
Message Dissemination with Epidemic
Algorithms in Onyx

Sondre Coldevin Madsen Basma

Master of Science in Computer Science

Supervisor: Svein Erik Bratsberg, IDI

Department of Computer Science

Submission date: September 2017

Norwegian University of Science and Technology

Message Dissemination with Epidemic Algorithms in

Onyx

Sondre Basma

August 24, 2017

Version: First Version

NTNU

IDI

Distributed Systems

Message Dissemination with Epidemic

Algorithms in Onyx

Sondre Basma

Supervisor Svein Erik Bratsberg

August 24, 2017

Abstract

The Onyx Platform is a data processing framework, that utilizes a masterless co-

ordination design and a centralized log through the ZooKeeper system. At large

cluster sizes, the centralized log experiences performance issues due to the large

amount of read and write requests. This thesis utilizes epidemic techniques for

sharing log events in order to reduce read requests to the primary log nodes. An

implementation of these techniques will be presented, together with an analysis of

the results. Problems with actually applying the received log events to the local state

made realistic performance testing impossible, but the actual epidemic message

dissemination show some promising results with a high degree of connectivity and

small average shortest path between nodes.

v

Sammendrag

Onyx er et rammeverk som tilbyr dataprosessering i distribuerte systemer. Onyx

bruker en design som ikke er avhengig av en sentralisert maskin som bestemmer

kordinasjonen mellom nodene. Dette gjør imidlertid rammeverket avhengig av

en tjeneste som heter ZooKeeper. ZooKeeper tilbyr en sentralisert log som holder

en total orden på hendelser. I store samlinger av distribuerte systemer opplever

maskinen som drifter ZooKeeper et stort antall henvendelser, noe som utgjør et

problem for ytelsen til systemet. Denne oppgaven bruker epidemiske teknikker for å

redusere antallet lesehenvendelser til den sentraliserte loggen. En implementasjon av

disse teknikkene vil bli presentert, sammen med en analyse av resultatene. Problemer

med å få de epidemiske loghendelsene til å endre den lokale tilstanden til maskinene

gjorde at en realistic ytelsestest ble umulig, men selve delingen av de epidemiske

beskjedene viste noen lovende resultater som kan brukes videre.

vii

Contents

1 Introduction 1

1.1 Motivation . 3

2 ZooKeeper 5

2.1 Terminology . 5

2.2 Data Model and API . 6

2.3 Implementation . 8

3 The Onyx Platform 11

3.1 Data Model and API . 12

3.1.1 At-least-once delivery . 14

3.2 Low-level Architecture . 15

3.2.1 The Log . 16

3.2.2 Garbage Collection . 17

3.2.3 Cluster Join . 18

3.2.4 Dead peer removal . 21

3.2.5 Scheduling . 21

3.3 Challenges . 22

4 Aeron 25

4.1 Design . 25

4.2 Usage . 27

5 Epidemic Algorithms 29

5.1 Concepts . 29

5.2 Membership Protocols . 31

5.2.1 HyParView Membership Protocol 32

6 Epidemic Techniques in Onyx 35

ix

6.1 Epidemics Techniques for Log Sharing in Onyx 36

6.1.1 Counter/Feedback Gossip Protocol 36

6.1.2 Blind Counter Variation . 38

6.2 Combining Blind Counter with Membership Protocols in Onyx with

Aeron . 39

6.3 Conclusion . 42

7 Implementation 45

7.1 Introduction . 45

7.2 Overview of original implementation 45

7.2.1 Peer Group Manager Loop . 46

7.2.2 The Communicator . 46

7.3 Overview of new implementation . 48

7.3.1 The Epidemic Messenger . 49

7.3.2 The Communication Layer . 51

7.4 Summary . 53

8 Results 55

8.1 Introduction . 55

8.2 Setup . 55

8.3 Test Cases . 56

8.3.1 Membership protocols . 56

8.3.2 Message Dissemination . 58

8.4 Goals . 59

8.4.1 Membership protocols . 59

8.4.2 Message Dissemination . 59

8.5 Results . 59

8.5.1 Membership protocols . 59

8.5.2 Message Dissemination . 62

8.6 Summary . 64

9 Conclusions 65

Bibliography 67

x

1
Introduction

The Onyx Platform is a data processing framework similar to engines such as

Storm [30] and Apache Spark [27]. Their similarities lie in that the goal of these

frameworks is to provide fast and efficient data processing in a distributed manner.

The Onyx Platform differ from these mainstream data processing engines in some

important ways. It is written in Clojure, and utilizes the functional data structures

of Clojure to provide transparency for developers working with Onyx. In addition,

it is designed to be masterless, implying that a single node is not designated as a

coordinator or master in a cluster. However, Onyx is dependent on a centralized

immutable log structure. This log structure is implemented by ZooKeeper and in

clusters with a large number of nodes, the centralized log faces a considerable

amount of strain through read and write requests.

The objective of this thesis is to look at one possible implementation of epidemic

techniques in order to reduce the load on these primaries. The basis for this

implementation is to be formed through knowledge of the structures underlying

the Onyx framework. The thesis will start by investigating these factors and their

theoretical underpinnings. The ZooKeeper framework constitutes the coordination

backbone of the original implementation, and a good understanding of its principles

is therefore crucial. How the Onyx platform utilizes these principles will also

be explored, together with a more thorough investigation of its high-level design

principles, as well as how its underlying message system functions. In addition a

discussion of the platforms current problems will take place, justifying the motivation

for this thesis. Attention will then turn to varieties of epidemic algorithms and

how these algorithms might be utilized in the new implementation. A possible

implementation will then be presented, as well as its current results.

1

Note that this thesis is a continuation of a project report delivered at IDI, NTNU in

December 2016 by the same author [3]. The theoretical subjects and the motivation

are the same. Chapter 2, 3, and Chapter 5, concerning ZooKeeper, epidemic algo-

rithms and an overview of the Onyx Platform, is the same as presented in that project

report. The introduction of Chapter 6 as well as Section 6.1 is the same as in the

project report, while the rest of that chapter is new additions/heavily modified.

2 Chapter 1 Introduction

1.1 Motivation

A McKinsey report stated that the amount of data available has been exploding over

the last few years [24], with a 40 percent projected growth as well as a 60 percent

potential increase in retailers operating margins through the analytic use of big data.

This has led to a data revolution in many fields, including research and the financial

sector. From a developers perspective, the challenges are often described by the

three V’s: variety, velocity and volume [18]. Variety represent the heterogeneity and

often inconsistent features of the data received, while velocity denotes the increasing

speed at which data arrives, but also the speed at which an computation is expected

to arrive at an answer. Volume refers to the increasing size of the data available

for analysis and modeling. One must at the same time give the ability to express

succinct queries and relevant presentation of the finished analysis to the end user.

While these are the characteristics of the current development of challenges related

to data analysis, progress in the performance space of single computing resources

has not been keeping up at a satisfying pace, limiting the ability to scale sufficiently.

This has led to an increased focus in research and industry on the coordination and

collaboration of computing instances to increase the scalability of applications. Big

data ecosystems like Haadop [14] consists of a pipeline of components designed to

deal with the challenges introduced by the big data revolution. These components

include implementations to deal with storage, data ingestion, data processing and

a number of other features. Although these components have different character-

istics they all have the ability to utilize distributed computing resources to allow

scalability.

In this context, the Onyx platform is in the same space as data processing engines

like Spark [27] and Storm [30] and thus must be able to offer scale of processing as

well as the other features expected by such processing platforms.

1.1 Motivation 3

2
ZooKeeper

ZooKeeper is a service for coordinating processes of distributed applications. Its aim

is to provide a simple coordination server that makes it possible to implement client

specific coordination primitives. This is done by providing an API to manipulate

wait-free data objects, as well as guarantees of FIFO client ordering of requests and

linearizable writes. These properties makes it possible for clients to easily make

their own coordination primitives, in fact the system can provide implementation of

consensus for an arbitrary number of processes. It offers a high degree of availability

and performance; this is done through the implementation of an atomic broadcast

protocol called ZAB [19]. The FIFO client ordering guarantee enables clients to have

hundreds of thousands of requests outstanding. This asynchronous property is useful

in a number of ways as clients often benefit from being able to multitask. In such

coordination systems, read operations usually dominates. ZooKeeper handles this

by letting reads be handled at each server locally, though under relaxed consistency

guarantees.

2.1 Terminology

• Znodes : data nodes that can be manipulated through the API.

– Regular : persistent nodes that can be created or deleted only through

calls by the API.

– Ephemeral : These are znodes associated with a session, meaning they

get automatically removed at end of a session (see below).

5

• Data tree : Hierarchical structure of the znodes.

• Session : A client connects and initiates a session. Requests are sent through

a session handle. A session can be explicitly terminated, or be ended by the

expiration of a timeout.

2.2 Data Model and API

All znodes are structured according to a hierarchy. This structure closely resembles

that of a file system, and UNIX notation is used as paths. See Figure 2.1.

Fig. 2.1: Data tree of znodes. Source [17].

In addition to the two different types of znodes, regular and ephemeral, one can

also create znodes that append a strictly increasing counter to its name. This is done

by having the value of the counter increase in a subsequent manner. If parent node

a has child b, and a new child c is created, then the sequence value of c is always

larger than b or any other preceding descendant of a. If one uses the sequential flag

to create a new node, this behavior will be used.

The system also provides a service called watches. Watches look for updates at

a specific data object (znode), notifying the client if anything changes. Watches

are single-use, meaning that after returning the notification, the client will have

6 Chapter 2 ZooKeeper

to reattach the watch on the object. Watches are also associated with a session,

meaning that all watches are discontinued on session close.

ZooKeeper automatically stores some metadata on the znodes, such as time stamps

and version number. This allows clients to only conditionally update a znode

depending on which version it is. ZooKeeper also allows the client itself to store

some configuration data, this could be practical in several cases where the client has

application specific data that is needed by all znodes. One such case could be the

location of the leader in a primary-backup protocol. The maximum allowable size

for data storage at a znode is set to 1MB [32]. The API used to manipulate the data

tree is presented in Table 8.9.

Tab. 2.1: API Calls and explanations

Call Explanation

create(path, data, flags) Creates znode with path path and stores data in it. flags rep-

resent the type of znode (ephemeral, regular) and whether

sequential mode is enabled.

delete(path, version) Delete znode at path if version is correct version.

exists(path, watch) Returns true if znode with pathname path exists. Watch flag

enables a client to set a watch on the znode.

getData(path, watch) Returns data and metadata belonging to znode at path.

Watch flag enables a client to set a watch on the znode.

setData(path, data, version) Writes data to znode at path if version number is correct.

getChildren(path, watch) Returns the set of children belonging to znode at path. Can

set watch to get notified if znode adds child.

sync(path) Waits for all updates pending at the start of the operation to

propagate to the server that the client is connected to.

The next section will take a look at how ZooKeeper is able to guarantee the total

ordering of the log that Onyx depends on. It will focus mainly on the agreement

protocol, ZAB.

