
Motion Prediction by Optimal Paths
Through Disordered Landscapes

Mads Fromreide

Physics

Supervisor: Alex Hansen, IFY
Co-supervisor: Peter Ellevseth, Safetec Nordic

Department of Physics

Submission date: May 2014

Norwegian University of Science and Technology

Motion Prediction by Optimal Paths Through
Disordered Landscapes

Mads Fromreide

August 2013 - May 2014

Acknowledgments
This Master’s thesis was performed at the Department of Physics at NTNU,
in the period August 2013 - May 2014.

I would like to thank my supervisor Professor Alex Hansen, for ideas and
guidance through both the practical and written work with this thesis, and
for introducing me to the algorithm which the work is based upon.

Trondheim, May 2014

Mads Fromreide

i

Abstract
The ability to navigate safely and efficiently through a given landscape is
relevant for any intelligent moving object. Examples range from robotic
science and traffic analysis to the behavior within an ecosystem. Through
this thesis, methods for finding traffic patterns and predicting future motion,
have been constructed based on theory of optimal paths. The algorithms
are applied to maritime traffic, in terms of recorded vessel coordinates.
By considering the structure of a given traffic situation as a disordered energy
landscape, one can define optimal routes within the area. An algorithm
for finding hierarchies of optimal paths in a disordered energy landscape is
implemented. The algorithms are used in two settings, one for detecting
patterns of motion within a given area, and a method for estimating single
vessel trajectories. The results found in the thesis, show that the methods
have great potential for analyzing traffic patterns and predict future motion.

iii

Abbreviations
• AIS: Automatic Identification System

• EM: Expectation-Maximization

• IMO: International Maritime Organization

• MLE: Maximum-Likelihood Estimate

• SOLAS: Safety Of Life At Sea

iv

Contents

Acknowledgments i

Abstract iii

Abbreviations iv

1 Background 3
1.1 Motivation . 3
1.2 Structure of thesis . 5

2 Introduction 7
2.1 Motion prediction in a dynamic environment 7
2.2 Pattern recognition . 9

2.2.1 Learning stage . 9
2.2.2 Prediction stage . 12

2.3 Optimal paths . 13
2.3.1 The Dijkstra algorithm 15
2.3.2 The Bellman-Ford algorithm 16

3 Method 17
3.1 Description of methods . 17

3.1.1 Finding the optimal path 17
3.1.2 Creating an energy landscape 20
3.1.3 Adjusting the landscape 23
3.1.4 Calculating the length of a path 23

3.2 Application . 25
3.2.1 Predicting a single route 25
3.2.2 Finding patterns of motion 26

4 Results 29
4.1 The effect of the exponent α 31

4.1.1 Random grid . 32
4.1.2 Set A . 34
4.1.3 Set B . 37

4.2 Estimating a single route . 40
4.3 Finding patterns of motion 44

1

4.3.1 Set A . 44
4.3.2 Set B . 48

5 Discussion 53
5.1 The exponent α . 53
5.2 Routes . 54
5.3 Patterns . 55

6 Conclusion 57
6.1 Further Work . 58

Appendices 59

A Draft for Article 59

B Source code 67
B.1 pathscape algorithm . 67
B.2 main file . 72
B.3 Other functions . 83

7 References 87

2

1. Background

1.1 Motivation
The understanding of the regular behavior of a dynamic system, gives oppor-
tunities to predict future events within it. Objects tend to move in patterns,
and are often influenced by other surrounding objects. By applying theory
of optimal paths, moving through a disordered energy landscape, one may
gain knowledge about the regular movement within an area. Applications
range from behavior of ecosystems, to robotic navigation and large traffic
systems [15].

Maritime safety and security are important concerns in todays society. Mar-
itime transportation is the most important way of transport, measured by
volume [11]. Gaining knowledge about the regular patterns of vessel traf-
fic gives opportunities to explain the future behavior of the system. Being
able to predict future motion gives the opportunity to predict future events,
for instance vessel collisions. Accidents involving large vessels may risk the
health and life of people, as well as having big environmental impacts and
economical costs. Other concerns that may be enlightened by the under-
standing of the typical behavior of vessel motion, are illegal import/export,
maritime pollution, piracy and maritime terrorism [12].

Through the Safety Of Life At Sea (SOLAS) convention, the International
Maritime Organization (IMO) has introduced a reporting system known
as the Automatic Identification System (AIS). The SOLAS convention origi-
nated in 1914 and was initiated by the United Kingdom government after the
Titanic accident in 1912 [10]. Through the years, the convention has been
edited and new information has been added. The AIS system was intro-
duced to establish the position of vessels lying in radar shadows [1], helping
nearby vessels to avoid accidents. By using satellite navigation along with
AIS signals, vessels may locate other nearby vessels more accurately. The
AIS system is based on transponders on the ships and land-based stations.
By the SOLAS convention, all domestic ships with a gross-tone weight above
500, international ships with weight over 300 tones and all passenger ships
are required to carry AIS transponders [1, 9]. These exact requirements
became efficient for all ships by the end of 2004 [9]. The AIS messages con-
tain different types of information. The information is classified into two

3

groups, dynamic and static information. The static information includes a
unique identification number, name, type and size of the vessel. Position
(in geodesic coordinates), speed, course, heading, port of destination and
estimated arrival time belong in the dynamic information class [12]. The
different types of information are broadcasted in their own specified time
intervals and not all types of information are compulsory. The AIS system
provides ships with a large amount of near real time information, which en-
ables the use of automatic control systems [11]. In addition, storing AIS data
gives easy access to large detailed datasets which may be used for analysis.

In this thesis, an algorithm for finding optimal paths in a disordered energy
landscape is applied to analyze the motion of moving objects. By different
implementations of the algorithm one may find regular patterns of motion
and predict the future behavior of vessels. The theory used, is applicable to
a general setting, and are tested on real AIS datasets.

4

1.2 Structure of thesis
1. Background

Motivation behind the thesis

2. Introduction
An introduction to the theory for which this thesis is built upon. In-
cludes pre-existing methods.

3. Method
Description of the different algorithms used in the thesis.

4. Results
Presentation of the simulations and calculations performed.

5. Discussion
Discussion of the results.

6. Conclusion
Conclusion and ideas for future work.

7. Appendix
Draft for an article based on the work in the thesis.
The programs created for the analysis. All code is written in C, except
for the plot scripts created for gnuplot.

5

2. Introduction

2.1 Motion prediction in a dynamic environment
When navigating through a dynamic environment, a moving object must
adjust to the changes of its surroundings. The change of the environment
may be caused by other moving objects populating the same area. In order
to adjust to changes, a moving object must in some way be able to pre-
dict the future motion and behavior of its surroundings. For most animals
and intelligent beings the ability to efficiently navigate and interact with its
surroundings is crucial for surviving [15]. For instance, a hunting predator
must predict the future motion of its prey in order to catch it. If the area is
populated by other predators, both equal or above itself in the food chain,
the predator must take into a count these motions as well.

Motion prediction may be applied to a wide range of fields from robot naviga-
tion and video surveillance to collision avoidance and behavior of an ecosys-
tem [15]. Motion prediction may be performed on both microscopic and
macroscopic level. That is, for a microscopic view of the system one pre-
dicts the future motion of every single object in the area of interest. This
is based on the future behavior of the system upon a prior motion model,
for instance differential equations. One may group the different models of
motion into three groups, or as combinations of these: (i) Constant veloc-
ity model, (ii) Random motion model and (iii) Intentional motion model [17].

The constant velocity model (i) assumes that all objects move with a con-
stant velocity, that is with zero acceleration. This simple model may seem
modest and unrealistic in many cases, however it may give a good descrip-
tion when applied to small time scales. That is, for a small time interval
∆t it is fair to approximate the motion with constant velocity. Model (ii)
shows the acceleration as a stochastic function, hence the velocity and po-
sition vectors will be stochastic functions as well. By assigning different
probability distributions to the stochastic variables one may create a re-
alistic environment. In the Intentional model (iii), the objects move in a
scheduled way. Different objects may move in different ways according to
their needs and goals. In this case the acceleration vector will be a func-
tion of time. This function may or may not be unique for each object. All

7

these groups may be further specified, adjusting the environment of interest.
For instance in the example of predators hunting preys, the equations will
be coupled, taking into consideration the motion of the surrounding animals.

It soon becomes evident that if the environment consists of a large number
of moving objects, these kinds of calculations will be too time demanding.
Therefore, in order to handle large areas with complex traffic, another ap-
proach has emerged [15]. This approach operates on a macroscopic level.
The method is based on the assumption that objects tend to move in pat-
terns. These patterns are determined both by the object’s nature and its
surrounding environment [15]. Patterns are found everywhere in the nature
and is therefore important in many branches of science. The next section
gives an introduction to the field and terms of pattern recognition, and high-
lights the most used methods. Further, an introduction to optimal paths are
given, before section 3.1 describes how optimal paths can be used to predict
future behavior.

8

2.2 Pattern recognition
The term pattern recognition means to extract data that has certain simi-
larities, from the rest of its environment [7]. In the research field of pattern
recognition the goal is to learn machines the ability to recognize patterns.
In Pattern recognition: human and mechanical Watanabe defines a pattern
as "the opposite of chaos" [16]. By this rather vague definition, many things
can be said to be patterns. For instance, letters are formed in certain pat-
terns. The patterns that are formed, are independent of the handwriting,
machine writing and cluttered backgrounds. The letters still read the same
[7]. Pattern recognition applies to many branches of science, such as biology,
psychology, medicine, linguistics, computer vision, artificial intelligence, etc.

When applying theory of patterns for predicting future motion, the process
is divided into two stages. First the learning stage, which consists of the
actual pattern recognition. In this step, the goal is to learn the typical mo-
tion patterns within a given area [15]. The next stage is the prediction stage
which predicts future trajectories of an object using the learned patterns.

2.2.1 Learning stage

When a pattern is recognized or classified, it is either considered to be a part
of an already known class, or it is assigned to a new unknown class. These
two categories are referred to as supervised and unsupervised classifications,
respectively [7]. When dealing with motion patterns one would typically
need to learn a new pattern for every situation studied. Pattern recognition
can be approached in different ways. The four categories: template match-
ing, statistical classification, syntactic or structural matching and neural
networks are considered to be the best known [7].

The idea behind template matching is that there exists a template or original
pattern. The actual recognition process is performed by matching the new
structure with the template. This process is performed, taking into consid-
eration all possible orientations, by rotating and translating the structure.
For instance one could imagine a machine trying to detect a square among
many different geometrical figures. It would then compare all the figures
with a template square until the best match is found. In syntactic (or struc-
tural matching) one considers each pattern to consist of several sub patterns,

9

which again consists of even smaller and simpler sub patterns. The smallest
pieces are called primitives. In order to construct the original pattern from
the primitives, one needs a set of rules or a recipe. Hence patterns may
be classified by their primitives and their rules. Consider a sentence as a
pattern. The sentence may be grouped as individual words (sub patterns),
and further as individual letters (primitives). The associated rules would
then be the spelling and grammar of the relevant language [7].

When looking at patterns of motion, the statistical approach to pattern
recognition is the most applicable method. The statistical approach char-
acterizes a pattern by d measurements/features and represent each unique
pattern as a point in d-dimensional space [7]. Statistical decision rules are
then used to separate different patterns from each other in a set of training
data. Each pattern is then assigned decision boundaries. One example of
this process is the process of detecting motion patterns by pairwise clus-
tering. Starting with N paths in a given area, one seeks to minimize the
number of paths by introducing representative trajectories which consists
of one or several paths, belonging to the same pattern [15]. When using
pairwise clustering one seeks out the two paths that are most likely to be-
long to the same pattern. These two paths are then grouped in a cluster
represented by their mean trajectory and the associated standard deviation.
The process is now repeated with the N − 1 paths (including the newly
constructed cluster) until some boundary is met. As new data (paths) are
added to the area, one considers the likelihood of the new path belonging to
each existing cluster. If a match is found, the path is added to the cluster.
If not, a new cluster consisting only of the new path is added to the area [15].

Another approach is the use of the Expectation-Maximization algorithm
(EM algorithm) for clustering whole trajectories. The EM approach is con-
sidered to be state of art within cluster-based techniques [15]. The EM algo-
rithm is an iterative technique for calculating maximum-likelihood estimates
(MLEs) when the observations are considered as incomplete [5]. Incomplete
data implies existence of two sample spaces X and Y . The incomplete data
is the observation y, which are realizations of Y . The variables x are not
directly observable, they may only be calculated by mapping from y. That
is, in general there exists a mapping x → y(x), and x is only known to
be a realization of the subset X(y) of X. Further, letting y be incomplete
data, leads to the term complete data for x [5]. If f(x | φ) is the family

10

of densities associated with x and g(y | φ) is the corresponding family of
densities associated with y, the relation between f and g is given by

g(y | φ) =
∫
X(y)

f(x | φ)dx. (1)

In general, the EM algorithm aims at finding a value φ that maximizes the
function g(y | φ) for an observed y [5]. As the name implies, the algorithm
consists of two steps. An expectation step and a maximization step. More-
over it consists of maximizing the expected likelihood function. Consider a
dataset consisting of a collection of N trajectories d = {d1, ..., dN}. Each
trajectory consists of a sequence of positions, di = {x1

i , ...,x
T
i }, where xti is

the positions after t steps. Further it is assumed that there exists M unique
patterns of motions, i.e clusters of trajectories, and let θm denote a pattern,
with 1 ≤ m ≤M . A pattern θm is represented by a probability distribution
p(x | θtm), which gives the probability of being at position x after t steps
given that the trajectory belongs to θm. The likelihood of a trajectory di
belonging to a pattern θm may then be written

p(di | θm) =
T∏
t=1

p(xti | θtm). (2)

The EM algorithm aims to maximize Eq. (2) subject to θ [4]. In order
to find the likelihood of data belonging to a certain pattern θ, a set of
correspondence variables are introduced. These variables are denoted cim,
where i specifies the trajectory di and m specifies the pattern θm. The
variables are binary, if the trajectory di belong to θm cim = 1, if not cim = 0.
One trajectory di can only belong to one pattern on motion θm, hence for
any trajectory di

M∑
m=1

cim = 1. (3)

The probability density functions p(x | θtm) are typically assumed to be
Gaussian [15, 4, 12]. As the Gaussian distribution is part of the exponen-
tial family it is convenient to consider the log likelihood rather than the

11

likelihood itself [4]. Since the logarithm is a monotonic function, a maxi-
mization of the log likelihood will be equivalent to maximizing the likelihood
itself. Instead of maximizing the expected likelihood, one maximizes the ex-
pected log likelihood. That is, one aims at optimizing the function given
by Ec[ln p(d, c | θ) | θ, d], where p(d, c | θ) is the total likelihood function
for all trajectories di. The EM algorithm generates iteratively a sequence of
patterns of increasing log likelihood. The ordered sequence of such patterns
are denoted θ[1], θ[2], θ[3],... The elements of this sequence may be found by
introducing an additional function, the Q-function, defined as follows [4]

Q(θ′ | θ) = Ec[ln p(d, c | θ′) | θ, d]. (4)

The Q-function is a function of two different patterns, θ and θ′. The next
element of the sequence of ordered patterns may then be found by

θ[j+1] = argmax
θ′

Q(θ′ | θ[j]). (5)

Hence, from a chosen initial model the remaining are found by iterating Eq.
(5) until it converges. If the Q-function is continuous, the EM algorithm
converges at least to a local minimum [4].

