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Abstract

This thesis presents experimental work on the following topics in Mueller ma-

trix polarimetry; instrument design and implementation, and selected appli-

cations of liquid crystal based Mueller matrix polarimeters (MMP) and spec-

troscopic Mueller matrix ellipsometry (MME).

In particular MMPs were designed using ferroelectric liquid crystals (FLC)

and liquid crystal variable retarders (LCVR) as polarization changing com-

ponents. The polarimeters were optimized by using genetic algorithms with

the system matrix condition numbers as figures of merit. A calibration rou-

tine was adapted to calibrate an overdetermined MMP based on LCVRs. The

temporal response of the FLC based MMP was studied in order to investigate

its potential as a high speed MMP.

The FLC based MMP was implemented as an imaging MMP. Applications

studied with the imaging MMP were strain mapping in multi crystalline silicon,

directional mapping of collagen fibers, polarizing properties of an anisotropic

plasmonic polarizer and nematic textures in colloidal dispersions of synthetic

clay.

Spectroscopic MME was used to study two types of nanopatterned plasmonic

samples. Optical and structural properties of biaxial in plane gold nanowires

were found through parametrization of the dielectric tensor of the layer. Strong

localized surface plasmon resonances (LSPR) were found in the plane normal

to the wires and in the plane along the wires. A small resonance was also

found in the out of plane direction. The ellipsometric modelling allowed for

determining parameters of the local geometry. Anisotropic Cu nanoparticles

embedded in mixed oxide (Cu2O and SiO2) nanopillars were also studied using

MME. Cu nanoparticles were localized as discs on the top, as droplets inside

and as needles on the side of the nanopillars. MME allowed for detecting

the splitting of the modes in wavelength and in p− and s−polarized modes

originating from the nanoparticle shapes.

Finally, measurement and modeling of GaSb nanopillars using spectroscopic

MME allowed for the determination of small tilt angles of only a few degrees.
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1. Introduction

Polarization is one of the fundamental properties of light. Most natural light

sources emit light with a polarization which is not well defined. The light is

then said to be unpolarized. Interactions with matter may change the polar-

ization state. An every day example is the polarization of light upon reflection

from a smooth surface. This effect can be used by e.g. sports fishermen and

car drivers to block reflections from water surfaces using polarization filtering

sunglasses. The same principal (the change of polarization by reflection) is

used in the material characterization technique called ellipsometry.

Ellipsometry is a polarimetric technique, where polarimetry is the general

method to measure the polarization state of light. Because the reflected po-

larization state depends on the refractive index of the reflecting material, el-

lipsometry has become the key technology to measure refractive indices. A

modern ellipsometer can measure the polarization properties of the material

in a range of wavelengths and incidence angles. By taking advantage of in-

terference, which is an effect that can be observed as color variations on a

thin film e.g. after a small oil spill on water, refractive indices and film thick-

nesses can be measured very precisely. The latter has made ellipsometry a key

non-invasive technology in the semiconductor industry’s chase after Moore’s

law [18].

With standard ellipsometry it is assumed that the materials under investiga-

tion are smooth and isotropic. If they are not isotropic, generalized or Mueller

matrix ellipsometry must be employed [19, 20]. Some materials have intrinsic

anisotropic properties originating from an anisotropic crystal lattice. Other

originally isotropic materials can have an anisotropy induced by e.g. strain, or

the local nanostructure. Nanostructures are objects of size ranging from one

to a few hundred nanometers, i.e. larger than an atom, but smaller than what

can be resolved optically. Nanoscience has received an increasing interest [21],

mainly due to the possibility of tailoring properties which has been further

enhanced through the development of production and characterization tech-

nology. In particular, the self-assembled nanostructures are promising due to
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1. Introduction

their cost efficiency and the potential for manufacturing large surface areas.

Advanced modeling allows generalized and Mueller matrix ellipsometry to be

used to determine material compositions, dimension and shape of anisotropic

nanostructures [22–25]. Ellipsometry is widely used as an in-situ characteri-

zation method for thin film and nano structure growth [22,26,27].

A more recent application of generalized and Mueller matrix ellipsometry

is the characterization of plasmonic nanomaterials. Plasmons are collective

oscillations of free electrons, which can, in the optical regime, be exited as

propagating waves on the surface of noble metals such as gold and silver [28].

In nanostructured plasmonic materials the plasmons are localized. At the

surface plasmon resonance (SPR) the electromagnetic field is enhanced and

confined close to the surface making plasmonic material useful in non-linear

optical technology [29,30] and sensor applications [31]. Commonly the plasmon

resonance frequency is detected through enhanced absorption at the plasmon

resonance. The absorption is, however, polarization dependent [28], making

ellipsometry highly sensitive for the latter [32]. Designing novel plasmonic

materials has received much recent attention, in particular due to the proven

increased photon absorption and thus efficiency of photovoltaic devices covered

by a plasmonic film [33]. Furthermore, anisotropic plasmonic materials [34,35]

are metamaterial candidates for anomalous refractive materials [36, 37].

In biophysical characterization, optical methods have become important.

But, even though many biological samples have typical polarization signa-

tures, polarization sensitive characterization methods are not commonly ap-

plied. On the research level it has been shown that polarimetry and Mueller

matrix imaging in particular can advantageously be employed as an additional

tool to diagnose cancerous tissue and fibrosis [38–41]. Polarimetry can in addi-

tion be used to characterize other biological materials, whereas in this thesis,

collagen fiber meshworks have been studied by the imaging Mueller matrix

polarimeter. In remote sensing applications, the polarization properties of bi-

ological materials compared to others can be used for target detection [42,43].

As most sources of circular light are biological [44], one of the more peculiar

applications in remote sensing is the search for extraterrestrial life by looking

for circular polarized light from distant planets [45].

Many everyday technological progresses are based on polarimetry, from liq-

uid crystal displays (LCD) and 3D cinema, to our current capacity of electronic

semiconductor devices. Taking some steps back in time, the Vikings used po-

larimetry, when they on cloudy days navigated on the sea, using their bire-
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fringent calcite “sólarsteinn” (sun stone) to locate the sun [46, 47]. A glimpse

into the future of digital security, information might be secured by quantum

cryptography based on polarized light [48].

This thesis contains 13 papers. The papers describe methods, results and

conclusions obtained in the thesis. This introduction to the papers are orga-

nized in five chapters. Chapter 2 gives a short introduction to how polarized

light can be described by the Stokes vector, and how the change of the polariza-

tion state can be described by the Mueller matrix. Further, selected methods

of analysing the Mueller matrix are described. Polarimetry, the measurement

of the Mueller matrix and the development of polarimeters are presented in

Chapter 3. Here the imaging Mueller matrix polarimeter is also explained, and

an overview of results are given. In Chapter 4 the formalism for using Mueller

matrix polarimeters in reflection, in particular spectroscopic Mueller matrix

ellipsometry, is described. A brief overview of the results are also given here.

Chapter 5 contains conclusions and an outlook.
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2. Background

In this chapter an introduction to the notation for polarized light and its

interaction with matter is provided. Furthermore, an introduction to methods

for analyzing the Mueller matrix is presented.