2.2 Data Model and API 7

2.3 Implementation

In order to guarantee linearizable writes and FIFO client ordering of requests,

ZooKeeper employs a pipeline of three components. The first component is called

the request processor, and this component is responsible for making client requests

into idempotent transactions. The fact that transactions are idempotent makes it

easier to implement the agreement protocol and is also the cause of at-least-once

message delivery semantics being sufficient. The request processor does this by

taking a request and generating the new state of the application after applying that

request. This new state is then made into a transaction and fed to the agreement

protocol. Finally, the result of the transaction is delivered to the replicas. The

Fig. 2.2: ZooKeeper pipeline. Source [17].

agreement protocol, or ZooKeeper Atomic Broadcast (ZAB), is responsible for the

total order of update transactions; total order is the ability of a system to agree

on a sequence of events. It replicates state changes to achieve fault tolerance and

availability while still maintaining consistency. This protocol is based on the same

properties as Paxos [21] and Viewstamped Replication [23]. In other words, it

depends on the quorum intersection property, namely that the group of nodes that

is involved in one currently executing step of the protocol must share at least one

node with the group of nodes involved in the next step of the protocol. This ensures

that at at least one node has knowledge of what happened in the previous step.

To enforce this property, it is required that a majority of nodes participates in an

operation. This implies that with a group of 2f +1 nodes, one can only tolerate

failure of f nodes. ZAB is a primary-backup protocol, using one primary/leader to

8 Chapter 2 ZooKeeper

create idempotent transactions and propose those changes to the rest of the group,

the backups/followers are responsible for voting on those transactions.

In order to achieve FIFO client request ordering even during failures, ZAB had to

introduce a new property that satisfies the following requirements:

• Local primary order : If a primary broadcasts message1 before message2, then

any process delivering message2 must deliver message1 first.

• Global primary order : If a primary broadcasts message1, and then the pri-

mary changes and the new primary broadcasts message2, then any process that

delivers both m2 and m1 must deliver m1 first.

If a protocol satisfy both of these properties, then the protocol is said to have primary

order. The algorithm ZAB employs to follow these requirements, is divided into

three separate steps; discovery, synchronization and broadcast (normal mode). The

discovery phase is associated with a new leader and tries to detect the most up to

date sequence of transactions in the quorum. Because each transaction must be

agreed upon by a majority of the nodes, one is able to guarantee that transactions

agreed upon in the last cycle is transferred to the new leader. The synchronization

phase consists of the leader proposing changes to the followers, and when a majority

of followers agree to a change, the leader asks them to commit the transaction. After

synchronization, the nodes go to the broadcast phase. The broadcast phase consists

of servicing write requests from the client. If the leader fails, a new leader is elected

and the protocol is re-initiated.

Through this algorithm ZooKeeper is able to guarantee that messages delivered have

an agreed upon sequence, the total order property that the Onyx platform depends

on.

2.3 Implementation 9

3
The Onyx Platform

„As far as building distributed systems, as an

industry, we’re not very good at it at all.

— Michael Drogalis

(Creator Onyx. Clojure/Conj 2015.)

The Onyx platform was created by Michael Drogalis, and is a cloud-scale, distributed,

fault tolerant, high performance data processing platform that uses a hybrid interface

to be able to handle both batch and streaming workloads. It is written purely in the

programming language Clojure. Clojure is a general-purpose dynamic programming

language, a dialect of Lisp and a mainly functional language [15], it is hosted on

the Java Virtual Machine (JVM) and thus can exploit the rich ecosystem of Java

libraries. M. Drogalis created Onyx on the concept that current distributed processing

frameworks were based on an idea that led to diminishing developer ability to reason

about the data flow of programs on these platforms [11]. The model in question

consists of the tight coupling between behavior, data flow and side effects together

with the use of abstract language constructs. This model is used in processing

frameworks such as Storm [30] and [27]. In using these frameworks allows the

developer to specify behavior (functions), data flow and side effects (like connecting

to a database or logging) in one program using abstract language constructs like

Resilient Distributed Datasets [31] through an API. This tight coupling between

data and language constructs results in a loss of ability to understand the different

parts of the program in isolation, and sets the object of computation, data, in the

background.

The idea of separation of entities to enhance informal reasoning about a program

is not a new one and has been discussed in discourses like [26]. In addition, with

11

replacing abstract language constructs with simple data structures like vectors and

maps one minimizes complexity and increase the informal reasoning abilities. The

increased ability to reason about the program has been the main motivation behind

Onyx. The distribution model of Onyx is based on a masterless protocol, with no

peers taking coordination responsibility. The coordination layer is implemented in

ZooKeeper. This chapter will start by taking a look at the Data Model and API of

Onyx, and then investigate the underlying low-level architecture and algorithms.

3.1 Data Model and API

Units of data in Onyx are represented by segments. Segments go through a series

of transformations; these transformations are just plain clojure functions. The

transformations receive segments and return segments. Relations and flow between

transformations are defined in a directed acyclic graph (DAG) contained in an

idiomatic clojure vector of vectors. The inner vectors contain identifiers for each

node of the graph, representing input, processing functions and outputs. Each node

in the graph represent a task, the smallest unit of work in Onyx.

Listing 3.1: Pseducode: Vector of vectors to represent a DAG

[[input_1 , process ing_1] ,

[input_2 , process ing_2] ,

[process ing_1 , process ing_3] ,

[process ing_2 , process ing_3] ,

[process ing_3 , output]]

This structural specification is called the workflow. The fact that the workflow is

created by using idiomatic clojure constructs makes code and tool reuse easy; any

tool that the developer uses to work with DAGs would be easily employable to

work with this structure. The workflow is defined separately. This separation is not

only spatial but temporal and this brings flexibility; the workflow can be created

independently of runtime and deployment, and then compiled to a representation

that Onyx understands.

12 Chapter 3 The Onyx Platform

Fig. 3.1: Representation of workflow as a DAG.

In many situations a developer might want to determine the direction of data based

on state. Onyx uses a construct called flow conditions to handle these scenarios. Flow

conditions directs segments of data based on where the data is coming from, where

the data is going and a specified predicate function. Flow conditions are represented

by a clojure map for each of these entries.

In order to bind workflow definitions with actual implementations of these defini-

tions, Onyx uses a construct called the catalog, the catalog contains vectors of maps.

The catalog connects functions with positions in the workflow and provides these

tasks with parameters, configuration and documentation; the catalog is a sequence

of task specifications. This structure allows the parametrization of functions separate

from other parts of the program, allowing developers to provide parameters in

isolation.

The modification of state during run time is needed in order to deal with necessary

side effects like logging or database connections. The facilitation of such modifica-

tions is provided by a feature called lifecycles. Lifecycles allow the developer to inject

arbitrary code at different stages of processing on the nodes in the cluster. At each

such stage a context map containing a number of useful entries is made available,

the developer can then create functions to read or modify these entries to execute

wanted side effects. The stages made available are before and after setup/execution

of each task, in addition to stages before and after each batch of segments. These

3.1 Data Model and API 13

lifecycles are specific to one peer and task, and is not a coordinated effort. However,

one can specify that a lifecycle is run for every task on a peer. .

In addition to the structures already described one would also need a way to analyze

streams of data. Capturing and analyzing data streams presents a challenge, as

streams are unbounded. This introduces problems like straggling/disordered data

and difficulty of guaranteeing idempotent operations. A common technique used

to process unbounded data streams is called windowing. Windowing allows the

application to divide the unbounded data set into finite pieces and do computation

on these pieces. Onyx features several different windowing techniques; fixed, sliding,

global and session. The different features and implementations of these windowing

techniques is out of scope for this discourse but can be reviewed at [12]. These

windows support aggregation functions like sum, min, max, average and by-key.

Each window is associated with a specific task over which the window operates.

Each window is also associated with a trigger, the trigger specifies when the data

that are currently in the window is to be moved to a place specified by the user.

The combination of the workflow, catalog, flow conditions, windows and triggers is

known as a job. Each task is associated with one job, and a node only executes one

job at a time. The data model and API of Onyx presented here are completely driven

by idiomatic data structures and the transfer of plain clojure functions that makes it

possible to separate these entities from deployment and runtime environments, and

enables better understanding of the data flow. Section 3.2 will investigate how this

is possible to do in a distributed masterless system by taking a look at the underlying

architecture and algorithms.

3.1.1 At-least-once delivery

The messaging algorithm in Onyx is based on the concepts employed in the Storm

[30] messaging algorithm. One can represent the processing of segments as a DAG,

like the workflow described in Fig 3.1. Each segment in the DAG is associated

with a UUID that tracks it through its lifetime, all segments are also given an

acknowledgment value, which is a random 64-bit integer. The processing of these

14 Chapter 3 The Onyx Platform

segments are distributed throughout the cluster so in order to maintain state, each

segment also has an assigned peer that maintains state through an acking daemon

[12]. The algorithm utilizes the canceling properties of the XOR operation when it is

applied to two equal sequences.

When a segment is generated it transmits the generated acknowledgment value

to the acking daemon, the XOR operation is then applied to the acknowledgment

value together with any previous value in the state. When a segment is completed it

transmits the acknowledgment value one more time and the acking daemon employs

the XOR operation once again on the shared state, effectively canceling out the initial

value sent from that segment. The result is that for a given segment tree, when the

shared state of that tree is zero, one knows that it has finished executing. Failure

of a peer processing a segment is handled by keeping the root segment until the

tree has finished. A timeout detection mechanism will notice a segment processing

failure and cause the tree to be replayed from the root segment [10]. This together

with idempotent segment transformations enables Onyx to deliver an at-least-once

processing guarantee.

3.2 Low-level Architecture

The Onyx architecture is a masterless peer-to-peer structure. This is motivated by

the fact that the traditional master-slave model has some inherent limitations, these

limitations stem from the fact that one gives one node the coordination responsi-

bilities resulting in possible overload and a single point of failure. Although these

limitations are mitigated by many different strategies that are thoroughly reviewed

in literature, the perceived stagnation in the distributed coordination research space

inspired the creator to seek out different architectures as an experiment [8]. This

resulted in an architectural structure that have peers centered around an immutable

append-only log distributed by ZooKeeper [17], as such the architecture is not

completely masterless. Onyx leverages the strict order properties that ZooKeeper

guarantees to let peers write and read from this log. Each peer has a local replica

3.2 Low-level Architecture 15

that maintains cluster state, including information about every other peer in the

cluster. This organization is reflected in Fig. 3.2.

The messaging layer between peers is implemented by using Aeron [25], this is a

messaging library that is reliable, handles package loss and out-of-order arrivals. It

also handles many different transmission media like TCP, UDP and PCI-e.

Fig. 3.2: Representation of ring structure and centralized ZooKeeper coordination layer.