2.2.2 Prediction stage

As regular patterns of motion have been established, they may be used to
predict motion within the area. By starting of with a partially observed tra-
jectory, one may predict its future behavior. For each of the clusters, which
represents regular paths, one calculates the likelihood for the partial trajec-
tory to belong to it. That is, given a cluster Ck and a partially observed
trajectory dp, one calculates the probability that dp belongs to Ck [15]. In
order to calculate the likelihood, the dissimilarity between the partial tra-
jectory and the cluster is calculated. If dp(t) is the position of the partial
trajectory at time t, di(t) is the position of a longer trajectory at time t and
Tp is the duration of the partial trajectory, then the dissimilarity may be
expressed as

12

δp(dp, di) =
(

1
Tp

∫ Tp

t=0
(dp(t)− di(t))2dt

)1/2

(6)

When the distance/dissimilarity is known, one may calculate the likelihood
for dp belonging to a cluster Ck [15]. Under the assumption that a cluster
Ck is Gaussian distributed with mean µk and variance σ2

k, the likelihood is
expressed

P (dp | Ck) = 1√
2πσk

exp
(
−δp(dp, µk)

2

2σ2
k

)
. (7)

After the likelihood has been found for each cluster in the area, one may
predict the future motion of the partial trajectory. One option is to esti-
mate the future behavior with the mean value of the cluster with maximum
likelihood. Another option is to give several possibilities represented by a
cluster with the associated probability [15].

2.3 Optimal paths
By an optimal path it is meant the best path between two points with re-
spect to some restrictions. It might be the least time consuming path or the
shortest path between two positions, given some obstacles. In general, one
may consider any landscape as a disordered energy landscape. Where the
energy represent some measure. It could be related to the time it takes to
pass the given point, the difficulty of the terrain, a financial cost, etc. The
term "energy" relates to the many problems in physics and technology[14].
Optimal paths is important in a wide range of areas such as non-Newtonian
flow trough porous media, Internet routing, plasticity, spin glasses, protein
folding and the traveling salesman problem [13, 14]. Especially, when it
comes to the functioning of the Internet, optimal paths are essential.

The Internet is a large network, consisting of computers and routers linked
together. A signal’s traveling time is dependent of both the physical distance
between the source and destination, as well as the bandwidth at each link.
Since the Internet’s start in the 1970s the traffic load has increased with

13

an unprecedented pace [2]. In order to efficiently send information through
the network, optimal paths need to be found. Internet routing uses link
state routing protocols as a tool to navigate the data traffic. Within these
protocols, routers interchange information about their link state with their
neighbors. Then, by using an algorithm such as the Dijkstra algorithm, a
shortest path tree for each node is found [2].

The optimal path between two points is defined as the path where the sum
of energies along it, is the smallest. Consider a two-dimensional landscape
where each point ~r = (x, y) is assigned an energy t(~r). Let P be a path of
length L through this landscape. The path is parametrized by the distance
l from the start point, ~r(l) ∈ P . The start and endpoint of the path is
~ri = ~r(0) and ~rf = ~r(L), respectively. An optimal path between two points
is defined as the most energy efficient path between the points. The optimal
path is then found as the path where the total energy, T , is

T = min
~r∈P

∫ L

0
t(~r(l). (8)

There are numerous approaches on how to find such an optimal path. Mod-
els have been built on different algorithms.
One approach comes from the direct polymer problem [8]. In the directed
polymer problem one studies the different configurations of a polymer. The
polymer binds locally to a disordered substrate and is not allowed any back
bends, hence it is called directed. In the general problem one take into
account all possible configurations when calculating the Boltzmann weight
of a polymer between two points [8]. However, at zero temperature one
only needs to consider the configuration of lowest energy. That is, at zero
temperature the directed polymer problem is directly equivalent to the prob-
lem of finding an optimal path. Another approach is to use algorithms for
maximum flow on a network [13]

14

2.3.1 The Dijkstra algorithm

A third approach is presented by Schwartz et. al. [13] in Optimal path in
two and three dimensions. In the paper, the Dijkstra algorithm from graph
theory is implemented [13]. With the Dijkstra algorithm one may find the
optimal path from a given point to all other points on a grid. Every node
on the grid is assigned an energy value, initially set to infinity, and every
edge between nodes are assigned energy values from a given distribution.
Further the algorithm treats the data in three sets. The first set consists of
nodes where the optimal path to the start node has been found. The second
set consists of points that have been relaxed one or several times, but the
optimal path to the start node has not been found. The nodes that have
not yet been considered are in the third set.

After the grid (nodes and edges) has been initialized, a start point is chosen.
The energy of the start node is set to zero and inserted into the second set.
When all nodes, including a chosen start point are initialized, the algorithm
enters the main loop. The main loop consists of two parts. In the first
part, the minimal energy in the second set is detected. After the node with
minimal energy is found, it is added to the first set. The second part of
the main loop is the relaxation process. This process considers the nodes
adjacent to the node added to the first set. The energy of the adjacent node
is then compared to the sum of the added node from the first set and the
edge between the two nodes. That is, if Ei and Ej is the energy of node i
and j, i is the node added to the first set and the edge between them have
an energy Tij. The algorithm compares Ei and Ej + Tij. If the sum is the
smaller, four steps are carried out [13]:

(I) the sum is assigned to the adjacent node,

(II) a path is constructed between the nodes,

(III) if node j belongs to the second set, its previous paths to other nodes
are removed,

(IV) if it does not belong to the second set, it is added to it.

15

2.3.2 The Bellman-Ford algorithm

In general, algorithms such as the Dijkstra algorithm, are so called relaxation
algorithms or label correction algorithms. That is, as described in 2.3.1, every
node is assigned a label which iteratively is corrected until the optimal value
is found. In this class of algorithms one finds the similar Bellman-Ford algo-
rithm [3]. The Bellman-Ford algorithm finds the shortest path from a given
node, to all other nodes on a directed weighted network. If the distances in
the network are viewed as energies, the shortest path is equivalent to the
optimal path. For each node i, two values are stored: an unspecified P [i]
and a temporary distance D[i]. The distance D[i] is the temporary distance
between the start node s and i. More precisely D[i] represents the upper
boundary of the real distance dis between i and s. Initially the distances are
set to infinity, that is D[i] =∞, i 6= s and D[s] = 0.

For each edge between any two nodes i and j in the network, the values are
updated by a relaxation process. First the value of D[i] is compared with
the sum of D[j] and the length of the edge (between i and j), Eij. If the
sum is smaller, then D[i] is assigned the value of the sum and P [i] is set to
j. As soon as D[i] is equal to the correct distance from s to i, node i is said
to be accurate [3]. Hence, before the relaxation process starts, s is accurate,
while the remaining i 6= s are not. The relaxation step is said to be correct
if it is performed on an edge between i and j that lies on the shortest path
between s and i. From this definition it follows that if j is accurate while i
is not, a correct relaxation will make i accurate. It is evident that for each
iteration of all nodes, at least one correct relaxation must take place. If N is
the number of nodes in the grid, it will take N −1 correct relaxations before
all distances are correct. In other words, the worst case scenario would give
a total of N − 1 iterations. After all edges have been correctly relaxed and
all distances are correct, the values D[i] will point to its predecessor on the
shortest path [3].

16

3. Method

3.1 Description of methods

The methods used in the thesis consist of several parts. However, all parts
of the implementation are based on the algorithm for finding optimal paths.
This section gives a description of the basic algorithms, whereas section 3.2
explains how these algorithms are being applied.

3.1.1 Finding the optimal path

In this thesis, a hierarchy of optimal paths is studied. The whole hierarchy
of paths is referred to as a pathscape. The hierarchy is found by implement-
ing the iterative algorithm introduced by A. Hansen and J. Kertèsz in Phase
Diagram of Optimal Paths [6]. The algorithm was further generalized by L.
Talon et. al. [14] to identify optimal paths on a lattice. As for the Bellman-
Ford and Dijkstra- algorithm, this algorithm may also be considered as a
label correcting algorithm (sec. 2.3.2).

Consider a lattice based on an energy landscape. Let ~ri and ~rj be two
neighboring nodes connected by ~ri,j. A threshold energy, ti,j, is assigned to
each link. Further, a variable Vi is assigned to each node ~ri, initially Vi = 0
for all i. For the nodes on the boundary of the lattice, the values Vi stays
fixed. The nodes in the interior of the lattice, are iteratively updated. The
updating process is given by the equation

Vi → Vi = min
j(i)

(ti,j(i) + Vj(i)), (9)

where j(i) denotes neighboring nodes of node i.
Figure 1 shows a general lattice. Between the two points i and j, the idea
of a threshold energy (ti,j = t(i, j)) is marked by a blue line. The neighbors
of i are marked with colored dots, red for nearest neighbors and green for
second nearest.

17

Figure 1: A general lattice. Two neighboring points (i
and j) are shown with their associated threshold energy
ti,j = t(i, j). The nearest neighbors of i are marked with
red dots, while the next nearest are marked green.

However, the updating scheme used in this thesis is further specialized com-
pared to Eq. 9, as the optimal path is allowed to move along the cell-
diagonal. That is, the updating process needs to consider both the nearest
and second nearest neighbors, in total 8 neighbors. Since the diagonal is
a factor

√
2 longer then the horizontal and vertical edges, the threshold

energies must be scaled accordingly. Eq. (9) is redefined as

Vi → Vi = minj(i)(kj(i)ti,j(i) + Vj(i)),

kj(i) =
{

1 if j(i) is a nearest neighbor to i,√
2 if j(i) is a second nearest neighbor.

(10)

18

After N updates, the variable Vi contains the sum of threshold energies along
the optimal path of length N originating from ~ri. Consider now a node ~r0
on the boundary of the lattice. In order to find the optimal path from an
internal node ~ri to ~r0, one sets the value V~r0 to zero, whilst for the remaining
boundary nodes the value V~rb

is set to a large value M . Next, the updating
process for the internal nodes is carried out according to Eq. (10), until
all values Vi does no longer change. When all of the values have reached a
constant, all paths have reached the only node with Vi fixed at zero, namely
~r0. In this case the variable Vi will contain the sum Ti,0 as defined in Eq. (8)
for the optimal path between ~ri and ~r0. If the same process is repeated for
some other boundary node ~r1 and interior node ~rj, one gets a new sum, Tj,1.
By the same process one also calculates the values Ti,1 and Tj,0. Now the
total energy of the optimal path between nodes ~r0 and ~r1 passing through
~ri may be expressed as

T0,i,1 = min
j(i)

(T0,i + ti,j(i) + Tj(i),1, T0,j(i) + tj(i),i + Ti,1). (11)

19

3.1.2 Creating an energy landscape

An energy landscape where the objects move around, is created from previ-
ous position data. The datasets that are used contain longitude and latitude
coordinates on the earths surface. The problem is simplified by turning the
area of interest into a square grid in two dimensions.

The earth is being approximated by a sphere with radius rE. Further the
area of interest is approximated by a flat square. If longmin and latmin de-
notes the lower longitude and lower latitude value respectively, the point
(longmin, latmin) is the origin of the introduced coordinate system. Let the
distance (in meters) between longmax and longmin be denoted xmax. The
dataset is then transformed through the following expression for the longi-
tudinal coordinates

xi = πrE
180

N − 1
xmax

(longi − longmin), (12)

and similar for the latitude,

yi = πrE
180

N − 1
ymax

(lati − latmin). (13)

This means that xi, yi ∈ {0, N − 1}. Hence, the dataset is transformed from
an area spanned by [longmin, longmax]× [latmin, latmax] with dimension [deg]
to a dimensionless area of size N ×N . The algorithms that are used in this
thesis, demands that the physical length between nodes is of constant length
in both the longitudinal and latitudinal direction. That is, the area that are
studied are constructed as a square.

The area of interest is further discretized by introducing a grid with cell size
1 × 1. Each grid point (i, j) is assigned a density ρi,j. The density is given
by the number of data points within a cell length distance of the point. If
a data point, (x, y)i,j, is located in the cell with lower left corner (i, j), it
gives a contribution not only to the density in (i, j), but also to the other
cell corner points ((i, j + 1), (i+ 1, j) and (i+ 1, j + 1)). A general grid cell
is shown in figure 2 with random placed object coordinates within it.

20

Figure 2: A general grid cell, the coordinates (red dots)
within the cell are randomly placed. For a given point,
the distance to each corner is illustrated by vectors.

For each corner, the contribution to its density is determined by the distance
between the data point and the corner. In Figure 2 the distances between a
coordinate within a cell and the cell’s corners are shown. Let the four corners
of a cell be denoted by 1, 2, 3 and 4, and the corresponding distances between
a data point within the cell and a corner, be denoted rk, k = 1, 2, 3, 4. If
R = ∑4

k=1 rk, the weighted contribution to the density of the k’th corner is

21

Wk = 1
3
R− rk
R

. (14)

The factor 1/3 is introduced to normalize the weights, that is ∑kW
4
k=1 = 1.

Further the density ρi,j in the point (i, j) is the sum over all weights Wi,j

associated with the point. As Eq. (14) shows, the data point contributes the
most to the density in the closest corner, second most to the second nearest
corner and so on.

The result of this process is to locate the most trafficked areas as those
with highest density. In the theory of optimal paths one aims to find the
path with lowest cost, ie the most energy efficient path. Therefore, each grid
point (i, j) is associated with an energy ei,j, given by

ei,j = (1
ρi,j

)α. (15)

According to this definition, the most trafficked areas are identified as re-
gions with low energy. The exponent α is used to adjust the magnitude of
the differences in the landscape. The use of α will be further discussed in
section 3.1.3.
For further use, the energies must be represented as threshold energies link-
ing the adjacent nodes. For simplicity, let ei denote the energy in node i,
and ej(i) denote the energy in j(i). As before, j(i) denotes a node adjacent
to node i. In order to have symmetry between the threshold energies ti,j(i)
and tj(i),i, this energy is chosen to be

ti,j(i) = ei + ej(i)
2 , (16)

hence, ti,j(i) = tj(i),i.

22

3.1.3 Adjusting the landscape

By introducing the exponent α in Eq. (15), one adjusts the differences
throughout the landscape. From the definition of the energy in Eq. (15)
one finds that α = 0 and α = 1 are critical values. α = 0 results in equal
threshold energies throughout the grid, so that the optimal path between
any two points will be equal to the shortest path between them. As the
value of α is increased, the optimal path found by the proposed algorithm
in section 3.1.1, moves further away from the shortest path. That is, as α
increases, more weight is given to the historical traffic picture. When α = 1,
Eq. (15) shows that the energy is the inverse of the density in a given point.
If α is between 0 and 1 the landscape is leveled out, while values above 1
increases differences.

