρmin=2.97Å,
Umin=0.001 eV for He2, and ρmin=4 Å, Umin=0.016 eV
for Kr2, where ρ is the atom-atom separation and U is
the interaction potential). The minimum is the result of a
repulsive short-range electro-static part and an attractive
long-range part, due electron correlation. We are here con-
cerned with the attractive long range part of the potential
only. The formalism we use focuses on the dipole-dipole

dispersion interaction. At very small separation higher
order multipolar contributions contribute and when there
is substantial wave-function overlap one has to resort to
quantum-chemistry calculations since the electrons are no
longer confined to their respective particle. In our for-
malism we find that the interaction stays finite when the
particles come close to each other. We emphasize that the
reason is that the particle radii have been assumed to be
finite.

There are recent developments in the literature related
to our approach. Thus Kysylychyn et al. [1] have studied
the interaction between a finite-size nanoparticle (could
be an atom) and the surface of a solid, making use of the
local-field method. Assuming that the nanoparticle has
a finite nonlinear polarizability, an interaction potential is
derived that is repulsive at short ranges and has an attrac-
tive long-range tail. Moreover, Przybytek et al. [2,3] have
done high precision work on the retarded Casimir-Polder
potential between two He atoms. When ρ > 100Å retarda-
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tion makes the diatomic potential switch from the London
ρ−6 decay to the Casimir-Polder ρ−7 form. The retarda-
tion effect is found to increase the size of the helium dimer
bound state by about 5%. The nonretarded calculations
yield an average value of ρ for the helium bound state to be
quite large, 47.1Å, which agrees fairly well with the mea-
sured (retarded) value of 52Å. It may also be mentioned
that an extensive treatment of quantum electrodynami-
cal (QED) interactions and thermophysical properties of
helium have recently been given by Cencek et al. [4]. A
recent paper by DiStasio et al. [5] dealing with density
functional (quantum mechanical) theory of the interaction
potential between finite-sized quantum harmonic oscilla-
tors explicitly takes orbital overlap into account. They
find results that are similar to ours in water. In both ap-
proaches finite atomic size renders the interaction finite at
zero atom-atom separation. What is evident in our theory
is the removal of the divergences at zero separation.
In this letter we treat both the Casimir-Polder inter-

action and the resonance interaction. We begin by giv-
ing a brief introduction to resonance interaction. Ninham
and co-workers [6] demonstrated a decade ago that, due
to some drastic approximations, the underlying theory of
resonance interactions in free space derived from pertur-
bative QED is incorrect at large distances. [6–9] For small
separations the QED result has been considered to be cor-
rect. However, the QED formalism supposes a point dipo-
lar description. One aim of this letter is to demonstrate
how the taking into account of finite atomic size and back-
ground medium fundamentally alters the resonance inter-
action energy. In the formalism one atom is in its ground
state and the other in an excited state. At resonance the
excitation switches back and forth between the two atoms.
The interaction can be separated into three branches, the
x-, y-, and z-branch where the name of the branch denotes
in what direction the oscillating dipoles are pointing. We
let the z-direction be defined by the line joining the two
atoms. When there is no preferred direction for the exci-
tation all three branches are activated. We refer to this
case as isotropically excited atom pairs.
From writing up the equations of motion for the excited

system it is straightforward to derive the zero temper-
ature Green’s function for two identical (and isotropic)
atoms dissolved in water [6, 10]. The resonance condi-
tion [6] can be obtained from the following condition:
1̃− α∗(ω)2T̃ 2(ρ|ω) = 0, where T̃ is the susceptibility ten-
sor and α∗(ω) the excess polarisability of the atom dis-
solved in water. The excess polarisabilities (α∗(iξ)) and
atomic radii (a) for helium and other noble gas atoms dis-
solved in water were derived as in several papers by Par-
sons and Ninham [11, 12]. They were presented recently
by Boström, Parsons, and co-workers. [13] Dynamic po-
larisabilities of noble gas atoms in vacuum were calculated
using Molpro [14] at a coupled cluster singles and double
(CCSD) level of theory. An aug-cc-pV6Z basis set [15,16]
was used for a selection of noble gas atoms (He, Ne and
Ar while aug-cc-pV5Z was used for Kr [17]). In this work

we consider helium and krypton atoms and iodide and
phosphate ions. Polarisabilities, α(iξ), in vacuum were
transformed to excess polarisabilities, α∗(iξ), in water via
the relation for a dielectric sphere embedded in a dielectric
medium [18, 19], α∗(iξ) = R3(εa − εw)/(εa + 2εw). Here
εw is the dielectric function of water and R is the radius
of the atom. εa is the effective dielectric function of the
atomic sphere, estimated from the atomic polarisability in
vacuum as εa(iξ) = 1+4πα(iξ)/V , where V is the volume
of the atomic sphere.