3.2.1 The Log

The log implementation is based on a directory of persistent sequential znodes and

their monotonically increasing counters. Each log entry is represented by such a

node, and peers are notified about changes to the log by setting a watch on the

directory. Changes to the log are proposed by each peer individually, and each

change represent a change to the cluster state. Such a change is called an event, and

events is typically submitting a job, deleting a job, a peer joining the cluster, a peer

leaving the cluster etc. Each peer is notified of changes through its inbox, as events

are appended to the log, each peers inbox receives a message containing the event,

16 Chapter 3 The Onyx Platform

this done through a thread that is listening for notifications from the zookeeper

directory. When a peer wants to write to the log, it composes a message describing

the event and puts that message in its outbox. The first event of the log is contained

in a znode at a fixed address, called the origin.

Each log entry is represented by a map with keys that bind to a function and

its arguments. The function is a plain clojure function that is idempotent and

deterministic with no side effects, only returning a new replica with the updated

state. This new replica is then stored as the peers local replica. The combination of

these idempotent, deterministic functions and the totally ordered log causes peers to

be able to independently utilize log entries at their own pace. In order to actually

perform the changes represented by the log entry the peer takes the new and old

replica value and calculates their difference. This difference is then used to decide

on two things:

1. Whether the peer should react or not. In some cases the difference should

cause the peer to append an event to the log.

2. What side effects the peer should execute. This could be writing to a commu-

nication channel or talk to ZooKeeper.

Each peer has an ID that is reflected in the state change if this peer is to perform any

exclusive side-effects.

3.2.2 Garbage Collection

The process described here, with peers adding entries to an append-only log requires

infinite space for log and local replica storage. Onyx solves this by invoking a

garbage collector at a periodical basis. The garbage collection process consists of a

peer adding an entry to the log, the entry contains that peers ID. The idempotent,

deterministic function that is part of the log entry instructs each peer reading into to

compress the local replica state. The ID contained in the entry permit the calling

peer to perform the side-effects consisting of compression of the log without any

3.2 Low-level Architecture 17

Fig. 3.3: Graphic presentation of peers reading from the event log independently with state
in local replicas.

other peer attempting to do the same. The compression of the log is done by the

garbage collector caller taking each log entry from the origin and up to the last one,

creating a new replica state and store it in the origin znode. Then it deletes the

redundant events in the log.

3.2.3 Cluster Join

The process of a new node joining the cluster is executed by the asynchronous

interaction of three events. It utilizes a ZooKeeper directory of ephemeral znodes

for every peer in the cluster. The coordination of this process is done through

setting watches on these znodes in a ring structure, with each peer being responsible

for monitoring one other peer. Fig. 3.4 visualizes this responsible/dependent

relationship.

The peer that is looking to join the cluster starts by playing the log, creating its

own local replica. Reactive responses are buffered in the outbox of this new peer,

as these reactions might lead to bad state if the new peer later decides to abort

18 Chapter 3 The Onyx Platform

Fig. 3.4: Representation of ring structure and responsible nodes.

its attempts at joining the cluster. The new peer also emits an event to the log,

signaling that it wants to join the cluster. When the nodes already fully joined in

the cluster encounters this message they elect one of them to be responsible for the

new node that is joining. This election is done through using the modulo function

on the message id and a sorted list of peer ID’s, uniformly electing the same peer to

be responsible. The peer that is chosen as the responsible one sets a watch on the

znode representing the joining node, and sends an event to the log notifying that it

has taken responsibility. When the new peer encounters this event in the log it sets

a watch on the node that the responsible node has been previously responsible for,

and sends an event signaling that it has been accepted into the cluster. This stage is

reflected in Fig. 3.5.

When the cluster encounters this third event, they add the new node to the cluster

state, and the responsible node removes the watch on the node it was previously

responsible for, concluding the join operation. Now the new peer can start to flush

3.2 Low-level Architecture 19

Fig. 3.5: Visualization of new node joining the cluster, with arrows between peers repre-
senting watches on znodes.

the buffered reactive messages and participate in cluster activity. The pseudocode

for for a new peer and already fully joined peers are presented in listing 3.2 and

3.3

Listing 3.2: Pseudocode: Executions of peer that are joining.

% E1 : prepare j o i n c l u s t e r event

% E2 : n o t i f y j o i n c l u s t e r event

% E3 : accept j o i n c l u s t e r event

send E1 to the log

play log and bu f f e r r e a c t i v e messages

i f c l u s t e r −s i z e == 0:

s e t t h i s node to c l u s t e r s t a t e

when encounter ing E2 in log :

add watch to peer with ID contained in E2

send E3 to the log

f l u s h buf fe red r e a c t i v e messages from outbox

20 Chapter 3 The Onyx Platform

Listing 3.3: Pseudocode: Executions of an existing node in the cluster

% E1 : prepare j o i n c l u s t e r event

% E2 : n o t i f y j o i n c l u s t e r event

% E3 : accept j o i n c l u s t e r event

when encounter ing E1 in the log :

l e t ID = ID of peer r e s p on s i b l e f o r new peer

i f t h i s peers ID == ID :

add watch to new peer

send E2 to the log

when encounter ing E3 in the log :

add new node to c l u s t e r s t a t e

i f t h i s peer i s r e sp o n s i b l e :

remove watch on prev iou s l y watched peer .

3.2.4 Dead peer removal

The detection of dead peers in a ring structure as depicted in section 3.2.3 is quite

straightforward. Given a dead peer, the node responsible for that peer will detect

its failure with the watch on the given znode. When the failure is detected, the

responsible peer will write an event to the log that signals the failure. Because the

cluster state is reflected in the replica, each peer is able to compute which node

should be watched by the peer that was previously responsible for the now failed

node. In the case of serial simultaneous failures, this process will just repeat itself

and thus tighten the ring.

3.2.5 Scheduling

Scheduling is concerned with resource allocation depending on the user needs.

Onyx provides several different schedulers [12] for both jobs and task. One of the

consequences of the architecture chosen is that each peer needs to do the scheduling

of jobs and tasks individually. Each peer has to read from the event log and suggest

itself as the executor for a job. This is done by the job scheduler and task scheduler in

Onyx. The job scheduler has the overall responsibility for cluster communication like

volunteering for tasks, and each instance runs such a scheduler. The task scheduler

3.2 Low-level Architecture 21

has responsibility for coordinating tasks and communicates with the job scheduler

when it is needed. Each peer reads from the event log and by doing a transformation

on the local replica state is able to detect where it is most needed. This requires

knowledge of every other peer in the cluster.

3.3 Challenges

In the document located at [9] the developers outline a number of possible chal-

lenges related to the scalability of the coordination layer in Onyx. With large cluster

sizes containing 1000 to 10000 nodes, the developers envision scalability problems

especially centered around ZooKeeper contention. With ZooKeeper acting as read-

er/writer of the log and maintaining watches on all nodes, the load on the ZooKeeper

layer might be too much, leading to slow execution. It is not simply a matter of

adding new nodes to the ZooKeeper server ensemble as this will also affect the

performance of modifying coordination state.

Related to this is the join process described in section 3.2.3. With three phases for

each peer joining, and with each phase requiring read and writes to the log this

is quite an expensive procedure that is envisioned to scale poorly at large cluster

sizes. The join phase also requires a joining peer to replay the whole log to create its

local replica, depending on how often the log is trimmed by the garbage collection

process, this might be a lengthy sequence. The currently implemented coordination

algorithms also require that complete cluster information is contained in each peers

local replica that is preserved in main memory, with several thousand nodes this

might become a storage problem.

The nature of the chosen architecture requires that expensive operations are executed

at every node, while this is a good feature contributing to availability, it has an

impact on performance. This especially regards the scheduling process as described

in section 3.2.5.

22 Chapter 3 The Onyx Platform

It is the challenges described in the first paragraph that will be addressed in this

thesis.

3.3 Challenges 23

4
Aeron

Aeron is a messaging system with focus on performance, it is open source and

utilizes Java as its underlying programming language. Aeron is an attempt to

adapt to the evolving computer industry with multi-core, multi-socket, changing

transmission mediums and increasingly large amounts of communication necessary.

The endpoints have to scale as never before [29]. Aeron does this by making some

compromises, the library do not support topics, like Kafka [20], but can instead be

looked at as an improvement on TCP, following the ISO layer 4 transport standard

and supporting multi cast delivery and some other features that TCP does not. Aeron

does not support guaranteed delivery, meaning that if an endpoint dies, the message

delivery would not be retried. Aeron constitutes the underlying messaging platform

of Onyx.

4.1 Design

From a top-to-bottom perspective Aeron is designed around the concept of channels,

and streams within those channels. Each stream is individually identifiable and

independent within a channel. The components that write and read from a stream,

are called publishers and subscribers. This would mean that each Aeron client needs

a publisher to write to a stream, as well as a subscriber to read from that stream.

Aeron is not designed to have a larger number of channels or streams, number of

streams should not exceed into the hundreds, or else one will get a performance hit

[28].

The publishers and subscribers need to interact with the Aeron media driver, which

runs in its own thread. The significance of this is that one only need one driver per

25

Fig. 4.1: Representation of how streams and channels work in Aeron.

machine, so if one is to have several Aeron clients running on different cores of the

machine, only one media driver is needed. The media driver consists of senders

and receivers. The sender component is responsible for writing to the assigned

transmission media, be it TCP, UDP or others. While the receiver is responsible

for reading from the assigned transmission media. In addition, both the client and

driver have a component that is called the conductor, this component is responsible

for everything that is not related to the actual sending of messages, mainly relaying

system coordination events.

Aeron keeps track of messages, channels and streams through a centralized dis-

tributed log. This log is maintained in a directory which the media driver creates at

startup.

26 Chapter 4 Aeron

Fig. 4.2: Representation of Aeron architecture

4.2 Usage

In order to create a functioning Aeron ensemble one needs three parts; the media

driver, a subscriber and a publisher. The media driver can be stand alone, or

embedded into the application. The media driver creates the directory that is used

for log storage. When the subscriber and publisher are initiated they need to be given

a context that contains the location of the media driver directory. In addition they

have to be given the URL of the channel they are to use, as well as the identification

of the stream within that channel. The channel URL consists of the transmission

protocol, host name and port:

aeron : udp?endpoint = 192.168.0.1 : 40456

4.2 Usage 27

The embedded media driver is useful for local testing, as it eliminates the need for

starting a separate driver from the application. In other situations however, there is

the possibility of several peers running on one machine, and as such the embedded

driver is not suited for production purposes.

28 Chapter 4 Aeron

5
Epidemic Algorithms

Epidemic algorithms arose from the mathematical modeling of infectious disease

spreading in populations [1], not with the goal of reducing infection spread, but to

encourage it. The application of these concepts is also known as gossip protocols

and such concepts have been utilized in the discrete math field [2] and the computer

science field [7] for quite some years. It has been using a probabilistic model to

make sure that information spreads trough a system and as such guarantees eventual

consistency. Eventual consistency has become a popular model in distributed systems

[4], as the model offers a good trade off between availability, the ability to handle

network partitions and the aforementioned consistency. Scalability is intrinsic to the

epidemic model as the model actually gets more robust with a higher number of

participating nodes and work is naturally distributed, part of this is because such

protocols give individual nodes the ability to make decisions without requiring coor-

dination except from direct feedback. The main characteristic of these protocols is

that participants are gossiping to other participants via some random distribution.