2.1. Polarized light and the Stokes-Mueller

calculus

Polarization is a fundamental property of transverse waves. It describes their

specific orientation in space as the wave propagates. Light, and monochromatic

electromagnetic plane waves in general, are commonly expressed in a Cartesian

coordinate system as a time dependent harmonic electric field. The wave is

propagating in the ẑ direction and is expressed by a superposition of electric

field oscillating in the x̂ and ŷ direction

�E(z, t) = �
{
E0xe

i(ωt−2πz/λ+δx)
}
x̂+ �

{
E0ye

i(ωt−2πz/λ+δy)
}
ŷ, (2.1)

where λ, ω and δ are the wavelength, angular frequency and the phase shifts

respectively. Here the sign convention of Hauge [49] is used. The equation

above can be rewritten as

�E = �
{[

E0xe
iδx

E0ye
iδy

]
· ei(ωt−2πz/λ)

}
. (2.2)

The polarization state of the plane wave is in general determined by the field

amplitudes E0x and E0y and the relative phase difference δ = (δy−δx) between

the two components. The polarization can thus be expressed using the Jones

vector

�J =

[
Ex

Ey

]
=

[
E0xe

iδx

E0ye
iδy

]
. (2.3)
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2. Background

The change of the polarization state upon interaction, e.g. reflection or trans-

mission, can then in an elegant manner be expressed by a Jones transfer matrix

�J out = J �J in, (2.4)[
Ex

Ey

]out
=

[
a b

c d

][
Ex

Ey

]in
. (2.5)

Here a, b, c and d are complex transmission or reflection coefficients and trans-

lates linear interactions of coherent light.

In many practical cases light is not a plane wave, it may have a finite band-

width (Δλ and Δω) and time dependent electric field amplitudes and phases

�E = �
{[

E0x(t)e
iδx(t)

E0y(t)e
iδy(t)

]
· ei(Δωt−2πz/Δλ)

}
. (2.6)

In these cases light is said to be quasi-monochromatic and the Jones vector

is time dependent. A practical way to deal with the latter complexity is the

Mueller-Stokes formalism, where the polarization state is defined by the dif-

ference in intensity of orthogonal field components

�S =

⎡
⎢⎢⎣

s1
s2
s3
s4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Ix + Iy
Ix − Iy

I+45◦ − I−45◦
IR − IL

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

〈
E0x(t)

2
〉
+

〈
E0y(t)

2
〉〈

E0x(t)
2
〉− 〈

E0y(t)
2
〉

2 〈E0x(t)E0y(t) cos δ(t)〉
2 〈E0x(t)E0y(t) sin δ(t)〉

⎤
⎥⎥⎦ . (2.7)

Here 〈 〉 denotes time-averages, meaning that s1 is the total intensity, s2, s3,

s4 are the difference between the intensity of linear x- and y-polarized light,

light linearly polarized +45◦ and −45◦ with respect to the x-axis, and right

and left handed circular polarized light, respectively.

Now the degree of polarization (DOP) can be defined as the ratio of the

length of the polarized intensity vector [s2, s3, s4]
T to the total intensity,

DOP =

√
s22 + s23 + s24

s1
. (2.8)

A DOP equal to one means that the the light is totally polarized, while a DOP

equal to zero means that the light is unpolarized.

A linear transformation (reflection/transmission) of a Stokes vector can be
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2.1. Polarized light and the Stokes-Mueller calculus

expressed using a Mueller matrix

�Sout = M · �S in, (2.9)⎡
⎢⎢⎣

s1
s2
s3
s4

⎤
⎥⎥⎦
out

=

⎡
⎢⎢⎣

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎤
⎥⎥⎦
⎡
⎢⎢⎣

s1
s2
s3
s4

⎤
⎥⎥⎦
in

. (2.10)

Hence, a cascade of N separate interactions can be expressed by multiplication

the individual Mueller matrices to a system Mueller Matrix

Msys. = MNMN−1 . . .M1, (2.11)

where M1 is the first interaction.

An important property of a Mueller matrix is the depolarization properties.

There exist several definitions of depolarization of a Mueller matrix, in this

thesis the depolarization index from Gil and Bernabeu [50] has been used

Pd =

√∑
i,j m

2
ij −m2

11

3m2
11

{
1, non-depolarizing

0, completely depolarizing
(2.12)

Another name for a non-depolarizing Mueller matrix is a Mueller-Jones ma-

trix (i.e. a Mueller matrix that can be expressed as a Jones matrix). A Mueller-

Jones matrix can be calculated from a Jones matrix by

M = A (J⊗ J∗)A−1, (2.13)

where,

A =

⎡
⎢⎢⎣

1 0 0 1

1 0 0 −1
0 1 1 0

0 i −i 0

⎤
⎥⎥⎦ , (2.14)

and ∗ denotes the complex conjugate of the matrix.

A third mathematical description of polarized light, which will not be dis-

cussed any further, is the density matrix formalism [51] where the polarization

7



2. Background

state is expressed in terms of the correlation of the electric field components.

JM =

[ 〈Ex(t)E
∗
x(t)〉

〈
Ex(t)E

∗
y(t)

〉
〈Ey(t)E

∗
x(t)〉

〈
Ey(t)E

∗
y(t)

〉 ]
. (2.15)

The density matrix and the Stokes vector contains the same information, thus

both may be used to describe partially polarized light.

2.2. Analyzing the Mueller matrix

Decomposition methods are widely used for the retrieval of relevant quanti-

ties in a generally complicated Mueller matrix. Two types of decomposition

regimes are here considered, product decompositions and the differential de-

composition.

Depolarization is an important measurable quantity in Mueller matrices.

It is commonly quantified using the depolarization index of Gil and Bern-

abeu [50], Equation (2.12). Other definitions of the depolarizing properties of

a Mueller matrix are e.g. Chipman’s definition of average degree of polariza-

tion [52] and the Mueller matrix entropy [53].

Some properties can be directly extracted without any assumptions and de-

compositions. These are diattenuation, polarizance, transmittance/reflectance,

and as mentioned previously, depolarization. A shorthand notation for the

Mueller matrix is

M = m11

[
1 �DT

�P m

]
, (2.16)

where m is a 3× 3 sub-matrix, �D is the diattenuation vector defined as

�D =

⎡
⎣ DH

D45

DC

⎤
⎦ =

1

m11

⎡
⎣ m12

m13

m14

⎤
⎦ , (2.17)

and �P is the polarizance vector

�P =

⎡
⎣ PH

P45

PC

⎤
⎦ =

1

m11

⎡
⎣ m21

m31

m41

⎤
⎦ . (2.18)
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2.2. Analyzing the Mueller matrix

The diattenuation describes the polarization dependent dichroism of the mate-

rial, while the polarizance describes the conversion from unpolarized incident

light to the resulting Stokes vector. The transmittance/reflectance comes di-

rectly from m11.

2.2.1. Product decompositions

Product decomposition, also called polar decomposition, is a class of Mueller

matrix decomposition methods where the Mueller matrix is separated into

basic depolarization, retardance and diattenuation Mueller matrices. It is as-

sumed that the polarizing effects occur in a specific order. There are currently

three types of product decompositions, the so called forward, reverse and sym-

metric decomposition.

The forward polar decomposition for Mueller matrices, originally proposed

by Lu and Chipman [54], decomposes the Mueller matrix assuming that the

diattenuating effect occurs before the depolarization, resulting in the following

equations

M = MΔMRMD, (2.19a)

M = MΔM
′
DMR, (2.19b)

M = MRM
′
ΔMD. (2.19c)

MΔ, MR and MD are the Mueller matrices of a pure depolarizer, retarder

and diattenuater respectively. Morio and Goudail [55] showed that they were

all equivalent, but Equation (2.19a) was the originally solved problem and is

chosen as the normal form.

The reverse product decomposition proposed by Ossikovski et al. [56] is

considering the case where the depolarization is happening before the diatten-

uation

M = MDMRMΔ, (2.20a)

M = MRMDM
′′
Δ, (2.20b)

M = MDM
′′
ΔMR. (2.20c)

The normal form is here Equation (2.20a).

The symmetric decomposition, proposed by Ossikovski [57], is the last form

of the product decomposition. It treats the case where a diagonal depolarizing

9



2. Background

Mueller matrix is arranged between two pairs of retarders and diattenuators

M = MD2MR2MΔdM
T
R1MD1. (2.21)

The symmetric decomposition requires that M is a so called Stokes diagonal-

izable matrix [58, 59], which means that MΔ must be a diagonal depolarizer.

As the symmetric decomposition was not applied in this work its detailed

description is omitted from the thesis.

