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Abstract

In this thesis, we have developed a model to study the behavior of an extended version
of evolutionary game ”Rock-Scissor-Paper”, that is ”Five Elements”. The origin of five
elements are from ”Chinese five elements” in which five different types of elements compete
with each other in a similar way as in a SIR model. Elements are affecting each other in
two different ways, either to compete with each other or to help some particular elements in
resisting their superior elements. The competition and cooperation is linked in circle which
initiates a steady state. The analytical expressions (mean field) and simulation results have
been presented. We have made some basic simulations of the original ”Rock-Scissor-Paper”
in order to build a better understanding of this kind of evolutionary game, and to extend
from three elements to five elements. One of the real examples of five elements we have
studied is a game called ”Rock-Paper-Scissor-Lizard-Spock”, which is a direct extension
from the ”Rock-Scissor-paper”. Cooperation in the game is expressed in form of either
direct cooperation/help from different elements as in ”Chinese Five Elements” or indirect
help caused by direct competition. Based on the simulations, some characteristic behaviors
of five elements have been found. Reaction rates and different competition probabilities
have proven to be the critical part in the game.
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Chapter 1

Introduction

1.1 Foreword

We live in a world full of games and competitions. In order to find the optimal way to win,
under a certain degree of limited resources, mathematical game theory analysis support to
other research directions or practical analysis has been increasingly developed and applied.
It’s much developed in economics to find some typical behaviors in economy. It has been
further applied to sociological, political and physiological problems for explaining general
behaviors in a systematic way.

Let’s first consider the definition of a game. A game is a competition where participants
are fighting under limited resources, using different strategies to gain the highest possible
final outcome for their own. It is consisted of a set of players, a set of strategies available for
them to choose and a set of payoffs generated by the outcomes of strategies. In real world,
games exist everywhere, in the competition between companies fighting for the dominance
of the markets, in wars fought between countries, in video games where players are using
different strategies and the available resources to win a simple round and so on. All of them
may develop and use different strategies in order to win. And game theory is, as expressed
by Roger B. Myerson, ”the study of mathematical models of conflict and cooperation
between intelligent rational decision-makers.”[1] The complexities and variations of the
strategies and decision-makings cause the game theory to be more interesting, attracting
and or course challenging.

The history of game theory can be dated as early as back to the time of Darwin where
he made some informal evolutionary game theoretic statements. In 1930s, Ronald Fisher
used game theoretic analysis to study animal behaviors and this predates the name ”Game
Theory”. Evolutionary game theory, being developed on the basis of game theory, is per-
haps the most common and useful physical way of considering non-stationary systems like
evolutionary mechanical systems, the whole theory background has been much influenced
by the theoretical and statistical physical view, in addition to complex network principle.
Today, with the increasing branches under the evolutionary game theory, the whole of
physical view is becoming opening up widely and game theory gradually becomes mature.

The network principle a very important factor connected to the game theory. Each
individual, are in different networks, such as the various biological networks in the human
body, the information network in our everyday, transport network, ecosystem network,
and so on. The study of the basic properties of these networks is necessary, while in the
physical field, complex network’s structure and the statistical properties, the largest degree
of correlation, the network’s study also included space among the chaotic nature of the
inquiry, the network research on the complex system of the phase transition point, the mean
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field and its derivation and much more, are all interesting and important characteristics
which can be combined with game theory.

In Biophysics, evolutionary game theory is also a hot spot concerning problems in ecol-
ogy. In an ecosystem, the participants’ preferences and purpose for the maintenance of
biological diversity is one of the basic problems in ecology, and this problem is related to
the cycle between species’ interactions and the hierarchy. Therefore researching on the cycle
of interactions between the the species’ individual space and the organizational structure
regarding how to maintain the species’ diversity is of great practical significance.

Evolutionary game theory is providing a great understanding to interactions between
the individual species and the the organization as a whole. ”Rock, scissor, paper” simply
represent three species in an ecosystem, if species’ diversity has been maintained, the system
is in a steady state after three species coexist; If only one species survive, species diversity
has been destroyed. ”Rock scissor paper” game reflects an ecosystem in a cycle of mutual
predation, and formed a small ecosystem with mutual constraint, to live together.

1.2 Purpose

The purpose of this project is to first consider the game of ”rock scissor and paper” for
recreating the basic law for a game system with mutual predation(which also implies mutual
survival), to a more complex game influenced by the Ancient Chinese Five elements game,
where the original three-node system has been extended to a five-node system.

In 1996, researchers discovered a real ecosystem ”rock paper scissors” game applied to
the color shift of lizards in California[2]. And then the three subspecies of E. coli was
also found to follow the same game principle. The biologists found that there are a total
of three kinds of E. coli in nature, their mutual constraint and symbiotic interaction is
observed between the three E. coli in accordance to the relationship between a ”rock -
scissor - paper”, viewing the E.coli interactions as the theoretical background to extend
it to a more complex system is providing an induction way to find a universal law for a
evolutionary game theory in the same kind.

Based on the ”rock - scissor - paper”, we will recreate the scheme of a 3-node game,
then go on to simulate the Five Elements as a more complex game.

For the ecosystem as a whole, it can simply use the complex networks principle such
in rock - scissor - paper game simulation. In reality, the individuals all have a chance to
interact with distant individuals. By adding a probability P in the evolution of individual
game to a certain individual implies a fixed game, that the steady state will disappear. The
computer simulation results will be displayed to show: when P is greater than a critical
value, the diversity of species disappear after a certain evolution time, and only a single
specie would survive, after adding parameters and make adjustments later in this article.
Within a certain interval of the fixed probability, the number of a certain specie would also
change periodically dependent on P. This probability change expresses a non-uniform game
which could also be found as exceptional examples in the real world due to some species’
evolving. The same scheme will be applied to five elements to see the survival of different
elements, in order to find an universal rule.
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Chapter 2

Theoretical Background

2.1 Classic Game Theory

The traditional game theory is a research actually based on rational assumption of in-
dividual mutual interaction, it is built on the basis of assumptions regarding the game
structure. The development of game theory is therefore a systematic breakthrough from
the limitations set by the assumptions.

In classical game theory, we can assume that the participants’ goal are in accordance with
the favored strategy, and its objective is therefore mutual dependent. Mutual dependence
means that the every participant’s decision will be affected by other participants, and his
behavior will also affect others in a game. Because of this mutual dependence, results of the
game is simultaneously dependent on each participant’s decision, nobody can take control
of the event or the outcome by his own, and nobody stays alone as an isolated outcast.
Mutual dependence causes the participants to compete with each other during the game,
but the competition is not everything in the game theory. Taking an example of dividing a
cake, although a little bit of non-even divide could cause an unfairness, causing a potential
competition to occur between two people, but on the other hand, it’s also possible to
increase the size of the cake to be much bigger so that the divided two parts would increase
simultaneously, thus a cooperation relation is established. In the classical game theory, the
cooperation and competition is the the focus point.

The classic game theory states that the participants are completely rational, this is the
basic assumption for the classical game theory. And entirely rationality for participants
is an universal sense. However, here the reference of rationality seems to be an obscurely
defined concept. Extreme views can even believe that the concept of perfect rationality is
apparently rational behavior of tautology and decided by the rules of the game, but the
conduct of the game based on the assumption of rationality is again, rational. How to
define the reasonableness of the central recurring theme in the development of game theory
through years is certainly not an accidental phenomenon. In fact, any rational definition is
a negative definition, that the rational participants did not explain what should be done,
and the main concern is that they should not do. In addition, the theory also pointed
out, rational participants are not necessarily in the game to be dominant, because the
entire rationality may cause to exclude the possibility of cooperation, such as the problem
of the classic Prisoner’s Dilemma. To fix these shortcomings of classical game theory is
dependent on improvement in balancing the rational extent and strategy equilibrium. In
the history of the game theory development, it’s already been a lot of improvements from
the development of the traditional game, which is static with open information, to the
development of dynamic games without full access to information.
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After the Nash-era, the development of the game theory is focused on the rationality
level and the improvements of the strategy. During this time, a lot of games have been
developed, like hawk-dove game, prisoners’ dilemma and so on. In these games, the option
is to select cooperation or betrayal, for their own sake, like in prisoner’s dilemma:

Participant 2/participant 1 Cooperate(C) Not Cooperate(D)
Cooperate(C) (R,R) (R,T)
Not Cooperate(D) (T,S) (P,P)

Table 2.1: An example of Prisoners’ dilemma scheme

In this game, R,T,S,P can represent the outcome of different strategies or the strategy
sets, they satisfies T > R > P > S and 2R > T + S.

Although classical games have achieved a great success through these developments, but
it’s still restraint to many limitations, its development and implementations sometimes
demand improper assumptions, therefore new breakthroughs must be added in order to
achieve more developments of the classical game theory.

2.2 Evolutionary Game Theory

Research objects of evolutionary game is a group or a set of objects which are time-
dependent and evolving in time. The aim for this game model is to study the time depen-
dence and the dynamic behavior of this group, in order to explain and understand how the
group is behaving is as it is and what results their current behavior. Through evolutionary
game theory, we can see that the group evolutionary behavior is constituted by randomness
and other perturbations, in other words, sudden change. At the same time, because of the
selective rule set by the game’s constraints, periodicity will also occur. The most evolution-
ary game theories can predict and explain group behaviors based on this selection rule and
its process, groups usually select with according to their habits, their favored strategy, but
this process also contains the possibility of sudden change, a phase transition, thus causing
to new evolutions and new characteristics.

In the field of biology, evolutionary game theory is applied to discuss the biological
evolutions through modeling and simulation. For example, when the biological fitness of
a particular phenotype is dependent on its population distribution frequency, evolutionary
game theory will become a way of thinking about biological evolution from the perspective
of the phenotype. Another example, in a comparative study of morphological evolution of
the bird’s wing and the same distribution of birds behavior in order to figure out the shape
of the wings, the atmospheric conditions of life in which these birds with different wing
shapes caused by the difference of the lift and drag. It is also necessary to check if wing
feathers contribute to constraints also included in the range of considerations, because if
one compares bats with ancient pterosaurs, this constraint is clearly different. However,
there is no need to consider the behavior of other members of the population. However,
the evolution of biological distribution relationship mainly depends on the same kind of



biological action, because distribution and finding the right spouse, to avoid competition
for resources, and jointly prevent predators between biological factors are closely related.

Evolution as a historical process, it can be said that the result of a series of events which
led to this theory, are difficult to reproduce. This process can produce two categories of
theory, that is, universal theory and particularity theory, evolutionary game theory belongs
to the second category, it assumes that evolution from natural selection within populations,
while game theory is an effective tool to construct this theory makes it able to explain the
specific evolution sober, and to identify the power of natural selection that will lead to the
evolution of specific (genetic) characteristics. People sometimes think that the particularity
of the second category can not be verified, because history does not repeat itself, and that
certain factors do not change, then re-test results to check if they really change. But this
ignores an important point, is the explanation of the causal relationship needs to be built
on the basis of the test.