5.1 Concepts

An example of a simple epidemic model is is one which a node, when it decides to

broadcast a message, selects a random set of nodes from the global ensemble of

nodes and compares state with that node. If there are any differences, the difference

will be resolved by transferring state information. This overly simplistic model is

referred to as anti-entropy by [7] and has some apparent limitations which will be

explored in the subsequent sections.

29

Borrowing terminology from the epidemic literature [7] a node that has received a

certain message is said to be infected with respect to that message, while a node that

has yet to receive the message is susceptible. A node that has received the message

and is no longer interested in transferring it to other nodes is said to be removed.

In the simple epidemic algorithm presented above, participants only have two of

these states, either infected or susceptible. The mechanism that initiates message

transfer can be done in two ways; the node can try to discover other nodes that have

more recent messages and request them to transfer, or the node can try to discover

nodes that has less recent messages and transfer the updated message to them. The

latter is called push and the former pull, there is also a combination of the two that

is referred to as push-pull.

One of the drawbacks of the algorithm described in the start of this section is that a

participant will continue to attempt the spread of messages that are outdated, i.e

participants have no way of knowing how relevant a message is to the other nodes in

the system. These unnecessary attempts have a negative effect on performance. Such

deficiencies could be mitigated by introducing the third state property denoted as

removed, a removed participant is not interested in spreading a message any further.

A participant should set itself to removed with respect to a message based on the

perception of how widespread that message is in the cluster. Such a perception could

be implemented in a number of ways, one method that mimics such information

is to simply set the probability of setting a node to removed for each message

transmission proportional to 1/k where k is an integer that is configurable. One

drawback of introducing probabilistic variables is that one runs the chance of an

update not spreading to all participants, all infected nodes active in spreading the

message might set themselves to removed before all susceptible nodes in the cluster

have received the message. However, through varying the k parameter one can

make the probability of such an event occurring arbitrarily low, in effect ensuring

that all nodes receive the update but at the cost of traffic as a result of a higher

number of redundant messages. In [7] a more thorough mathematical modeling

and analysis is done on the variation of this parameter.A more accurate model of

cluster state with regards to message relevance might be implemented by introducing

feedback between two nodes. This feedback mechanism gives direct information

30 Chapter 5 Epidemic Algorithms

about whether a participant has received the message previously, and the node

receiving feedback might stop transmitting a message after k occurrences of such

feedback.

The methods described up until now all assume that information pertaining to the

global ensemble of participants is available to all nodes, this assumption is not

scalable as the storage space associated with such information scales poorly, in

addition one has to be able to maintain this information. Research to deal with this

problem centers around membership protocols and will be the topic of discussion in

the next section.

5.2 Membership Protocols

Membership protocols dealing with epidemic protocols attempts to connect partici-

pants in a decentralized fashion, while still maintaining the resiliency inherent to

epidemic protocols and keeping traffic between nodes to a minimum. Partial views

have been introduced as a means to cope with these difficulties [6, 5, 22], and such

mechanisms aim to maintain a random partial subset of all participants available

for communication from one node. One especially important feature of such partial

views is that they manage to connect the whole ensemble of nodes, not leaving any

participants isolated. In [22] the authors introduce a number of metrics useful for

measuring the degree of quality associated with a partial view:

• Connectivity : The ability of the partial view to connect all nodes, not leaving

any nodes in isolation.

• Degree distribution : In asymmetric partial views this is defined by two terms;

in-degree is the number of nodes that has this node in its partial view, while

out-degree is the number of nodes that this node has in its partial view. These

terms measure the influence and reachability of a node, and should be equally

distributed in order to maintain connectivity.

5.2 Membership Protocols 31

• Average path length : Defined as the average of all shortest path between

pairs of nodes. This metric measure distance, and is important to keep low for

performance reasons.

• Clustering Coefficient : Each node has a cluster coefficient that measure how

densely connected that node and its neighbors are. This is done by taking the

number of connections between that node and its neighbors and dividing it by

the maximum connections possible. The average of these cluster coefficients

gives a clue to how many redundant messages will be sent as well as whether

parts of the system might become isolated.

• Accuracy : The number of a nodes neighbors that has failed, divided by the

total number of neighbors. The average accuracy of each node is an important

measure in order to determine the size of the partial views.

The number of participants that one want to relay a message to is called the fanout,

and the size of the fanout is crucial to maintain good measures of the properties

mentioned above. A high fanout gives good resiliency in the face of failures, but also

introduces more redundant messages. Several fanout strategies have been explored

in the past, with examples like [5] using fixed static fanouts and [6] using dynamic

scalable partial views. The next section will explore a membership protocol called

HyParView (Hybrid Partial Views) [22].

5.2.1 HyParView Membership Protocol

This protocol attempts to maintain a low fanout value, while still maintaining good

information dissemination and failure resiliency. The problems of using a low fanout

value is related to the in-degree measure of a node, a node with low in-degree will

be subjected to more isolation and thus affect the global reliability of the system.

The HyParView protocol solves this by introducing two distinct views, one active view

and one passive view. The active view is small and constitutes the nodes in which

one will directly communicate with, the connection is reciprocal and thus symmetric

ensuring that every node has an in-degree of at least one. Each node in the active

32 Chapter 5 Epidemic Algorithms

view will be contacted in the case of an update, and this together with an in-degree

larger than zero ensures that every node will receive the update given enough time.

Given that the active view is small, it does not give much resiliency in the case of

failures. To remedy this, a larger passive view is utilized, this is solely used as a

backup in case of failures.

Because each node in the active view is contacted at every update, failures are

quickly recognized and a node in the passive view is used as a substitute. When a

participant notices that a node is not responding it will choose a random substitute

from its passive view and send a request to connect, if the sending node has no

remaining nodes in its active view the request will be sent with a high priority,

otherwise it will be sent with a low priority. If the request has high priority, the

receiving node will immediately add it to its active view, if need be kicking out an

already existing member. When the sending node is added to an active view by an

accepting node, it will remove the accepting node from its passive view and add it

to its active view. If the request received has low priority, the receiving node will

only allow it into its active view if there is a free slot. A node that experiences being

removed from an active view will be notified and remove the offending node from

its active view.

The passive view is maintained by periodic shuffling with other participants, this

maintenance procedure makes sure to include participants from the active view of

nodes, as this increases the probability of having active nodes in the passive views

and ensures that nodes that are no longer active will eventually be removed from

circulation. Each such procedure is associated with a time to live integer value that

is decreased for each round of sharing. A node that starts the shuffle procedure

will request one node at random from its active view to participate, sending nodes

from both its active view and passive view. The receiving node will then accept to

shuffle only if two properties are satisfied; the time to live of the request has reached

zero or it has only one node remaining in its active view. If the shuffle request is

accepted the two nodes will exchange information and shuffle their partial views. If

the shuffle request is rejected, the receiving node will forward the shuffle request to

one random node from its active view, with the decreased time to live value.

5.2 Membership Protocols 33

When a node wants to join the cluster, it stars by contacting one of the already joined

nodes. The contact node then adds this node to its active view, if necessary removing

a node from its active view. It then forwards the join request it has received with

some additional parameters; its own identification, identification of the new node

and a time to live value. This forwarding is sent to each node in its active view

(excluding the newly joined node). Each node in the system maintains two variables

related to the join procedure, a random walk length associated with the active view

and a random walk length associated with the passive view. The time to live value

sent initially is set to the random walk length associated with the active view, and

when a node encounters a time to live value that is zero, it adds this node to its

active view unconditionally, this ensures that the new node will fill its active view

eventually. A node will also accept the join request if it has only one node in its

active view. The joining node will be added to another nodes passive view if the

time to live value is equal to the already configured random walk length associated

with the passive view. Together the two random walk length values ensure that a

newly joined node will be distributed in both the passive and active views of already

participating members.

One important aspect of this protocol is the interplay between the active view and

the passive view. When a node determines to remove another node from its active

view, the removed node is also placed in the passive view, and is thus still a part of

the shuffling procedure that continues to spread its presence in the cluster.

34 Chapter 5 Epidemic Algorithms

6
Epidemic Techniques in Onyx

This chapters focus is on applying the epidemic concepts to the Onyx platform in

order to reduce some of the challenges the platform is facing. The challenges faced

by the platform center around ZooKeeper contention, costly join and scheduling

procedures, and replica size. ZooKeeper is very actively used in the current im-

plementation as a coordination layer, this includes reading/writing to the log and

detection of failure. The coordination is centered around an append-only log that

is trimmed by garbage collection processes. Any modifications to the coordination

layer must maintain this totally ordered append-only log or risk bad state in the local

replicas. As outlined in [9] one solution to this problem can be to introduce epidemic

sharing of log entries, with periodical polling of the centralized append-only log

when experiencing idle behavior. This will reduce the number of reads from the

centralized log while still keeping it as a source of truth. In this chapter, two different

gossip protocols are presented that is motivated by this proposal.

The join procedure explained in Chapter 3 requires three phases and knowledge

of every other peer in the cluster, every peer is also notified of every stage of the

join procedure. With epidemic membership protocols an expensive procedure is not

needed, information about the new node will spread in a decentralized way to no

more nodes than is needed. The HyParView protocol introduced in Chapter 4 is

suited for such a task. This protocol is also suited for failure detection, as a peer

that is not reachable will be quickly detected by the other peers in its active view,

given that events are shared. When combining such a membership protocol with

a gossip protocol for information dissemination (like those presented in Section

6.1) one can give a probabilistic guarantee of information spread with each node

being able to make decisions in an autonomous way, reducing local replica size and

coordination.

35

6.1 Epidemics Techniques for Log Sharing in

Onyx

6.1.1 Counter/Feedback Gossip Protocol

This algorithm is based on a push strategy centered around a broadcast queue with a

counter/feedback implementation. The broadcast queue will be maintained in local

state and will contain a vector of maps. The maps will have a key that corresponds to

an unique identifier for an event, and the value belonging to that key will correspond

to the counter. The algorithm will be divided into two distinct procedures, one

broadcast procedure and one receive procedure. The broadcast procedures single

responsibility is to broadcast events that are in the queue, while this queue is not

empty. The getRandomPeer method utilizes the information that the local replica has

about the cluster state and pulls a random peer from that pool. The startTransmission

procedure will open up a connection through the messaging layer [25] and attempt

to emit the event. In the case of more events in the queue the Broadcast method

will repeat transmission. The Broadcast method is fed events from the getEvent

method, and this method pulls events from the broadcast queue. The ordering

of the broadcast queue can be implemented in different ways; one might want

to serve events in a sequential order, only sending the earliest events until the

counter threshold is reached for that event. The dissemination of earlier events will

encourage straggling peers to get up to speed faster.