3.1.4 Calculating the length of a path

In order to calculate the length of an optimal path, an additional algorithm
is used. This may seem like a trivial task, however a few conditions need to
be taken into consideration. If a path is allowed to traverse a cell in the grid
along the diagonal as well as along the edges, the links in the path are of
different length. That is, there are links of length 1 and of length

√
2. Hence,

the length of the path is not directly known from the number of nodes in the
path. Another obstacle is the fact that the endpoints of the path is not nec-
essarily known. This is the fact when using intervals of possible endpoints
for the pathscape to detect patterns, as described in section 3.2.2. Since the
only restriction is that the endpoints must be inside the given intervals, the
exact nodes are not known. The algorithm must therefore be able to find
the ends of a given path.

When the files containing the coordinates of a path are created, the co-
ordinates are listed by a double loop (first in the x-direction, then in the
y-direction). Hence, the list is sorted with respect to the grid, not to the
position in the path. The algorithm searches this list, finds an end and cre-
ates a new list. The new list is sorted from end to end along the path. To
find the ends, the algorithm makes use of the fact that the distance between
neighboring coordinates is either 1 or

√
2. For each point, the number of

other points within a radius of
√

2 (neighbors) is detected. Accordingly, the
endpoints will have only 1 neighbor and the remaining points will have 2.

23

Further, the algorithm selects one of the ends as a start point. From this
point, the next step on the path is found by searching for points within a
distance of

√
2. The process is then repeated finding the next step and so

on. To prevent the algorithm from oscillating between two points, all co-
ordinates are assigned new values lying outside the N × N grid as soon as
they have been included in the path. When a point is found to be the next
in the path, it is stored along with the distance to its predecessor. The total
distance of the path is then found as the sum over all intermediate distances.

This algorithm has proven to fail in given situations, and are not applicable
to a general case. However, in simple cases where the endpoints are known
and the direction is stable, it is a useful tool. Therefore, it is applied for
generating the results of section 4.1. For more complex problems such as
pattern detection in section 4.3, the construction of an optimal path is more
restricted, which gives a simpler calculation of the pathlength.

24

3.2 Application
The algorithms have been applied in two different ways to gain knowledge
about a system of moving objects. Finding an optimal path yields possibil-
ities to obtain regular patterns of motion and prediction of the route of a
single object. That is, the method may be a learning stage (section 2.2.1) in
the process of predicting motion, or it may be used as both a learning stage
and as a prediction stage.

3.2.1 Predicting a single route

The process of predicting a single route is the most straight forward use of
the algorithms. In order to predict a route, both a start point and destina-
tion is needed, as the pathscape algorithm works between two defined points
or areas. Since the algorithm is constructed to work on a square area, such
an area is constructed from these points. As described in section 3.1.1, the
endpoints must be located on the boundary of the area.

Let (longi, latf) be the start point and (longf , latf) be the destination point.
Further, consider the change in longitude and latitude, ∆long = |longf −
longi| and ∆lat = |latf − lati|. The dimension of the grid is then set to
max(∆long,∆lat). For the time being, assume max(∆long,∆lat) = ∆long.
Also, let lat be the average of lati and latf . A square area with the two
points on the boundary is then given by the four values

• longmin = min(longi, longf),

• longmax = max(longi, longf),

• latmin = lat− 1
2∆long,

• latmax = lat+ 1
2∆long.

The four values are then used as input for the algorithm, creating the energy
landscape as described in section 3.1.2. In the case where max(∆long,∆lat) =
∆lat, long and lat are switched in the above expressions. For the special
case where ∆long = ∆lat, the area is simply the square with diagonal be-
tween the start point and destination point.
As soon as the area has been set, the energy grid is initialized using the
historical data within the given area. Next, a pathscape is created over the

25

area with the two given endpoints. From the pathscape, the optimal path
is located by isolating the nodes where the resulting energy is smallest.

3.2.2 Finding patterns of motion

When applying these algorithms as an approach to find the regular pat-
terns of motion, the idea is to combine the results of multiple pathscapes.
However, a full survey of the area would be a lengthy process. Instead of
finding the best paths by searching through combinations of all points on the
boundaries, the boundaries are split into intervals. By iteratively creating
pathscapes between intervals on the boundary of the area, a set of optimal
paths are made and stored. Every optimal path created has an energy and
length associated with it. The paths are sorted by their energy, weighed
against their length raised to some power β. That is, the energy of the
paths are rewritten

E ′path = Cp
Epath

(Lpath)β
, (17)

where Lpath is the length of the path, and Epath and E ′path are the original
and weighed energies, respectively. The constant Cp is introduced to further
help separate paths.
By doing this, one finds the paths that are most optimal on a global basis.
The idea is that the global most optimal paths represent the regular pat-
terns present in the area. As described in section 3.1.1, the energy is the
sum over all threshold energies along the path. This means that a short path
through a high energy region may have the same total energy as a longer
path through a low energy region. For this reason, the scaling against the
path’s length is necessary to isolate the regular motion patterns. By increas-
ing β, one can make longer paths more favorable.

As before, the grid that is being used is of dimension N × N . Let LI
be the length of the intervals used for the analysis. Assume this gives a
total of n intervals, with n − 1 of length LI . The last interval is then of
length N mod LI . Since the grid is a square, the intervals will be equal
in both directions. Now, pathscapes are created and optimal paths are
extracted by iteratively running the algorithms for any pair of intervals on

26

different boundaries. That is, if one starts at a given interval at the lower
boundary, one finds the optimal path to all intervals on the left, right and
upper boundary. Since the optimal path is not a directed path, going from
interval i to interval j is equivalent to going from j to i. Consider starting
the iterations by creating pathscapes from the lower boundary. There are
then 3 possible edges for the destination interval, each of the edges having
n intervals. Next, one starts at the left boundary, from here there are only
2 edges for the destination, as the combination between the lower boundary
and left boundary has already been used. Further, consider starting at the
upper boundary. The only unused combination is now upper to the right
boundary. This gives a total of (3 + 2 + 1)n2 = 6n2 pathscapes.

Figure 3: The schematic setup of the iterative process,
showing the 6 different combinations of edges.

The process is carried out by creating sets of n2 pathscapes for each combi-
nation of edges. Figure 3 shows the schematic buildup for the combinations
of edges. For each patscape the optimal path is located and its energy and
length is stored. The energy is scaled according to Eq. (17) and stored.
Further, the scaled energies for all 6n2 optimal paths are sorted from lowest
to highest. This means that the number of intervals gives a maximum of
possibles paths to make out a pattern. That is, the number of intervals will
influence and restrict the results. In additon to the number of intervals,
their position relative to the cluster’s endpoints, will have an impact on the
results. As each pair of intervals only generates one optimal path, one has

27

the risk of leaving out clusters from the pattern. For instance, if two distinct
clusters of trajectories are going between the same two intervals, only the
most optimal of them will be forwarded as one of the 6n2 possible global
optimal paths. Thus, one of the clusters are lost, and will not be present in
the resulting pattern. Therefore, one will typically need more intervals for
more complex patterns.

For this application, the updating process are performed according to Eq.
(9). That is, the path is only allowed to move between nodes along the
edges. By restricting the updating process, one has that the length of a
path is directly given by the number of nodes within it. If an optimal path
between two intervals traverse Npath nodes, the length of the path is given
by

Lpath = Npath − 1. (18)

This is the length that is used for the scaling of energy introduced in Eq.
(17).

28

4. Results

The data sets used for simulations in this thesis are AIS-coordinates. Through-
out the result section, two real datasets are studied. These sets are denoted
A and B. Figure 4 and 5 shows the shape of the datasets. In section 4.1, a
random initialized grid is introduced to compare the result.

Figure 4: Set A: Plot of AIS-coordinates in an area for a given
time frame. The coordinates are represented relative to the minimum
longitudinal and latitudinal values.

As Figure 4 and 5 show, the first dataset (A) consists of a simpler traffic
pattern than B. While A is dominated by two clusters of routes moving
vertically through the center of the area, B includes a more complex motion
pattern consisting of several clusters.

29

Figure 5: Set B: Plot of AIS-coordinates from another area for a
given time frame. The coordinates are represented relative to the
minimum longitudinal and latitudinal values.

30

4.1 The effect of the exponent α
In order to visualize the effects of α, a series of simulations have been per-
formed. The simulations consist of finding an optimal path along the main
diagonal for different values of α. As described in section 3.1.3, one would
expect the optimal path to be the main diagonal itself for α = 0, and that
it moves further away from it as α is increased. The simulations have been
performed for sample spaces that are taken from A and B. The simulations
have also been performed on a grid initialized with random energy values.
In addition to visualizing the optimal paths, their length as a function of α
are also studied.

The algorithm that performs this process consists of two main steps. First,
it creates an area as described in section 3.1.2, before a pathscape is created
(sec. 3.1.1) for different values of α.

31

4.1.1 Random grid

Before the two datasets (A and B) are studied, consider an area initialized
with random coordinates. The exponent α is used in the same way as before.
That is, the magnitude of the energy fluctuations increases with increasing
α.

Figure 6: Optimal paths along the main diagonal for varying values
of α. The grid is of dimension 371 × 371 and randomly initialized.
The value of α ranges from 0 to 1 in intervals of 0.25.

Figure 6 shows the results of five paths along the main diagonal for different
values of α. As the figure shows, the green line that represents the optimal
path for α = 0, is the diagonal line itself. As the value of α is increased, it is
seen that the paths differ from the diagonal line. In Figure 7, the pathlength
is plotted as a function of α. The pathlength is scaled by the length of the
diagonal, so that the value for α = 0 is 1.

32

Figure 7: The pathlength of the optimal paths for varying values of
α. The values are scaled by the length of the diagonal. Dots represent
actual calculated values.

As expected, the length is strictly increasing for increasing values of α. More-
over, there seems to be a change in behavior at α = 0.7. For 0 < α ≤ 0.7, the
curve is linear, while for α > 0.7 the values seperates into groups of nearly
constant length. This indicates that for some intervals of α, the optimal
path remains approximately the same, i.e some paths are more stable than
others.

33

4.1.2 Set A

From A, a square area which spans 0.3◦ in both the longitudinal and lati-
tudinal direction is selected. The data is transformed into metric values as
described in section 3.1.2. By setting the cell size to 100× 100 m2, it forms
a grid of dimension 334 × 334. This grid is shown in Figure 8. The area is
selected, so that the two vertical clusters are included. For varying values
of α, the optimal path between (0, 0) and (N,N) is found. The results are
represented in Figure 9 and 10.

Figure 8: The selected area from data set A, spanning 0.3◦ in both
the longitudinal and latitudinal direction. The data is transformed to
a grid of dimension 334 × 334 with a cell size of 100 × 100 m2. The
area includes two large bands of trajectories moving vertically.

34

Figure 9: Optimal paths over the diagonal for varying values of α.
The grid is initialized from the coordinates shown in Figure 8. The
cell size is 100 × 100 m2 and there are a total of 334 grid points in
both directions. The value of α ranges from 0 to 1 in intervals of 0.25.

Figure 9 shows the optimal paths, for five selected values of α between 0 and
1. As for the random case, one sees that the paths differ increasingly from
the diagonal. However, as α increases, one sees how the paths align with
the clusters. Similarly to the random case, there is a change in behavior at
approximately α = 0.75. Figure 9 shows, that up to α = 0.75 the optimal
paths lie fairly close to the diagonal line. For the optimal path, calculated for
α = 1 (red line), the pattern is dominating. The same tendencies becomes
evident in Figure 10. The curve is approximately linear for 0 < α ≤ 0.75,
while there is a group of paths with similar length for 0.75 < α ≤ 1. As one
can see from Figure 9, these paths move stepwise vertically and horizontally.
The paths follow one of the two main clusters in the horizontal direction,
and cross the high energy areas in nearly horizontal lines.

35

Figure 10: The pathlength of the optimal paths for varying values of
α. The values are scaled by the length of the diagonal. Dots represent
actual calculated values. The function is approximately linear for
α ≤ 0.75 and makes a leap to an approximately constant level for
α > 0.75

36

4.1.3 Set B

From dataset B, an area of original size 3.0◦ × 3.0◦ is selected. That is,
an area which is 100 times greater than the one selected from set A. The
cell size is set to 1000 × 1000 m2 which gives the same grid size as for
A, with N = 334 grid points. The selected area includes several distinct
clusters, which spread out from the left edge of the area. Figure 12 shows
the realization of optimal paths between (0, 0) and (N,N), for the same five
values of α used in the previous cases.

Figure 11: The selected partial area from dataset B. The origi-
nal section given in geodetic coordinates, spanned over 3.0◦ in both
the longitudinal and latitudinal direction. The distance between grid
points are 1000× 1000 m2, which gives a grid of dimension 334× 334.

In Figure 11, one sees clusters that partially move along the main diaogonal,
one below the diagonal and the other above. The higher one is thicker than
the lower, indicating higher density (lower energy). However, the lower one

37

is closer to the actual diagonal line. As α is increased, these trajectories
become clear candidates for an optimal route. The result of this is shown
in Figure 12. The green line shows the realization of α = 0. As expected it
is equal to the diagonal. Further, the blue line for α = 0.25 follows one of
the two clusters moving along the diagonal. As Figure 12 shows, the three
remaining lines (α = 0.50, 0.75 and 1.0) almost perfectly overlap each other.
They are all following the cluster starting at the upper right corner until
they reach the left edge.

Figure 12: Optimal paths along the main diagonal for varying values
of α. The grid is initialized from the data shown in Figure 11. The
value of α ranges from 0 to 1 in intervals of 0.25.

In Figure 13, the pathlength is plotted as a function of α for the given section
of dataset B. As the figure shows, the piecewise grouping of paths occurs
already from α = 0.05.

38

Figure 13: The pathlength as a function of α for 0 ≤ α ≤ 1. The
calculated length is scaled by the length of the diagonal. The curve
forms groups/levels of paths having the same length for different val-
ues of α. There are three distinct levels in addition to the α = 0
level.

39

4.2 Estimating a single route

As described in section 3.2.1, a routine for estimating a path between two
points have been made. In this section, the results of some selected trajecto-
ries through dataset A are represented. The dataset is sorted into indiviudal
time series, which consists of coordinates belonging to the same sailing. In
Figure 14, the result of the algorithm is shown along with the recorded coor-
dinates for a selected sailing. The selected sailing is moving through the left
cluster in set A. Figure 15 shows the predicted path, along with a section of
area A. The area that is shown in Figure 15 is generated automatically by
the algorithm, in order to create a square with the endpoints lying on the
boundary. For both figures, a cell size of 100× 100 m2 has been used. The
exponent α has been set to 0.05.

Figure 14: Predicted path for a selected sailing. The estimated
coordinates are plotted with dots and the real recorded coordinates
with stars. The calculations have been performed with a cell size of
100× 100 m2 and α = 0.05. The coordinates have been transformed
by subtracting the minimum value of the set. Note the different scales
on the axes.