Evolutionary game theory integrates the idea of rational economics and evolutionary
biology, and that the game players are no longer modeled as super-rational, is trivial with
the biological evolution. The selected the equilibrium is the equilibrium achieved through
the function to obtain equilibrium, therefore, history, rules and the details during the pro-
cessing of equilibrium would influence the different equilibriums in a game. So evolutionary
game theory is also having an important impact in economics, some results can explain eco-
nomical phenomena, such as ”rock-scissor-paper” can be found in similar economic cases.

Another different point between evolutionary game theory and traditional game theory is
that evolutionary game theory has chosen to abandon perfectly rational assumptions, such
as the ideological foundation of Darwin’s theory of biological evolution and the Lamarckian
genetic theory, starting from a system theory, considering the groups’ behavior as an ad-
justable process which reflects dynamic, in which the relationship between the behavior of
each individual and the groups separately characterize the formation mechanism, as well as
from individual behavior to group behavior can be related to various factors into, a evolu-
tionary game model, constitutes a macro-economic model with micro-based, and therefore
be able to more realistically reflect the diversity and complexity of the group behaviors,
and can provide a theoretical basis for the macro-control group behavior.

In evolutionary game theory, actors are assumed to be programmed following a given
behavior, their understandings of rules for the economical conduct or some successful un-
derstanding of behavioral strategies can be constantly improved and revised in the process
of evolution. Successful strategy is to imitate, in order to establish some general ”rules”
and ”systems” following the behavior of the main action standards. In these general rules,
the actors get the ”satisfaction” in the form of income, but this process requires a relative
long time, to establish. Evolutionary game theory states that time is an irreversible state,
what happens in the past time and in the next time is totally asymmetric, therefore, the
state of evolution is closely related to the initial state. Random (mutations) factors play
a key role in the evolution process, mutation is often seen as a process of trial and error.
The perpetrator will try a variety of different behavioral strategies, and will generally have
some adjustments following different times.

Evolutionary game theory draws an important principle of ”Evolutionary Stability Strat-
egy”, or ESS. A strategy is the performance of an act, which is the individual performance



by a phenotype in a known situation, thereby the actions taken in this environment. If ev-
ery player is set to take this strategy, under the conditions of natural selection there would
not be any mutation strategy to violate this population’s current common strategy. The
concept of using ”strategy”, is derived from studying the behavior of animals. This idea
can be equally applied to any kind of variations in the phenotype, ”strategy” word can also
be replaced by the performance of phenotype, a strategy may be the state of plant growth,
the relative age of parents to have children and the number of their children. According
to ESS, we can see a lot of individual organisms to sacrifice their own interests for the
collective interest considerations.

2.3 Achievements and Applications of Evolutionary

Game Theory

To say something about the future development and application of evolutionary game the-
ory, the inspiration is firstly from the evolution dynamics, replication dynamics as a tool
to calculate a strategy in the percentage of game populations,in order to express the game
participants’ behavior and status. Later mathematicians improved this evolutionary dy-
namic based on this tool. The initial breakthrough of the evolutionary game theory comes
from the study of evolution dynamics with focus concern mainly on the characteristics
of a system in a long term period of time. It also includes several aspects, such as pe-
riodicities and fixed points, the system’s stability, existence of the chaotic state, as well
covering static concept, such as the Nash equilibrium, evolutionary stability related to the
dynamic predictions. Another development of evolutionary game theory incurred in three
aspects for further improvements, such as the deeper understanding of bounded rationality
mechanisms, innovation of kinetic mechanism, balanced choice for multiple Nash equilib-
rium cases, these parts will be the future exploration of the evolution dynamics and the
development foundation.

At the same time, in evolutionary biology, evolutionary biologists Nowak and May intro-
duced the game to the space lattice[3], they found that the inquiry on the spatial structure
to provide answer to the problems which troubled people for a long time, is necessary,
through repeated number of games, for instance the well-known problem in the prisoner’s
dilemma, we can see that the strategy of cooperation can exist in the space topology frame
and by taking a step forward to upgrade Prisoner’s outcome to a matrix , finding and
directing to the weaker prisoner’s Dilemma, then T = b, R = 1, P = S = 0, and satisfies
1 < b < 2.

Evolutionary game theory related in physics research has generated a fruitful of results
recently. For physicians it’s important to apply the evolution of the game dynamics to
statistical mechanics, and through this to develop the theory of dynamic evolution. In
addition, along with the development of traditional non-linear and statistical mechanics,
hot topics as complex network has also been greatly studied, and added a large number of
applications for game theory. For example, a qualitative leap into this area much recognized
is the contribution by two physicians Szabo and Toke in 1998[4], their work in the two-
dimensional plane lattice Ising model along with the Fermi mechanism introduced into



the game space. Their discovery from space topology, that each grid between adjacent
connected to each other to form a tight cluster in order to resist the ”attack” from the
betrayer, at the same time, they introduced phase transitions, percolation and mean-field
approximation into the game space. In recent years, based on their work, new theory
such as the spatial game theory has been established, more realistic problems like spatial
topology network have also been increasingly studied with positive outcome.

Evolutionary game theory has been increasingly applied to other kind of studies, some
practical,this causes more people to pay attention to its theoretical and practical signifi-
cance. From the ”Tragedy of the Commons” proposed by Hardin to the recent popular
social problems concerned by everyone, like the public transportation system, citizens’
health insurance, environmental issues, the distribution and redistribution of resources,
and biological diversity etc, are all attracting attention, these problems are closely linked
with mankind. These realities is no doubt the reality of human society, games played be-
tween human beings and the nature. How to optimize the treatment of these issues is worth
humanity itself to ponder. At the same time, the evolutionary game theory in the develop-
ment and improvement of the sociology and economics properly handle these problems to
provide a good theoretical support, in the future, people might be able to get more from
evolutionary game in order explore better solutions to solve these kinds of problems.

We have entered the ”Post-Darwin” era, he proposed series of biological evolution the-
ories which do not fully explain the common biological phenomena in our daily lives, such
as cooperation, because his theory is based on appropriate survival, rather than altruis-
tic cooperation. So, how to break through the traditional Darwinian theory to explain
these complex biological phenomena, evolutionary game theory becomes the best tool for
understanding based on mathematical reasoning and proof. In addition, when exploring
network problems, game theory also provides one significant way to consider these prob-
lems. In addition to the traditional method of constructing the network, improvements
and reestablishing through the principle of evolutionary game theory open up new ways for
understanding. Finally, evolutionary game theory can explain certain phenomena of bio-
logical evolution successfully, and it is better than the classic game theory for explaining
and analyzing the realistic problems in economics and management related issues.

2.4 Network Theory

While Evolutionary game theory is mostly combined with time, we would also introduce the
basic network theory into the system. As common simulations are carried out on a mash,
which is commonly known as graph, due to network’s property of consisting of objects with
connections.

In a graph, the objects are called nodes, and the connections between objects are called
links. The links may be directed, that means that the affection does not always go in either
ways, sometimes perhaps only from one object to another. There are also un-directional
links, which can travel in both directions. Links can also have weights assigned to them,
often expressed as probability, in order to indicate the cost of using each link or the link’s
capacity. An example of a un-directional network of people is given here in the figure 2.1



Figure 2.1: A figure of a network example consisting of 17 nodes, occupied by persons, and numbers
next to each person is its degree k

As figure 2.1 showed, each node has degree, k, defined as the number of connections
to each node from other nodes. In figure 2.1, there are nodes with 1,2,3 or 5 degrees.
The degree distribution p(k) is important when considering from each node and for the
network’s properties. Degree variation brings great difference in networks and difficulties
in analyzing them. Real-world networks can often be heterogeneous, that means that they
have large degree variations. On a graph made for simulation of game theories, the degree
variation could contribute to different outcome of game results. This is the reason why
homogeneous networks are better for simulation of game theories, which is often carried
out on a 2D lattice.

Another important definition is the shortest path, commonly used between two nodes.
This is the shortest distance between them by traversing the network. In a network where
all links have a unit weight, the shortest path is equal to the lowest number of links used
for traveling from one node to the other. One important property of network to be taken
into account is the average distance between nodes increases slowly when increasing the
number of nodes. This is the small-world effect. This effect proves be essential to the time
dependence in game theory.



2.5 EGT and Rock-Scissor-Paper

In 1996, B.Sinervo and C.M.Lively for the first time found the similar game as ”Rock-
Scissor-Paper” in real ecology system[2], where the male side-blotched lizards can develop
a throat-color multi-morphism as they matures in order to defend territories and their fe-
male partners. Males with orange throats are aggressive and defend large territories(Group
1). Males with dark blue throats are less aggressive and defend smaller territories(Group
2). Males with prominent yellow strips on their throats(Group 3) are ”sneakers” and do
not defend territories. Group 1-lizards use their aggression to snatch females from Group
2-lizards(rock-scissor), group 2-lizards defend their females from group 3-lizards(scissor-
paper), and group 3-lizards sneaks to the large region guarded by the group 1-lizards to find
females for breeding since group 1-lizards’ territories are too large to be fully watched(paper-
rock). These actions taken between lizards in their breeding strategies reflect the ”Rock
-Scissor-Paper” game and causes periodical changes in number of each species, thus fluc-
tuations. B.Sinervo and co found that, the numbers of different kind lizards periodically
fluctuate during their observation from 1990 to 1995, that the dominating specie varies
from time to time, therefore not causing one particular specie to breed too much. This
”rock-scissor-paper” strategy set is considered as a way to conserve the steady stability of
this ecological system and B.Sinervo also found similar behaviors among European lizards.

Figure 2.2: lizards develop rock-scissor-paper breeding strategy, picture taken from [2]

E.coli bacteria is another living creature which has the same kind of phenomena. There
are three kinds of E.coli bacteria, toxin type, sensitive type and resistant type. Their way of



survival is their strains to secrete colicin, in order to kill other types of E.coli. To compen-
sate colicin, a mutation of the some kinds of collicin can occur, thus making them immune
against the attacking colicin, and also some E.coli which do not process this ability, can
not survive. B.Kerr and co[5] studied the different evolutionary behaviors of E.coli bacteria
under different conditions and discovered that only the partial interaction between individ-
ual E-coli cause the total survival, or two of the kinds would be eliminated and only one
kind would survive under the isolated condition. Although the initial state was randomly
decided, after three days of experiments, self-organizing pattern formation in the bottom
of the experimenting container appeared, and the boundary between the various strains of
subspecies changes over time. According to the abundance of the three subspecies strains
in image showing the change of the numbers, we can see that the abundance of various
strains of E.coli remain basically stable, cyclical, and the shifting. However, after the
change of conditions, immediately when stirred in the flask and uniformly conditions uten-
sil, the steady state is broken, the S-type strain disappeared after some times. This results
indirectly implies that, the partial interaction of ”rock-scissor-paper” game promotes and
strengthens biological diversity, whereas the total interaction would hinder the biological
diversity.