Forward polar decomposition

The normal form of the forward decomposition (Equation (2.19a)) is solved by

first defining the general matrices of a depolarizer, a retarder and a diattenu-

ator

MΔ =

[
1 �0T

�PΔ mΔ

]
,MR =

[
1 �0T

�0 mR

]
,MD =

[
1 �DT

�D mD

]
. (2.22)

Here mΔ, mR and mD are 3 × 3 sub matrices, �0 is a three element vector of

zeros, �PΔ is defined as the polarizing properties of the depolarizer, and �D is

the diattenuation vector of Equation (2.17).

The sub matrix of the diattenuator can be found by considering the total

diattenuation and the unity vector D̂ = �D/| �D| as

mD =

√
1− | �D|2I+

(
1−

√
1− | �D|2

)
D̂D̂T , (2.23)

here I is the 3 × 3 identity matrix. The diattenuation can be removed from

the original matrix by multiplying by the inverse of MD

M′ = MM−1
D = MΔMR =

[
1 �0T

�PΔ mΔmR

]
=

[
1 �0T

�PΔ m′

]
, (2.24)

resulting in the polarizance vector of the depolarization matrix

�PΔ =
�P −m �D

1− �D2
. (2.25)

Now, the problem is reduced to decompose the 3 × 3 matrix m′ = mΔmR.
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2.2. Analyzing the Mueller matrix

Because mΔ is diagonal and the eigenvalues of m′(m′)T are λ1, λ2 and λ3, the

eigenvalues of mΔ are
√
λ1,

√
λ2 and

√
λ3 [54]. The depolarizing sub-matrix

can now be constructed as [54]

mΔ = ±
{
m′Tm′ +

(√
λ1λ2 +

√
λ2λ3 +

√
λ3λ1

)
I
}−1

×
{(√

λ1 +
√

λ2 +
√

λ3

)
m′Tm′ +

√
λ1λ2λ3I

}
. (2.26)

The retardance matrix is now found as

MR = M−1
Δ M′. (2.27)

The total retardance R can be found by

R = arccos

(
Tr(MR)

2
− 1

)
, (2.28)

and a retardance vector separating linear retardance and optical rotation can

be constructed as

�R =

⎡
⎣ RH

R45

RC

⎤
⎦ =

⎡
⎣ r1

r2
r3

⎤
⎦ , ri =

R

2 sinR

4∑
j,k=1

εijk[mR]jk, (2.29)

where εijk is the Levi-Civita permutation symbol. By following Manhas et

al. [60], the retardance Mueller matrix can be written as the product of a

rotated linear retardance Mueller matrix MLR and an optical rotation Mueller
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2. Background

matrix MOR

MR = MLR(δ, θ)MOR(α) =⎡
⎢⎢⎣

1 0 0 0

0 cos2 2θ + sin2 2θ cos δ (1− cos δ) cos 2θ sin 2θ − sin 2θ sin δ

0 (1− cos δ) cos 2θ sin 2θ sin2 2θ cos 2θ sin δ

0 sin 2θ sin δ cos 2θ sin δ cos δ

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

1 0 0 0

0 cos(2α) sin(2α) 0

0 − sin(2α) cos(2α) 0

0 0 0 1

⎤
⎥⎥⎦ . (2.30)

Applying Equation (2.28), the total retardance can be found in terms of the

linear retardance δ and optical rotation α

R = arccos
{
2 cos2 α cos2(δ/2)− 1

}
. (2.31)

If the square of RC is written out

R2
C =

sin2 α cos2(δ/2)

1− cos2 α cos2(δ/2)
, (2.32)

the linear retardance can be calculated as

δ = 2arccos

√
R2
C (1− cos2(R/2)) + cos2(R/2), (2.33)

and the optical rotation as

α =
1

2
arcsin

2RC sinR

1 + cos(δ)
. (2.34)

Finally the orientation of the fast axis of the linear retarder can be calculated

by the relation between RH and R45

θ =
1

2
arctan

R45

RH
, θ ∈ [0◦, 180◦] . (2.35)
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2.2. Analyzing the Mueller matrix

Reverse polar decomposition

The reverse decomposition, with its normal form in Equation (2.20a), sug-

gested by Ossikovski et al. [56] follows somewhat the same procedure as for

the forward decomposition. The important difference is that the Mueller ma-

trix of the depolarizerMΔ and diattenuator in Equation (2.22) must be slightly

modified to a reverse version

MΔr =

[
1 �DT

Δr
�0 mΔr

]
, MD =

[
1 �P T

�P mP

]
. (2.36)

The depolarizer is now having a diattenuating form, while the diattenuator

matrix is constructed by the polarizance vector (Equation (2.18)) of the orig-

inal Mueller matrix and a sub-matrix mP. Following the procedure from the

forward decomposition, M′ = M−1
D M = MRMΔr, the depolarizing diattenu-

ation vector is

�DΔr =
�D −m�P

1− �P 2
. (2.37)

The diagonal sub-depolarizing matrix mΔr can now be calculated using Equa-

tion (2.26).

As shown in [56], the reverse decomposition can be solved by applying the

forward polar decomposition on the transpose of the Mueller matrix (Equa-

tion (2.19a)),

MT = (MΔMRMD)
T

= MT
DM

T
RM

T
Δ. (2.38)

The reverse decomposed matrices can now be found by transposing the result-

ing matrices back to their normal form.

2.2.2. Differential decomposition

In the product decomposition methods the assumption is always that the po-

larizing effects apply in a specific order. If the effects are simultaneous, the dif-

ferential decomposition of Mueller matrices, recently refined by Ossikovski [61],

can be applied.

Here the differential matrix m, relates the transmission Mueller matrix of
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2. Background

a depolarizing anisotropic medium, with propagation in the z-direction to the

spatial derivative in this direction

dM

dz
= mM. (2.39)

The elementary polarizing properties are the elements of the differential matrix

given by

m =

⎡
⎢⎢⎣

α β γ ∂

β′ α1 μ −ν
γ′ −μ′ α2 η

∂′ ν ′ −η′ α3

⎤
⎥⎥⎦ . (2.40)

Where β and γ are the dichroism of the linear horizontal-vertical, linear ±45◦
axes respectively, and ∂ is the circular dichroism . η, ν and μ are the linear

horizontal-vertical, linear ±45◦ and circular retardance. α is the isotropic

absorption, and α1, α2 and α3 are the depolarization for the linear horizontal-

vertical, linear ±45◦ and circular polarization. The value of each variable is

the mean of the primed and un-primed, where they are only different in the

case of depolarization.

If the Mueller matrix of the sample is uniform in the direction of propagation,

m is independent of Z. The integral over Equation (2.39) can be written as

the logarithm of M

L = lnM = ml, (2.41)

where l is the optical path length of the sample.

The properties of the sample can be calculated by splitting L into an anti-

symmetric (Lm) and a symmetric (Lu) part, such that L = Lm + Lu by

Lm =
1

2

(
L−GLTG

)
,

Lu =
1

2

(
L+GLTG

)
, (2.42)

where G is a diagonal matrix G = diag(1,−1,−1,−1). The off-diagonal ele-

ments of Lm are the mean of the respective properties in Equation (2.40), while

the same elements in Lu are the respective uncertainties. The depolarization
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2.2. Analyzing the Mueller matrix

factors are those found on the diagonal of Lu.