In the case of two identical atoms the above resonance
condition can be separated in one anti-symmetric and one
symmetric part. Since the excited symmetric state has a
much shorter life time than the anti-symmetric state the
system can be trapped in an excited antisymmetric state.
The resonance interaction energy of this antisymmetric
state can be evaluated by a simple expression for two dis-
solved atoms (excited in the j=x-, y-, or z-branch, where
z is in the direction of the line connecting the two atoms)
in water,

Uj(ρ) = h̄

∞
∫

−∞

dξ

2π
ln [1 + α∗(iξ)Tjj(ρ|iξ)] . (1)

The corresponding van der Waals (Casimir-Polder) in-
teraction between (isotropic) atoms is given by the follow-
ing expression:

UCP (ρ) =
h̄

2

∑

j=x,y,z

∞
∫

−∞

dξ

2π
ln
[

1− α∗(iξ)2Tjj(ρ|iξ)2
]

,

(2)
where ρ is the distance between the two atoms. Tradition-
ally one assumes that the interaction is so weak that one
may expand the logarithm in Eqs. (1) and (2) and keep
the lowest order contribution only (ln(1 + x) ≈ x). In
what follows we name this the expanded theory and when
the full logarithmic expression is used the non-expanded
theory.

We now present the theoretical framework used to study
how finite atomic size influences the Casimir-Polder inter-
action and the resonance interaction when two atoms are
near each other. The polarisation cloud of real atoms has a
finite spread and we consider as an interesting case (con-
sistent with the modeling of the excess polarisability) a
spatial distribution of the atom following a Gaussian func-
tion (for helium in water the radius a is 0.60Å). [20,21] We
have, following the formalism developed by Mahanty and
Ninham [20, 21], derived the Green’s function elements
that account for retardation, background media, and fi-
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Fig. 1: (Color online) The van der Waals interaction between
pairs of finite size helium atoms in vacuum. Note that finite
size effects keep the interaction finite when the particles come
close together. We also show the van der Waals interaction
between pairs of finite size helium atoms when the theory is
perturbatively expanded. We also show the curves for dipole-
quadrupole and quadrupole-quadrupole contributions in the
expanded theory of dispersion energies. [22]

nite size in an accurate way. They are

Txx (ρ|iξ) = Tyy (ρ|iξ)
= − exp

[

( ξ
c )

2( a
2 )

2
]

2ρ

{[

(

ξ
c

)2

+
(

ξ
c

)

1
ρ +

(

1
ρ

)2
]

×
[

1− erf
(

ξ
c
a
2
− ρ

a
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− ξ
cρ

)

−
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(
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−
(
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)

1
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(

1
ρ
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ξ
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+ ρ
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exp
(

ξ
cρ
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− 4
aρ

√
π
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−
(

ξ
c

)2
(

a
2

)2 −
(

ρ
a

)2

]}

,

(3)

and

Tzz (ρ|iξ)
=

exp
[

( ξ
c )

2( a
2 )

2
]

ρ

{[

(

ξ
c

)

1
ρ +

(

1
ρ

)2
]

×
[

1− erf
(

ξ
c
a
2
− ρ

a

)]

exp
(

− ξ
cρ

)

+

[

(

ξ
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)

1
ρ −

(

1
ρ

)2
]

[

1− erf
(

ξ
c
a
2
+ ρ

a

)]

exp
(

ξ
cρ

)

− 4
aρ

√
π

(

1 +
(

ρ
a

)2
)

exp

[

−
(

ξ
c

)2
(

a
2

)2 −
(

ρ
a

)2

]}

,

(4)

where c = c0/
√

ε(iξ) with c0 the velocity of light in vac-
uum and ε(iξ) the dielectric function of water for imagi-
nary frequencies. The effect of the background medium is
entirely contained in the velocity of light in the medium
and the excess polarisability. In some papers a factor ε(iξ)
multiplies the excess polarisability and divides the Green’s
function elements. The results would of course be the same
if we adapted that notation.
When retardation is neglected we find the following re-
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Fig. 2: (Color online) Casimir-Polder (ground-state) interac-
tion between two helium atoms dissolved in water. Comparing
theory with or without finite size dependence.

sults:

TNR
xx (ρ|iξ) = TNR

yy (ρ|iξ)
= −1√

πρ3

[√
πerf

(

ρ
a

)

− 2
(

ρ
a

)

e−(
ρ
a )

2
]

,
(5)

TNR
zz (ρ|iξ)

= −2√
πρ3

[

−√
πerf

(

ρ
a

)

+ 2
(

ρ
a

)

[

1 +
(

ρ
a

)2
]

e−(
ρ

a )
2
]

,
(6)

and

Trace
[

T̃NR (ρ|iξ)
]

=
−4√
πa3

e−ρ2/a2

. (7)