Figure 2.3: Test pictures from the experiment of E.coli interactions, taken from[5]

2.6 Chinese Five Elements

The principle of ”Chinese Five Elements” is combined to the Chinese tradition of Taiji,
which is a social belief to taoists. The five elements express the natural basics which
constitute to our life. Just like ”rock-scissor-paper”, the five elements form a ring of mutual
predation, but as an extended version of the former 3-node system, five elements can also
have mutual generation, it means that a certain element can strengthen another and this
generation cycle is also formed as a chain. This was an ancient philosophical concept
used to explain the composition and phenomena of the physical universe. In traditional
Chinese medicine the theory of five elements is used to interpret the relationship between
the physiology and pathology of the human body and the natural environment. According
to the theory, the five elements are in constant move and change, and the interdependence
and mutual restraint of the five elements explain the complex connection between material
objects as well as the unity between the human body and the natural world. This is a very
good example stressing the principle of evolutionary game theory, therefore attracting our



attention to look closely into this.

Figure 2.4: Five elements principle, also called Wuxing, picture taken from[7]

The five elements are Metal, Water, Wood, Fire and Earth. The cycles can be seen in
figure 2.4. We have in the predation cycle that Metal defeats Wood, Wood defeats Earth,
Earth defeats Water, Water defeats Fire, Fire defeats Metal. In the generation cycle, Metal
generates Water, Water generates Wood, Wood generates Fire, Fire generates Earth, Earth
generates Metal. The generation term can be referred as when the generator is nearby one
element, this element is strengthened, more immune against its predator. But every three
elements connected to each other can again be seen as a ”rock-scissor-paper”, for example,
Fire defeats Metal, Metal generates Water, Water defeats Metal. Although one generation
term is combined into this, it makes the predation system to more complicated than the
original ”rock-scissor-paper”, this is a more steadier game, since that the generated one
would make up to the defeated one, therefore a more harmonic spatial system.

In traditional Chinese medicine, the visceral organs, as well as other organs and tissues,
have similar properties to the five elements; they interact physiologically and pathologically
as the five elements do. Through similarity comparison, different phenomena are attributed



to the categories of the five elements. Based on the characteristics, forms, and functions of
different phenomena, the complex links between physiology and pathology as well as the
interconnection between the human body and the natural world are explained.

The five elements emerged from an observation of the various groups of dynamic pro-
cesses, functions and characteristics observed in the natural world. The aspects involved
in each of the five elements are follows:

Fire: draught, heat, flaring, ascendancy, movement.
Wood: germination, extension, softness, harmony, flexibility.
Metal: strength, firmness, killing, cutting, cleaning up.
Earth: growing, changing, nourishing, producing.
Water: moisture, cold, descending, flowing.

In order to understand this system, evolutionary game theory principle is applied, on the
basis of the ”rock-scissor-paper” model, a similar simulation method will be implemented
later for study the Five Elements.

A real example of five elements is the extended game of ”rock-scissor-paper”, which is
called the ”Rock-paper-scissors-lizard-Spock”, where the ”lizard” is formed by a hand as a
sock-puppet-like mouth, and ”spock” is formed as a Star Trek Vulcan salute. This game
was mentioned in the famous American tv show ”Big Bang Theory”, which has also been
used to understand the transitivity of climate change policy choice[8]. The rules for this
game are following:

Scissor: cuts paper, decapitates lizard
Paper: covers rock, disproves spock
Rock: breaks scissor, crushes lizard
Lizard: poisons spock, eats paper
Spock: smashes scissor, vaporizes rock

This game deviates from the regular elements game somehow, as the different gestures
are not exactly improving some’s power by helping some as in the five elements, game.
There are in total ten ways to pair the five gestures, a picture showing the game rules:



Figure 2.5: Game rule of Rock-paper-scissors-lizard-Spock

The game of ”Rock-Paper-Scissors-Lizard-Spock” game is somehow easier than the five
elements, as it can be considered as a game of direct competition contributing to indirect
cooperation.

We will later try to discuss and compare this game with the five elements, try to find
similarities with the original five elements.
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Chapter 3

Implementation

3.1 Main Principle

The biological diversity is a focal problem in the study of ecology. A model of ”Rock-
Scissor-paper” from real ecology can provide a better understanding of biological diversity.
Let’s assume a system with A, B, C three species, these three species generate an ecological
chain of mutual predation and interaction, denoting as Ka, Kb and Kc:

A + B −−Ka −− > A + A (3.1)

B + C −−Kb −− > B + B

A + C −−Kc −− > C + C

This is in accordance with Lotka-Volterra equations. Now let’s construct the outcome
matrix:

Strains of E.Coli Wins against Loses against
Killer Sensitive Resistant
Sensitive Resistant Killer
Resistant Killer Sensitive

Table 3.1: Outcome matrix

Expressed for numerical simulation:

Killer Sensitive Resistant
Killer (1,1) (2,0) (0,2)
Sensitive (0,2) (1,1) (2,0)
Resistant (2,0) (0,2) (1,1)

Table 3.2: Score register of outcome

When the evolutionary system has achieved the steady state, if all three species still
survive, this implies the steady state of biological diversity. On the other hand, if one
of the species would die out, bringing the other one to follow the same path, thus the
biological diversity is broken. Our initial assumption is that the E.coli bacteria are just
like ”rock-scissor-paper” to compete with each other. With computer simulations and a
random starting point, the game will be set on in order to get a steady final result.
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In 2007, Reichenbach and co used this method[6], implementing with the principle of
mean field method, to simulate the final outcome, resulting either steady state for all species
or that only one would survive. The following equations can be obtained for illustrating
process:

ṄA = NA(Ka · NB − Kc · NC) (3.2)

ṄB = NB(Kb · NC − Ka · NA)

ṄC = NC(Kc · NA −Kb · NC)

During the numerical simulation, since the interaction is taken randomly between the points
on the game matrix, if time is much bigger than the total number of E.Coli, t>>N, an
extinction is eager to occur. Also due to the nature of ”rock-scissor-paper”, the extinction
of one specie would bring another specie into extinction quickly as well, therefore only one
specie would remain. Therefore, this mean field theory is only suited for the initial state
of the game, and this article will also be focusing on the relative early stage of the game.

3.2 Construction of the models

Using the mean field equations given above, we will only consider the percentage of different
species, thus transforming the equations to, setting V as the total number, or the volume:

˙NA(i, t)/V = NA(i, t)/V (Ka · NB(i, t)− Kc · NC(i, t)) (3.3)
˙NB(i, t)/V = NB(i, t)/V (Kb · NC(i, t)− Ka · NA(i, t))
˙NC(i, t)/V = NC(i, t)/V (Kc · NA(i, t) −Kb · NB(i, t))

Here i denotes each element at node i, due to the square lattice we have chosen to simulate
the model, the degree would be in most cases be k=4, except for those on the edges would
be 3.

Letting ˙NA(i, t)/V =(NA(i, t + 1)−NA(i, t))/V , ˙NB(i, t)/V =(NB(i, t + 1)−NB(i, t))/V

and ˙NC(i, t)/V =(NC(i, t + 1) − NC(i, t))/V . NA,NB,NC are all integer particle numbers,
Implementing with the well known SIR-model:

Algorithm 1: Implementation of the SIR model for the above equations
Input: Ka,Kb,Kc, NA(0), NB(0), NC(0), tend

Output: NA(tend), NB(tend),NC(tend)
t=0;
While t<tend DO
t=t+1;
Reaction:
NA(t)=NA(t-1)+NA(t-1)(KaNB(t-1)-KcNC(t-1))
NB(t)=NB(t-1)+NB(t-1)(KbNC(t-1)-KaNA(t-1))
NC(t)=NC(t-1)+NC (t-1)(KcNA(t-1)-KbNB(t-1))
end



This implementation gives the final number of each species after generating tend rounds.
The game rule is implemented in a much simple way, randomly set 1,2,3 to denote

different particles on the 2D array for expressing rocks, scissor and papers:

Algorithm 2: Rock-Scissor-Paper Game Rule
Input a(t),b(t)
Output a(t+∆t),b(t+∆t)
While a(t) 6= b(t) DO
If a(t)=1,
b(t)=2,
b(t+∆t)=1, a(t+∆t)=1
Elseif a(t)=2,
b(t)=3,
b(t+∆t)=2,a(t+∆t)=2
Elseif a(t)=3,
b(t)=1,
b(t+∆t)=3,a(t+∆t)=3
end

In order to see biological diversity to be broken up, we can change the default Ka,Kb

and Kc by means of probabilities Pi, it means that the predating specie wouldn’t have the
full chance to eliminate the weak specie, therefore causing imbalance to the steady state.

Algorithm 3: Implementation of the SIR model with fixed predation probability
Input P1,P2,P3,Ka,Kb,Kc,NA(0),NB(0),NC(0),tend

Output NA(tend),NB(tend), NC(tend)
While t<tend DO
t=t+1;
Reaction:
NA(t)=NA(t− 1)+NA(t− 1)(P1KaNB(t − 1)-P3KcNC(t − 1))
NB(t)=NB(t − 1)+NB(t − 1)(P2KbNC(t− 1)-P1KaNA(t− 1))
NC(t)=NC(t− 1)+NC(t − 1)(P3KcNA(t − 1)-P2KbNB(t− 1))
end

With all these given algorithms and equations, we can simulate the ”Rock-Scissor-Paper”
game!

3.3 Extension to the Five Elements

From the above sections, we have already a model for the ”rock-scissor-paper” game. In
order to simulate Five Elements as an extension of the original 3-node game, we need to
add extra nodes and links. The original outcome matrix would now be:



Metal Water Wood Fire Earth
Metal (1,1) (1,2*) (2,0) (0,2) (2*,1)
Water (2*,1) (1,1) (1,2*) (2,0) (0,2)
Wood (0,2) (2*,1) (1,1) (1,2*) (2,0)
Fire (2,0) (0,2) (2*,1) (1,1) (1,2*)
Earth (1,2*) (2,0) (0,2) (2*,1) (1,1)

Table 3.3: Score register of outcome in Five Elements

Here for the generation cycle, we use that the strengthened element is increased, therefore
not afraid of the predation element for the time being, while the generator stays the same.
Now illustrating the elements as A,B,C,D,E and with their corresponding Ka,Kb,Kc,Kd
and Ke. As for the generator, there will be no changes, thus, this link will not provide
any changes to the number of generators,for the strengthened element, there is practically
no change to the number of element, but it stays temporarily immune to its predator,
therefore, no final results extracted, only that the rule is affecting our final result. This is
the reason for marking the strengthened element as 2* in the outcome table.