40

Figure 15: The predicted path from Figure 14, plotted over the
dataset used for analysis. The dataset is constructed as described in
section 3.2.1, and is a square grid with dimension 525 × 525 and cell
size 100× 100 m2.

Figure 14 and Figure 15 show an example where the estimation of the path
is fairly good. As one sees in Figure 14, the predicted path and the recorded
path both move left, towards the cluster shown in Figure 15. When the
paths reach the cluster, they follow its vertical direction. With the same
value of α, another route has been estimated. The path of this sailing lies
close to the other cluster present in A. Figure 16 and 17 give the same results
as before for the new sailing. The new sailing is of similar length as the first
one, thus the gridsize is approximately the same.

41

Figure 16: Predicted path for a selected sailing. The estimated
coordinates are plotted with dots and the real recorded coordinates
with stars. The calculations have been performed with a cell size of
100× 100 m2 and α = 0.05. The coordinates have been transformed
by subtracting the minimum value of the set. Note the different scales
on the axes.

From figure 16 one sees a similar behaviour of the paths as in Figure 14,
however the estimate is not as close to the real value as before. In Figure 17
the predicted path is shown with the coordinates in the dataset. Using both
Figure 16 and 17, one sees that the real path moves along the right edge
of the cluster. The estimated path, that are shown in both figures, moves
further into the cluster than the real value. That is, too much weight is put
to the center of the cluster, so that the estimate misses its target. The four
figures (Fig. 14 - 17) show that although one value of α seems to work fine
in one case, it fails in another.

42

Figure 17: The predicted path from Figure 16, plotted over the
dataset used for analysis. The area is a square grid with dimension
515× 515 and cell size 100× 100 m2.

43

4.3 Finding patterns of motion

In section 3.2.2, a method for determing the regular patterns of motion in
an area is described. The method consists of creating a set of pathscapes
between intervals on the boundary. Each of the pathscapes generates an
optimal path between the given two intervals. If n is the number of intervals
on each boundary, the method generates a set of 6n2 optimal paths. Further,
the paths are sorted according to Eq. 17, which yields a list of the global
most optimal paths. This method has been applied to the two datasets A
and B. To each of the datasets, different values for the involved variables are
used.

In addition to the figures showing the detected patterns, there are also in-
cluded graphs which show the scaled energy given in Eq. 17, for different
paths. The global optimality of a path is determined using this energy. The
graph will give an indication of how many of the paths that are relevant for
an existing pattern.

4.3.1 Set A

The area selected for the analysis of dataset A, is slightly bigger than the
one in figure 8. It is expanded by 0.1◦ in both directions. That is, it is now
an area of size 0.4◦ × 0.4◦. The area overlaps with the one chosen for the
calculations in section 4.1, which gives the same structure. In figure 18, the
result is shown. The figure is generated with a grid of size 148 × 148 and
a cell dimension of 300× 300 m2. The boundaries have been sectioned into
two intervals of length 75 and 73. From the total 24 optimal paths, the two
paths shown, are found to be the two most optimal. The variable values
used for the result in Figure 18, are summarized in table 1. In the table, N◦
denotes the original size of the area (N◦ × N◦), while N is the dimension
of the grid and sc is the cell size. Further, n is the number of intervals and
the interval length is given by LI as described in section 3.2.2. The three
constants α, β and Cp are the same as introduced through Eq. 15 and Eq.
17.

44

Table 1:

N◦ 0.4◦
N 148
sc 300 m
n 2
LI 75/73
α 0.8
β 0.8
Cp 10

Figure 18: The result output, showing the pattern found in dataset
A. The figure includes the two globally most optimal paths, which
represents the regular patterns of motion in the area.

45

The traffic pattern in dataset A consists of two main clusters, moving ver-
tically through the center of the area. As Figure 18 shows, the pattern is
detected by the method and the clusters are represented by two black lines.
These lines represents the two globally most optimal paths through the area.
In Figure 19, the scaled energies of the paths are represented, sorted from
minimal to optimal. As Figure 19 shows, there is a group of five low energy
paths that stand out. The idea of the scaled energy, is that it may be used to
determine which paths that belong in the actual pattern (sec. 3.2.2). That
is, Figure 19 indicates that the five globally most optimal paths should be
included to describe the pattern.

Figure 19: The scaled energies of optimal paths between selected
intervals, ranging from most optimal 0 to least optimal 20. Three
paths have been left out from the figure due to very high energy
values.

46

In figure 20, the same result as in Figure 18 is shown with the whole group
of five paths included. As the figure shows, the additional paths overlap
with the two most optimal for most of their length. However, the remaining
(non overlapping) length does not contribute to the correct pattern. Based
on the look of the figures, the result of Figure 18 is regarded as being more
correct than Figure 20.

Figure 20: The located patterns in dataset A. The figure shows the
same as Figure 18 with five paths included, instead of two. The values
of the variables used to create the figure is the same as well, and are
listed in table 1.

47

4.3.2 Set B

For dataset B, the section of the area that is considered is the one shown
in Figure 11. That is, an area that spans 3.0◦ in both the longitudinal and
latitudinal direction. The structure of the selected area is more complex
than the one in A. Therefore, the analysis of area B is performed more
thoroughly than A. The calculations have been performed, using both two
and three intervals on each boundary. The first figure (Fig. 21) is the result
for dataset B, using the same variables as for Figure 18. That is, the area of
size 3.0◦×3.0◦ are transformed to a grid with dimension 166×166. Further,
each boundary is split into two intervals of length 90 and 76. All values are
listed in table 2.

Table 2:

N◦ 3.0◦
N 166
sc 2000 m
n 2
LI 90/76
α 0.8
β 0.8
Cp 10

As Figure 21 shows, there are several distinct clusters that are found by
the method. Figure 21 actually includes the twenty most optimal paths.
This means that many of the paths overlap for most of their length. Paths
that are starting at closely related points at the boundary, are likely to seek
the same cluster. The boundary between the intervals are at (0, 90) and
(90, 0). Especially in the vertical direction where many of the clusters orig-
inate from, a special behavior is observed. From both the lower and higher
interval, paths move along the edge in a low density region and traverse the
area along two routes, one moving against the upper right corner, the other
against the lower left.

48

Figure 21: The pattern in the given section of B, calculated with
two intervals per edge. In accordance with Figure 22, twenty paths
are included in the figure.

49

Figure 22: The scaled energy for the paths showed in Figure 21.
The paths are sorted, ranging from the lowest energy to the highest.
Three of the total twenty four paths are excluded, due to very high
energies.

Figure 21 shows that most of the clusters of the pattern are detected. How-
ever, some obvious parts are ignored: at least one (partly two) clusters
moving horizontal through the center, as well as an additional cluster be-
tween the two detected ones moving from approximately (0, 60) to (60, 0).
The problem of detecting these clusters, are related to the number and size
of intervals as discussed in section 3.2.2. Both of the clusters are being dom-
inated by more optimal ones that share their end intervals. To address this
issue, another calculation have been performed on the same grid, only with
three intervals on each edge. The interval size is now set to LI = 60 for
the first two and LI = 46 for the third. The remaining variables are held
constant. Table 3 lists all variables and the results are shown in figure 23.

50

Table 3:

N◦ 3.0◦
N 166
sc 2000 m
n 3
LI 60/46
α 0.8
β 0.8
Cp 10

Figure 23: The pattern found in the section of B with three intervals
per edge. As figure 24 suggests, a total of 48 paths are included in
the figure.

51

In Figure 23, one sees that at least one of the two "missing" clusters from
Figure 21 are covered by a black line. The central cluster of three, moving
from the left edge to the lower edge, are now considered as part of the
pattern. The horizontal line at j ' 100 is only partially covered by the new
result. As the figure shows, the right side of a path is aligned with the cluster,
while the left side are being dominated by the cluster moving against the
top right corner. Still, Figure 23 shows an improved coverage of the pattern
from Figure 21. However, in addition to improved coverage, the increase in
included paths also leads to impurities. At the major intersections, clusters
are represented by multiple lines. As for the simpler case from dataset A,
one has that many of the included paths, overlap for most of their length.
This creates impurities by splitting of paths near their ends.

Figure 24: The scaled energies for the paths showed in Figure 23.
The paths are sorted, ranging from the lowest energy to the high-
est. Three of the total fifty four paths are left out, due to very high
energies.

52

5. Discussion

5.1 The exponent α
Through section 4.1, the effect of α is shown for both the patterns in dataset
A and B, as well as on a random grid. For the random case two domains
appear, as the value of α is increased. From Figure 7, one can see how the
pathlength scales linearly for values of α up to a certain value. Above this
value, groups of paths having approximately the same pathlength appear.
This indicates that some paths actually stay nearly unchanged for several
values of α. This property becomes more clear in the case where actual
patterns exist.

In Figure 10 and 13, the same result is shown for given sections of A and B,
respectively. For A, which consists of a simpler pattern than B, the scaling
of the pathlength is similar to the random case. The scaling in A starts of
with an approximately linear dependence. As the value of α is increased,
and more weight is given the pattern, a group of paths with nearly constant
length appears. These are paths that move stepwise, vertically along the
clusters of the pattern and horizontal through the areas outside. If α was
to be further increased, the paths would most likely converge into straight
lines. The lines would move vertically along the most optimal of the two
clusters and horizontal along the edges.

For the more detailed pattern in B, the behavior is somewhat different. As
Figure 13 shows, the staircase form appears earlier than for the two other
cases. This effect may be caused by the fact that there are more clusters
present in this pattern. Another part of the explanation may be the orien-
tation (of especially two) of the clusters. As two of the clusters are partly
oriented in the same direction as the diagonal line, they obviously repre-
sent good possibilities for the optimal path. Since these clusters are close
to the shortest path between (0, 0) and (N,N), only a small weight given
to the pattern (small values of α) is enough to direct the path through them.

The results of the three cases, show how an energy landscape created from
real data, is a landscape with large differences. The landscape has deep en-
ergy valleys where the regular traffic is located, and large energy mountains
where there is no traffic. It is comparable with the random case, as the

53

same behavior is found for different values of α. In both cases, semi stable
paths appear at some point. Depending of the complexity of the present
patterns and also how well defined each cluster is, the structure dominates
the optimal paths already at low values of α.

5.2 Routes
In section 4.2, a few examples of the route predicting algorithm were shown.
The two cases that were represented, revealed a challenge for further use of
the algorithm. In order for the algorithm to be of any practical use, more
knowledge about the exponent α must be gained. As illustrated by Fig-
ure 14 and 16, the same value of α did not generate good results in both
cases. This thesis does not include any testing, other than visual, of the per-
formance of the algorithm for different values of α. That is, there has not
been implemented any calculations of the correctness of the predicted paths.

The exponent α is an important variable, for all applications of the path-
scape algorithm. It is perhaps best illustrated when comparing an estimate
for a single vessel route with its real trajectory. As described in the theory
section (sec. 3.1.3) and later by the results of varying α values, the exponent
weighs the impact of the historical patterns. It is clear, that a real vessel
can only follow a pattern to a certain limit. In order to sail efficiently, it can
only differ so much from a straight line. Therefore, when predicting single
routes, relatively small values of α need to be used.

Since the energy landscape that are created for the analysis, only take into
account the position data, there is no time reference in the results. That is,
the method gives an estimate for the positions along the path, but does not
give any information about the time of the passings. However, this simple ap-
proach does not only work as a disadvantage. By only using coordinates, the
datasets are kept simple. Further, the algorithms are simpler than the tra-
ditional statistical clustering methods, as they cluster trajectories through
multiple layers that demand more information [15]. A possibility to gain
such information, is to combine the results with the measured speed of the
object that is studied. The speed may be estimated by the average speed
between the first two recorded coordinates.

Another disadvantage with this method is the fact that it takes both a start

54

point and a destination to perform its analysis. If the method shall be able
to predict the motion through an area in advance, a destination needs to be
specified. However, in some real life cases this is not such an unreasonable
demand. For instance AIS - data, that are used for the work in this thesis,
includes a vessels destination port [12]. However, this information is not
always accurate, and in order to include a distant port of destination one
would typically end up with large areas. A possible approach is to locate
possible intermediate points (either by random, or estimated based on prior
knowledge), and predict a path between the start point and the intermediate
point. The process could be repeated, creating several intermediate points
until one reaches the given destination.

5.3 Patterns
The results in section 4.3, show the potential of a pattern recognizing method
based on combinations of pathscapes.The figures that are made for both
dataset A and B, show that optimal paths are useful for finding regular
patterns of motion. Further, the results showed that sectioning the edges
into only a few intervals, were enough to generate a good estimate of the
pattern. As all the points along the edges, may be represented by only a
few intervals, the running time of the algorithms are kept short. There are
however some issues with the method.

The idea of the method is that, with proper scaling and variable values, the
patterns should be automatically detectable. For this to apply, there needs
to be established a clear boundary between paths that should be included in
the pattern, and those that should not. This problem is best highlighted by
the figures created for dataset A; Figures 18-20. The sorted energy values
(Figure 19) suggested that the motion pattern in the area consists of five
paths (five clusters), whereas a visual evaluation of the dataset clearly indi-
cated two distinct clusters. Further, it is seen from Figure 18 and Figure 20
that the difference between two and five included paths are minimal. The
reason being, that the three added paths in Figure 20 overlap with the two
most optimal ones, for most of their length. In other words, one may say
that there are two main paths with branches near the ends, instead of five.

For the more complex structure in B, the same effect appears, especially
when increasing the number of intervals. An increase of intervals from 2 to

55

3, yields an increase in possible paths from 24 to 54. For both the 2 × 2
and 3× 3 case, the figures showing the scaled energies of the paths (Figure
22 and 24), were not as clear as the one for dataset A. Figure 19 showed
a distinct group of 5 globally most optimal paths. Figure 22 on the other
hand, shows a group of 20 paths of a total of 24, while Figure 24 gives a
group of 48 out of 54. Further, one sees from Figure 23 that the overall
changes to the pattern made by an addition of 28 paths is small. As more
details in the pattern are localized, there are also more impurities or clutter
present, for the same reason as above. Most of the added paths, overlap
with the already present ones for most of their length. The paths branch
out in different directions near their ends and intersections.

An idea to improve this part of the method, is to filter paths included in
the pattern by their degree of overlapping. That is, for each path that
energy-wise should be included in the pattern, one checks their similarity to
lower energy paths. If for instance, a path is found to overlap with a globally
more optimal path for some percentage of its length, it is not included in the
pattern. For the simple case discussed for dataset A, the three last paths (of
the five in the low energy group) would be neglected due to their similarity
with the two most optimal ones. That is, this method would be applicable,
at least to A.