The common polarization parameters can then be calculated similarly as

for the other methods of decomposition. The dichroism dLm
, linear retardance

δLm
and its orientation θLm

, depolarization ΔLu
, optical rotation αLm

, and

total retardance RLm
are found through the following relations [62]

dLm
=

√
β2
Lm

+ γ2Lm
+ ∂2Lm

, (2.43a)

δLm
=

√
ν2Lm

+ η2Lm
, (2.43b)

θLm
=

1

2
arctan

μLm

νLm

, (2.43c)

ΔLu
=

1

3
|α1 + α2 + α3|, (2.43d)

αLm
=

1

2
μLm

and (2.43e)

RLm
=

√
ν2Lm

+ η2Lm
+ μ2Lm

=
√

δ2Lm
+ 4α2

Lm
. (2.43f)

The standard deviation of the parameters, except for the depolarization, are

found in the same manner by employing Equation (2.43) to Lu. In Equa-

tion (2.43) the parameters are accumulated over the distance l such that the

values for the retardance is similar to what is obtained from the polar decom-

position. The limiting values for diattenuation and depolarization in the polar

decomposition is between 0 and 1. To accomplish the same limiting values

for the values from the differential decomposition, the following relations are

employed [62]

D = tanh(dLm
), (2.44a)

Δ = 1− 1

3
(eα1 + eα2 + eα3) . (2.44b)

It is noted that the differential decomposition is currently only working for

measurements in transmission (forward scattering), while for Mueller matri-

ces in the backscattering regime the decomposition breaks down [14]. The

Mueller matrix roots decomposition proposed by Noble et al. [63, 64], where

large roots are taken over the Mueller matrix is equivalent to the differential

decomposition.
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2. Background

2.2.3. Physical realizability

A measured Mueller matrix can in some cases, due to small measurement

errors, be non-physical. Two main constraints apply for Mueller matrices [65].

• A Mueller matrix can never over polarize, i.e. generate a Stokes vector

with a degree of polarization greater than one.

• A Mueller matrix can not have gain, i.e. the intensity can not increase

through a Mueller matrix.

The polarization constraint can be checked through the eigenvalues of the

hermitian coherency matrix [66, 67], which in [67] is defined as

H =
1

2

4∑
i=1

4∑
j=1

mijσi ⊗ σ∗j , (2.45)

where σi/j are the Pauli spin matrices given as

σ1 =

[
1 0

0 1

]
, σ2 =

[
1 0

0 −1
]
, σ3 =

[
0 1

1 0

]
, σ4 =

[
0 −i
i 0

]
.

(2.46)

The Mueller matrix is non-physical if H has negative eigenvalues. Cloude [66]

defined a measure for how close a measured matrix is a physical Mueller matrix

through the coherency fidelity

Hfid. = −10 log10
∑

λ+∑
λ−

, (2.47)

where λ+ and λ− are the positive and negative eigenvalues of H, calculated

through a spectral decomposition

H = VDV∗. (2.48)

V is the eigenvector matrix and D is a matrix with the eigenvalues on the

diagonal. The fidelity is useful to control a measured matrix for unphysical

artifacts.

Any real Mueller matrix polarimeter will sometimes return Mueller matrices

with a negative eigenvalue. The closest physical Mueller matrix can then be
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2.2. Analyzing the Mueller matrix

calculated by replacing the negative eigenvalues in D by zeros. If the new

eigenvalue matrix is D′, a filtered Coherency matrix can be calculated by

H′ = VD′V∗, (2.49)

which can further be used to calculate the filtered Mueller matrix.

The gain constraint can be analyzed using the definition of the transmittance

in a Mueller matrix [65]

gf = m11 +
(
m2

12 +m2
13 +m2

14

) 1
2 ≤ 1 (2.50)

gr = m11 +
(
m2

21 +m2
31 +m2

41

) 1
2 ≤ 1, (2.51)

where the subscripts f and r indicate forward and, the more special, reverse

transmittance [65]. Note that the gain constraint can only be applied before

any normalization to m11.
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3. Polarimetry

A Mueller matrix polarimeter consists of four main parts, a light source, a Po-

larization State Generator (PSG), a Polarization State Analyzer (PSA) and a

detector. The PSG and PSA comprise polarization and analyzing optics. Fig-

ure 3.1 shows a sketch of a general Mueller matrix polarimeter configuration, in

both reflection and transmission mode (dashed lines). The polarization optics

of the PSG and PSA consist of a linear polarizer and at least one phase retard-

ing device, such as e.g. wave-plates, liquid crystals, compensators, Pockels

cells or electro-optical retarders.

PSG PSA
Mt

Mr

Figure 3.1.: Sketch of a general polarimeter in reflection (with incidence angle

ϑ) and transmission (dashed) mode.

Two main concepts of Mueller matrix polarimeters exist, one where the

polarization state is continuously modulated and analyzed, and the other where

a discrete number of states are generated and analyzed.
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3. Polarimetry

Polarizer Compensator

PSG PSA

Figure 3.2.: A sketch of a rotating compensator polarimeter. The retardance

of the compensator is determined by the angle Θ, and the azimuth

orientation by θ.

3.1. Continuously rotating compensator Mueller

matrix polarimeter

In a continuously rotating compensator polarimeter the PSG and PSA consists

of a polarizer and a compensator. Figure 3.2 illustrates the PSG and PSA using

the compensator. The advantage of using compensators as wave retarding

devices, is the very low dispersion and the wide working wavelength range,

nominally only limited by the absorption of the material. Such compensators

are commonly implemented using two Fresnel rhombs, where the retardance

is determined by the angle Θ of the rhombs and the isotropic refractive index

of the material [68].

The continuously rotating compensator Mueller matrix multichannel po-

larimeter was developed by Collins et al. [69], and further commercialized by

JA Woollam Company under the name RC2. The system is a so-called 3-5

dual rotating compensator polarimeter, where the compensator of the PSG

and PSA rotate continuously with a frequency ω1 = 3ω and ω2 = 5ω respec-

tively. By letting the time dependent azimuth orientation of the compensator

of the PSG be ω1t, the resulting time dependent Stokes vector is

�S(ω1t,Θ, λ) = Mret.(ω1t, δ(Θ, λ))Mpol.[1, 0, 0, 0]
T . (3.1)

The optimal retardance for a rotating compensator polarimeter is 132◦ [70],

which for the UV to the infrared correspond to Θ ≈ 66◦ for CaF2 and fused
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3.1. Continuously rotating compensator Mueller matrix polarimeter

Figure 3.3.: The polarization state of the continuously rotating compensator

Mueller matrix polarimeter plotted as a trajectory on the Poincare

sphere (blue line). The polarization states of an optimal discrete

state rotating compensator polarimeter are plotted as red vectors.

silica prisms [71]. In Figure 3.3 the Stokes vector of Equation (3.1) is plotted

on the Poincare sphere upon a full revolution for δ = 132◦. On the Poincare

sphere, the elements s2, s3 and s4 of the normalized Stokes vector represent the

axes, such that the north and the south pole represents right and left circular

polarized light, and equator linearly polarized light. The retardance of 132◦

ensures that the polarization space (here represented by the Poincare sphere)

is spanned.

Further, the expression describing the interaction with the sample (MSample)

and the polarization state analyzer of the PSA is

�A(ω2t, ω1t,Θ, λ) = Mpol.Mret.(ω2t, δ(Θ, λ))MSample
�S(ω1t,Θ, λ). (3.2)

It is assumed that the retardance of the compensator in the PSG and PSA are
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3. Polarimetry

the same. Because the last optical element is a polarizer the final polarization

state is only determined by its orientation. The intensity, however, is time

dependent and a function of ω, Θ, λ and the elements of the Mueller matrix.

By performing the matrix multiplications in the equations above, one can for

each wavelength λ find the time dependent intensity expressed as a Fourier

sum [69]

I ′(t) = I ′0

(
1 +

16∑
n=1

(α′2n cos 2nωt+ β′2n sin 2nωt)

)
, (3.3)

where I ′0 is the average intensity and α′2n β′2n are 32 normalized Fourier coef-

ficients. Eight of these are always zero, while the remaining coefficients and

the average intensity are functions of the Mueller matrix elements of the sam-

ple [69]. In practice the Mueller matrix is normally found by taking the fast

Fourier transform of the recorded intensity.