Comparing to the ”Rock-paper-scissors-lizard-Spock” game, the outcome marix would
be like this:

Rock Paper Scissor Lizard Spock
Rock (0,0) (-1,1) (1,-1) (1,-1) (-1,1)
Paper (1,-1) (0,0) (-1,1) (-1,1) (1,-1)
Scissor (-1,1) (1,-1) (0,0) (1,-1) (-1,1)
Lizard (-1,1) (1,-1) (-1,1) (0,0) (1,-1)
Spock (1,-1) (-1,1) (1,-1) (-1,1) (0,0)

Table 3.4: Score register of outcome in Rock-paper-scissors-lizard-Spock

For the following implementations, we will focus on the general five elements model.
The mean field equations are as following:

ṄA/V = NA/V (Ka · NC −Kd · ND) (3.4)

ṄB/V = NB/V (Kb · ND −Ke · NE)

ṄC/V = NC/V (Kc · NE − Ka · NA)

ṄD/V = ND/V (Kd · NA − Kb · NB)

ṄE/V = NE/V (Ke · NB − Kc ·NC)

and the corresponding extended algorithms are:



Algorithm 4: Implementation of the SIR model for Five Elements
Input: Ka,Kb,Kc,Kd,Ke,NA(0), NB(0), NC(0), ND(0), NE(0), tend

Output: NA(tend), NB(tend),NC(tend),ND(tend), NE(tend)
t=0;
While t<tend DO
t=t+1;
Reaction:

˙NA(t)=NA(t− 1)(KaC(t− 1)-KdND(t − 1)+Ke(NE(t − 1)∪NA(t − 1)-ND(t − 1)∪NA(t− 1))
˙NB(t)=NB(t − 1)(KbD(t − 1)-KeNE(t − 1)+Ka(NA(t − 1)∪NB(t − 1)-NE(t − 1)∪NB(t− 1))
˙NC(t)=NC(t− 1)(KcE(t − 1)-KaNA(t − 1)+Kb(NB(t − 1)∪NC(t− 1)-NA(t − 1)∪NC(t − 1))
˙ND(t)=ND(t− 1)(KdA(t− 1)-KbNB(t− 1)+Kc(NC(t − 1)∪ND(t − 1)-NB(t − 1)∪ND(t− 1))
˙NE(t)=NE(t − 1)(KeB(t− 1)-KcNC(t − 1)+Kd(ND(t − 1)∪NE(t − 1)-NC(t − 1)∪NE(t − 1))

end

Here, the ∪ symbol expresses the definition of neighborhood, the generation contribution
would only provide assistance if the predation element is also a neighbor to the strengthened
element as well as the generator. For considering the model with the fixed predation
probability, some extra complications are added to the algorithm 3 just as algorithm 4 did
to algorithm 1.

Algorithm 5: Implementation of the SIR model for Five Elements with Fixed probability
Input: P1,P2,P3,P4,P5,Ka,Kb,Kc,Kd,Ke,NA(0), NB(0), NC(0), ND(0), NE(0), tend

Output: NA(tend), NB(tend),NC(tend),ND(tend), NE(tend)
t=0;
While t<tend DO
t=t+1;
Reaction:

˙NA(t)=NA(t− 1)(P1KaNC(t − 1)-P4KdND(t − 1)+P5Ke(NE(t − 1)∪NA(t− 1)-ND(t− 1)∪NA(t − 1))
˙NB(t)=NB(t − 1)(P2KbND(t− 1)-P5KeNE(t − 1)+P1Ka(NA(t− 1)∪NB(t − 1)-NE(t − 1)∪NB(t − 1))
˙NC(t)=NC(t− 1)(P3KcNE(t − 1)-P1KaNA(t − 1)+P2Kb(NB(t − 1)∪NC(t − 1)-NA(t− 1)∪NC(t − 1))
˙ND(t)=ND(t− 1)(P4KdNA(t− 1)-P2KbNB(t − 1)+P3Kc(NC(t − 1)∪ND(t − 1)-NB(t − 1)∪ND(t − 1))
˙NE(t)=NE(t − 1)(P5KeNB(t − 1)-P3KcNC(t − 1)+P4Kd(ND(t− 1)∪NE(t− 1)-NC(t − 1)∪NE(t − 1))

end

3.4 Model Ideas and Extension

With all implementations, we are now ready ready to simulate the ”rock-scissor-paper”
game and the ”five elements”. As the ”rock-scissor-paper” game is a relative simple system,
we just simulate it on a 25x25 2D array, denoting the A,B,C as rock, scissor and paper with
different colors, expressing equivalently to the toxin killer, sensitive and resistant E.Coli
bacteria. While five elements will be simulated on bigger array.



The game rule is common for both games, as each element on the 2D array can only
interact with its neighbors, this expresses the ”rock-scissor-paper” corrosion phenomena, it
means, that for the winner, it conquers its new space if it wins.

On the boundary nodes, they have less neighbors, they will be randomly assigned an
initial value first, when randomly picking points to incite competitions, these boundary
nodes will be avoided.

The results will be displaying the final outcome of different elements, their phase transi-
tion point in order to decide the critical probability for completely destroying the biological
diversity.

Our study will be based on discrete time reaction.



23



Chapter 4

Results and discussions

4.1 Rock-Scissor-Paper

4.1.1 Steady State - No fixed probability

We will make a simulation of the steady state, a normal state without any biological
diversity breaking down. Starting by randomly displace some 1,2,3 to denote the different
elements(Rock, Scissor, Paper), using the principle from the original outcome matrix, and
simulate randomly, get the 2D map of the final stand:

Figure 4.1: Final stand of ”Rock-Scissor-Paper” competitions, after tend=100000, V=25x25
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And the graphical distribution:

Figure 4.2: Distribution of ”Rock-Scissor-Paper” plotted against time, after tend=100000,V=25x25

As the steady state is a harmonic interaction, unless the time is large enough, it’s
unusual for an extinction to occur. So we will take a closer look at what happens if we fix
the predation probability, causing non-equally weighted state.

4.1.2 Non-steady state

Non-equally weighted state means that the three elements’ respective winning probability is
fixed, this principle is in accordance to a realistic scenario. Under the non-equally weighted
state, we implement three parameters, through adjusting and controlling the parameters, to
develop a game without equally weighted winning probability. The propose of using these
parameters are to control the corrosion rates between the different elements, for example,
let the probability of A defeating B become 0.8, then, the corrosion rate will be 80% of its
original, this is clearly noted in the last chapter.

The reason for the similarity with real life scenario is that in nature, it’s almost impossible
to have equally weighted corrosion rates in the predation chain, nor any absolute predation
or generation can be found, for example, we all know that a lion is a predator for a
goat, but still, under a possibility, a goat can avoid getting eaten by the lion under some
circumstances, or if the lion really wants to eat a goat. The implementation of the fixed
probability is therefore in well accordance with real life.

Adjusting only one fixed probability

Under this condition, we only change one probability. Choosing P1 as the fixed probability,
while P2 and P3 still remain the same. Now let’s stepwise adjust the probabilities:



Figure 4.3: Distribution of ”Rock-Scissor-Paper” plotted against time, P1=0.01, V=25x25

When the fixed probability P1 limits rock to defeat/conquer scissor, it means originally
that A has the minimum chance to corrode scissor. The final result turns to be that rock
is the final winner after all, and the competition went relatively fast to the end. This is
mainly because that, scissor is favoring to defeat paper in this process, and paper is also
favoring to defeat rock. With the fixed possibility, due to large amount of paper to be
killed by scissor, rock is losing its enemies and turned out to be winning against scissors at
the last.

Figure 4.4: Distribution of ”Rock-Scissor-Paper” plotted against time, P1=0.1, V=25x25



Figure 4.5: Distribution of ”Rock-Scissor-Paper” plotted against time, P1=0.2, V=25x25

Figure 4.6: Distribution of ”Rock-Scissor-Paper” plotted against time, P1=0.3, V=25x25



Figure 4.7: Distribution of ”Rock-Scissor-Paper” plotted against time, P1=0.5, V=25x25

Figure 4.8: Distribution of ”Rock-Scissor-Paper” plotted against time, P1=0.8, V=25x25

Increasing the corrosion probability is causing increased number of paper, when P1 is
nearing 0.3 in figure 4.6, the three elements remain very stable under the given time domain,
given that there is not much fluctuation of the numbers. When P1 is 0.5, only rock and
paper are exchanging their leadership role without scissor fluctuating together with them.
In figure 4.8, we have a state turning into favor of paper,



Adjusting more fixed probabilities

In this scenario, we can control all the three parameter, first to check if the lowering the
same portion of all probabilities.

Figure 4.9: Distribution of ”Rock-Scissor-Paper” plotted against time, P1=P2=P3=0.5, V=25x25

Figure 4.9 gives almost the same result as a steady state with all probabilities equal to
1 as in figure 4.2, the reason is that the fixed possibilities are dominating much over the
randomness in the game that causes the same effect just as for no fixed possibilities.

If we adjust only two of the fixed probabilities, it’s expected to cause a whole different
result. Adjusting some of the fixed probabilities and get:



Figure 4.10: Distribution of ”Rock-Scissor-Paper” plotted against time, P1=P3=0.2,P2=1, V=25x25

Figure 4.11: Distribution of ”Rock-Scissor-Paper” plotted against time, P1=P2=0.3,P3=0.1,
V=25x25



Figure 4.12: Distribution of ”Rock-Scissor-Paper” plotted against time, P1=P2=0.4,P3=1, V=25x25

From figure 4.10, we clearly see the corrosion process is much dependent on the proba-
bilities, as, the two elements following each other not as willing as Scissor, to corrode its
corresponding weak opponent, this gives the rising of Scissor to corrode much of Paper,
less Paper to corrode Rock, and then enough Rock to corrode Scissor at last.

When adjusting the probabilities as in figure 4.11, we can maintain a temporary stability
of the elements’ distribution. But the dominating element remains the one coming before
the highest corrosion probability. In this case, we have all elements compete in the interval
of assumed critical points, therefore the stability is maintained in the given time frame.

In figure 4.12, since both Rock and Scissor have a corrosion rate bigger than the assumed
critical values, we see that they are not low enough to cause Scissor to win after the previous
analogy, therefore Paper ended up winning.