56

6. Conclusion
The purpose of this thesis was to develop a method for learning motion pat-
terns and predict future motion of moving objects, in an area with regular
traffic patterns. Two main methods have been developed, and are tested on
real AIS data. The methods are based on theory of optimal paths through
disordered energy landscapes. By translating a trafficked area into an en-
ergy landscape, these methods could be applied to any situation involving
moving objects.
The first method gives an estimate for a single object’s route, while the other
focuses on detecting regular patterns of motion. The methods ability to an-
alyze traffic patterns are clearly shown in section 4.2 and 4.3. Especially
the pattern recognizing method has shown good results, as it has efficiently
detected the patterns at hand. Moreover, the methods demonstrate great
potential for real life applications!

57

6.1 Further Work
Although the algorithms that have been created for this thesis show promis-
ing results, there are still questions and issues left.

Does there exist a global value of α, which yields good results in several
cases?
Is it possible for the algorithms to work fully automatically? That is, what
can be done to minimize the need for external inputs?

As described in section 5.2, the main issue with the route predicting al-
gorithm is the sensitivity of α. However, it is possible that there exists a
specific value of α which optimizes the performance of the algorithm for a
given pattern. For the algorithm to be applied automatically, a best value
of α would be necessary. If a measure of error of the estimated path was
introduced, one could imagine the algorithm to be able to iteratively search
for the value of α that minimizes the error.

For the pattern recognizing algorithm, the issue of overlapping paths is dis-
cussed in 5.3. The scaled energy of a path is used as a measure for whether
or not the path should be included in the pattern. This method included
too many paths in the pattern, making it cluttered. A suggestion to improve
this is to neglect paths that overlap with more optimal ones, for a certain
percentage of their length.

Further work with the methods should include a proper measure of error in
the results, so that its performance may be compared to existing methods.
A measure of error would also be required for a thorough study of the α-
sensitivity in the single route predicting algorithm.

58

Appendices
A Draft for Article

A draft for an article to be published is included in the appendix. The article
focuses on the pattern recognizing method from the thesis.

59

Article Draft

Finding Patterns of Motion using
Optimal Paths

Mads Fromreide and Alex Hansen

Department of Physics, Norwegian University of Science and Technology

madsfromreide@gmail.com

alex.hansen@ntnu.no

Abstract

The ability to navigate safely and efficiently through a given landscape is relevant for any intelligent mov-
ing object. Examples range from robotic science and traffic analysis to the behavior within an ecosystem.
In this paper, we propose a method for detecting regular patterns of motion, by modeling the environment
as an energy landscape and locate optimal paths through it. A working algorithm is implemented and
applied to maritime traffic systems. The results that are found, show that the method have great potential
for analyzing and determine regular patterns of motion.

I. Introduction

The understanding of the regular behavior of a
dynamic system, gives opportunities to predict
future events within it. Objects tend to move
in patterns, and are often influenced by other
surrounding objects. That is, the motion of a
moving object is typically dependent of the sys-
tem as a whole. Some objects may attract each
other, or try to avoid each other depending of
their nature. Therefore, predicting the future
motion of an object involves predicting the mo-
tion of other nearby objects as well. There are
several different ways to approach motion pre-
diction. One may predict the motion of every
single object in a system by treating them in-
dividually [4]. However, for large systems this
is an unproductive method. A better approach
is to exploit the fact that objects tend to move
in patterns. By establishing a model for the
regular patterns of motion in the area, one gets
the opportunity to predict the motion of a sin-
gle object. Applications range from behavior
of ecosystems, to robotic navigation and large
traffic systems [3].

Motion prediction typically operates in two

stages. A learning step, which learns the reg-
ular patterns of motion, and a prediction step.
Such two step processes, may be grouped in
two main groups of techniques; Grid-based
techniques and cluster-based techniques [3].
The grid based techniques models the environ-
ment as a grid, and determines the transition
probability between nodes. The grid is then
used directly for motion prediction. Cluster-
ing based techniques uses statistics, to group
similar trajectories in representative clusters.
The representative clusters, are then used for
motion prediction.

In this paper, we propose a grid-based tech-
nique for learning motion patterns by locat-
ing optimal paths in a disordered energy land-
scape. The method is applied to vessel traffic,
using AIS coordinates. The coordinates are
transformed to a dimensionless area. A grid
is introduced over the area and a density asso-
ciated with the coordinates, is introduced on
each grid point. The optimal paths through
the area is found by implementing the itera-
tive algorithm introduced by A. Hansen and J.
Kertèsz in Phase Diagram of Optimal Paths [1].

1

Article Draft

The algorithm was further generalized by L.
Talon et. al. [2] to identify optimal paths on a
lattice.

This paper is organized as follows. Section
II gives an introduction to the approach of the
model, and a description of the algorithms that
are used. In section III, the results of our anal-
ysis are represented. In section ?? we give a
brief discussion of our findings.

II. Methods

Our energy landscape is created from recorded
coordinates of moving vessels. The datasets
that are used, contain longitude and latitude
coordinates on the earths surface. The problem
is simplified by turning the area of interest into
a square grid in two dimensions.
The earth is being approximated by a sphere
with radius rE. Further the area of interest
is approximated by a flat square. If longmin
and latmin denotes the lower longitude and
lower latitude values respectively, the point
(longmin, latmin) is the origin of the introduced
coordinate system. Let the distance (in me-
ters) between longmax and longmin be denoted
xmax. The dataset is then transformed through
the following expression for the longitudinal
coordinates

xi =
πrE
180

N − 1
xmax

(longi − longmin), (1)

and similar for the latitude,

yi =
πrE
180

N − 1
ymax

(lati − latmin). (2)

The area of dimension N × N is then dis-
cretized by introducing a grid with cell size
1× 1. A density ρij is introduced for each node
(i, j) in the grid. A recorded coordinate (x, y)
within a cell, contribute to the density of all
four corners of the cell. Let rk (k = 1, 2, 3, 4) be
the distance from a given coordinate to the k’th
corner of the cell. The addition to the density
given by the coordinate to each corner is given
by

Wk =
1
3

R− rk
R

, (3)

where R = ∑4
k=1 rk. The factor 1/3 is intro-

duced to normalize the weight, ∑4
k=1 Wk = 1.

The density, ρij is then given by the sum of
weights associated with node (i, j).

Further, an energy associated with each
grid point is introduced as follows

ei,j = (
1

ρi,j
)α. (4)

The exponent α, that are introduced in
Eq. 4, is an important variable as it controls
the magnitude of the energy fluctuations in
the landscape. If α < 1 the fluctuations are
smoothed out. When α = 0 all points on the
grid is assigned the same density. Thus, every
optimal path between two points will be equal
to the shortest path between them.

The algorithm that are implemented to lo-
cate optimal paths requires the energy land-
scape to consists of nodes with threshold en-
ergies between them. A threshold energy is
introduced by

ti,j(i) =
ei + ej(i)

2
, (5)

where the notation j(i) indicates that j(i) is
adjacent to i.

An optimal path between two points is de-
fined as the path where the sum over all thresh-
old energies along it, is smallest. The algorithm
introduced by A. Hansen and J. Kertèsz locates
an optimal path between two points on the
boundary of an area [1]. The algorithm is an
iterative label-correcting algorithm and it gen-
erates a hierarchy of optimal paths between
two points or interval of points, which is re-
ferred to as a pathscape[1, 2].

A variable Vi is assigned to each node ~ri,
initially Vi = 0 for all i. For the nodes on the
boundary of the lattice the values Vi stays fixed,
while the ones lying in the interior of the lattice
is iteratively updated. The updating process is
as follows

2

Article Draft

Vi → Vi = min
j(i)

(ti,j(i) + Vj(i)). (6)

After N updates, the variable Vi contains
the sum of threshold energies along the opti-
mal path of length N originating from~ri. Con-
sider now a node ~r0 on the boundary of the
lattice. In order to find the optimal path from
an internal node ~ri to ~r0, one sets the value
V~r0

to zero, whilst for the remaining bound-
ary nodes the value V~rb

is set to a large value
M. Next, the updating process for the internal
nodes are carried out according to Eq. (6), until
all values Vi does no longer change. When all
of the values have reached a constant, all paths
have reached the only node with Vi fixed at
zero, namely ~r0. In this case the variable Vi
will contain the sum of threshold energies (Ti,0)
along the optimal path between ~ri and ~r0. If
the same process is repeated for some other
boundary node ~r1 and interior node ~rj, one
gets a new sum, Tj,1. By the same process one
also calculates the values Ti,1 and Tj,0. Now the
total energy of the optimal path between nodes
~r0 and~r1 passing through~ri may be expressed
as

T0,i,1 = min
j(i)

(T0,i + ti,j(i)+Tj(i),1, T0,j(i)+ tj(i),i +Ti,1).

(7)

To find patterns of motion, optimal paths
are found between intervals on the boundaries
of a given area. Each edge of the area that
are studied is sectioned into n intervals. This
gives a total of 6n2 optimal paths through the
area. By comparing the optimal paths, found
between all sets of intervals, one locates the
globally most optimal paths. Each optimal path
is characterized by its total energy (Ep) and its
length (Lp). Further, a scaled energy is intro-
duced as follows

E′p = Cp
Ep

(Lp)β
, (8)

where Cp and β are constants which are
applied to adjust the scaling. It is this scaled
energy, that are compared to find the globally
most optimal paths. Since the energy of an
optimal path is a sum over the threshold en-
ergies along it, shorter paths will in general
have lower energy than longer ones. That is,
short paths through high energy regions may
possibly be preferred over long paths through
low energy regions. To avoid this, the scaled
energy in Eq. 8 is introduced.

III. Results

The model have been tested on datasets con-
taining AIS coordinates. The results from two
datasets are included in the article. The two
sets are denoted A and B. Fig. 1 shows dataset
A, while Fig. 2 shows dataset B. As the fig-
ures indicates, A has a simpler structure than
B. A consists of two vertical clusters, while B
includes multiple clusters with different orien-
tation.

Figure 1: Set A: Plot of AIS-coordinates in an area for a
given time frame. The coordinates are represented relative
to the minimum longitudinal and latitudinal values.

3

Article Draft

From the two areas, a square section is se-
lected for the analysis. From A an area which
spans 0.4◦ in both directions through the center
is selected. The area is selected, so that the two
vertical clusters are included. A larger area is
selected from B, as it spans 3.0◦ in both the
longitudinal and latitudinal direction.

Figure 2: Set B: Plot of AIS-coordinates from another
area for a given time frame. The coordinates are repre-
sented as described in Figure 1

In figure 3, the result is shown for the se-
lected area of A. Here, the two globally most
optimal paths are included. The calculation is
performed using a grid of dimension 148× 148
with cell size 300× 300 m2. Further, the bound-
aries have been sectioned into two intervals.
The variable vales are α = 0.8, β = 0.8 and
Cp = 10. As the figure shows, these two paths
overlaps with the clusters, hence they are rep-
resentative for the pattern.

The idea of the scaled energy of the paths,
is that the model should automatically deter-
mine the number of paths that makes out a
pattern. That is, with proper scaling, paths that
should be included in the pattern should have
similar scaled energy. In figure 4 shows the
scaled energy (as introduced in Eq. 8) sorted
from the lowest to the highest value.

Figure 3: The result output, showing the pattern found
in dataset A. The figure includes the two globally most
optimal paths, which represents the regular patterns of
motion in the area. The grid has dimension 148× 148
with cell size of 300× 300 m2.

The result shown in Fig. 4, shows that a
group of five paths stand out from the rest.
This indicates, that a total of five paths should
be included in the pattern. Figure 5 shows the
same result as in Figure 3 with five included
paths, instead of two. As the figure shows, the
new added paths does not make any contri-
butions to the actual pattern. The new paths
overlaps with the two original ones for most
of their lengths. However, near the ends, the
paths branch out and leaves the direction of
the clusters.

4

Article Draft

Figure 4: The scaled energies of optimal paths between
selected intervals, ranging from most optimal (0) to least
optimal (20). Three paths have been left out from the
figure due to very high energy values.

Figure 5: The located patterns in dataset A. The figure
shows the same as Figure 3 with five paths included,
instead of two.

For the more detailed structure in B, the
pattern detection is performed with both 2 and
3 intervals per edge. Figure 6 shows the result
for the analysis performed with 2 intervals per
edge. The associated scaled energy distribution
is showed in Fig. 7. The analysis is performed
with α = 0.08 , β = 0.8 and Cp = 10. The grid
is of dimension 166× 166 and has a cell size of
2000× 2000 m2.

Figure 6: The pattern in the given section of B, calcu-
lated with two intervals per edge. In accordance with
Figure 7, 20 paths are included in the figure.

Figure 7: The scaled energy for the paths showed in
Figure 6. The paths are sorted ranging from the lowest
energy to the highest. 3 of the total 24 paths are excluded,
due to very high energies.

Figure 7 indicates that 20 of the 24 created
paths should be included in the pattern. Fig-
ure 6 includes all these paths. However, several
of them overlap for most of their length, giv-
ing the impression that there are fewer than
20 paths in the figure. Thus, one see that as
for the simpler case in A, the method overes-
timates the number of paths needed to make
out the pattern. Figure 6 shows that the cal-
culations performed with 2 intervals per edge
does not capture all the details of the pattern.

5

Article Draft

For instance a large cluster moving horizontal
through the center of the area is not included,
neither is the middle of three clusters moving
from the left towards the lower boundary. Both
of these missing clusters are being dominated
by other clusters moving between the same two
intervals. Since the method of using optimal
paths between intervals, only gives one opti-
mal path per pair of intervals, only the most
optimal one is forwarded as a canditate for the
pattern. Therefore, both the number of intevals
as well as the length and position of bound-
aries between intervals, has an impact on the
results. An increase in intervals per edge, from
2 to 3 results in an increase in possible paths
for the pattern from 24 to 54. This, obviously
gives a higher chance to detect finer details of
the pattern.

The results of the analysis with 3 intervals
per edge is shown in Figure 8 with the associ-
ated scaled energy distribution in Figure 9. In
accordance with the scaled energies (Fig. 9),
48 paths are included to make out the pattern
in Figure 8. As some more details are being
covered by the extra set of paths, added from
Fig. 6, there are also more impurities in the rep-
resentation of the pattern. As before the model
have overestimated the number of paths, which
gives overlapping lines which branch out near
the ends and intersections.

Figure 8: The pattern found in the section of B with
three intervals per edge. As figure 9 suggests, a total of
48 paths are included in the figure.

Figure 9: The scaled energies of the paths showed in
Figure 8. The values are sorted from lowest to highest. 3
of the total 54 values are left out due to very high values.

IV. Discussion

Through the results in the previous section,
the potential of a pattern recognizing method
based on combinations of pathscapes is shown.
From a visual point of view, the method locates
the motion patterns efficently in both the sim-
ple case (A) and in the more complex traffic
picture (B). However, a proper performance
test has not been perfomed. Further, the results
showed that sectioning the edges into only a
few intervals, were enough to generate a good
estimate of the pattern. As all the points along
the edges, may be represented by only a few
intervals, the running time of the algorithms
are kept short. The grid dimension and size of
the cells does not seem to influence the results
that are found.