The receive procedures responsibility is to receive events and maintain the broadcast

queue through feedback. In the case of receiving an event, the procedure will check

the broadcast queue and see if it already has that event. If the broadcast queue

contains the event, feedback is emitted to the peer that sent the event. If the event

is not received beforehand, the event is added to the broadcast queue with counter

equal to zero. The method that adds the event to the broadcast queue must also

communicate with the process that handles the application of log entries. If the

event received is the next event required for local replica transformation it can be

applied right away. On the other hand, if the event received is ahead of the log with

36 Chapter 6 Epidemic Techniques in Onyx

respect to the local replica state this event might be saved for later use. In the case

of receiving feedback, the replica will increment the counter for that specific event,

if this results in the counter going over the threshold, the event will be removed

from the broadcast queue.

Listing 6.1: Pseudocode: Counter/Feedback implementation for a peer.

Broadcast () :

i f any events in broadcas t queue :

peer = getRandomPeer ()

event = getEvent ()

s t a r tT ran smi s s i on (peer , event)

Receive (message , peer) :

case message i s feedback :

createOrUpdateCounter (eventID)

i f counter f o r eventID > counte r_ t re sho ld :

remove event with eventID from brodcas t queue .

case message event :

i f not rece ived before :

add event to broadcas t queue with counter=0

i f rece ived before :

feedback (peer , event Id)

Note that the messaging layer implements lock-free transmission and as such the

broadcast method can fire off several transmissions without waiting for a reply.

This type of flooding introduces both some advantages and disadvantages. The

advantage is that event information will rapidly disseminate in the cluster as each

peer receiving an event will continue spreading it eagerly until the counter threshold

is reached. However, this also implies high traffic in the case of a newly discovered

event. Especially in cases where a majority of peers discover a new event at around

the same time with the periodical polling of the log from the ZooKeeper ensemble.

By setting some sort of random offset in the timeout of the polling from event log

operation, one can reduce the possibilities of this happening. Traffic can also be

reduced by implementing the getRandomPeer method in such a way that duplicate

messages for events are not sent to the same peer, in other words removing a peer

for possible transmission with respect to a single event. Such an implementation

6.1 Epidemics Techniques for Log Sharing in Onyx 37

could also cause peers that are temporarily disconnected to be isolated with regards

to a specific event. As long as one has a source of truth like the ZooKeeper ensemble,

this might not be a big problem.

6.1.2 Blind Counter Variation

Another way to reduce traffic is to implement a blind variation of this algorithm, a

variation that does not rely on feedback. This variation could be accomplished by

introducing a time to live (TTL) variable for each gossip cycle, a procedure much

like the HyParView protocol uses. When a peer encounters an event that it has not

seen before it associates that event with a TTL variable and transmits it to a random

set of peers taken from the local replica. Each peer that receives an event through

the gossip protocol will decrement the TTL and send it off to a random set of peers

as well. The storage and application of events to local replica state is done by the

addEventToLocalState method.

Listing 6.2: Pseudocode: Counter/Blind implementation for a peer.

Broadcast (event , TTL) :

p e e r L i s t = getRandomPeerList ()

event = getEvent ()

f o r each peer in p e e r L i s t :

Send(peer , event , TTL)

Receive (event , TTL) :

i f not rece ived before :

addEventToLocalState ()

i f TTL > 0:

broadcas t (event , TTL−1)

The advantages of this method include that maintenance of a queue is no longer

required, one simply sends off each event received with a time to live greater than

zero.

38 Chapter 6 Epidemic Techniques in Onyx

Both of these methods assume that information of every peer in the cluster is in

the local replica state. This is a challenge when one is faced with large clusters

containing thousands of nodes, but reducing that information and still being able to

guarantee failure detection, reliability and total order of operations is a considerable

challenge. The next section hopes to discuss some concepts that might be able to

overcome these obstacles.

6.2 Combining Blind Counter with Membership

Protocols in Onyx with Aeron

Given a messaging platform that is based on the publication/subscription model,

point-to-point communication is done through channels, and streams within those

channels. Given the qualitative measures related to epidemic membership protocols

given in Section 5.2, there are a number of points one should look at:

• Connectivity

• Degree Distribution

• Average path length

• Clustering Coefficient

• Accuracy

These qualitative measures together with the design of the messaging platform has

to be taken into account when designing an epidemic algorithm for information

dissemination in a publication/subscription model. The messaging platform, Aeron,

also presents additional constraints, namely that it is not designed for an exceedingly

large number of streams, so the number of streams should be limited. This implies

that point-to-point communication between each peer is unreasonable if scalability is

6.2 Combining Blind Counter with Membership Protocols in Onyx with Aeron 39

to be achieved, the number of streams should therefore be constrained by a function

that grows logarithmically on the number of total peers in the cluster. This simplifies

the qualitative analysis of the algorithm, as given by the constraint on number of

streams, average path length will be kept low and degree distribution, as well as

clustering coefficient, will be kept high. Redundant messages can be kept low by

implementing TTL on stream crossing, and keeping track of which streams the

message has traveled from, and let each peer be autonomous in deciding whether

to relay the message. A high degree of connectivity can be achieved by not letting

the peer subscribe and publish to the same stream. Given these constraints one

can implement a membership protocol that is simple and based on a stream pool

generated by the number of peers, and can be done by each peer independently:

Listing 6.3: Pseudocode: Stream pool implementation functional style.

Pick−streams (peer−count) :

number−of−streams = (f l o o r (ln peer−count))

// c rea t e stream−pool based on number of streams

stream−pool = (range number−of−streams)

publ i sher −stream = random pick from stream−pool .

stream−pool = (remove publ i sher −stream from stream−pool)

subsc r ibe r −stream = random pick from stream−pool .

re turn (publ i sher −stream , subsc r ibe r −stream)

the code above will generate a stream pool based on number of known peers in the

cluster, and pick one stream for publishing and one for subscribing. An analysis of

probabilities has to be done given that one wants to be ensured a high degree of

connectivity, but given the low number of streams and comparatively large number

of peers, the probability of connectivity is expected to be high. This will be further

explored in Chapter 8.

Combining a membership protocol such as this with an implementation of the

blind counter algorithm seems like a good strategy that combines the simplicity of

epidemic protocols with rapid information dissemination. In listing 6.4 such an

implementation is presented. This implementation utilizes the pick-streams function

40 Chapter 6 Epidemic Techniques in Onyx

presented in listing 6.3. It takes into account the publisher/subscriber model of

Aeron and uses a TTL variable for the blind counter algorithm. The initiation phase

picks two streams, and then sets the publisher stream and subscriber stream. It

initializes the subscriber to listen to the stream through a new thread. On receiving

a new message, it calls the receive event and if TTL is larger than zero, broadcasts

the event to the publisher stream and channel provided by Aeron.

6.2 Combining Blind Counter with Membership Protocols in Onyx with Aeron 41

Listing 6.4: Pseudocode: Blind counter variation with membership operations through a

stream-pool.

I n i t () :

streams = (pick−streams peer−count)

publ i sher −stream = streams [0]

subsc r ibe r −stream = streams [1]

S t a r t new thread :

ListenOnStream (subsc r ibe r −stream)

ListenOnStream (subsc r ibe r −stream) :

connectChannel (subsc r ibe r −stream)

l i s t e n −loop :

i f r ece ived :

event = read−b u f f e r ()

Receive (event)

Receive (event) :

i f not rece ived before :

addEventToLocalState ()

i f TTL > 0:

event . TTL −= 1

Broadcast (event)

Broadcast (event) :

SendToChannel (publ i sher −stream , event)

6.3 Conclusion

The introduction of gossip protocols to share log events through the cluster seems

like a probable solution to excessive ZooKeeper load by reducing the number of

reads from the centralized log store. The simplicity of the feedback/blind counter

variations makes it viable for implementation and testing on the platform. The source

of truth provided by the coordination layer in ZooKeeper makes it possible to avoid

the complexity of maintaining agreement on the order of events and allows the

gossip protocol to optimistically share events. If one is to allow the gossip protocol

42 Chapter 6 Epidemic Techniques in Onyx

to write to the log as well, some sort of protocol that provides agreement on event

ordering is needed. This introduces complexity at each peer but allows one to

completely remove the centralized coordination layer. For this thesis however, total

order maintenance through epidemic algorithms is out of scope.

The next chapter will introduce an implementation of a blind counter variant, based

on the pseudocode presented in listing 6.4. Together with the membership protocol

presented in section 6.2, the blind counter algorithm will provide the basis for

implementation and analysis.

6.3 Conclusion 43

7
Implementation

7.1 Introduction

In this chapter the focus will be on the attempted implementation of the blind

counter algorithm described in Chapter 6. In order to justify design decisions, the

chapter will start with an exploration of the original code base, namely the two

most relevant parts; the peer group manager loop and the communicator. The

responsibilities and functions of these components will be explored, and as such

provide a context that makes the next part of the chapter easier to understand.

The next part of the chapter will deal with the attempted implementation of epidemic

dissemination in Onyx. This implementation can be broadly divided into two parts;

the epidemic messenger and the communication layer. The epidemic messenger

responsibilities lie in handling the messages according to the blind counter algorithm,

interacting with the underlying messaging framework, and creating an epidemic

membership protocol. The communication layer responsibilities is receiving log

events from the epidemic messenger and actually applying them to the local state.

The algorithm devised for this purpose will also be explained.

7.2 Overview of original implementation

We will discuss the parts of the code that has to do with dissemination of log events

and applying those log events. In that regard there are some components that are

especially pertinent; namely the communicator and peer group manager in the peer

namespace, as well as the zookeeper component in the log namespace.

45

The communicator component is the layer that handles reading and writing log-

events from and to the log. The zookeeper component handles the actual interaction

with the zookeeper node. The exploration of the original code base will be looked

at through the read and write interactions with the log. First, however, the most

important components and their functionality will be covered.

7.2.1 Peer Group Manager Loop

The peer group manager is initialized as a thread in the peer name space. Its main

responsibility is to receive log events, through an asynchronous channel provided by

the core.async [16] framework. This channel is the equivalent of the inbox described

in Chapter 3. In the peer-group managers thread, a loop is continuously executing

and listening for messages on the inbox-ch. In the case of a received message, the

message will be dispatched through a set of actions. These actions include starting

the peer group, stopping the peer group and also applying log events to the local

replica. The local state is recorded in an immutable map, which is continuously

passed around to the actions given by the received log entry and thus transformed.

The peer group manager loop also handles exceptions given to it by the inbox

channel and in the case of an exception it restarts the peer. In the case of prolonged

silence (given by a timeout) on the channels the loop listens to, it will also send a

heartbeat to make sure that it is still in reach of other peers. In the initiation phase

of the peer group manager loop, the communicator will also be initialized, which

will be covered next.

7.2.2 The Communicator

The communicators responsibilities include initializing the log, provide means of

which to read the log, and also to write to the log. The initializing of the log is

done through a function call to the log name space, this function call sets up the

required connections with the required paths of the zookeeper server, and initializes

the origin of the log. This is necessary for the client to be able to connect, read and

write to the log. In order to be able to write to the log, the communicator creates

46 Chapter 7 Implementation

Fig. 7.1: Representation of the original read process in Onyx.

a component called the log writer. This component initializes an asynchronous

channel that represents the outbox as explained in Chapter 3, this outbox channel

is given to the peer group manager as a way to signalize when an event should be

written to the log. The log writer initializes a thread that continuously listens for

messages on the outbox channel, and if a message is received, the log writer will

append an entry to the zookeeper log.