Considering the graphs in figure 4.10 and 4.11, we have that a phase transition has
occurred in the region of Pi∈[0.1,0.3].

The fixed probability phenomena can again be proved analytically, considering the equa-
tion set from table 3.2 and transforming to the derivative form:

NA,k(t)− NA,k(t− 1)

NA,k(t − 1)
= P1KaNB,k(t − 1) − P3KcNC,k(t− 1)

NB,k(t) −NB,k(t − 1)

NB,k(t − 1)
= P2KbNC,k(t− 1) − P1KaNA,k(t− 1)

NC,k(t) − NC,k(t− 1)

NC,k(t− 1)
= P3KcNA,k(t− 1) − P2KbNB,k(t− 1)

(4.1)



Redefining the reaction rate:

KaNA(t) = µ1

KbNB(t) = µ2

KcNC(t) = µ3

(4.2)

Here we declared the reaction rates for the losing terms, but each of the Ki will earn the
same amount of the winning terms, this means, for example that, µ3 = KcNA = KcNc in
total amount, as this denotes that for element C, KcNA is the gaining term, but for A,
KcNc is the loss term. This denotation will be used later study on five elements as well.

For general solutions, dividing Vk, and redefine the time derivative1, the mean field
equations become like:

∂tρA,k(t) = −ρA,k(t) + µ1ρB,k(t)− µ3ρC,k(t)

∂tρB,k(t) = −ρB,k(t) + µ2ρC,k(t)− µ1ρA,k(t)

∂tρC,k(t) = −ρC,k(t) + µ3ρA,k(t)− µ2ρB,k(t)

(4.3)

We have trivial solutions: ρA = ρ, ρB = ρC = 0, ρB = ρ, ρA = ρC = 0 and ρC = ρ, ρA =
ρB = 0, but they are of little interests to us here. To find the nontrivial solutions, we use
equations 4.3, set ∂tρA,k(t) = ∂tρB,k(t) = ∂tρA,k(t) = 0 and get:

ρA,k(t) = µ1ρB,k(t)− µ3ρC,k(t)

ρB,k(t) = µ2ρC,k(t) − µ1ρA,k(t)

ρC,k(t) = µ3ρA,k(t) − µ2ρB,k(t)

(4.4)

This is a general solution for the ”Rock-Scissor-Paper” game. To find the the critical values,
or the phase transition points, we can easily use equations 4.4 to decide the critical points
for each element:

¯ρA,k =
µ1

µ3

¯ρB,k =
µ2

µ1

¯ρC,k =
µ3

µ2

(4.5)

Therefore we have a equation set to describe the critical points for ”rock-scissor-paper”,
we observe that this is independent on node degree k.

1∂tNA,k(t)=Ni(t + 2)-Ni(t)



Considering for the cases with varying probability P1, and holding P2 = P3 = 1:

∂tρA,k(t) = −ρA,k(t) + P1µ1ρB,k(t) − µ3ρC,k(t)

∂tρB,k(t) = −ρB,k(t) + µ2ρC,k(t) − P1µ1ρA,k(t)

∂tρC,k(t) = −ρC,k(t) + µ3ρA,k(t) − µ2ρB,k(t)

(4.6)

For P1 → 0, we have: ∂tρA,k(t) ≈−ρA,k(t) − µ3ρC,k(t) and ∂tρB,k(t) ≈−ρB,k(t) + µ2ρC,k(t),
while ∂tρC,k(t) stays the same. This is easily proven that while B(Scissor) is gaining all the
time, with C(Paper) both gaining and losing to B(Scissor) while B(Scissor) is not losing
against A(Rock) at all, C(Paper) gets killed before B gets eliminated by A(Rock) at the
end. Using the equations 4.5, we could also see that when µ1→ 0, we get the critical point
ρ̄B→∞, here we could have two cases, that ρB continuing to grow towards ∞ or ρ̄B can be
scaled by a large enough µ2, if µ2 gets larger, then ρC→ 0 very quick, after this corrosion
from B to C have been completed, A corrode B.

Using the results we have generated from tests, simulating the dependency between P1

and the time for A(t) to win the competition, since P1 is dominating over the randomness in
the game, one could also try to describe the randomness in the game which is an unavoidable
part. Szolnoki and Szab [9]have previously done simulations in order to show the strong
random dependency in the system, considering the same size of the network of a square
lattice, and focusing on the winner, a plot of ρA − P1 is driven from our simulation results
in order to show how well the fixed probability is ruling over the randomness in the game:

Figure 4.13: ρA,k-P1 Figure 4.14: Φ-Q

On the figure 4.13, we have at given time frame, ρA,k as function of P1, averaging over 450 sam-
ples(30 simulations on each probability), V=25x25 square lattice, and the figure 4.14 expresses Order

parameter of distribution as function of the quenched randomness Q for different kinds of lattices,
taken directly from [9]



We see that the dependency on the fixed probability is almost inverse as in figure 4.14,
where the deviation in the origin at(0,0) from the results are caused by initiation of the
graph. As in [9] the initial distribution of different objects are set to be minimum in
order to automatically spread over the whole graph, and in our simulation, it’s been preset
to be randomly distributed but close to a equally distribution of rock, paper and scissor
elements. This somehow shows the fixed probability could be strong enough to defeat the
strong randomness in the game, therefore causing the whole game and network to be fixed.

Finally, we could observe in figure 4.15 a dependency on the lattice size that the critical
point tends to increase when competing on a bigger array.

Figure 4.15: Simulation results of critical points of rock simulated on different sizes of square lattices,
30 samples per lattice, by 10 different probabilities

For the this game purely consisting of competition, the rise to critical point is not very
dependent on the lattice size, seeing that the critical density for rock converges to a constant
value when closing big world approximation, in other word when V → ∞. We also observe
that the global winning probabilities somehow regulate the critical densities when emerging
from small world to big world approximation.

Summary

In this section, we observe that through adjusting the winning probability of Rock defeating
Scissor reflects that Rock, Scissor and Paper are caused by evolutions through time. When
the probability Pi is small, it does not direct point to absolute defeat, but depending on
other competitor’s action. In this mutual predation case, it’s very similar to a real life
scenario when a company A is no longer deploying a strategy to challenge its competitor
B while the competitor B thinks it’s dominating and challenge other competitor C which
is really causing problems for company A. When C is defeated, A has lost its real threat,
then continuing to defeat B.

When the global probability is between 0.1 and 0.3, there is a phase transitional point,
this point is causing the original fluctuating instability among the bacteria to a more stable



state. This is for both adjusting one single fixed probability or for adjusting two together.

4.2 Five Elements

4.2.1 Steady State

Now we will make some simulations of the five elements game, because of the increasing
elements in the game, increased nodes and links, we will consider this in a larger array.
Some test simulations give the following results:

Figure 4.16: Initial random distribution of five elements, V=100x100

Figure 4.17: Final distribution of five elements after 1000000 rounds, V=100x100



Figure 4.18: Percentage of five elements plotted against time, V=100x100

Here, we have Wood to be the dominating element in the final time domain, another
final result is returning a different scenario:

Figure 4.19: Another final distribution of five elements after 1000000 rounds, V=100x100



Figure 4.20: Another percentage of five elements plotted against time, V=100x100

Because of the large scale of randomness, a major difference between these two results
is the fluctuating level, it seems like in figure 4.18, the competition is more intense than in
figure 4.20.

4.2.2 Non-steady State

In this case, adjusting fixed probabilities are much more complicated than in ”rock-scissor-
paper”. Here we can adjust one single probability in four different ways just for one node.
If adjusting a lot of probabilities at the same time, one could get easily confused. So we will
mainly focus on adjusting p1, the probability for Metal to corrode Wood. We will stepwise
adjust P1 and see the different results:



Figure 4.21: Percentage of five elements plotted against time, P1=0.01, V=100x100

Figure 4.22: Percentage of five elements plotted against time, P1=0.1, V=100x100



Figure 4.23: Percentage of five elements plotted against time, P1=0.2, V=100x100

Figure 4.24: Percentage of five elements plotted against time, P1=0.5, V=100x100



Figure 4.25: Percentage of five elements plotted against time, P1=0.55, V=100x100

Figure 4.26: Percentage of five elements plotted against time, P1=0.6, V=100x100



Figure 4.27: Percentage of five elements plotted against time, P1=0.8, V=100x100

Figure 4.28: Percentage of five elements plotted against time, P1=0.99, V=100x100

As observed from figure 4.21 to figure 4.26, with the adjustment of P1, the probability for
metal to corrode wood is fixed, the outcome of metal distribution has significantly fallen.
By intuition, one would probably expect that metal would ”die” out soon enough, but
although with the low P1 in the beginning, metal did not die out just as what happened
earlier in the ”rock-scissor-paper” game. Although not turned out to be the winner with
increasing P1, but still limiting its succeeding elements coming after it. Looking closer
to the different equations in table 3.3, we could analyze more of the behaviors under the



circumstance of fixed probabilities. First transforming into density form, just as we did in
previous section:

ρA,k(t) =
NA,k(t)

Vk

ρB,k(t) =
NB,k(t)

Vk

ρC,k(t) =
NC,k(t)

Vk

ρD,k(t) =
ND,k(t)

Vk

ρE,k(t) =
NE,k(t)

Vk

(4.7)

Where
E

∑

A

ρi,k = ρ =
Ni,k

Vk

(4.8)

Where V = A+B+C+D+E, is the total number of elements. Simplifying and renaming to:

∂tρA,k(t) = −ρA,k(t) + P1µ1ρC,k(t) − P4µ4ρD,k(t) + P5µ5(ρEA,k(t) − ρDA,k(t))

∂tρB,k(t) = −ρB,k(t) + P2µ2ρD,k(t) − P5µ5ρE,k(t) + P1µ1(ρAB,k(t)− ρEB,k(t))

∂tρC,k(t) = −ρC,k(t) + P3µ3ρE,k(t) − P1µ1ρA,k(t) + P2µ2(ρBC,k(t)− ρAC,k(t))

∂tρD,k(t) = −ρD,k(t) + P4µ4ρA,k(t)− P2µ2ρB,k(t) + P3µ3(ρCD,k(t) − ρBD,k(t))

∂tρE,k(t) = −ρE,k(t) + P5µ5ρB,k(t) − P3µ3ρC,k(t) + P4µ4(ρDE,k(t) − ρCE,k(t))

(4.9)

Where for the different ρij = i(t − 1) ∪ j(t − 1), and simplifying to simplified form where
µ represents the reaction probability. Depending on the different elements, the different
µi is also different and contributes to the final outcome at time t. The general nontrivial
solutions for the ”Chinese five elements” are:

ρA,k(t) = µ1ρC,k(t) − µ4ρD,k(t) + µ5(ρEA,k(t) − ρDA,k(t))

ρB,k(t) = µ2ρD,k(t) − µ5ρE,k(t) + µ1(ρAB,k(t) − ρEB,k(t))

ρC,k(t) = µ3ρE,k(t) − µ1ρA,k(t) + µ2(ρBC,k(t) − ρAC,k(t))

ρD,k(t) = µ4ρA,k(t)− µ2ρB,k(t) + µ3(ρCD,k(t) − ρBD,k(t))

ρE,k(t) = µ5ρB,k(t) − µ3ρC,k(t) + µ4(ρDE,k(t) − ρCE,k(t))

(4.10)

Here, all Pi are default set as 1. For these solutions we could use the same analogy from



the last section to express the critical points for each different element:

¯ρA,k =
µ1 + µ5ρEA,k

µ4 + µ5ρDA,k

¯ρB,k =
µ2 + µ1ρAB,k

µ5 + µ1ρEB,k

¯ρC,k =
µ3 + µ2ρBC,k

µ1 + µ2ρAC,k

¯ρD,k =
µ4 + µ3ρCD,k

µ2 + µ3ρBD,k

¯ρE,k =
µ5 + µ4ρDE,k

µ3 + µ4ρCE,k

(4.11)

While the ”rock-scissor-paper” are purely dependent on reaction rates, or adjustment of
reactions rates caused by the corrosion probabilities Pi, the critical phases for the five
elements are dependent on the cooperation terms expressed as ρij for i 6= j, i = A..E, j =
A..E. Without these cooperation terms that contributes virtual score2, the whole game
would just be like ”rock-scissor-paper” with linear fractional dependency on the reaction
rates. Observing that ρij is dependent on µi and µj , we could express the dynamical change
in ρij, for ¯ρA,k, we could find a certain dependency on the anti-cooperation term expressed
by ρDA,k

Figure 4.29: Plot of ¯ρA,k as function of anti-cooperation term ρDA,k, the line is the theoretical result
expressed as a part of equations 4.11, and the dots are the simulation results generated as a mean of

300 simulations, 30 per adjusted PDA as a global fixed probability to fix ρDA,k, V=100x100

From figure 4.29, we could see the dramatic change by adjusting the anti-cooperation
term ρDA,k, without the enemy neighboring effect, metal could easily win, but with the
increasing enemy neighboring effect, the critical points for metal drops down dramatically,
ending to be defeated. Our simulation data is in some deviation compared to the theoretical
results, but somehow follows the pattern.

2virtual scores as mentioned in table 3.3 in section 3.



Consider from the results generated earlier in figures 4.21 to 4.28, letting P1 → 0, this
is equivalent to µ1 → 0, considering from the above equation set 4.10:

ρA,k(t) = −µ4ρD,k(t) + µ5(ρEA,k(t) − ρDA,k(t))

ρB,k(t) = µ2ρD,k(t) − µ5ρE,k(t)

ρC,k(t) = µ3ρE,k(t) + µ2(ρBC,k(t) − ρAC,k(t))

ρD,k(t) = µ4ρA,k(t)− µ2ρB,k(t) + µ3(ρCD,k(t) − ρBD,k(t))

ρE,k(t) = µ5ρB,k(t) − µ3ρC,k(t) + µ4(ρDE,k(t) − ρCE,k(t))

(4.12)

In this case, we see that the three first equations from equation set 4.18 has been cut down
to fewer terms, rearranging and gather the gain and loss terms:

ρA,k(t) = µ5ρEA,k(t) − (µ4ρD,k(t) + µ5ρDA,k(t)) (4.13)

ρB,k(t) = µ2ρD,k(t)− µ5ρE,k(t) (4.14)

ρC,k(t) = (µ3ρE,k(t) + µ2(ρBC,k(t)) − µ2ρAC,k(t) (4.15)

ρD,k(t) = (µ4ρA,k(t) + µ3ρCD,k(t)) − (µ2ρB,k(t) + µ3ρBD,k(t)) (4.16)

ρE,k(t) = (µ5ρB,k(t) + µ4ρDE,k(t))− (µ3ρC,k(t) + µ4ρCE,k(t)) (4.17)

From all these equations, we find that the equation of densities describing motion is fol-
lowing the logarithmic pattern. Which is in coherence with results found earlier in [12, 13]
that found the average loop of MC simulations on the random regular graph increases with
InN.

Using the same method as earlier in ”rock-scissor-paper”, we will try to find a depen-
dency between P1 and ρMetal in order to see if we can find a global transition probability
point, simulating, averaging and get:

Figure 4.30: At a given time frame, ρA,k as function of P1, averaging over 450 samples(30 simulations
on each probability), V=100x100 square lattice



We could observe that the global fixed probability P1 does not have so strong impact
on the final outcome for metal at the given time frame. This is underlined by the strong
dependency on the neighboring effect from element D and element E, which is already
demonstrated in figure 4.29.

Observing the dependency of Metal on the lattice size in figure 4.31, we see a similar pat-
tern as shown in ”rock-scissor-paper”, therefore underlining its similar competition nature
and the dependency on the lattice size.

Figure 4.31: Simulation results of critical points of metal simulated on different sizes of square
lattices, 30 samples per lattice, by 10 different probabilities, tend = 1000000

Compared to ”rock-scissor-paper”, we see in figure 4.31 has a higher critical density than
in figure 4.15, this is due to the more complex nature of ”Five elements”, resulting absorbing
states to be more unachievable in real big world. The dependencies on the probability is
eventually less than on the size of the array.

4.2.3 Summary

The study of ”Chinese Five Elements” shows that the this system somehow follows a sim-
ilar pattern as the ”Rock-Scissor-Paper”, but extended to direct competition and direct
cooperation. The competition terms are not the deciding factors any more, as the coop-
eration term could contribute far more effect to the change in critical points for different
elements. At the same time, cooperation terms dependent both on reaction rates expressing
the competition and the nodal degree due to the neighboring effect, the cooperation terms
are dynamical and changes from time to time and from node to node. This underlines
the complex system and behavior in the ”Chinese Five Elements”. With competition and
cooperation striving against each other, the critical points can be achieved in far longer
time than in the ”Rock-Scissor-Paper”, therefore is similar to nature’s long term behavior.



4.3 Five elements and Rock-Paper-Scissor-Lizard-Spock

The best example of five elements to be found in reality is this wonderful game from
the American Television ”Big Bang Theory”. Given it’s based on ”rock-scissor-paper”
mechanism, and only extended with two more different elements. We will try to do some
simulation of this game and compare it with the Chinese version of Five Elements. Basically
the equations of motion will be in the same form, the only thing that differs is the outcome
matrix which give rise to a different result. Renaming the original density functions to:

ρRock,k(t) =
NRock,k(t)

Vk

ρPaper,k(t) =
NPaper,k(t)

Vk

ρScissor,k(t) =
NScissor,k(t)

Vk

ρLizard,k(t) =
NLizard,k(t)

Vk

ρSpock,k(t) =
NSpock,k(t)

Vk

(4.18)

In the case of ”Rock-Paper-Scissor-Lizard-Spock”, there will be no global neighborhood
effect like in the five elements. So the equations of motions is simpler:

∂tρrock,k(t) = −ρrock,k(t) + µ1(ρScissor,k(t) + ρLizard,k(t)) − (µ2ρPaper,k(t) + µ5ρSpock,k(t))

∂tρPaper,k(t) = −ρPaper,k(t) + µ2(ρRock,k(t) + ρSpock,k(t)) − (µ3ρScissor,k(t) + µ4ρLizard,k(t))

∂tρScissor,k(t) = −ρScissor,k(t) + µ3(ρPaper,k(t) + ρLizard,k(t)) − (µ1ρRock,k(t) + µ5ρSpock,k(t))

∂tρLizard,k(t) = −ρLizard,k(t) + µ4(ρPaper,k(t) + ρSpock,k(t))− (µ1ρRock,k(t) + µ3ρScissor,k(t))

∂tρSpock,k(t) = −ρSpock,k(t) + µ5(ρRock,k(t) + ρScissor,k(t)) − (µ2ρScissor,k(t) + µ4ρLizard,k(t))

(4.19)

The general nontrivial solutions are:

ρRock,k(t) = µ1(ρScissor,k(t) + ρLizard,k(t))− (µ2ρPaper,k(t) + µ5ρSpock,k(t))

ρPaper,k(t) = µ2(ρRock,k(t) + ρSpock,k(t)) − (µ3ρScissor,k(t) + µ4ρLizard,k(t))

ρScissor,k(t) = µ3(ρPaper,k(t) + ρLizard,k(t)) − (µ1ρRock,k(t) + µ5ρSpock,k(t))

ρLizard,k(t) = µ4(ρPaper,k(t) + ρSpock,k(t))− (µ1ρRock,k(t) + µ3ρScissor,k(t))

ρSpock,k(t) = µ5(ρRock,k(t) + ρScissor,k(t)) − (µ2ρScissor,k(t) + µ4ρLizard,k(t))

(4.20)

Using equations 4.20, combining the simulation results, we have a basis to describe the
game of ”Rock-Paper-Scissor-Lizard-Spock”.



The critical points can also be obtained by using same analogy from earlier:

¯ρRock,k =
2µ1

µ2 + µ5

¯ρPaper,k =
2µ2

µ3 + µ4

¯ρScissor,k =
2µ3

µ1 + µ5

¯ρLizard,k =
2µ4

µ1 + µ3

¯ρSpock,k =
2µ5

µ2 + µ4

(4.21)

Here we also see that the critical points of ”rock-scissor-paper-lizard-spock”, just like its
original ”rock-scissor-paper”, are independent on node degree k.

Initial simulation of this game gives a similar scenario as the original five elements:

Figure 4.32: Initial Simulation of ”Rock-Paper-Scissor-Lizard-Spock”, V=50x50

Comparing this to figure 4.18, we see that the competition form is very similar, due to
the strong competitiveness in the game.

4.3.1 Non-steady competition

Assuming in the beginning that the by fixing the probability P1, namely the variable µ1, we
will get a similar outcome as in figures 4.21 to 4.28. However, unlike in the five elements, µ1

is not only effecting one element this time, as all the elements in the ”Rock-Paper-Scissor-
Lizard-Spock” have the ability to defeat two of the corresponding elements in the system.



Our work is to identify if the difference in direct competition in this scenario is much
different than the previous neighborhood effect caused by cooperation between elements.