The main issue that emerged from the re-
sults, is the use of the scaled energy to deter-
mine how many paths to include in the pat-
tern, as the model consistently overestimated
the number. For both the simple case (A) and
the two versions of the more complex system
(B), paths that did not contribute to the pat-
tern were included. A possible technique for
fixing this problem is filter the paths by com-
paring them to more optimal ones. If a path is
found to overlap with a more optimal one, for

6

Article Draft

a certain percentage of its length, it could be
neglected.

V. Conclusion

In this paper, a method for finding patterns of
motion by combining optimal paths through
an area is proposed. A method for transform-
ing a set of coordinates to an energy landscape
is suggested. An algorithm for finding optimal
paths in a disordered energy landscape, is ap-
plied to find optimal paths between intervals
on the boundaries of a given area. Optimal
paths are created between all pairs of intervals,
producing candidates for representative trajec-
tories of the pattern. By comparing all paths by
their energy scaled by their length, a selection
of the globally most optimal paths are found.
This group of paths, are the representative tra-
jectories for the clusters of the pattern.

This method is tested on real AIS data. Two
different datasets, of different size and com-

plexity are studied. In both cases, the results
give evidence for the potential of the model.

VI. References

[1] A. Hansen and J. Kertèsz. Phase diagram
of optimal paths. Physical Review Letters,
93(4):040601–1, 2004.

[2] L. Talon, H. Auradou, M. Pessel, and
A. Hansen. Geometry of optimal path hier-
archies. EPL, 103(3), 2013.

[3] Vasquez, D. and Fraichard, T. Motion
prediction for moving objects: A statisti-
cal approach. Proceedings - IEEE Interna-
tional Conference on Robotics and Automation,
2004(4):3931–3936, 2004.

[4] Qiuming Zhu. A stochastic algorithm for
obstacle motion prediction in visual guid-
ance of robot motion. In Systems Engineer-
ing, 1990., IEEE International Conference on,
pages 216–219, Aug 1990.

7

B Source code
The source code for finding patterns of motion, within a dataset of longi-
tudinal and latitudinal coordintes are included in the appendix. The full
program consists of three files. Section B.1 represents the specialized ver-
sion of the general pathscape algorithm found in Geometry of Optimal Path
Hierarchies by L. Talon et. al. [14]. The algorithms used to predict single
routes and study the effect of α, are left out of the printed version of the
thesis, in order to minimize its length. However, they follow the same basic
principle as the functions that are shown. All source code, that are used to
create the results in this thesis are included in the digital enclosures.

B.1 pathscape algorithm

/∗
∗∗ This v e r s i on o f pathscapeorg . c
∗∗ i s ment to be used f o r de t ec ing patterns , i t i s c a l l e d by gr id . c
∗∗
∗∗ The func t i on patchsape () takes a number o f inputs
∗∗ − Result d i r e c t o r y
∗∗ − Grid s i z e N (NxN)
∗∗ − The parameter alpha
∗∗
∗∗ The func t i on s f i l l G r i d () and update ()
∗∗ are c a l l e d by pathscape () .
∗/
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <stdboo l . h>
#inc lude <math . h>
void f i l l G r i d () ;
void update () ;
FILE ∗ g r id ;
i n t N;
i n t i , j , k , sum , sumgoal ;
double i n f t y = 100 . 0 ; // " I n f i n i t y "
double inftybound = 10000 . 0 ; // " Larger I n f i n i t y " f o r the boundary
double eps = 0 .00000001 ; // " no change " < eps
double pot ;
bool cond i t i on ;
char d i r [1 5 0] ;
double ∗∗dens ;
// V
double ∗∗∗v ;
double ∗∗∗ tv ;

67

void pathscape (char d i r e c t o r y [] , i n t sx0 [] , i n t sy0 [] , i n t sx1 [] ,
i n t sy1 [] , i n t alength , i n t blength , i n t n , double po) {

s p r i n t f (d i r , d i r e c t o r y) ;
N = n ;
pot = po ;
double dnew , dold = 0 . 0 ;
/∗
∗∗ Opening f i l e s
∗/
//Names
char gr idn [2 0 0] , in1n [2 0 0] , in2n [2 0 0] ;
char out1n [2 0 0] , out2n [2 0 0] , gpl1n [2 0 0] , gpl2n [2 0 0] ;
s p r i n t f (gridn , "%s%s " , d i r , "\\ g r i dva l u e s . dat ") ;
s p r i n t f (out1n , "%s%s " , d i r , "\\ v i j . dat ") ;
s p r i n t f (out2n , "%s%s " , d i r , "\\ v i j_modi f i ed . dat ") ;
s p r i n t f (gpl1n , "%s%s " , d i r , "\\ p l o t . txt ") ;
s p r i n t f (gpl2n , "%s%s " , d i r , "\\ plot_no . txt ") ;
// Open
gr id = fopen (gridn , " r ") ;
FILE ∗out1 = fopen (out1n , "w") ;
FILE ∗out2 = fopen (out2n , "w") ;
FILE ∗ gpl1 = fopen (gpl1n , "w") ;
FILE ∗ gpl2 = fopen (gpl2n , "w") ;
// A l l o ca t e ar rays
dens = (double ∗∗) mal loc (s i z e o f (double ∗)∗ (N+1)) ;
f o r (i = 0 ; i < N+1; i++) {

dens [i] = (double ∗) mal loc (s i z e o f (double)∗ (N+1)) ;
}
v = (double ∗∗∗) mal loc (s i z e o f (double ∗∗)∗2) ;
tv = (double ∗∗∗) mal loc (s i z e o f (double ∗∗)∗2) ;
f o r (i = 0 ; i < 2 ; i++) {

v [i] = (double ∗∗) mal loc (s i z e o f (double ∗)∗ (N+1)) ;
tv [i] = (double ∗∗) mal loc (s i z e o f (double ∗)∗ (N+1)) ;

}
f o r (i = 0 ; i < 2 ; i++) {

f o r (j = 0 ; j < N+1; j++) {
v [i] [j] = (double ∗) mal loc (s i z e o f (double)∗ (N+1)) ;
tv [i] [j] = (double ∗) mal loc (s i z e o f (double)∗ (N+1)) ;

}
}
// F i l l the g r id with va lue s from f i l e
f i l l G r i d () ;
f c l o s e (g r id) ;
/∗
∗ Set the endpoint values , g iven from gr id () .
∗/
f o r (i = 0 ; i < a length ; i++) {

v [0] [sx0 [i]] [sy0 [i]] = 0 . 0 ;

68

tv [0] [sx0 [i]] [sy0 [i]] = 0 . 0 ;
}
f o r (i = 0 ; i < blength ; i++) {

v [1] [sx1 [i]] [sy1 [i]]= 0 . 0 ;
tv [1] [sx1 [i]] [sy1 [i]] = 0 . 0 ;

}
cond i t i on = f a l s e ;
sumgoal = 2∗(N−1)∗(N−1);
i n t i t c ount = 0 ;
// Main loop − updates the pathscape by c a l l i n g update () .
whi l e (cond i t i on != true) {

dnew = 0 . 0 ;
i t c ount++;
update () ;
f o r (i = 1 ; i < N; i++) {

f o r (j = 1 ; j < N; j++) {
dnew = dnew + v [0] [i] [j] + v [1] [i] [j] ;

}
}
i f (f abs (dnew − dold) <= eps)

cond i t i on = true ;
dold = dnew ;

i f (i t c ount % 100 == 0)
p r i n t f (" I t e r a t i o n s : %i D i f f e r an c e : %l f \n " , i t count , dnew − dold) ;
}
f o r (i = 0 ; i < N+1; i++) {

f o r (j = 0 ; j < N+1; j++) {
f p r i n t f (out1 ,"% i %i %l f \n " , i , j , v [0] [i] [j] + v [1] [i] [j]) ;
f p r i n t f (out2 ,"% l f " , v [0] [i] [j] + v [1] [i] [j]) ;

}
f p r i n t f (out2 , "\n ") ;

}
f c l o s e (out1) ;
f c l o s e (out2) ;
/∗
∗∗ Create p l o t s c r i p t and p lo t
∗/
f p r i n t f (gpl1 , " cd ’%s ’ \ n " , d i r) ;
f p r i n t f (gpl1 , " s e t term pdf \n ") ;
f p r i n t f (gpl1 , " s e t out ’ pathscape . pdf ’ \ n ") ;
f p r i n t f (gpl1 , " s e t view map\n ") ;
f p r i n t f (gpl1 , " s e t p a l e t t e gray\n ") ;
f p r i n t f (gpl1 , " s p l o t ’ v i j . dat ’ us ing 1 : 2 : 3 with image\n ") ;
f p r i n t f (gpl1 , " e x i t \n ") ;
f c l o s e (gpl1) ;
char p l o t [2 0 0] ;
s p r i n t f (p lot ,"% s %s " , " gnuplot " , gpl1n) ;
system (p lo t) ;

69

f p r i n t f (gpl2 , " cd ’%s ’ \ n " , d i r) ;
f p r i n t f (gpl2 , " s e t term pdf \n ") ;
f p r i n t f (gpl2 , " s e t out ’ pathscape_modif ied . pdf ’ \ n ") ;
f p r i n t f (gpl2 , " s e t view map\n ") ;
f p r i n t f (gpl2 , " s e t p a l e t t e gray\n ") ;
f p r i n t f (gpl2 , " s p l o t ’ v i j_modi f i ed . dat ’ us ing 1 : 2 : 3 with image\n ") ;
f p r i n t f (gpl2 , " e x i t \n ") ;
f c l o s e (gpl2) ;
s p r i n t f (p lot ,"% s %s " , " gnuplot " , gpl2n) ;
system (p lo t) ;

}
void f i l l G r i d (){

double read ;
i n t t o s s ;
// Read in the number o f c oo rd ina t e s
// corre spond ing to each g r id po int
// and i nv e r s e the value .
f o r (i = 0 ; i < N+1; i++) {

f o r (j = 0 ; j < N+1; j++) {
f s c a n f (g r id ,"% i %i %l f \n " , &toss , &toss , &read) ;
i f (read >= 0.00000001)

dens [i] [j] = pow(1 . 0/ read , pot) ;
e l s e

dens [i] [j] = pow(in f ty , pot) ;
}

}
f o r (i = 0 ; i < 2 ; i++) {

f o r (j = 0 ; j < N+1; j++) {
f o r (k = 0 ; k < N+1; k++) {

v [i] [j] [k] = 0 . 0 ;
i f (j == 0 | | j == N | | k == 0 | | k == N)

v [i] [j] [k] = inftybound ;
tv [i] [j] [k] = v [i] [j] [k] ;

}
}

}
}
void update () {

double minv , up1 , up2 , up3 , up4 , up5 , up6 , up7 , up8 ;
f o r (i = 0 ; i < 2 ; i++) {

f o r (j = 1 ; j < N; j++) {
f o r (k = 1 ; k < N; k++) {

tv [i] [j] [k] = v [i] [j] [k] ;
}

}
}
f o r (i = 0 ; i < 2 ; i++) {
// Only update nodes in i n t e r i o r , hence j {1 ,N} , not {0 , N+1}

70

f o r (j = 1 ; j < N; j++) {
f o r (k = 1 ; k < N; k++) {
up1 = (dens [j] [k+1] + dens [j] [k]) / 2 . 0 + tv [i] [j] [k+1] ;
up2 = (dens [j] [k−1] + dens [j] [k]) / 2 . 0 + tv [i] [j] [k−1] ;
up3 = (dens [j +1] [k] + dens [j] [k]) / 2 . 0 + tv [i] [j +1] [k] ;
up4 = (dens [j −1] [k] + dens [j] [k]) / 2 . 0 + tv [i] [j −1] [k] ;
minv = up1 ;
i f (up2 <= minv)

minv = up2 ;
i f (up3 <= minv)

minv = up3 ;
i f (up4 <= minv)

minv = up4 ;
v [i] [j] [k] = minv ;

}
}

}
}

71

B.2 main file

/∗
∗∗ g r id . c
∗∗ − Works as the main f i l e f o r the p r o j e c t
∗∗ − Folder f o r r e s u l t s must be s p e c i f e d in l i n e 28
∗∗ − The datase t contat ing coo rd i an t e s must be
∗∗ t r an s l a t ed to a s u i t a b l e form
∗∗ − The pr e f e r ed s i z e o f area to be analyzed
∗∗ must be s p e c i f i e d in l i n e s 71 − 74
∗/
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <math . h>
#inc lude " pathscapeorg . c "
#inc lude " r e p l o t . c "
#inc lude " transback . c "
#inc lude " c a l c l e n g th . c "
void bubb l e so r t ing (double a r r [] , i n t nElements) ;
double ∗x , ∗y , ∗xt , ∗yt , ∗ so r t ed ;
double ∗∗ grid2d , ∗∗ pscape ;
i n t main () {

// Di rec tory o f r e s u l t s
char d i r [1 5 0] = " s p e c i f y \ the \ r e s u l t \ f o l d e r \ here " ;
/∗
∗∗ Parameters
∗∗ N : Dimension o f g r id N∗N
∗∗ l ength : number o f datapo int s
∗∗ R : Earths rad iu s [m]
∗∗ pi : p i
∗∗ i n f t y : Value o f " i n f i n i t y "
∗∗ alpha : Parameter f o r ad ju s t i ng the energy landscape
∗∗ scalepow : Sca l i ng parameter f o r e n e r g i e s
∗∗ s c a l e c on s t : Sca l e constant , to enhance d i f f e r e n c e s in energy
∗∗ a lenght : I n t e r v a l l ength on boundary ,
∗∗ t imes : The number o f paths inc luded in the pattern
∗∗
∗/
i n t N; // User s p e c i f i e d
i n t l ength = 0 ;
i n t R = 6371000;
double p i = 3 .14159265359 ;
double i n f t y = 10000 . 0 ;
double alpha = 0 . 8 ;
double scalepow = 0 . 8 ;
double s c a l e c on s t = 1 . 0 / 1 0 . 0 ;
i n t a l ength = 10 ;
i n t t imes = 1 ;
// Other Var iab l e s
i n t i , j , k , l , m, xint , y int , change ;
i n t newlength = length , s , drop , ns ide ;
i n t ni , nj , nP , s tar tx , s ta r ty , xs , ys ;