We then find with either the x-branch or z-branch ex-
cited a 1/ρ3-dependence of the resonance interaction in
the non-retarded limit. We observe that the resonance in-
teraction at close contact depends on the radius ∝ a−3.
This should be compared to the corresponding result for
the ground state Casimir-Polder interaction that depends
on the radius ∝ a−6. The analytical asymptotes are only
valid for atomic systems where the logarithm can be series
expanded.
It is important to note that we are only consider-

ing the dispersive dipole interaction. We have not in-
cluded contributions due to higher-order multipole con-
tributions. [22–24] We show the resulting dipole-dipole,
dipole-quadrupole, and quadrupole-quadrupole dispersion
potentials [22] in an expanded theory for two helium
atoms in vacuum in Fig. 1 (note that the dipole-dipole in-
teraction is a factor of 2 too small in Ref. [22] and the pref-
actor in their Eq. (34) should be 16/9π instead of 8/4π).
It is clear that dipole-dipole contributions give an impor-
tant contribution at all separations. As comparison we
also show the non-expanded result for the dipole-dipole
dispersion potential. Here we see that a non-expanded
theory may account partially for the observed short-range
repulsion between two atoms in vacuum. The fact that
the atoms are in water will as we will see change this
fact. In simulations that use a Lennard-Jones potential
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Fig. 3: (Color online) Resonance interaction between isotrop-
ically excited diatomic helium dissolved in water. The effects
of retardation and finite size (a = 0.6 Å) are considered. For
distances smaller than the atomic radii retardation effects can
be neglected.

the interaction is made up of an attractive dispersion con-
tribution and a repulsive contribution. We here calculate
the attractive part in a correct way. A full quantum me-
chanical molecular simulation could be used to study how
well our predictions represent the effect of water molecules
on the interaction energy between two atoms at small in-
teratomic distances. However, it should be observed that
while a quantum chemistry calculation is an alternative
way to model the interaction that too has its limitations.
Quantum chemistry does not, for example, in an accurate
way account for the coupling of atoms in an excited state.

We show in Fig. 2 the fully retarded finite temperature
Casimir-Polder (ground-state) interaction between two he-
lium atoms dissolved in water. Finite size corrections
prevent the attraction from going to infinity when two
atoms come very close together. This is consistent with
the ground state Casimir-Polder interaction between finite
size atoms in vacuum found by Mahanty and Ninham. [21]

In Fig. 3 we consider the effect of including retarda-
tion and finite size on the resonance interaction between
isotropically excited diatomic helium dissolved in water.
Finite size effects soften the attraction at very small sepa-
rations but equally important is the effect of retardation.
One observes that for isotropically excited diatomic he-
lium the non-retarded approximation which neglects finite
size is not applicable at any separation. Both finite size de-
pendence and retardation must be considered in order to
have a theory that works for all separations. For isotrop-
ically excited atom pairs the first expansion term in the
logarithm cancels out and the leading non-retarded term
is ∝ ρ−6. The dominating term is a retarded term ∝ ρ−4.

We compare in Fig. 4 the effect of finite size on the at-
tractive x-mode excitation and repulsive z-mode excita-
tion. It is seen that while finite size effects are conceptu-
ally important at very small atom-atom separations these
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Fig. 4: (Color online) Resonance interaction between x- or z-
mode in an excited state, with and without finite size effects
included. In this plot retarded and non-retarded results are
indistinguishable. Uxx is attractive, and its magnitude is shown
here for comparison with Uzz.

effects play little role for separations beyond two atomic
radii. Retardation effects are negligible for each of the
contributing terms. However, there is a large cancellation
effect (between the different Uj(ρ) terms) when the contri-
butions are added together and retardation is important
for the resonance interaction between isotropically excited
atom pairs as was seen in Fig. 3. One important point
in this letter is that while retardation reduces the x, y,
and z excited state resonance interactions (1/ρ3 → 1/ρ4)
the opposite is found for resonance interaction between
isotropically excited atom pairs (1/ρ6 → 1/ρ4).

Severe problems have been noted with the accepted the-
oretical expressions for the resonance interaction between
identical atom pairs in an excited state when the atoms
are far apart [6, 7, 9]. Different research groups find very
different results for the first order dispersion potential for
atom pairs in an excited state at that separation limit.
They do however find the same result when two atoms or
molecules are close together. There are no debate concern-
ing ground state interactions, nor for (anisotropic) reso-
nance interactions in the non-retarded limit. However, our
results for isotropically excited atom pairs propose that re-
tardation (due to strong cancellations between x-, y- and
z-components) could be important almost down to close
contact. This may provide a case where experiments may
be able to select the more appropriate way to calculate
interactions between excited atom pairs.

As we have demonstrated in this letter finite size effects
that have been ignored influence the resonance interaction
between two atoms for separations of the order of a few
atomic radii. More substantial long range effects are ex-
pected for atoms, molecules and ions with larger Gaussian
radii. We end by giving in Fig. 5 and Fig. 6 as further ex-
amples the resulting Casimir-Polder interaction for a pair
of krypton atoms, a pair of phosphate ions, and a pair of
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Fig. 5: (Color online) Retarded Casimir-Polder interaction be-
tween pairs of krypton atoms dissolved in water. Solid curve
is for zero-size atoms and dashed for atoms of finite size. The
finite radius of the krypton atoms is a = 1.4 Å.

iodide ions. Here, substantially longer ranged finite size
effects are observed.
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