3.2. Discrete states Mueller matrix polarimeters

A Mueller matrix polarimeter can also be accomplished by using discrete po-

larization states in the PSG and PSA. At least 16 intensity measurements are

needed, corresponding to four probing states, and four analysis states. For a

unique measurement of the Mueller matrix the polarization states of the PSG

and PSA must span the polarization space, which can be visualized on the

Poincare sphere. As an example, for a dual rotating compensator ellipsome-

ter, four discrete Stokes vectors can be generated by selecting four azimuth

angles of the compensators. Sabatke et al. [72] showed that the four optimal

Stokes vectors make up a tetrahedron when plotted on the Poincare sphere,

see Figure 3.3.

Two system matrices W and A are constructed for the PSG and PSA,

respectively. The Stokes vectors generated in the PSG are organized as the

columns in W. A is constructed by the analysing Stokes vectors as rows. An

intensity matrix B is obtained by matrix multiplication of the system matrices

and the Mueller matrix

B = AMW. (3.4)
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3.2. Discrete states Mueller matrix polarimeters

By inverting A and W and multiplying these from each side, the Mueller

matrix can be found

M = A−1BW−1. (3.5)

The noise in M is related to the noise in B and the inverse of W and A. More

specific, Stabo-Eeg et al. [73] found an expression for the relative error in the

Mueller matrix

‖ΔM‖
‖M‖ � κWκA

‖ΔB‖
‖B‖ + κA

‖ΔA‖
‖A‖ + κW

‖ΔW‖
‖W‖ , (3.6)

where κA and κW are the condition numbers of A and W. The condition

number of a square non-singular matrix is defined as κA = ||A||/||A−1|| where
|| · || denotes the second norm [74]. ΔW and ΔA are calibration errors, and

ΔB is intensity measurement errors. If A and W are similar matrices, the

relative error in M is proportional to the square of the condition number.

Thus, by minimizing the condition numbers the error is minimized. The lowest

possible condition number for a matrix constructed from four Stokes vector,

and hence the best polarimeter possible is κ =
√
3 [75].

3.2.1. Overdetermined polarimetry

Because of dispersion in the retardance of optical components, four Stokes

vectors are not always enough to construct a well conditioned broadband po-

larimeter. One solution to improve the conditioning is to increase the number

of Stokes vectors in the polarimeter. Paper 3 describes the optimization (us-

ing genetic algorithms) and implementation of a spectroscopic overdetermined

polarimeter based on six voltage states in the the PSA and PSG. The sys-

tem matrices (W and A) are now of sizes 4 × 6 and 6 × 4. Equation (3.4)

still holds, but since non-square matrices are singular, the inverse does not

uniquely exist. For physical matrices with noise, the numerical most accurate

solution is found by the Moore-Penrose pseudo-inverse [76], commonly noted †.
In overdetermined form Equation (3.5) now reads

M = A†BW†. (3.7)
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3.3. Optimization of polarimeters

Designing polarimeters with an optimal condition number for one wavelength is

a trivial task. The common use of polarimeters nowadays is though for spectro-

scopic purposes, and the optimization of these is complicated due to dispersion

in the optical components. Optimization of the spectral condition number of

polarimeters have commonly been accomplished through semi-direct [77] and

Monte-Carlo searches [78]. When the complexity of the polarimeter design

is increased, the number of variables becomes too large for efficient direct

searches. Genetic algorithms [79] were therefore suggested for efficient design

of polarimeters (Paper 2 and 3).

Polarimeters based on ferroelectric liquid crystals, and liquid crystal variable

retarders were designed. In the following sections brief explanations of their

working principles are given.

3.3.1. Ferroelectric liquid crystal based polarimeters

FLC2/3FLC1/4

WP1/4 WP2/3

Polarizer

PSG PSA

Figure 3.4.: A sketch of a FLC based polarimeter. A minimum of two FLCs

are needed for the PSG/PSA in order to generate four states. The

fixed waveplates are included to compensate for the dispersion.

Ferroelectric liquid crystals (FLC) are smectic C liquid crystals (LC) [80], a

LC phase which has long molecules arranged in layers. Within each layer the

molecules are all oriented in the same direction. The chirality of the molecules

induces a dipole moment used to control the direction of the molecules. By
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3.3. Optimization of polarimeters

switching the polarity of an electric field over the crystal, the molecules changes

direction and the effective fast axis of the LC changes orientation. FLCs can

be modeled as a normal phase retarder, or waveplate, with two stable voltage

controlled azimuth orientations. The retardance is proportional to the physical

thickness of the device.

As each FLC has two stable states, at least four FLCs are needed to generate

enough states in the Mueller matrix polarimeter. Each state corresponds to

an azimuth orientation angle in the set

θ̂ =

{
θ1,FLC1 θ1,FLC2 θ1,FLC3 θ1,FLC4
θ2,FLC1 θ2,FLC2 θ2,FLC3 θ2,FLC4

}
. (3.8)

The W matrix is then constructed by the four Stokes vectors

W = [�S1, �S2, �S3, �S4], (3.9)

generated by the combination of the orientation states

�Sk(λ, θ̂) = Mret.(θi,FLC2, δFLC2(λ))Mret.(θWP2, δWP2(λ))

×Mret.(θj,FLC1, δFLC1(λ))Mret.(θWP1, δWP1(λ))Mpol.[1, 0, 0, 0]
T , (3.10)

where also two fixed retarders (Mret.(θWP, δWP(λ))) are included to ensure a

broadband low condition number. Mret. is the Mueller matrix of the retarder

with dispersive retardance δ(λ), oriented at an angle θ relative to the trans-

mission axis of the polarizer (Mpol.). The indices j and i refer to the state

of FLC1 and FLC2 respectively. Similarly, the system matrix of the PSA is

constructed from four analyzing Stokes vectors ( �A)

A = [ �A1, �A2, �A3, �A4]
T . (3.11)

Accounting for the reverse order of the components, the polarization states are

found in the same manner as above

�Ak(λ, θ̂) = [1, 0, 0, 0]TMpol.Mret.(θWP4, δWP4(λ))Mret.(θj,FLC4, δFLC4(λ))

×Mret.(θWP3, δWP3(λ))Mret.(θi,FLC3, δFLC3(λ)). (3.12)

Figure 3.4 shows a sketch of the FLC based polarimeter. The arrows show the

direction of the light beam for the PSG and PSA.

25
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3.3.2. Liquid crystal variable retarder based polarimeter

Figure 3.5.: A sketch of a polarimeter based on two LCVRs in the PSG and

PSA. The retardance of each LCVR, and thus the polarization

state of the instrument, can be controlled electrically.

The liquid crystal variable retarders (LCVR) are nematic LCs, where the

molecules are disordered in position, but are all pointing in the same direction.

At resting states they are aligned with the windows of the device, giving a

high birefringence. When an electric field is applied, the molecules change

alignment orientation to an angle depending of the electric field strength. The

form birefringence of the LC ensures a minimum retardance at maximum field

strength.

A broadband Mueller matrix polarimeter can be made by using a total of four

LCVRs, as illustrated in Figure 3.5. The optimization of this polarimeter is

related to choosing the azimuth orientation of the two components, relative to

the polarizer, and selecting a combination of voltages giving the best condition

number of the system matrices. The calculation and modeling of the system is

accomplished by considering the Stokes vectors generated for a set of voltages

V̂ by

�Sk(λ, V̂ ) = Mret.(θLC2, δLC2(Vi, λ))Mret.(θLC1, δLC1(Vj , λ))

×Mpol.[1, 0, 0, 0]
T (3.13)
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3.4. Eigenvalue calibration for overdetermined polarimeters

for the PSG, and

�Ak(λ, V̂ ) = [1, 0, 0, 0]TMpol.Mret.(θLC4, δLC4(Vj , λ))

×Mret.(θLC3, δLC3(Vi, λ)) (3.14)

for the PSA. Note that for a system based on four LCVRs it is possible to

generate more than the minimum four states in the PSG and PSA. The system

is then said to be overdetermined.