72

double xi , yi , xmax , ymax , xmin , ymin ;
double degrad , avspeed ;
double longmin = 10000 , longmax = 0 ;
double latmin = 10000 , latmax = 0 ;
double s t a r t l ong , s t a r t l a t , endlong , end lat ;
double l ongd i f , l a t d i f , avlong , av l a t ;
double dimension , g r i d s i z e , path length ;
double w1 , w2 , w3 , w4 , r1 , r2 , r3 , r4 , r t o t ;
double dropd ;
char name [2 0 0] , gnu [2 0 0] ;
char cho i s e = ’n ’ ;
// SET THE BOUNDARY VALUES
// Spec i f y the area o f i n t e r e s t by i t s
// bounday va lue s g iven in geode t i c coo rd ina t e s
s t a r t l o n g = 0 . 0 ;
endlong = 0 . 0 ;
s t a r t l a t = 0 . 0 ;
end la t = 0 . 0 ;
/∗
∗∗ Creat ing Data F i l e s f o r r e s u l t s and in fo rmat ion
∗/
char datan [2 0 0] , out1n [2 0 0] , out2n [2 0 0] , out3n [2 0 0] ;
char minin [2 0 0] , nPpath [2 0 0] ;
char gpl1n [2 0 0] , gpl2n [2 0 0] , gpl3n [2 0 0] ;
// INPUT FILE
s p r i n t f (datan , "%s%s " , d i r , " \ \ coords . dat ") ;
// OUTPUT ADN PLOTSCRIPTS
s p r i n t f (out1n , "%s%s " , d i r , " \ \ g r i dva l u e s . dat ") ;
s p r i n t f (out2n , "%s%s " , d i r , " \ \ coords_reduced . dat ") ;
s p r i n t f (out3n , "%s%s " , d i r , " \ \ coord_trans . dat ") ;
s p r i n t f (minin , "%s%s " , d i r , " \ \ minimumvalues100 . dat ") ;
s p r i n t f (nPpath ,"% s%s " , d i r , " \ \ number_val . dat ") ;
s p r i n t f (gpl1n , "%s%s " , d i r , " \ \ p l o t_ f u l l . tx t ") ;
s p r i n t f (gpl2n , "%s%s " , d i r , " \ \ plot_part . txt ") ;
s p r i n t f (gpl3n , "%s%s " , d i r , " \ \ plot_optimal_paths . txt ") ;
FILE ∗data = fopen (datan , " r ") ; // input coo rd ina t e s
FILE ∗out1 = fopen (out1n , "w") ; // Gridva lues
FILE ∗out2 = fopen (out2n , "w") ; // reduced coord inate−s e t
FILE ∗out3 = fopen (out3n , "w") ; // Transformed coo rd ina t e s
FILE ∗ gpl1 = fopen (gpl1n , "w") ; // Gnuplot s c r i p t
FILE ∗ gpl2 = fopen (gpl2n , "w") ; // Gnuplot s c r i p t
FILE ∗ gpl3 = fopen (gpl3n , "w") ; // Gnuplot s c r i p t
/∗
∗∗ Al l o ca t i on
∗/
x = (double ∗) mal loc (s i z e o f (double)∗ l ength) ;
y = (double ∗) mal loc (s i z e o f (double)∗ l ength) ;
/∗
∗∗ Reading − The read ing o f coord inate s , depends o f form o f f i l e
∗/

73

f o r (i = 0 ; i < length ; i++) {
f s c a n f (data , "% l f %l f \n " , &xi , &y i) ;
x [i] = x i ;
y [i] = y i ;
i f (x i >= longmax)

longmax = x i ;
i f (x i <= longmin)

longmin = x i ;
i f (y i >= latmax)

latmax = y i ;
i f (y i <= latmin)

latmin = y i ;
}
f c l o s e (data) ;
/∗
∗∗ Create p l o t s c r i p t s
∗/
// For the o r i g i n a l datase t
f p r i n t f (gpl1 , " cd ’%s ’ \ n " , d i r) ;
f p r i n t f (gpl1 , " s e t term png enhanced\n ") ;
f p r i n t f (gpl1 , " unset key\n ") ;
f p r i n t f (gpl1 , " s e t out ’ o r i g ina l_data . png ’ \ n ") ;
f p r i n t f (gpl1 , " p l o t ’ coords_routes_sorted . dat ’ us ing 1 :2\n ") ;
f p r i n t f (gpl1 , " e x i t ") ;
f c l o s e (gpl1) ;
//For the reduced datase t
f p r i n t f (gpl2 , " cd ’%s ’ \ n " , d i r) ;
f p r i n t f (gpl2 , " s e t term png enhanced\n ") ;
f p r i n t f (gpl2 , " unset key\n ") ;
f p r i n t f (gpl2 , " s e t out ’ par t ia l_data . png ’ \ n ") ;
f p r i n t f (gpl2 , " p l o t ’ coord_trans . dat ’ us ing 1 :2\n ") ;
f p r i n t f (gpl2 , " e x i t ") ;
f c l o s e (gpl2) ;
// Plot the o r i g i n a l data :
s p r i n t f (gnu ,"% s %s " , " gnuplot " , gpl1n) ;
system (gnu) ;
l o n gd i f = fabs (endlong − s t a r t l o n g) ;
l a t d i f = fabs (end lat − s t a r t l a t) ;
i f (l o n gd i f > l a t d i f) {

av l a t = 0 . 5∗ (end lat + s t a r t l a t) ;
longmin = fmin (endlong , s t a r t l o n g) ;
longmax = fmax (endlong , s t a r t l o n g) ;
latmin = av la t − 0 .5∗ l o n gd i f ;
latmax = av la t + 0.5∗ l o n gd i f ;

}
e l s e i f (l o n gd i f < l a t d i f) {

avlong = 0 . 5∗ (endlong + s t a r t l o n g) ;
latmin = fmin (endlat , s t a r t l a t) ;
latmax = fmax (endlat , s t a r t l a t) ;

74

longmin = avlong − 0 .5∗ l a t d i f ;
longmax = avlong + 0.5∗ l a t d i f ;

}
e l s e {

longmin = fmin (endlong , s t a r t l o n g) ;
longmax = fmax (endlong , s t a r t l o n g) ;
latmin = fmin (endlat , s t a r t l a t) ;
latmax = fmax (endlat , s t a r t l a t) ;

}
// Count the number o f datapo int s in the de s i r ed area
// and make new arrays o f the new length
f o r (i = 0 ; i < length ; i++) {

i f (x [i]>longmax | | x [i]< longmin | | y [i]>latmax | | y [i]< latmin) {
newlength−−;
x [i] = 1000 . 0 ;

}
}
xt = (double ∗) mal loc (s i z e o f (double)∗ newlength) ;
yt = (double ∗) mal loc (s i z e o f (double)∗ newlength) ;
// Set the l ength o f x and y to the new length and put back po in t s
s = 0 ;
f o r (i = 0 ; i < length ; i++) {

i f (x [i] < 1000 .0){
xt [s] = x [i] ;
yt [s] = y [i] ;
s++;

}
}
f r e e (x) ;
f r e e (y) ;
l ength = newlength ;
x = (double ∗) mal loc (s i z e o f (double)∗ l ength) ;
y = (double ∗) mal loc (s i z e o f (double)∗ l ength) ;
f o r (i = 0 ; i < length ; i++) {

x [i] = xt [i] ;
y [i] = yt [i] ;

}
f r e e (xt) ;
f r e e (yt) ;
/∗
∗∗ Print out the (long , l a t) − coo rd ina t e s in the l im i t ed area
∗/
f o r (i = 0 ; i < length ; i++) {

f p r i n t f (out2 , "% l f %l f \n " , x [i] , y [i]) ;
}
f c l o s e (out2) ;
/∗
∗∗ − Transform the maximum po in t s from [deg] to [m]

75

∗∗ to get the span o f the area
∗∗ − Ask f o r g r id s i z e in meters
∗∗ − Calcu la te the number o f g r i dpo i n t s
∗/
degrad = 1 . 0 / 1 8 0 . 0 ;
xmax = pi ∗R∗degrad ∗(longmax − longmin) ;
ymax = pi ∗R∗degrad ∗(latmax − latmin) ;
whi l e (cho i s e != ’y ’) {
p r i n t f (" \ n ") ;
p r i n t f (" Enter the p r e f e r ed d i s t anc e (in [m]) between g r id po in t s : ") ;
s can f ("% l f " , &g r i d s i z e) ;
p r i n t f (" \ n ") ;
N = ((i n t) (ymax/ g r i d s i z e)) ;
p r i n t f (" The given d i s t anc e g i v e s a %i x %i g r id \n " , N, N) ;
p r i n t f (" Press ’ y ’ to continue , or p r e s s ’n ’ to change the d i s t anc e : ") ;
s can f (" %c " , &cho i s e) ;
p r i n t f (" \ n ") ;
}
// Create p l o t s c r i p t s that need the value o f N
// For p l o t t i n g the optimal paths
f p r i n t f (gpl3 , " cd ’%s ’ \ n " , d i r) ;
f p r i n t f (gpl3 , " s e t term png enhanced\n ") ;
f p r i n t f (gpl3 , " unset key\n ") ;
f p r i n t f (gpl3 , " s e t xrange [0:% i] \ n " , N) ;
f p r i n t f (gpl3 , " s e t yrange [0:% i] \ n " , N) ;
f p r i n t f (gpl3 , " s e t x l ab e l \" i \"\n ") ;
f p r i n t f (gpl3 , " s e t y l ab e l \" j \" r o t a t e by 0\n ") ;
f p r i n t f (gpl3 , " s e t out ’ mult iple_paths . png ’ \ n ") ;
f p r i n t f (gpl3 , " p l o t ’ coord_trans . dat ’ us ing 1 :2 with dots , ") ;
f o r (i = 0 ; i < times ; i++) {

f p r i n t f (gpl3 , " ’ minimumvalues%i . dat ’ us ing 1 :2 l c rgb ’ black ’ " , i) ;
i f (i < times − 1)

f p r i n t f (gpl3 , " , ") ;
}
f p r i n t f (gpl3 , "\n ") ;
f p r i n t f (gpl3 , " e x i t ") ;
f c l o s e (gpl3) ;
/∗
∗∗ Al l o ca t e memory f o r arrays , which s i z e i s g iven by N
∗/
gr id2d = (double ∗∗) mal loc (s i z e o f (double ∗)∗ (N+1)) ;
pscape = (double ∗∗) mal loc (s i z e o f (double ∗)∗ (N+1)) ;
f o r (i = 0 ; i < N+1; i++) {

gr id2d [i] = (double ∗) mal loc (s i z e o f (double)∗ (N+1)) ;
pscape [i] = (double ∗) mal loc (s i z e o f (double)∗ (N+1)) ;

}
// I n i t i a l i z i n g g r id
f o r (i = 0 ; i < N+1; i++) {

76

f o r (j = 0 ; j < N+1; j++) {
gr id2d [i] [j] = 0 . 0 ;
pscape [i] [j] = 0 . 0 ;

}
}
/∗
∗∗ Transformation
∗/
f o r (i = 0 ; i < length ; i++) {

x [i] = (N−1)∗((p i ∗R∗degrad ∗(x [i] − longmin))/xmax) ;
y [i] = (N−1)∗((p i ∗R∗degrad ∗(y [i] − latmin))/ymax) ;

}
// Count the number o f ob j e c t s with in each g r id c e l l
// and wr i t e the r e s u l t to f i l e
f o r (i = 0 ; i < length ; i++) {

// Find the lower l e f t corner
x in t = (i n t) (x [i]) ;
y in t = (i n t) (y [i]) ;
// Find the d i s t an c e s to each corner o f the surrounding square
r1 = s q r t f ((x [i]− x int)∗ (x [i]− x int) +

(y [i]− y int)∗ (y [i]− y int)) ;
r2 = s q r t f ((x [i]− x int)∗ (x [i]− x int) +

(y [i]−(y in t +1))∗(y [i]−(y in t +1))) ;
r3 = s q r t f ((x [i]−(x in t +1))∗(x [i]−(x in t +1)) +

(y [i]−(y in t +1))∗(y [i]−(y in t +1))) ;
r4 = s q r t f ((x [i]−(x in t +1))∗(x [i]−(x in t +1)) +

(y [i]− y int)∗ (y [i]− y int)) ;
r t o t = r1 + r2 + r3 + r4 ;
w1 = (r t o t − r1)/(3∗ r t o t) ;
w2 = (r t o t − r2)/(3∗ r t o t) ;
w3 = (r t o t − r3)/(3∗ r t o t) ;
w4 = (r t o t − r4)/(3∗ r t o t) ;
gr id2d [x in t] [y in t] += w1 ;
gr id2d [x in t] [y in t +1] += w2 ;
gr id2d [x in t +1] [y in t +1] += w3 ;
gr id2d [x in t +1] [y in t] += w4 ;
f p r i n t f (out3 ,"% l f %l f \n " , x [i] , y [i]) ;

}
f o r (i = 0 ; i < N+1; i++) {

f o r (j = 0 ; j < N+1; j++) {
f p r i n t f (out1 ,"% i %i %.15 f \n " , i , j , gr id2d [i] [j]) ;

}
}
// Plot the coo rd ina t e s with in the area o f i n t e r e s t
s p r i n t f (gnu , "%s %s " , " gnuplot " , gpl2n) ;
system (gnu) ;

77

f r e e (x) ;
f r e e (y) ;
f c l o s e (out1) ;
f c l o s e (out3) ;
// Parameters
i n t tempalength = alength , b length = alength , an , nns ide ;
an = N/ alength + 1 ;
i n t l a s t l e n g t h = N − (an−1)∗ a length ;
i n t ans6 = 6∗an∗an ;
i n t sx0 [a l ength] , sy0 [a l ength] , sx1 [a l ength] , sy1 [a l ength] ;
char t o t a l n [2 0 0] , t o ta l ou tn [2 0 0] , t o t a l a l l n [2 0 0] ;
char newoutn [2 0 0] , numvals [2 0 0] , t r a l an [2 0 0] ;
s p r i n t f (tota ln , "%s%s " , d i r , "\\ v i j . dat ") ;
s p r i n t f (numvals , "%s%s " , d i r , "\\ number_val . dat ") ;
s p r i n t f (newoutn , "%s%s " , d i r , "\\ sorted_minpaths . dat ") ;
s p r i n t f (t o t a l a l l n , "%s%s " , d i r , "\\ t o t a l_a l l . dat ") ;
FILE ∗ut2 = fopen (t o t a l a l l n , "w") ;
// loop over a l l p a i r s o f axes
f o r (ns ide = 0 ; ns ide < 6 ; ns ide++) {

s p r i n t f (tota loutn , "%s%s%i%s " , d i r , "\\ t o t a l " , ns ide , " . dat ") ;
FILE ∗ut = fopen (tota loutn , "w") ;
// loop over a l l i n t e r v a l s s t a r t p o i n t s < an
f o r (j = 0 ; j < an ; j++) {

// loop over a l l i n t e r v a l s endpoints < an
f o r (s = 0 ; s < an ; s++){

i f (j == an−1)
a length = l a s t l e n g t h ;

e l s e
a l ength = tempalength ;

i f (s == an−1)
blength = l a s t l e n g t h ;

e l s e
b length = tempalength ;

f o r (i = 0 ; i < a length ; i++) {
i f (n s ide == 0) {

sx0 [i] = i + j ∗ tempalength ;
sy0 [i] = 0 ;

}
i f (n s ide == 1) {

sx0 [i] = 0 ;
sy0 [i] = i + j ∗ tempalength ;

}
i f (n s ide == 2) {

sx0 [i] = i + j ∗ tempalength ;
sy0 [i] = 0 ;

}
i f (n s ide == 3) {

sx0 [i] = 0 ;
sy0 [i] = i + j ∗ tempalength ;