The component that is responsible for reading of the log is called the replica sub-

scription. It is the replica subscription which creates the inbox channel discussed

in the previous section, and passes it on to the peer group manager. The replica

subscription component also subscribes to the log through a function call into the log

name space, this function call creates another thread that continuously polls to see if

any addition has been made to the log. If an addition has been made, this function

call reads from the log and puts the new entry onto the inbox channel, which is then

received in the peer group manager and handled by a dispatch.

7.2 Overview of original implementation 47

Fig. 7.2: Representation of the original write process in Onyx.

7.3 Overview of new implementation

The purpose of the implementation is to replace reads to the zookeeper log by peer-

to-peer communication with the help of an epidemic algorithm. As the epidemic

algorithm is unable to satisfy distributed total order of the log events, writes to

the log will still be required in order to timestamp and order the log-events. This

requires implementing logic to handle information dissemination between peers as

well as the logic required for ordering the events, prior to application of the events

to the local state. The proposed implementation divides this work into two main

components:

• The Epidemic Messenger - Handles the messaging work and interaction with

the underlying messaging framework, Aeron.

48 Chapter 7 Implementation

• Communication layer - This layer is used to communicate with the log as

well as receiving updates from the underlying epidemic messenger. Divided

into two parts, the log writer and replica subscription.

The remainder of the this chapter will concern itself with explaining these parts, and

the logic used to accomplish the set goals. It will start with the underlying layer of the

epidemic messenger and the mechanisms required for both inter-communication and

intra-communication. Then it will explain the implementation of the communication

layer, and how log event application is accomplished. The last part will go into how

the implementation was tested.

7.3.1 The Epidemic Messenger

The epidemic messenger is the main component responsible for handling the mes-

saging part of the application. This can be divided into two parts; interaction with

the messaging library, Aeron, as well as relaying log events to the communication

layer.

As explained in Chapter 4, Aeron follows a publisher/subscriber model. This model

requires you to instantiate the aeron media driver, a subscriber, and a publisher. In

this regard, the epidemic messengers responsibility is to provide the instantiation

of the subscriber and publisher with the necessary resources, which amounts to the

Aeron channel to be used, the stream to use within that channel, as well as a context

provided by the driver.

The publisher component is the most straightforward one, as its only responsibility

is to relay a message given to it by the messenger. This is done through the offer

method provided by the Aeron library. The offer method takes a buffer containing

the message and its length and puts that buffer on the channel, and lets the Aeron

library do the work correlated with actually getting that message to the intended

destination.

7.3 Overview of new implementation 49

The subscriber component is slightly more complicated. As it is reactive, it needs to

continuously listen on the provided stream, this requires the listener to be instanti-

ated in its own thread, as to not block the whole application. This is accomplished

by creating a java Consumer [1] object, that on arrival of messages calls a method

that enables the subscriber to process the message. The processing of the message

consists of reading the received buffer and calling a method on the epidemic messen-

ger that enables the messenger to process the message further. The provided figure

contains an overview of how messages move between the messenger, subscriber and

publisher:

Fig. 7.3: Representation of the original write process in Onyx.

Now that the message movement has been explained, one needs to look at how the

messenger processes the messages received. Besides handling message dissemination,

the messenger also decides which messages to relay to the communication layer. The

communication layer handles the ordering of the log events, so all the messenger

has to do is to keep track of the messages already received, and only pass on those

events that have not already been relayed.

50 Chapter 7 Implementation

The messenger receives messages in two ways; through the communication layer,

these are messages that are already applied and needs to be disseminated to the

other peers, and through the subscriber, these are messages that need to be ap-

plied, and conditionally relayed to other peers. The messages received through the

communication layer are passed on by the log writer. These messages are already

applied, but they still need to be added to the state and ordering of log events in the

replica subscription. The messages received through the subscriber of the epidemic

messenger, need to be handled according to the blind counter algorithm. If the

log event has not been received before, the message is written to an asynchronous

channel which is picked up by the replica subscription in the communication layer,

which will be the next subject.

7.3.2 The Communication Layer

Receving Messages

As explained in section 7.2.2, the communication layer contains a component called

the replica subscription. The replica subscription in the original code base would

listen to the log and read any appendages. This is where it was decided to implement

the logic for handling log events received from the epidemic messenger. In order to

ensure operability of the peers it was decided to combine the epidemic messages

with reads from the zookeeper log, this is done in case of messaging failure. Reading

of the log is only done through a timeout, if an epidemic message is not received

within some predefined timespan, a read to the centralized log will be attempted.

This mixture of log messages and epidemic messages need to be ordered so that

log events are applied in the right order. The epidemic implementation has no

guarantees of ordering, in fact, one might expect to receive log events that are ahead

or behind the local state of the node. However, one can safely assume that once

a log event has been applied to the local state, it can be discarded. These sorts of

requirements fit well to a prioritized queue data structure. The prioritization will

be done on the timestamp written to the log event by zookeeper, where earlier log

events are prioritized.

7.3 Overview of new implementation 51

As the replica subscription component is required to listen to an asynchronous

channel for epidemic log events, a thread is created that contains a loop that

continuously listens to the channel. This loop also has two asynchronous channels

that are communicating with the log, one for initiating a read, and one for actually

receiving the read value from the log. The loop needs to keep track of current

position, namely the ordering of the last log event that is applied, in order to know

whether to insert a received log event in the prioritized queue.

Fig. 7.4: Representation of the new read process in Onyx.

Creation of Log Messages

The creation of log messages is less complicated. The peer group manager explained

in section 7.2.1, does the work of deciding when to create a new log entry. In the

original implementation this log entry is then written to the log by the log writer.

This communication happens through asynchronous channels. The decision was

made to implement the dispatch of epidemic log events at this location as well:

after the entry has been written to the zookeeper log, it is returned with some log

information, in that log information is the ordering given to the log event. This

52 Chapter 7 Implementation

information, together with the log event, is then put through another asynchronous

channel, going back to the peer group manager and dispatched to an action that calls

a function in the epidemic messenger, triggering the message to be disseminated in

an epidemic fashion.

Fig. 7.5: Representation of the new write process in Onyx.

7.4 Summary

This chapter started by looking at the original implementation, explaining the

relevant parts that had to with writing and reading to the ZooKeeper log. The

interplay between these components, with the peer group manager loop as the

receiver and applier of log events, with the communicator acting as a intermediary.

The changes made to these components in order to realize the goal of epidemic

log sharing were also explained, The addition of an epidemic messenger to the

messaging namespace, which responsibilities is to interact with the underlying

messaging framework, Aeron, and implement the blind counter algorithm as well as

the epidemic membership protocol. The consequent changes to the communicator

7.4 Summary 53

layer were also explained, with the need to throttle read access to the log, as well as

decide which log events to relay to the peer group manager.

The next chapter will concern itself with the analysis and testing of these compo-

nents.

54 Chapter 7 Implementation

8
Results

8.1 Introduction

In this chapter the focus will be on the results of the implementation presented in

Chapter. 7. Because of time constraints the whole implementation is not ready for

testing, the parts discussed in this chapter will be the part of the implementation that

is covered in 7.3.1. Broadly speaking the dissemination of messages consists of two

parts; the stream pool generator and the epidemic messenger. The characteristics of

the stream pool generator function were discussed in Chapter 6.2, and a combination

of that chapter together with the theoretical groundwork laid in Chapter. 5 will be

used to define the metrics and subsequent discussion of those results.

After covering the analysis of the stream pool generator function, the focus will

shift towards actual message dissemination through local instances of the messenger.

Here the metrics are defined as coverage, or how many peers actually receive the

message, and the fraction of redundant messages. These metrics will help us decide

what TTL would be suitable for the current implemented algorithm.

8.2 Setup

The tests were performed locally. Time constraints and issues with the implementa-

tion made it unfeasible to do a complete test on a large cluster. The tests were done

by pulling in the relevant parts of the onyx project into the test project and then

utilizing test functions on those parts. A graph library called Loom [13] were used

for creating graphs of the collected data, and those graphs were then subsequently

used to carry out the computations. The first component tested were the stream pool

55

generation, which set the precedent for the membership protocol. Separating the

stream pool generation from the rest of the testing made it possible to do thorough

and iterative tests on that component in isolation, doing thousands of iterations to

get a good handle on how robust the algorithm is, and whether the predictions made

in Chapter 6 seem correct. This would not be possible to do locally if it were to be

tested together with the other parts of the application.

The second component tested were the epidemic messenger as a whole, how message

dissemination works. This component is constrained substantially by doing it locally,

as you have to create an Aeron media driver, and for each peer a subscriber and

publisher. On the machine used, this limited the testing to 55 peers. The testing

worked by starting a media driver and then starting up the epidemic messenger;

initiating message dissemination from one of the peers.

The third component that should have been tested were the application of log events.

Time constraints made this impossible to do, as the implementation is not ready.

8.3 Test Cases

8.3.1 Membership protocols

The membership protocol pertains to testing the function that generates the stream

pool. This function is based on a random factor as explained in Chapter 6.2 and

Chapter 7. Test cases that take this random factor into account should then be

concerned about averages. Three qualitative measures have been taken into account,

the degree distribution, shortest average path length and the connectivity. For each

of these averages, a variable number of peers may be tested. This thesis chose to

concern itself with the numbers that expose weaknesses in the algorithm, namely the

exact number of peers that would increase the stream-pool count by 1. In order to

increase the robustness of the results, iterative abilities have also been incorporated

into the testing algorithms. This means that each test is executed a given number of

times, before taking the average of all those tests.

56 Chapter 8 Results

Average Degree Distribution

The average degree distribution is calculated by taking a number of generated

peers and calculating each peers in-degree and out-degree. These values are then

independently averaged over all the peers. This process is repeated a specified

number of times, before calculating the total average out-degree and in-degree. In

addition, we calculate the variance of the in-degree of each set of peers. This variance

signifies how much the in-degree varies, which is a measure of how balanced the

cluster is.

Shortest Average Path Length

The shortest average path length is calculated by the help of a graph library called

Loom [13]. First the peers are generated, and then the peer list is transformed into

a graph, before utilizing the Loom library to create a directed graph with all weights

equal to 1. The streams are utilized as nodes, and a direct connection occurs if one

peer has a subscription stream equal to another peers publisher stream.

After creating the directed graph, a shortest path between all pairs algorithm is

utilized. This algorithm is also provided by the Loom library. These shortest paths

are then averaged. This process is repeated a specified number of times, i.e iterations,

and then the total average is calculated.

Connectivity

The connectivity is calculated according to the definitions of connectivity set in

Chapter. 6.2. This implies that if the set of publication streams are not equal to the

set of subscription streams, connectivity is not achieved. Connectivity is measured by

doing this test on every set of peers that are generated a specified number of times.