3.4. Eigenvalue calibration for overdetermined

polarimeters

For the calibration of the discrete state polarimeters described above the eigen-

value calibration method (ECM), developed by Compain et al. [81], was imple-

mented. The only requirements of the calibration method are to have appro-

priate reference samples, and that at least one of their orientations are known.

In order to probe all parts of W and A, the properties of the reference samples

must be sufficiently different. The instruments developed here were calibrated

in transmission using two polarizers and one waveplate as calibration samples,

in addition to the transmission measurement of air. A further development of

the ECM to also handle overdetermined polarimeters with n states in the PSG

and PSA was outlined in Paper 3, and is explained in more detail here. This

calibration also works for systems with n = 4 states.

Let {M} be the set of reference samples and {B} the corresponding set of

intensity matrices generated by Equation (3.7). The intensity matrix of air is

simply B0 = AW. Note that B0 is a matrix of size n2.

Two sets of matrices {C} and {C′} are constructed as

Ci = B†0Bi = (AW)†AMiW = W†MW,

C′i = BiB
†
0 = AMiW(AW)† = AMA†.

(3.15)

Note that C is independent of W and C′ of A. Ci and C′i are of sizes n×n and

holds n eigenvalues. In the special case when n = 4, Ci and C′i are similar to

Mi, and have similar eigenvalues, only modified by numerical and measurement

noise. A general non-depolarizing Mueller matrix, with both diattenuation

and retardance (e.g. reflection from a surface), has two real and two complex
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eigenvalues. In terms of the transmission coefficient τ and the ellipsometry

angles Ψ and Δ, of the non-depolarizing Mueller matrix in Equation 4.6, the

eigenvalues are

λr1 = 2τ cos2Ψ, λr2 = 2τ sin2Ψ,

λc1 = τ sin2(2Ψ)e−iΔ, λc2 = τ sin2(2Ψ)eiΔ.
(3.16)

By solving for τ , Ψ and Δ in the eigenvalues of Ci, corresponding Mueller

matrices of the reference samples can be constructed. The subscripts r and c

denotes real and complex values respectively. One should note that for a pure

polarizer the transmission coefficient can be found by taking the trace of Ci

τp = Tr(Ci). (3.17)

For n > 4 the four eigenvalues of Ci and C′i corresponding to the eigenvalues
of Mi can in principal, when no noise is present, be found by comparing them

to what is expected for the particular reference sample. However, noise makes

this difficult. A suggested solution is to calculate a 4 × 4 matrix C0
i and C′0i

by choosing the 4 × 4 subset of B0 and Bi which has the lowest condition

number in B0, ensuring minimal noise propagation when taking the inverse in

the calculation of C0
i and C′0i .

The eigenvalues of C and C′ do not directly give the orientations of the

reference samples. They are, however, found in the process of calculating the

system matrices A and W. The system matrices are found by solving the sets

of linear equations from Equation (3.15)

MiW−WCi = 0,

AMi −C′iA = 0.
(3.18)

Letting �w and �a being W and A on vector form, Equation (3.18) can be

rewritten as

Hi �w
4n = 0,

H′
i�a

4n = 0.
(3.19)

Here Hi and H′
i are matrices of size 4n× 4n calculated through linear trans-
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3.4. Eigenvalue calibration for overdetermined polarimeters

formations of Equation (3.18)

Hi =
[
�g1i �g2i . . . �g4ni

]
,

H′
i =

[
�g′1i �g′2i . . . �g′4ni

]
,

(3.20)

where �gi and �g′i are vectors constructed from the elements of the matrices Gi

and G′
i

G1
i = MiU

1 −U1Ci, G′1
i = U1Mi −CiU

1,
...

...

G4n
i = MiU

4n −U4nCi, G′4n
i = U4nMi −CiU

4n,

(3.21)

where

U1 =

⎡
⎢⎢⎣

1 0 . . . 0

0 0 . . . 0

0 0 . . . 0

0 0 . . . 0

⎤
⎥⎥⎦ ,U2 =

⎡
⎢⎢⎣

0 1 . . . 0

0 0 . . . 0

0 0 . . . 0

0 0 . . . 0

⎤
⎥⎥⎦ ,

Un+1 =

⎡
⎢⎢⎣

0 0 . . . 0

1 0 . . . 0

0 0 . . . 0

0 0 . . . 0

⎤
⎥⎥⎦ , . . . ,U4n =

⎡
⎢⎢⎣

0 0 . . . 0

0 0 . . . 0

0 0 . . . 0

0 0 . . . 1

⎤
⎥⎥⎦ . (3.22)

At last, a total measurement matrix for all reference samples i can be con-

structed as

K =
∑

iH
T
i Hi,

K′ =
∑

iH
′
i
TH′

i.
(3.23)

The overdetermined solution to the system can then be found by solving the

equations

K�w = 0,

K′�a = 0
(3.24)

for �w and �a, and arranging them into matrices again. In practice, when noise

is present, the solutions are found by taking the eigenvector with the smallest

eigenvalue (λ4n). The orientation of the reference samples are also found by
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minimizing the smallest eigenvalue of K and K′, yielding the error functions

εW =

4n−1∑
k=1

λ4n
λk

, εA =

4n−1∑
k=1

λ′4n
λ′k

. (3.25)

In the case for the implementations in Papers 1, 3 and 5, the orientation of

one polarizer was assumed known.

3.5. Mueller matrix imaging

Mueller matrix imaging provides information about lateral polarization prop-

erties of samples. By applying the decomposition methods to Mueller matrix

images, physical parameters of the sample system can be analyzed. In this

thesis Mueller matrix imaging was applied to mapping of strain fields in multi

crystalline silicon, polarizing properties of anisotropic plasmonic thin films on

quartz substrates, nematic textures in colloidal dispersions of synthetic clay

and directional mapping of collagen fibers.

There are two main approaches to realize a Mueller matrix imager, the

serial and parallel approach. In the serial approach the image is constructed

by scanning the sample or the light beam, while in the parallel configuration

an array detector is used. The easiest is to scan the sample, which is also the

most time consuming. By using a scanning mirror to set the position of the

light beam, fast serial acquisition can be accomplished. Parallel measurements

using a 2D array detector have the advantage of no extra moving parts. The

resolution and imaging area can also be chosen and changed easily by imaging

optics.

When using a 2D array detector it can be advantageous to use a polarimeter

technology with no mechanically moving parts. If a rotating compensator po-

larimeter was adapted to imaging purposes, extremely careful alignment would

be necessary to avoid image wobble. Liquid crystal based polarimeters (FLCs

and LCVRs) are better suited for the application. By using discrete states

polarimeters for imaging purposes the integration time of the detector can be

adjusted without having to change the speed of the rotating compensators.
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3.5. Mueller matrix imaging

3.5.1. Strain mapping in crystalline silicon wafers

Material waste is a limiting factor in the continuous effort for lower prices

in the production of solar cells based on multi crystalline silicon. The major

waste sources are wafer cutting and breakage. One of the main reasons for the

latter is residual material strain and stress.

Strain is a displacement of the crystal structure of the material, induced by

a force applied to the material over a given area, known as stress. Strain is

also a major source for crystal dislocations [82], which degrades the quality of

the electron transport and the recombination rate, and hence the efficiency.

As silicon has a cubic diamond crystal lattice it is optically isotropic if the

material is not strained.

Mueller matrix polarimetry is sensitive to the retardance (cf. Section 2.2).

The retardance δ is simply the birefringence, which is the difference in refrac-

tive index (ne− no) for two axes of the material, for a medium thickness d, at

at given wavelength λ

δ =
2πd

λ
|Δn| = 2πd

λ
|ne − no|. (3.26)

The relation between strain and birefringence can be found by first considering

the quadratic representation of the impermeability tensor

3∑
i,j=1

ηijxixj = 1. (3.27)

The elements ηij are related to the dielectric tensor elements (εij) and the

refractive index (nij) of the material by ηij = ε0/εij = 1/n2ij [83]. In Figure 3.6,

the refractive index ellipsoid is plotted using Equation (3.27), with the principle

axes of the tensor η as the coordinate system.