78

}
i f (n s ide == 4) {

sx0 [i] = i + j ∗ tempalength ;
sy0 [i] = N;

}
i f (n s ide == 5) {

sx0 [i] = N;
sy0 [i] = i + j ∗ tempalength ;

}
}
f o r (i = 0 ; i < blength ; i++) {

i f (n s ide == 0) {
sx1 [i] = i + s ∗ tempalength ;
sy1 [i] = N;

}
i f (n s ide == 1) {

sx1 [i] = N;
sy1 [i] = i + s ∗ tempalength ;

}
i f (n s ide == 2) {

sx1 [i] = 0 ;
sy1 [i] = i + s ∗ tempalength ;

}
i f (n s ide == 3) {

sx1 [i] = i + s ∗ tempalength ;
sy1 [i] = N;

}
i f (n s ide == 4) {

sx1 [i] = N;
sy1 [i] = i + s ∗ tempalength ;

}
i f (n s ide == 5) {

sx1 [i] = i + s ∗ tempalength ;
sy1 [i] = 0 ;

}
}
p r i n t f (" ns ide : %i j : %i s : %i \n " , ns ide , j , s) ;

// Generate a pathscape
pathscape (dir , sx0 , sy0 , sx1 , sy1 , a length , blength , N, alpha) ;
// Run r ep l () to get the minimumpath in the pathscape
r ep l (d i r , N, 100) ;
// Open the f i l e "minimumvalues . dat "
// to get the energy o f the minimumpath
FILE ∗minpathFi le = fopen (minin , " r ") ;
f s c a n f (minpathFile , "% i %i %l f \n " , &drop , &drop , &xmin) ;
f c l o s e (minpathFi le) ;
// Run calc_pathlength () to get the minimumspath l ength
// For now , the func t i on only re tuns the number o f po in t s

79

// on the minimumpath − 1
pathlength = calc_pathlength (dir , N, 100) ;
p r i n t f (" pathlength returned : %l f \n " , path length) ;
i f (path length == 0.0001)

xmin = 100 ;
f p r i n t f (ut , "% i %i %i %l f %l f \n " , ns ide , j , s , xmin , pathlength) ;
f p r i n t f (ut2 , "% i %i %i %l f %l f \n " , ns ide , j , s , xmin , pathlength) ;
}

}
f c l o s e (ut) ;

}
f c l o s e (ut2) ;
FILE ∗ ina = fopen (t o t a l a l l n , " r ") ;
double unsorted [ans6] , tunsorted [ans6] ;
i n t f i r s t [ans6] , second [ans6] , t s i d e [ans6] ;
s o r t ed = (double ∗) mal loc (s i z e o f (double)∗ (ans6)) ;
f o r (i = 0 ; i < ans6 ; i++) {

f s c a n f (ina ,"% i %i %i %l f %l f \n" ,& nnside ,&ni ,&nj ,&xi ,&pathlength) ;
unsorted [i] = x i /(s c a l e c on s t ∗pow(pathlength , scalepow)) ;
tunsorted [i] = x i /(s c a l e c on s t ∗pow(pathlength , scalepow)) ;
f i r s t [i] = ni ;
second [i] = nj ;
t s i d e [i] = nns ide ;
}
f c l o s e (ina) ;
bubb l e so r t ing (unsorted , ans6) ;
p r i n t f (" so r t ed : \n ") ;
f o r (i = 0 ; i < ans6 ; i++) {

p r i n t f ("% l f \n " , s o r t ed [i]) ;
}
FILE ∗newout = fopen (newoutn , "w") ;
f o r (i = 0 ; i < ans6 ; i++) {

f o r (j = 0 ; j < ans6 ; j++) {
i f (tunsorted [i] == sor t ed [j])

s = j ;
}

f p r i n t f (newout , "% i %i %i %.15 f %i \n " , t s i d e [i] , f i r s t [i] ,
second [i] , tunsorted [i] , s) ;

}
f c l o s e (newout) ;
i n t wpath , npaths ;
/∗
∗∗ The ac tua l pathscapes are not stored ,
∗∗ only t h e i r optimal path in fo rmat ion .
∗∗ The pathscapes chosen f o r the pattern
∗∗ must t h e r e f o r e be run again .
∗/

80

f o r (npaths = 0 ; npaths < times ; npaths++) {
FILE ∗ i naga in = fopen (newoutn , " r ") ;
f o r (i = 0 ; i < ans6 ; i++) {

f s c a n f (inagain ,"% i %i %i %l f %i \n" ,& nnside ,&ni ,&nj ,&xi ,&wpath) ;
i f (wpath == npaths){

j = ni ;
s = nj ;
n s ide = nns ide ;

}
}

i f (j == an − 1)
a length = l a s t l e n g t h ;

e l s e
a l ength = tempalength ;

i f (s == an − 1)
blength = l a s t l e n g t h ;

e l s e
b length = tempalength ;

f o r (i = 0 ; i < a length ; i++) {
i f (n s ide == 0) {

sx0 [i] = i + j ∗ tempalength ;
sy0 [i] = 0 ;

}
i f (n s ide == 1) {

sx0 [i] = 0 ;
sy0 [i] = i + j ∗ tempalength ;

}
i f (n s ide == 2) {

sx0 [i] = i + j ∗ tempalength ;
sy0 [i] = 0 ;

}
i f (n s ide == 3) {

sx0 [i] = 0 ;
sy0 [i] = i + j ∗ tempalength ;

}
i f (n s ide == 4) {

sx0 [i] = i + j ∗ tempalength ;
sy0 [i] = N;

}
i f (n s ide == 5) {

sx0 [i] = N;
sy0 [i] = i + j ∗ tempalength ;

}
}
f o r (i = 0 ; i < blength ; i++) {

i f (n s ide == 0) {
sx1 [i] = i + s ∗ tempalength ;
sy1 [i] = N;

}
i f (n s ide == 1) {

sx1 [i] = N;

81

sy1 [i] = i +s ∗ tempalength ;
}
i f (n s ide == 2) {

sx1 [i] = 0 ;
sy1 [i] = i + s ∗ tempalength ;

}
i f (n s ide == 3) {

sx1 [i] = i + s ∗ tempalength ;
sy1 [i] = N;

}
i f (n s ide == 4) {

sx1 [i] = N;
sy1 [i] = i + s ∗ tempalength ;

}
i f (n s ide == 5) {

sx1 [i] = i + s ∗ tempalength ;
sy1 [i] = 0 ;

}
}

pathscape (dir , sx0 , sy0 , sx1 , sy1 , a length , blength , N, alpha) ;
r e p l (d i r , N, npaths) ;
f c l o s e (inaga in) ;

}
s p r i n t f (gnu ,"% s %s " , " gnuplot " , gpl3n) ;
system (gnu) ;

r e turn 0 ;
}
/∗
∗∗ Simple implementation o f the bubble s o r t i n g algor ithm ,
∗∗ used to s o r t optimal paths by energy
∗/
void bubb l e so r t ing (double a r r [] , i n t nElements) {

double temp ;
i n t i , j ;
f o r (i = 0 ; i < nElements − 1 ; i++) {

f o r (j = 0 ; j < nElements − 1 − i ; j++) {
i f (a r r [j] >= arr [j +1]) {

temp = arr [j +1] ;
a r r [j +1] = ar r [j] ;
a r r [j] = temp ;

}
}

}
f o r (i = 0 ; i < nElements ; i++) {

so r t ed [i] = ar r [i] ;
}

}

82

B.3 Other functions

/∗
∗∗ r e p l o t . c
∗∗ − c a l l e d from gr id . c
∗∗ − used to l o c a l i z e minimupath in pathscapae
∗∗ − o r i g i n a l l y used to r ep l o t data ,
∗∗ − p l o t s the minimumpath
∗/
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
double ∗∗dens ;
void r ep l (char d i r e c t o r y [] , i n t N, i n t npaths) {

//Parameters
double i n f t y = 10000 . 0 ; // " i n f i n i t y "
double perc = 0 .000000001 ; // " zero "
// Di rec tory
char d i r [1 5 0] ;
s p r i n t f (d i r , d i r e c t o r y) ;
// Help parameters
i n t i , j , t o s s ;
double read , minval = 5∗ i n f t y ;
/∗
∗∗ Creat ing and opening d a t a f i l e s and gnuplot s c r i p t
∗/
char inn [2 0 0] , inNn [2 0 0] ;
char out1n [2 0 0] , out2n [2 0 0] , out3n [2 0 0] ;
char gpln [2 0 0] , p l o t [2 0 0] ;
s p r i n t f (inn , "%s%s " , d i r , "\\ v i j . dat ") ;
s p r i n t f (out1n , "%s%s " , d i r , "\\ part_vi j . dat ") ;
s p r i n t f (out2n , "%s%s%i%s " , d ir , "\\minimumvalues " , npaths , " . dat ") ;
s p r i n t f (out3n , "%s%s " , d i r , "\\ number_val . dat ") ;
s p r i n t f (gpln , "%s%s " , d i r , "\\ p lo tpaths . txt ") ;
s p r i n t f (p lot , "%s %s " , " gnuplot " , gpln) ;
FILE ∗ in = fopen (inn , " r ") ;
FILE ∗out1 = fopen (out1n , "w") ;
FILE ∗out2 = fopen (out2n , "w") ;
FILE ∗out3 = fopen (out3n , "w") ;
FILE ∗ gpl = fopen (gpln , "w") ;
// Plot s c r i p t
f p r i n t f (gpl , " cd ’%s ’ \ n " , d i r) ;
f p r i n t f (gpl , " s e t term pdf \n ") ;
f p r i n t f (gpl , " s e t out ’ optimalpath . pdf ’ \ n ") ;
f p r i n t f (gpl , " s e t view map\n ") ;
f p r i n t f (gpl , " s e t p a l e t t e gray\n ") ;
f p r i n t f (gpl , " s e t xrange [0:% i] \ n " , N+1);
f p r i n t f (gpl , " s e t yrange [0:% i] \ n " , N+1);
f p r i n t f (gpl , " s p l o t ’ part_vi j . dat ’ us ing 1 : 2 : 3 with image\n ") ;

83

f p r i n t f (gpl , " e x i t \n ") ;
f c l o s e (gpl) ;
dens = (double ∗∗) mal loc (s i z e o f (double ∗)∗N+1);
f o r (i = 0 ; i < N+1; i++) {

dens [i] = (double ∗) mal loc (s i z e o f (double)∗N+1);
}
// Read in data and f i nd minimum
fo r (i = 0 ; i < N+1; i++) {

f o r (j = 0 ; j < N+1; j++) {
f s c a n f (in , "% i %i %l f \n " , &toss , &toss , &read) ;
dens [i] [j] = read ;
i f (dens [i] [j] < minval)

minval = dens [i] [j] ;
}

}
double nextminval = 5∗ i n f t y ;
f o r (i = 0 ; i < N+1; i++) {

f o r (j = 0 ; j < N+1; j++) {
i f (dens [i] [j] < nextminval && dens [i] [j] > minval)

nextminval = dens [i] [j] ;
}

}
// Pr int new data
f o r (i = 0 ; i < N+1; i++) {

f o r (j = 0 ; j < N+1; j++) {
i f (dens [i] [j] > (1 . 0 + perc)∗minval)

dens [i] [j] = i n f t y ;
f p r i n t f (out1 , "% i %i %l f \n " , i , j , dens [i] [j]) ;

}
}
i n t counter = 0 ;
f o r (i = 0 ; i < N+1; i++){

f o r (j = 0 ; j < N+1; j++) {
i f (dens [i] [j] <= minval ∗ (1 . 0 + perc)){
f p r i n t f (out2 ,"% i %i %.15 f \n " , i , j , dens [i] [j]) ;
counter++;
}

}
}
f p r i n t f (out3 ,"% i \n " , counter) ;
p r i n t f ("% i " , counter) ;
f r e e (dens) ;
f c l o s e (in) ;
f c l o s e (out1) ;
f c l o s e (out2) ;
f c l o s e (out3) ;
system (p lo t) ;

84

}

85

7. References
[1] Karl Gunnar Aarsæther. Modeling and analysis of ship traffic by obser-

vation and numerical simulation. PhD thesis, Norwegian University of
Science and Technology, Department of Marine Technology, 2011.

[2] F.A. Aloul, B.A. Rawi, and M. Aboelaze. Routing in optical and non-
optical networks using boolean satisfiability. Journal of Communica-
tions, 2(SPL.ISS. 4):49–56, 2007.

[3] Michael J. Bannister and David Eppstein. Randomized speedup of the
bellman-ford algorithm. CoRR, abs/1111.5414, 2011.

[4] M. Bennewitz, W. Burgard, and S. Thrun. Learning motion patterns
of persons for mobile service robots. Proceedings - IEEE International
Conference on Robotics and Automation, 4:3601–3606, 2002.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Sta-
tistical Society: Series B, 39:1–38, 1977.

[6] A. Hansen and J. Kertèsz. Phase diagram of optimal paths. Physical
Review Letters, 93(4):040601–1, 2004.

[7] A.K. Jain, R.P.W. Duin, and J. Mao. Statistical pattern recognition:
A review. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 22(1):4–37, 2000.

[8] M. Kardar and Y.-C. Zhang. Scaling of directed polymers in random
media. Physical Review Letters, 58(20):2087–2090, 1987.

[9] International Maritime Organization. Ais transponders, 2014. URL:
http://www.imo.org/OurWork/Safety/Navigation/Pages/AIS.
aspx.

[10] International Maritime Organization. History of solas, 2014. URL:
http://www.imo.org/KnowledgeCentre/ReferencesAndArchives/
HistoryofSOLAS/Pages/default.aspx.

[11] G. Pallotta, M. Vespe, and K. Bryan. Traffic knowledge discovery from
ais data. Proceedings of the 16th International Conference on Informa-
tion Fusion, FUSION 2013, pages 1996–2003, 2013.

87

[12] B. Ristic, B. La Scala, M. Morelande, and N. Gordon. Statistical anal-
ysis of motion patterns in ais data: Anomaly detection and motion
prediction. Proceedings of the 11th International Conference on Infor-
mation Fusion, FUSION 2008, 2008.

[13] Nehemia Schwartz, Alexander L. Nazaryev, and Shlomo Havlin. Op-
timal path in two and three dimensions. Phys. Rev. E, 58:7642–7644,
Dec 1998.

[14] L. Talon, H. Auradou, M. Pessel, and A. Hansen. Geometry of optimal
path hierarchies. EPL, 103(3), 2013.

[15] Vasquez, D. and Fraichard, T. Motion prediction for moving objects: A
statistical approach. Proceedings - IEEE International Conference on
Robotics and Automation, 2004(4):3931–3936, 2004.

[16] S. Watanabe. Pattern recognition: human and mechanical. Wiley, 1985.

[17] Qiuming Zhu. A stochastic algorithm for obstacle motion prediction in
visual guidance of robot motion. In Systems Engineering, 1990., IEEE
International Conference on, pages 216–219, Aug 1990.

88