If one these sets of peers show to have not achieved connectivity, the connectivity

variable would end up as false.

8.3 Test Cases 57

8.3.2 Message Dissemination

In this section of the testing we will take a look at how the messages spread through

the node network. We will look at examples of flow and results pertaining to

whether or not all nodes were reached and what percentage of total messages were

redundant. The tests were done locally and were accomplished by creating instances

of the epidemic messenger component. After the messengers have been initialized,

one message was given to one of the messengers. At this point the messengers

should take care of the dissemination themselves. After a specified timeout period

the analysis will be done.

The analysis is structured so that two metrics are measured. The dissemination

coverage signifies which fraction of the peers received the message. So a dissemina-

tion coverage of 1.0 implies that all nodes received the message. The dissemination

coverage is calculated by receiving the stored entries from all peers, and comparing

it with the original peer list. The second metric that is measured is the number of

redundant messages. This metric is calculated by adding two counters to each mes-

senger, counting total messages received, as well as redundant messages received. A

redundant message is defined as a message that already has been received by the

peer.

To get a more realistic look at how a cluster of messengers would interact, we repeat

the process of collecting metrics on several different sets of peers. These metrics are

then averaged. Because this analysis was done locally, the sets of peers are limited to

8, 21 and 55 in number. The metrics are collected 20 times for each of these sets and

then averaged. In order to get a grasp of how the time-to-live (TTL) variable of each

message impacts the metrics, the TTL is varied from 1 to 4 on each run. The TTL

was also limited by the fact that these tests were performed locally, with 55 peers

and a TTL of 5, the Aeron media driver seemed to get an overload and a subsequent

segmentation fault, suggesting a large number of redundant messages.

58 Chapter 8 Results

8.4 Goals

8.4.1 Membership protocols

In Chapter 6, the probabilities of connectivity with a certain stream pool algorithm

were discussed. The results showed low probability of isolated nodes. Given the

probability of a high degree of connectivity some implications can be made. The

shortest average path length should turn out quite low, as the shortest path between

nodes is directly correlated with how densely connected that graph is. Likewise, the

degree distribution, which is the qualitative measurement used for direct connections

between peers should be kept relatively high.

8.4.2 Message Dissemination

The main goal of the message dissemination is that the dissemination coverage is

close to or equal to 1. Given a right TTL, this goal should be accomplished given

that connectivity in the network is achieved. With regards to the ratio of redundant

messages, one would prefer a low number. This ratio is also dependent on the TTL,

if the TTL is to high, one can expect a larger ratio of redundant messages.

8.5 Results

8.5.1 Membership protocols

The results of the tests done on membership is presented in Table 9.1 to 9.5. We will

break the analysis down into its constituent parts.

Average Degree Distribution

8.4 Goals 59

As per the results shown in Tables 9.1 to 9.5 we can see that the degree distribution

with regards to both in-degree and out-degree gets lower the more peers are added

to the cluster. This is to be expected because of the stream pool function makes it so

that the stream pool size is constrained by a function of ln(n).

Fig. 8.1: Representation of the original read process in Onyx.

The in-degree seen as a whole is quite high. This is good for message dissemination

purposes. The variance of the in-degree decreases as the number of peers increases.

The variance is not that high to begin with, see Table 9.1, and this suggests that the

clusters will be well balanced.

Average Shortest Path

The average shortest path is a measure of how long time a message will take to

reach another node. The average shortest path in the results hover around 1. The

implications of this is that average node has a shortest path of 1 to any other node.

60 Chapter 8 Results

This small average shortest path is a good sign, as it means that a message will be

using a short amount of time to reach the other nodes.

Tab. 8.1: Avg. degree distribution, avg. shortest path and connectivity for 8 peers, 2 streams
averaged over an iteration of 1000 times

Avg. In-degree 0.4322

Avg. Out-degree 0.4322

Avg. In-degree variance 0.0226

Avg. shortest path 1.0

All connected? Yes

Tab. 8.2: Avg. degree distribution, avg. shortest path and connectivity for 21 peers, 3
streams averaged over an iteration of 1000 times

Avg. In-degree 0.3172

Avg. Out-degree 0.3172

Avg. In-degree variance 0.0102

Avg. shortest path 1.0381

All connected? Yes

Tab. 8.3: Avg. degree distribution, avg. shortest path and connectivity for 55 peers, 4
streams averaged over an iteration of 1000 times

Avg. In-degree 0.2455

Avg. Out-degree 0.2455

Avg. In-degree variance 0.0032

Avg. shortest path 1.0231

All connected? Yes

Tab. 8.4: Avg. degree distribution, avg. shortest path and connectivity for 149 peers, 5
streams averaged over an iteration of 1000 times

Avg. In-degree 0.1987

Avg. Out-degree 0.1987

Avg. In-degree variance 0.010

Avg. shortest path 1.0014

All connected? Yes

8.5 Results 61

Tab. 8.5: Avg. degree distribution, avg. shortest path and connectivity for 404 peers, 6
streams averaged over an iteration of 500 times

Avg. In-degree 0.1662

Avg. Out-degree 0.1662

Avg. In-degree variance 0.0

Avg. shortest path 1.0

All connected? Yes

Tab. 8.6: Avg. degree distribution, avg. shortest path and connectivity for 1097 peers, 7
streams averaged over an iteration of 500 times.

Avg. In-degree 0.1427

Avg. Out-degree 0.1427

Avg. In-degree variance 0.0

Avg. shortest path 1.0

All connected? yes

8.5.2 Message Dissemination

The results of the analysis is given in Table. 9.7 to Table. 9.9. They show average

coverage and avg redundancy ratio for sets of peers with size 8, 21, and 55 as

well as for TTL from 1 to 4. Looking at the results we can see some trends. The

average dissemination coverage increases with the TTL. This is not surprising, given

that increased TTL makes it more probable for the message to cross streams and

thus reaching more peers. Based on the results, one might also be able to deduce

what an approximate optimal TTL would be based on peer group size and stream

pool. A conservative choice, based on the results, would be to set TTL equal to

stream pool size. This would guarantee message dissemination, at least in the

simulations presented here. However, it would also mean an extremely high degree

of redundancy.

The average received redundant messages per peer is very high. For guaranteed

message dissemination coverage one must be able to tolerate at least 70 percent

redundant messages. This fraction is way to high and is one of the delimiting

62 Chapter 8 Results

factors of the current algorithm. One way of reducing this redundancy would be to

implement some sort of stream check on the messages before deciding to pass them

on. This would require each message to keep a history of visited streams, and a peer

would check this set of streams against its own publisher stream, if the publisher

stream is present it would imply that the message has already been at the designated

stream, and message dissemination to that stream is canceled. In theory, this would

greatly reduce the redundant messages.

We can also see some results that were not expected. With a set of 8 peers and

2 streams, and a TTL of 4, the average coverage does not equal 1, see Table 8.7,

meaning that in some cases not all peers were reached. Given the probability

of connectivity explored in Section. 8.5.1, we should expect the network to be

connected, and given a large enough TTL this should result in total dissemination

coverage. No concrete explanation have been found for this discrepancy, one possible

reason is that in this exact case, some subscriber have been lagging and thus not

been able to join the ensemble fast enough. Another possible reason is that as we are

dealing with probabilities this case may just have been an isolated node. This exact

analysis has been rerun and the same discrepancy have not repeated itself. This also

highlights the fact that this analysis done on a real cluster would be pertinent.

Tab. 8.7: Avg.coverage and average redundancy for 8 peers and 2 streams with varying
TTL.

TTL avg-coverage avg-redundant

1 0.6125 0.5

2 1.0 0.7036

3 1.0 0.8582

4 0.9562 0.8897

8.5 Results 63

Tab. 8.8: Avg.coverage and average redundancy for 21 peers and 3 streams with varying
TTL.

TTL avg-coverage avg-redundant

1 0.3642 0.5

2 0.9571 0.7433

3 1.0 0.9437

4 1.0 0.9870

Tab. 8.9: Avg.coverage and average redundancy for 55 peers and 4 streams with varying
TTL.

TTL avg-coverage avg-redundant

1 0.2572 0.5

2 1.0 0.7797

3 1.0 0.9788

4 1.0 0.9988

8.6 Summary

In this chapter the focus has been on the implementation of analysis, as well as

a discussion of the results of that analysis. In the case of membership protocols,

three main metrics were analyzed; the average degree distribution, shortest average

path length and connectivity. Based on theoretical knowledge from Chapter 5 and

Chapter 6 these metrics were measured over an average. Because of the separation

between the generation of the stream pool and the actual messenger, one was able to

do thousands of iterations to create a substantial basis for the averages. The results

proved to correlate with the predictions made, showing a high degree of connectivity,

average degree distribution and a low average shortest path.

However, what was not predicted were the implications this would have on the next

part of the analysis. The high degree of connectivity and a low number of common

streams generated a high degree of redundant messages. A possible solution to this

problem was presented, but time constraints make implementation and analysis of

this solution impossible.

64 Chapter 8 Results

9
Conclusions

The main goal of this thesis was to implement functionality in order for the Onyx

platform to reduce its load on the centralized log. Given the potential benefits of

an epidemic protocol, and its inherent simplicity the author believed that message

dissemination through epidemic means was a viable pathway for the attainment of

that goal. The realization of this goal did not happen, due to time constraints and

surprising complexity in the implementation of the chosen algorithms, the application

of log events was never successful. The interaction between the framework and the

centralized log was more complex than first believed, and still poses a problem to

the implementation of applying log events through epidemic means. In addition,

the implementation of more rudimentary parts, like the epidemic subscribers and

publisher took longer time than expected. These delays was mostly due to ignorance

of the author, with regards to an understanding of the Onyx framework as a whole as

well as complexities involved with working with the underlying message layer, Aeron.

However, some intermediary stepping-stones were accomplished. An epidemic

messenger was implemented that functioned reasonably well. The implementation

of that messenger followed a blind counter variation for message dissemination as

well as implementing a function that generated membership for peers autonomously.

The only real problem with the results of the protocol were the high number of

redundant messages, and these redundant messages are believed to be avoidable

by changing the message dissemination algorithm to take into account the pathway

the messages have taken before. With the implementation of such a change to the

dissemination algorithm, the epidemic messenger is deemed to be a success.

65

Bibliography

[1]Norman T. J. Bailey. The Mathematical Theory of Infectious Diseases and its Applications

(second edition). 1975 (cit. on p. 29).

[2]Brenda Baker and Robert Shostak. „Gossip and Telephones*“. In: (1972) (cit. on p. 29).

[3]Sondre Basma. „Epidemic Algorithms for Log Sharing with Onyx“. In: (2016) (cit. on

p. 2).

[4]David Bermbach and Stefan Tai. „Eventual Consistency: How soon is eventual?“ In:

(2011) (cit. on p. 29).