Following the same steps and adjusting P1 stepwise, a round of simulation results is
generated:

Figure 4.33: Simulated distribution of ”rock-paper-scissor-lizard-spock” against time t with P1=0.01,

V=50x50

Figure 4.34: Simulated distribution of ”rock-paper-scissor-lizard-spock” against time t with P1=0.1,
V=50x50



Figure 4.35: Simulated distribution of ”rock-paper-scissor-lizard-spock” against time t with P1=0.2,
V=50x50

Figure 4.36: Simulated distribution of ”rock-paper-scissor-lizard-spock” against time t with P1=0.5,

V=50x50



Figure 4.37: Simulated distribution of ”rock-paper-scissor-lizard-spock” against time t with P1=0.55,
V=50x50

Figure 4.38: Simulated distribution of ”rock-paper-scissor-lizard-spock” against time t with P1=0.6,

V=50x50



Figure 4.39: Simulated distribution of ”rock-paper-scissor-lizard-spock” against time t with P1=0.8,
V=50x50

Figure 4.40: Simulated distribution of ”rock-paper-scissor-lizard-spock” against time t with P1=0.99,

V=50x50

From figures 4.33 to 4.40, we see an obvious difference in the organization behavior
compared to the original five elements. With significant lower global winning probability
P1 for rock to defeat scissor and lizard, we observe that both rock and paper get defeated
pretty quickly when P1 is small. We can look at this intuitively first, we have that:



Rock: no longer breaks scissor nor crushes lizard
Scissor: cuts paper quickly
Paper: covers rock, gets beaten up by double as much as rock
Lizard: eats paper quickly
Spock: smashes scissor, vaporizes rock

This easy intuition tells us that since paper has two enemies which were supposed to be
defeated by rock in order to keep in balance is no longer protected. Therefore when P1 → 0,
paper should have been defeated as the first element type. Without paper, spock loses one
of its enemies, and has more power to defeat rock and causes rock to die out. While
this happened, we still have a three elements game in form as earlier ”rock-scissor-paper”
remaining:

Rock: defeated
Scissor: decapitates lizard
Paper: defeated
Lizard: poisons spock
Spock: smashes scissor

Therefore ”rock-paper-scissor-lizard-spock” is intuitively proven as a direct extension
from the original ”rock-scissor-paper” game and we could observe a steady competition
when rock and paper are defeated.

Consider the equations of motion from , letting µ1 → 0, we get the following equations:

ρRock,k(t) = −(µ2ρPaper,k(t) + µ5ρSpock,k(t))

ρPaper,k(t) = µ2(ρRock,k(t) + ρSpock,k(t)) − (µ3ρScissor,k(t) + µ4ρLizard,k(t))

ρScissor,k(t) = µ3(ρPaper,k(t) + ρLizard,k(t))− µ5ρSpock,k(t)

ρLizard,k(t) = µ4(ρPaper,k(t) + ρSpock,k(t)) − µ3ρScissor,k(t)

ρSpock,k(t) = µ5(ρRock,k(t) + ρScissor,k(t)) − (µ2ρScissor,k(t) + µ4ρLizard,k(t))

(4.22)

Here we see that ρPaper,k(t) and ρSpock,k(t) become:

ρPaper,k(t) = µ2(−µ2ρPaper,k(t) − µ5ρSpock,k(t) + ρSpock,k(t)) − (µ3ρScissor,k(t) + µ4ρLizard,k(t))

ρSpock,k(t) = µ5(−µ2ρPaper,k(t) − µ5ρSpock,k(t) + ρScissor,k(t)) − (µ2ρScissor,k(t) + µ4ρLizard,k(t))

(4.23)

Rearranging and get:

ρPaper,k(t) =
ρSpock,k(µ2 − µ2µ5) − (µ3ρScissor,k + µ4ρLizard,k)

1 + µ2
2

ρSpock,k(t) =
ρScissor,k(µ5 − µ2) − µ5µ2ρPaper,k − µ4ρLizard,k

1 + µ2
5

(4.24)



Assuming that the distribution of the rest three elements will remain approximately stable
and equally distributed. Getting common denominator and we easily observe that equation
4.23 goes to negative, since the time derivative of ρRock,kis negative and with Scissor and
Lizard both eating up paper and at the same time Lizard helps to hold Scissor stable by
defeating Spock.

Due to the higher order of reaction rates shown in equations 4.24, we see that the first
term converges to zero much faster than the later terms, thus causing Paper to be negative
very soon, therefore eliminating paper caused by the elimination of rock.

At last, we will look at adjusting P1 and ρRock should have some dependencies with each
other, simulating, averaging and get:

Figure 4.41: At a given time frame, ρRock,k as function of P1, averaging over 450 samples(30

simulations on each probability), V=50x50 square lattice

4.3.2 Going back to three elements

Continuing from the last subsection and we will carry on to adjust one more winning
probability, based on the already adjusted P1 to see if we could get similar behavior just as
in the original ”Rock-Scissor-Paper” game. Our intuition tells us that a different scenario
is expected. Choosing to adjust P3, the probability for Scissor to defeat paper and lizard.
Considering the boundary conditions, when P1 → 0, we will have a 3 elements’ system
after a short while. The following simulation results are generated for different P3:



Figure 4.42: Simulated distribution of ”rock-paper-scissor-lizard-spock” against time t with P1 → 0,
P3=0.01, V=50x50

Figure 4.43: Simulated distribution of ”rock-paper-scissor-lizard-spock” against time t with P1 → 0,

P3=0.1, V=50x50



Figure 4.44: Simulated distribution of ”rock-paper-scissor-lizard-spock” against time t with P1 → 0,
P3=0.2, V=50x50

Figure 4.45: Simulated distribution of ”rock-paper-scissor-lizard-spock” against time t with P1 → 0,

P3=0.4, V=50x50



Figure 4.46: Simulated distribution of ”rock-paper-scissor-lizard-spock” against time t with P1 → 0,
P3=0.5, V=50x50

Figure 4.47: Simulated distribution of ”rock-paper-scissor-lizard-spock” against time t with P1 → 0,

P3=0.6, V=50x50



Figure 4.48: Simulated distribution of ”rock-paper-scissor-lizard-spock” against time t with P1 → 0,
P3=0.95, V=50x50

From the figures 4.42 to 4.44, we see clearly a match in behavior compared to figures
4.3 to 4.4, we see that when keeping the winning probability of a certain element low, at
a level of less than 0.2, the element itself turn out to be the winner in a three elements
competition. In the original ”Rock-Scissor-Paper” the Rock is the case, and in the extended
”Rock-Paper-Scissor-Lizard-Spock” Scissor is the winner. At the same time we also observe
that Scissor still wins quickly at probability around 0.2, which in previous ”Rock-Scissor-
Paper” Rock has stopped the winning behavior in the given time frame. This is caused by
the fixed probability P1, which delays the P3 to win as quick as what happened to rock
before in the original three elements game.

4.3.3 Summary

In this section, we have proved that ”Rock-Paper-Scissor-Lizard-Spock” is a game in the
form of five elements, but is more a direct extended version of ”Rock-Scissor-Paper” due to
the winning behavior. While following the same pattern as the five elements at steady state,
if one of the elements end up being defeated, it will drag one corresponding to be the follower
so a new steady state consisting of three remaining elements would keep the game steady in
relative short time frame. Unlike the ”Chinese five elements”, ”Rock-Paper-Scissor-Lizard-
Spock” is a direct competition game, this means that the neighborhood support does not
exist, while competition is the main factor that decides the self organization behavior.

4.4 Network impact and extended mean field analysis

Theoretically we have four stationary states exists for ”rock-scissor-paper” and six station-
ary states exists for the five elements. On the macroscopic view, the corrosion rate and



fixed possibility is deciding how well the different elements are competing with each other.
On the microscopic view, we have to extend it into a network problem by considering the
inner game and what happens at each node.

With the absorbing states (where Ni(tend) = Ntotal = V for i=A,B,C,D,E) and for the
corresponding different elements, and when all elements are equally distributed, 1/3 for
”rock-scissor-paper” and 1/5 for the five elements. In order to understand and use the
network principle into the game system, we will apply the node probability function and
pair approximation.

Pair approximation is inspired by the nature of evolutionary Game theory where one
could closely simulate the hierarchy of link impact from node to node that would effect the
final outcome, for the ”rock-scissor-paper” game, there have been done investigation of three
cyclically dominated strategies on a random graph[10]. This model exhibits transitions
when varying the parameters of payoff matrix and it is underlined that the neighborhood
strategies depends on neighborhood. Let’s denote different node with specific number, kj,
as the specific node.3

In five elements, the definition of neighborhood is even more important than to the
”rock-scissor-paper” since neighbors for the resisting element could contribute to help the
invasion from any enemy elements to a particular one. Let’s for example denote a couple
of nodes as k1 and k2, thus the probability p2(k1, k2)

4 defines the probability of finding
two nearest neighbor(linked) nodes. In this case, the derivation of motion for all quantities
have to take contribution of all the elementary invasion processes into account, details can
be found from[11]. Theoretically, we would assume that although the equation of motion
involve the number of neighbors, the pair approximation can not distinguish the difference
between different structures of lattices. For large N, the local structure will become tree-
like due to strong heritage system brought by the pair approximation. Another theory that
contradicts this is the original theory of network, which says that the degree of network is
the dominating contribution to the outcome, as in [14] have shown, the reaction kernel Γ
which is degree dependent, and contributes to the local variations.