A second rank strain tensor can be defined as [83]

ε =

⎡
⎣ ε11 ε12 ε13

ε12 ε22 ε23
ε13 ε23 ε33

⎤
⎦ =

⎡
⎣ ε1 ε6 ε5

ε6 ε2 ε4
ε5 ε4 ε3

⎤
⎦ , (3.28)

where the diagonal elements are the normal strain and the off-diagonal ele-

ments the shear strain. Within the elastic limits, a fourth rank photoelastic
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Figure 3.6.: The refractive index ellipsoid.

tensor p, relating the strain to the change in the impermeability tensor, from

the undeformed state η0 to deformed state η can be defined as

η − η0 = pε. (3.29)

In principal all 36 elements of p can be independent. The symmetry of the

crystal will, however, in most cases reduce the number of independent param-

eters. For silicon, which has a diamond crystal structure with a full octahedral

symmetry, the photoelastic tensor has only three independent parameters, re-

sulting in [83],⎡
⎢⎢⎢⎢⎢⎢⎣

η1 − η01
η2 − η02
η3 − η03
η4 − η04
η5 − η05
η6 − η06

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

p11 p12 p12 0 0 0

p12 p11 p12 0 0 0

p12 p12 p11 0 0 0

0 0 0 p44 0 0

0 0 0 0 p44 0

0 0 0 0 0 p44

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎥⎥⎥⎥⎥⎥⎦
. (3.30)

Because silicon is an anisotropic material, the values of the photoelastic

tensor is not equal for all crystal orientations. For simplicity, the tensor is

usually given in the lattice frame. The tensor can be rotated using Euler

rotations to the particular crystal orientation.
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3.5. Mueller matrix imaging

Figure 3.7.: Normal strain applied in the x-direction of a cubic solid with light

propagating in the z-direction.

Let for simplicity a linear normal strain εxx = ε1 be applied to a solid in the

x-direction. If light is passing through the solid in the z-direction, illustrated in

Figure 3.7, a simple expression can be found for the induced birefringence. In

terms of the index ellipsoid, using the principal axes as the coordinate system,

the surface perpendicular to the direction of light propagation is

η1x
2 + η3y

2 = 1. (3.31)

By assuming that the crystal is optically isotropic in the undeformed state,

the birefringence can be found by

η1 − η2 = (p11 − p12)ε1. (3.32)

The left-hand side of the expression can be rewritten as

η1 − η2 =
1

n21
− 1

n22
,

=
n22 − n21
n21n

2
2

,

≈ −(n1 − n2)(n1 + n2)

n40
,

≈ −2Δn

n30
, (3.33)

Here it was assumed that the refractive indices are only slightly perturbed.
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Solving for the birefringence yields

Δn =
n30
2
(p11 − p12)ε1. (3.34)

The retardance can now be found using Equation (3.26). The retardance gives

the magnitude of the strain, while the orientation of the fast axis (see Section

2.2) gives the direction.

The disadvantage of using Mueller matrix imaging to image strain fields

in bulk material is that the atomic displacement is not measured directly, as

can be done by x-ray scattering [84] and electron microscopy [85]. Hence,

polarimetry requires that one direction in the material is undeformed.

3.6. Overview of results

Design and implementation of spectroscopic Stokes and Mueller matrix po-

larimeters is a large part of this thesis, as described in Paper 1, 2, 3 and 4.

A ferroelectric liquid crystal based polarimeter was adapted to imaging, and

applied to the characterization of strain in multi-crystalline silicon (Paper 5),

a plasmonic polarizer (Paper 6), collagen fiber meshwork (Paper 7 and 8) and

nematic textures in colloidal dispersions of synthetic clay (Paper 9).

3.6.1. Polarimeter design

In order to optimize the Stokes and Mueller polarimeters using FLCs and

LCVRs, the properties of the components have to be known very precisely.

Both the intrinsic retardance of the FLCs and the voltage dependent retar-

dance of the LCVRs were characterized in the visible and the near infrared

spectral range. The dynamic response of the FLC based Mueller matrix po-

larimeter was studied in order to realize fast measurements. When waiting for

steady state upon FLCs switching, a complete Mueller matrix could be mea-

sured in 16 ms. By not waiting for the steady state, the measurement time

could be decreased to 8 ms within reasonable accuracy. Using these settings,

the temporal Mueller matrix of a LCVR during the (150 ms long) switching

could be measured.

FLC based Mueller matrix polarimeters have the advantage of being fast.

LCVRs have a much longer transition time when changing states, but are
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more modular as the retardance can be varied continuously within a prede-

fined range. For the optimization of polarimeters based on both FLCs and

LCVRs, a genetic algorithm was developed. Several designs for overdeter-

mined polarimetry were explored, resulting in an improved condition number

over a broader spectral range. Genetic algorithms were used because of the

strong efficiency when searching in large search spaces with many local min-

ima. In particular, Figure 3.8 shows the search landscape for two of the 12

dimensions of an overdetermined Stokes polarimeter based on three FLCs.

Figure 3.8.: The fitness landscape for two of the in total 12 dimensions for the

optimized design using three FLCs. θ1 and θ2 are the azimuth

orientation of one of the FLCs and waveplates respectively. The

figure is from Paper 4.

Figure 3.9(a) shows the spectral inverse condition number of simulated

LCVR designs using four, six and eight states in the Stokes polarimeter. In

Figure 3.9(b), the simulated, measured and calibrated inverse condition num-

ber for the realized six states Stokes polarimeter are shown. For a full Mueller

matrix measurement, the three designs require 4× 4, 6× 6 and 8× 8 intensity

measurements. By going from four to six states the condition number is im-

proved considerably on the edge of the spectrum, while the increase from six
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Figure 3.9.: Spectral inverse condition number for the LCVR polarimeter. a)

shows the simulated spectral condition number for designs using

four, six and eight states in the PSG and PSA. b) shows the simu-

lated, experimentally measured and calibrated spectral condition

numbers for the realized six states design. The figure is from Pa-

per 3.
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to eight states does not improve the condition number enough compared to the

increased measurement time when going from 36 to 64 intensity measurements.

3.6.2. Mueller matrix imaging
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Figure 3.10.: Figure (a) shows the linear retardance (δ), while (b) shows the

orientation of the slow axis (θ) of the same area. In this particular

there are two grains of different orientation. The figure is from

Paper 5.

Through the arguments of Section 3.5.1, the Mueller matrix imaging po-

larimeter was applied to strain mapping of a multi-crystalline silicon wafer.

For a proof of concept, strain was induced through buckling, while the wafer

was mounted in a custom made sample holder. Figure 3.10 shows the linear

retardance and the orientation of the slow axis at the boundary area between

two crystal grains. There is a large difference in retardance between the two

grains. In the present study, the grain orientations were not known, such that

an estimate of the explicit strain could not be found. At the grain boundary

the retardance is lower, and the orientation of the strain is remarkably different

compared to inside the grain. Currently, it can only be speculated if there is

a relaxation of strain at the boundary.

Mueller matrix imaging was applied to directional mapping of collagen fibers

in biological tissue in Paper 7 and 8. Collagen fibers form as bundles of long
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1mm

Figure 3.11.: The orientation of the slow axis of the decomposed Mueller ma-

trix retardation image. The same axis correspond to the orien-

tation of the collagen fibers. The figure is from Paper 7.

were studied by Mueller matrix imaging. The clay particles are discs with

thickness 1 nm, with a lateral size up to 1μm. In an aqueous solution, under

the influence of gravity, the particles separate into phases with distinct regions

of different concentration and ordering. The shape of the particles results in

a birefringent effective medium, where the retardance depends on the concen-

tration and orientations of the particles. Figure 3.12 shows a retardance map

of the transition from an isotropic domain to an anisotropic domain. The red

lines show the direction of the fast axis, corresponding to the direction of the

normal axis of the particles.
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3.6. Overview of results

Figure 3.12.: The retardance image (color map) and the orientation of the fast

axis (red lines) for a transitional area in the synthetic clay. The

figure is from Paper 9.
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4. Spectroscopic Mueller matrix

ellipsometry

Ellipsometry is a polarimetric measurement technique referred to when mea-

suring the change in amplitude and phase between two orthogonal electric

field components upon specular reflection from a smooth surface. In ellip-

sometry the orthogonal field components are usually defined as parallel ( �Ep)

and perpendicular ( �Es) to the plane of incidence, as illustrated in Figure 4.1.