[5]David Bermbach and Stefan Tai. „Lightweight Probabilistic Broadcast“. In: (2003) (cit.

on pp. 31, 32).

[6]David Bermbach and Stefan Tai. „SCAMP: Peer-to-peer lightweight membership service

for large-scale group communication“. In: (2001) (cit. on pp. 31, 32).

[7]Alan Demers and Dan Greene, Carl Hauser, Wes Irish, et al. „Epidemic algorithms for

replicated database maintenance“. In: (1987) (cit. on pp. 29, 30).

[17]Patrick Hunt, Mahadev Konar, Flavio Junqueira, and Benjamin Reed. „ZooKeeper: Wait

free coordination for Internet-scale systems“. In: (2012) (cit. on pp. 6, 8, 15).

[18]H. V. Jagadish and Johannes Gehrke and Alexandros Labrinidis, Yannis Papakonstanti-

nou and Jignesh M. Patel, Raghu Ramakrishnan, and Cyrus Shahabi. „Big data and its

technical challenges“. In: (2014) (cit. on p. 3).

[19]Flavio Junqueira, Benjamin Reed, and Marco Serafini. „Zab: High-performance broad-

cast for primary-backup systems“. In: (2011) (cit. on p. 5).

[21]Leslie Lamport. „Paxos Made Simple“. In: (2001) (cit. on p. 8).

[22]Joao Leitao, Jose Pereira, and Luıs Rodrigues. „HyParView: a membership protocol for

reliable gossip-based broadcast“. In: (2007) (cit. on pp. 31, 32).

[23]Barbara Liskov and James Cowling. „Viewstamped Replication Revisited“. In: (2012)

(cit. on p. 8).

67

[24]James Manyika, Michael Chui, Brad Brown, et al. „Big data: The next frontier for

innovation, competition, and productivity“. In: (2011) (cit. on p. 3).

[26]Ben Moseley and Peter Marks. „Out of the Tar Pit“. In: (2006) (cit. on p. 11).

[30]Ankit Toshniwal. „Storm @Twitter“. In: (2014) (cit. on pp. 1, 3, 11, 14).

[31]Matei Zahari, Mosharaf Chowdhury, Tathagata Das, et al. „Resilient Distributed Datasets:

A Fault-Tolerant Abstraction for In-Memory Cluster Computing“. In: (2012) (cit. on

p. 11).

Websites

[8]Michael Drogalis. Clojure West Conference - Inside Onyx. Visited on 04.12.2016. 2016.

URL: https://www.youtube.com/watch?v=KVByn_kp2fQ&t (cit. on p. 15).

[9]Michael Drogalis. Coordination Scalabilites. Visited on 08.12.2016. 2015. URL: https:

/ / github . com / onyx - platform / onyx / blob / 0 . 9 . x / doc / design / proposals /

coordination_scalability.adoc (cit. on pp. 22, 35).

[10]Michael Drogalis. Lambda Jam 2015 - Michael Drogalis - Beginning Onyx - Functional,

Distributed Computation in Clojure. Visited on 06.12.2016. 2015. URL: https://www.

youtube.com/watch?v=6zlPmtPm7ig&t (cit. on p. 15).

[11]Michael Drogalis. Onyx: Distributed Computing for Clojure. Visited on 02.12.2016. 2015.

URL: https://www.youtube.com/watch?v=YlfA8hFs2HY (cit. on p. 11).

[12]Michael Drogalis. Onyx User Guide 0.9x. Visited on 02.12.2016. 2016. URL: http :

//www.onyxplatform.org/docs/user-guide/0.9.x/ (cit. on pp. 14, 15, 21).

[13]Aysylu Greenberg and Justin Kramer. Loom. Visited on 15.08.2017. 2017. URL: https:

//github.com/aysylu/loom (cit. on pp. 55, 57).

[14]Haadop. Haadop Ecosystem Table. Visited on 14.12.2016. 2016. URL: https://hadoopecosystemtable.

github.io/ (cit. on p. 3).

[15]Rich Hickey. Clojure Programming Language Homepage. Visited on 04.12.2016. 2016.

URL: https://clojure.org/ (cit. on p. 11).

[16]Rich Hickey. clojure.core.async. Visited on 31.08.2017. 2017. URL: https://clojure.

github.io/core.async/ (cit. on p. 46).

[20]Kafka. Kafka. Visited on 15.08.2017. 2017. URL: https://kafka.apache.org/ (cit. on

p. 25).

68 Bibliography

https://www.youtube.com/watch?v=KVByn_kp2fQ&t
https://github.com/onyx-platform/onyx/blob/0.9.x/doc/design/proposals/coordination_scalability.adoc
https://github.com/onyx-platform/onyx/blob/0.9.x/doc/design/proposals/coordination_scalability.adoc
https://github.com/onyx-platform/onyx/blob/0.9.x/doc/design/proposals/coordination_scalability.adoc
https://www.youtube.com/watch?v=6zlPmtPm7ig&t
https://www.youtube.com/watch?v=6zlPmtPm7ig&t
https://www.youtube.com/watch?v=YlfA8hFs2HY
http://www.onyxplatform.org/docs/user-guide/0.9.x/
http://www.onyxplatform.org/docs/user-guide/0.9.x/
https://github.com/aysylu/loom
https://github.com/aysylu/loom
https://hadoopecosystemtable.github.io/
https://hadoopecosystemtable.github.io/
https://clojure.org/
https://clojure.github.io/core.async/
https://clojure.github.io/core.async/
https://kafka.apache.org/

[25]Todd Montgomery, Richard Warburton, and Martin Thompson. Coordination Scalabilites.

Visited on 09.12.2016. 2016. URL: https://github.com/real-logic/Aeron/wiki

(cit. on pp. 16, 36).

[27]Apache Org. Apache Spark. Visited on 02.12.2016. 2016. URL: http://spark.apache.

org/ (cit. on pp. 1, 3, 11).

[28]Martin Thompson. Aeron Best Practices. Visited on 15.08.2017. 2017. URL: https :

//github.com/real-logic/Aeron/wiki/Best-Practices-Guide (cit. on p. 25).

[29]Martin Thompson. Aeron: Open-source high-performance messaging by Martin Thompson.

Visited on 15.08.2017. 2014. URL: https://www.youtube.com/watch?v=tM4YskS94b0

(cit. on p. 25).

[32]ZooKeeper Documentation. Visited on 02.12.2016. 2016. URL: https://zookeeper.

apache.org/doc/current/api/org/apache/zookeeper/ZooKeeper.html (cit. on

p. 7).

Websites 69

https://github.com/real-logic/Aeron/wiki
http://spark.apache.org/
http://spark.apache.org/
https://github.com/real-logic/Aeron/wiki/Best-Practices-Guide
https://github.com/real-logic/Aeron/wiki/Best-Practices-Guide
https://www.youtube.com/watch?v=tM4YskS94b0
https://zookeeper.apache.org/doc/current/api/org/apache/zookeeper/ZooKeeper.html
https://zookeeper.apache.org/doc/current/api/org/apache/zookeeper/ZooKeeper.html

List of Figures

2.1 Data tree of znodes. Source [17]. 6

2.2 ZooKeeper pipeline. Source [17]. 8

3.1 Representation of workflow as a DAG. 13

3.2 Representation of ring structure and centralized ZooKeeper coordina-

tion layer. 16

3.3 Graphic presentation of peers reading from the event log independently

with state in local replicas. 18

3.4 Representation of ring structure and responsible nodes. 19

3.5 Visualization of new node joining the cluster, with arrows between

peers representing watches on znodes. 20

4.1 Representation of how streams and channels work in Aeron. 26

4.2 Representation of Aeron architecture 27

7.1 Representation of the original read process in Onyx. 47

7.2 Representation of the original write process in Onyx. 48

7.3 Representation of the original write process in Onyx. 50

7.4 Representation of the new read process in Onyx. 52

7.5 Representation of the new write process in Onyx. 53

8.1 Representation of the original read process in Onyx. 60

71

List of Tables

2.1 API Calls and explanations . 7

8.1 Avg. degree distribution, avg. shortest path and connectivity for 8 peers,

2 streams averaged over an iteration of 1000 times 61

8.2 Avg. degree distribution, avg. shortest path and connectivity for 21

peers, 3 streams averaged over an iteration of 1000 times 61

8.3 Avg. degree distribution, avg. shortest path and connectivity for 55

peers, 4 streams averaged over an iteration of 1000 times 61

8.4 Avg. degree distribution, avg. shortest path and connectivity for 149

peers, 5 streams averaged over an iteration of 1000 times 61

8.5 Avg. degree distribution, avg. shortest path and connectivity for 404

peers, 6 streams averaged over an iteration of 500 times 62

8.6 Avg. degree distribution, avg. shortest path and connectivity for 1097

peers, 7 streams averaged over an iteration of 500 times. 62

8.7 Avg.coverage and average redundancy for 8 peers and 2 streams with

varying TTL. 63

8.8 Avg.coverage and average redundancy for 21 peers and 3 streams with

varying TTL. 64

8.9 Avg.coverage and average redundancy for 55 peers and 4 streams with

varying TTL. 64

73

Colophon

This thesis was typeset with LATEX 2ε. It uses the Clean Thesis style developed by

Ricardo Langner. The design of the Clean Thesis style is inspired by user guide

documents from Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/

	Cover
	Titlepage
	Abstract
	Sammendrag
	1 Introduction
	1.1 Motivation

	2 ZooKeeper
	2.1 Terminology
	2.2 Data Model and API
	2.3 Implementation

	3 The Onyx Platform
	3.1 Data Model and API
	3.1.1 At-least-once delivery

	3.2 Low-level Architecture
	3.2.1 The Log
	3.2.2 Garbage Collection
	3.2.3 Cluster Join
	3.2.4 Dead peer removal
	3.2.5 Scheduling

	3.3 Challenges

	4 Aeron
	4.1 Design
	4.2 Usage

	5 Epidemic Algorithms
	5.1 Concepts
	5.2 Membership Protocols
	5.2.1 HyParView Membership Protocol

	6 Epidemic Techniques in Onyx
	6.1 Epidemics Techniques for Log Sharing in Onyx
	6.1.1 Counter/Feedback Gossip Protocol
	6.1.2 Blind Counter Variation

	6.2 Combining Blind Counter with Membership Protocols in Onyx with Aeron
	6.3 Conclusion

	7 Implementation
	7.1 Introduction
	7.2 Overview of original implementation
	7.2.1 Peer Group Manager Loop
	7.2.2 The Communicator

	7.3 Overview of new implementation
	7.3.1 The Epidemic Messenger
	7.3.2 The Communication Layer

	7.4 Summary

	8 Results
	8.1 Introduction
	8.2 Setup
	8.3 Test Cases
	8.3.1 Membership protocols
	8.3.2 Message Dissemination

	8.4 Goals
	8.4.1 Membership protocols
	8.4.2 Message Dissemination

	8.5 Results
	8.5.1 Membership protocols
	8.5.2 Message Dissemination

	8.6 Summary

	9 Conclusions
	Bibliography
	Colophon