Although we have mentioned earlier that the pair approximation is not capable of de-
scribing the local self-organizing pattern due to cyclic invasions. This could and should
be eliminated by choosing larger clusters, meaning that not only considering from the in-
dividual links, but seeing more links gathered together in a group, and then do cluster
expansion. This is an advanced way of studying collective behavior. In this way we can
determine all the possible configuration possibilities at each cluster, the simplest cluster
one could choose is a four link approximation with probability p4(k1, k2, k3, k4) on a 2x2
cluster assumed to be translation invariant on our square lattice for competition.

let’s first take a look at a minimized square network:

3this is to not interfere with the definition of the node degree k
4Note that all local probabilities are addressed in small letters, while global probabilities are addressed

as capital letters



Figure 4.49: A simple example of a square lattice with 9 nodes, considering 4 nodes forming clusters

Here if an invasion from k4 to k5 would cause some effects to all the four four-nodes
configuration probabilities involved. Knowing the conservation of probability at each node.
Let’s use this notation for different configuration: Defining the node k9 as the end node,
and considering it in its own cluster, the local node probability at k9 following the spatial
effect caused by the invasion from k4 to k5 can be defined as:

p9(k1, ..., k9) =
p4(k1, k2, k4, k5)p4(k2, k3, k5, k6)

p2(k2, k5)p2(k4, k5)
·
p4(k4, k5, k7, k8)p4(k5, k6, k8, k9)

p2(k5, k6)p2(k5, k8)
p1(k5)

(4.25)
And the configuration probabilities is defined as:

p1(k1) =
∑

k2

p2(k1, k2) =
∑

k2

p2(k2, k1) (4.26)

Based on our initial condition of undirected links. And for a 2-nodes configuration:

p2(k1, k2) =
∑

k1,k2

p4(k1, k2, k3, k4) =
∑

k3,k4

p4(k3, k4, k1, k2) =
∑

k3,k4

p4(k1, k3, k2, k4) =
∑

k3,k4

p4(k3, k1, k4, k2)

(4.27)
Considering the probability as master equation, we could describe the cluster effect for the



time derivative of local probabilityp4(k1, k2, k3, k4) as:

∂tp4(k1, k2, k3, k4, t) = −pc

∑

kx

p4(k1, ..., k4)p1(kx)(
∑

j=1,2,3,4

Γ(kx, kj)

+pc

∑

kx

p4(kx, k2, k3, k4)p1(k1)Γ(k1, kx)

+pc

∑

kx

p4(k1, kx, k3, k4)p2(k2)Γ(k2, kx)

+pc

∑

kx

p4(k1, k2, kx, k4)p3(k3)Γ(k3, kx)

+pc

∑

kx

p4(k1, k2, k3, kx)p4(k4)Γ(k4, kx)

−
1 − pc

4

∑

k5,...,k9

p9(k1, ..., k9)Γ(k2, k4)

−
1 − pc

4

∑

k5,...,k9

p9(k1, ..., k9)Γ(k1, k3)

−
1 − pc

4

∑

k5,...,k9

p9(k1, ..., k9)Γ(k6, k2)

−
1 − pc

4

∑

k5,...,k9

p9(k1, ..., k9)Γ(k6, k1)

+
1 − pc

4

∑

kx,k5,...,k9

p9(k1, k2, k5, k3, kx, k6, k7, k8, k9)δ(k2, k4)Γ(k2, kx)

+
1 − pc

4

∑

kx,k5,...,k9

p9(k5, k1, k2, k6, kx, k4, k7, k8, k9)δ(k1, k3)Γ(k1, kx)

+
1 − pc

4

∑

kx,k5,...,k9

p9(k5, k6, k7, k1, kx, k8, k3, k4, k9)δ(k6, k2)Γ(k6, kx)

+
1 − pc

4

∑

kx,k5,...,k9

p9(k5, k6, k7, k8, kx, k2, k9, k3, k4)δ(k6, k1)Γ(k6, kx)

+...

(4.28)

Here δ(kx, ky) denotes the Kronecker delta and Γ(kx, ky) is the constraint of local spatial
effect which is expressed as:

Γ(kx, ky) =

{

1 if ky − 1 = kxmod3
0 otherwise

The terms proportional to pc describe the contributions coming from other invasions from
arbitrary distance while the contributions from one of the four nearest-neighbor nodes
are proportional to 1−pc

4
. The missing terms in equation 4.28 is quite straightforward by

using the same hierarchy. Using these theoretical data and only keep the nearest cluster



spatial effect, we can compare the global corrosion probability with the local spatial nodal
probability and see if the local terms bring a significant effect to the game as a whole, cause
changes to the self organization pattern.

Solving the master equation above for finding a stationary probability for one single
node, we set the left hand side equal to 0 and get:

p(kx) =
∑

kx

4
∑

i=1

p4(kx, k2, k3, k4)pi(ki)Γ(ki, kx)

−
1 − pc

4pc

∑

k5,...,k9

∑

i,j,i6=j

p9(k1, ..k9)Γ(ki, kj)

+
1 − pc

4pc

∑

kx,k5,...,k9

∑

i,j=x,i6=j

p9(k1, ..k9)δ(ki, kj)Γ(ki, kx)

(4.29)

The first part of equation 4.29 are simple the gain from the first four nearest neighbors
coming into one point, the second term denotes the term that loses to other 5 nodes, while
the last term denotes the gain caused by other neighbors from the rest of the 5 nodes.

Seeing probability of different node taking contributions from all neighboring nodes in
a nine-nodal cluster.

At this point, we need to introduce the node degree k into the system. The classical way
to express the nodal probability impact is:

µi =
∑

k′

p(k
′)ρi,k′(t) (4.30)

where i in the equation above is for different element, and k’ denotes a virtual node that
absorbs all the contributions for each cluster. Here we have a reaction rate that takes each
node contribution into account and make it to a global reaction rate for different elements
i.

Applying this reaction rate to the ”rock-scissor-paper” and the ”Chinese Five Elements”,
we could observe some similar behaviors but with different outcome. On the figure 4.50, we
have the outcome of distribution of ”Rock-Scissor-Paper” after applying the new reaction
rates following the network impact, we could observe that due to this pure competition
state, the system follows the same pattern as before but with high fluctuation between ele-
ments, on the figure 4.51, we have the outcome of distribution of ”Chinese Five Elements”,
where we see that the network impact causing more fluctuation and intense competition
between elements than previously shown in figures 4.21 to 4.28.



Figure 4.50: ”Rock-Scissor-Paper” Figure 4.51: ”Chinese Five Elements”

”Rock-Scissor-Paper” simulated on V=25x25, and ”Chinese Five Elements” simulated on V=100x100,
tend = 1000000

Using the simulation results, we could observe in figures 4.52 that the critical points
for rock and metal in their respective games have dropped lower than previously. Local
probabilities contributing to reaction rate are changing the system more harmoniously
rather than global competition. Due to the cluster effect, we have local probabilities no
longer concentrated with individual elements, but rather in a 9-elements’ cluster as a sub-
group probability, causing lower critical densities for rock and metal in our simulation.

Figure 4.52: Simulation results of critical points of metal simulated on different sizes of square
lattices, 30 samples per lattice, by 2 different elements from different games, tend = 1000000, with .

pc=0.5, Prock = 0.1 and Pmetal = 0.01



With lower critical point, this means that the competition hardness is not really causing
big global changes. This is comparable to real life happenings, where internal battle in the
company might cause disharmony, but the real threat would be the challenge and battle
from outside.

4.4.1 Summary

We could observe some changes after applying the network impact on the two different
games, while the game patterns stay the same, the intensity in the games have increased
somehow. This phenomena could be explained as the quick nodal probability exchanges
between in each round, that causes a variations to reaction rates, thus in this system,
we could less easily experience a sudden breakdown compared to what happened earlier
by considering the global winning probabilities in order to fix the reaction rates. Here
we rather have some change locally, meaning no longer a everyone fights everyone game
system, no longer a certain reaction is destined to fight all of its weaker or stronger enemies.
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Chapter 5

Conclusion

In this thesis, we have provided a classical way to simulate the rock-scissor-paper game. We
found its use and similarity with real life E.coli bacteria survival behavior. This included
the study of rock-scissor-paper phenomena in the bacteria nature, building the simulation
model and generation of results for finding characteristic behaviors of the three elements
in a theoretical way. By adjusting the corrosion probability in different cases successfully
proved some evolutionary game properties of the system, and giving an interval for possible
phase transitions. The findings are in accordance with major findings and simulated results
are in similar pattern as researchers have done previously. We have found that the stability
of species would occur under a certain corrosion probability in a range of 0.1 to 0.3 for
either one or two fixed probabilities. This stable state probability is previously found by
other ecologists in related study of diffusion.

In order to understand a more complicated system, The Ancient Chinese Five Elements,
which is an extended variation of rock-scissor-paper, an extended and improved model has
been built in order to find some characteristic behaviors. A brand new analytical expression
is formulated to give an insight in what’s happening in the game. Five Elements, constitutes
of both a virtual score and a real score in the outcome matrix, is an unusual game. They are
formed, indirectly, by different circles of three varying system which have almost the same
property as the rock-scissor-paper. The complicated system in the Five Elements make
it very difficult to adjust all the combinations of fixed possibility, therefore, only some
single fixed possibility has been adjusted in order to extend it to a general understanding
of stability in the system.

The Five Elements, being a network of up to four nodes with more varying elements, is
more unstable, compared to the original rock-scissor-paper. The instability is caused by,
more or less, its virtual links, which makes the generation cycle. An understanding of this
phenomena is still not present in physics, as the principle of Five Elements is from an ancient
mythology. We could observe from our results that adjusting global corrosion probabilities
did not affect that much to the game as it did in the Rock-Scissor-Paper, meaning that
the randomness in the Five Elements is very high that exceed the scale for the game to
be completely controlled. Cooperation causes competition to be more random

¯
. At some

scale, at some scale, fixing one of the corrosion probabilities does adjust the final outcome
in the given relative short time frame small world simulation, but this case could easily be
neglected in real world.

A real example of Five elements have been studied in this thesis, that is ”Rock-Paper-
Scissor-Lizard-Spock”, which originated from the famous American TV ”Big Bang Theory”.
We found combination of both five elements behaviors and three elements behavior in this
funny game. This game is a sole extension from the original ”Rock-Scissor-Paper”, but
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added with two more elements which causes it to be a great candidate to express the
five elements behavior. Through simulations we found that on the steady state, the game
behaves just like the ”Chinese Five Elements”, but when fixing the one of the corrosion
probabilities, the game tends to fall back to its original ”Rock-Scissor-Paper” form, which
is caused by its cyclic competition nature that directly extended from the three elements
game. Transitional points also lie in close range as for ”Rock-Scissor-Paper”.

A trial of considering the game as a network by adding cluster effect has been simulated,
due to the strong reactions rates that determine the game outcome, the local nodal proba-
bilities’ effect on the game as a whole could be neglected due to its high orders. We could
also conclude by asserting that in a real reaction-diffusion system, strong reaction will be
the domination force in deciding the game nature.
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Chapter 6

Future Work

The most challenging part in this thesis work is that no one has ever studied the Chinese
Five elements before, due to its similarities to ”Rock-Scissor-Paper”, we managed to work
out a simple model using classic mean field theory to explain this system better. This
game was not quite considered as a game for just a while ago, until the introduction of a
real example was shown in public as late as in January 2013. The ”Chinese Five elements”
remain a big myth in Chinese culture and folklore, being an important part of Taoism, but
really difficult to connect with science. This way of explaining nature is very mythic to the
Western, when a lot of Chinese people consider this as the reason for nature’s development
and the balance of the force in Universe, this game need to be studied more, not only by
Chinese scientists, but also by Western who have a more neutral viewpoint.

The biggest constraint in this work was caused by the computer simulation limitation,
due to the limited memory, simulation time could not be looked into a larger scale, meaning
we could only focus on the small world effect in a relative short time frame. This limitation
caused strong difficulty for simulating the last part where we tried to apply local cluster
effect from nodal probabilities. With a better memory, more data could be generated and
simulation time could also be extended.
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