There are three different classes of ellipsometry. In order of increasing number

of measured parameters they are denoted: standard, generalized and Mueller

matrix ellipsometry.

4.1. Standard ellipsometry

By considering the boundary conditions of Maxwell’s equation, one can arrive

at Fresnel’s reflection coefficients for �Es and �Ep

rp =
ñ2 cosϑ1 − ñ1 cosϑ2
ñ2 cosϑ1 + ñ1 cosϑ2

, rs =
ñ1 cosϑ1 − ñ2 cosϑ2
ñ1 cosϑ1 + ñ2 cosϑ2

, (4.1)

where ñ1 and ñ2 are the complex refractive indices of the two materials, and

ϑ1 and ϑ2 are the incident and refracted angles, see Figure 4.1. These can be

inserted into the Jones transfer matrix, resulting in

[
Ep

Es

]refl.
=

[
rp 0

0 rs

][
Ep

Es

]in
, (4.2)

which is used to calculate the reflected polarization state.

For a stack of isotropic thin films, the so called Abeles 2× 2 transfer matrix

formalism [19], or the similar 2 × 2 scattering matrix formalism [19] can be

used to calculate the reflection coefficients rp and rs for the multilayer system.
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Figure 4.1.: Sketch of the electric field components for light reflected and re-

fracted by a smooth interface between two materials [22]. The

superscripts i, r and t denotes incident, reflected and transmitted

field respectively.

Another common approach is to use the recursive Airy type formulas for the

reflection coefficients [19, 86].

In the standard ellipsometry configuration, one commonly set �J in = [1, 1]T ,

and measure the relative difference in amplitude (tanΨ) and phase (Δ) for the

two reflected components. This results in a relation for the ratio of the two

reflection coefficients

ρ =
rp
rs

= tanΨeiΔ. (4.3)

The ellipsometric angles Ψ and Δ are typically found through a Fourier anal-

ysis of the reflected light modulated by a photoelastic modulator (PEM) or a

rotating polarizer compensator.

4.2. Generalized ellipsometry

For reflections from materials having anisotropic properties, i.e. the index of

refraction is direction dependent, there will be a coupling between the orthog-
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onal field components. The Jones matrix is then generalized to

[
Ep

Es

]refl.
=

[
rpp rps
rsp rss

][
Ep

Es

]in
. (4.4)

The normalized Jones matrix can be obtained in the same manner as for the

isotropic case, giving the generalized ratios, and generalized ellipsometric pa-

rameters

ρpp =
rpp
rss

= tanΨppe
iΔpp , ρps =

rps
rss

= tanΨpse
iΔps , ρsp =

rsp
rss

= tanΨspe
iΔsp .

(4.5)

These parameters can in principle be measured using a standard ellipsometer.

For example, the PEM based ellipsometer (e.g. the UVISEL, commercialized

by Horiba Jobin Yvon) can be generalized to measure the three first columns of

the Mueller matrix [25,87]. Similarly, the common rotating analyzer with fixed

compensator system (e.g. the VASE system commercialized by J.A. Woollam)

can be generalized to measure the 3 first rows of the Mueller matrix. The com-

plete Mueller Jones matrix (Equation (2.13)) may in both cases be estimated,

and hence the corresponding general Jones matrix can be derived [25]. Ded-

icated configurations with continuously rotating compensator does also exist

(e.g. the M2000, commercialized by J.A. Woollam).

4.3. Mueller matrix ellipsometry

In terms of the ellipsometric angles, the Mueller matrix corresponding to a

reflection from an isotropic interface is

Miso =
|rp|2 + |rs|2

2

⎡
⎢⎢⎣

1 − cos 2Ψ 0 0

cos 2Ψ 1 0 0

0 0 sin 2Ψ cosΔ sin 2Ψ sinΔ

0 0 − sin 2Ψ sinΔ sin 2Ψ cosΔ

⎤
⎥⎥⎦ .

(4.6)

Note that the matrix is usually reported normalized to the m11 element. The

unnormalized m11 is the reflectance for unpolarized light.

For reflection from anisotropic samples, the Mueller matrix can be calculated

in terms of the reflection coefficients using Equation (2.14)
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Maniso =⎡
⎢⎣

1
2(|rpp|2 + |rsp|2 + |rps|2 + |rss|2) 1

2(|rpp|2 + |rsp|2 − |rps|2 − |rss|2) . . .
1
2(|rpp|2 − |rsp|2 + |rps|2 − |rss|2) 1

2(|rpp|2 − |rsp|2 − |rps|2 + |rss|2) . . .
Re(rppr

∗
sp + rpsr

∗
ss) Re(rppr

∗
sp − rspr

∗
ss) . . .

−Im(rppr
∗
sp + rpsr

∗
ss) −Im(rppr

∗
sp − rpsr

∗
ss) . . .

Re(rppr
∗
ps + rspr

∗
ss) Im(rppr

∗
ps + rspr

∗
ss)

Re(rppr
∗
ps − rspr

∗
ss) Im(rppr

∗
ps − rspr

∗
ss)

Re(rppr
∗
ss + rpsr

∗
sp) Im(rppr

∗
ss − rpsr

∗
sp)

−Im(rppr
∗
ss + rpsr

∗
sp) Re(rppr

∗
ss − rpsr

∗
sp)

⎤
⎥⎦. (4.7)

In generalized ellipsometry only a subset of the Mueller matrix is measured,

typically three rows or three columns. This is enough to calculate the nor-

malized Jones matrix, and the rest of the elements of the Mueller matrix, if,

and only if there is no depolarization. Depolarization may arise from thickness

inhomogeneity, angular spread of the incoming light, the finite bandwidth of

the instrument, backside reflections from thick layers or substrates, or scatter-

ing effects due to roughness. If the complete Mueller matrix is measured, the

depolarizing effects can be taken into account when modeling the sample.

Certain depolarization phenomena can be handled accurately in standard

ellipsometry as long as the sample is isotropic. However, when the sample is

additionally anisotropic, standard ellipsometry cannot properly separate the

two effects, and a complete Mueller matrix is required in order for an accurate

modeling of the optical response of the sample.

4.4. Ellipsometric modelling

For the simplest case illustrated in Figure 4.1, i.e. reflection from a smooth

clean and infinitely thick substrate, the refractive index can be calculated

directly from an ellipsometric measurement, using Equation (4.1) and (4.3).

When introducing layered structures, solving the system is commonly done

by making a model and simulating the measurement. The model parameters

resulting in the best fit between measurements and simulated data are com-

monly found iteratively. Not only dielectric functions and thicknesses of the

layers, but also derived parameters such as surface roughness, material compo-

sition, crystallinity, anisotropy, uniformity and interface mixing, can be used
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4.4. Ellipsometric modelling

as model parameters.

4.4.1. Dielectric functions

The dielectric function ε is a frequency dependent intrinsic property of a ma-

terial describing the relation between an applied electric field and the induced

displacement field (in Gaussian units) [88]

�D = ε0ε �E,

= �E + 4π �P ,
(4.8)

where ε0 is the electric permittivity in vacuum, and �P the polarization field.

In general, ε is complex and a function of the frequency of the electric field

ε(ω) = ε1(ω) + iε2(ω). From the dielectric function the complex refractive

index is calculated as

ñ2 = (n− iκ)2 = ε = ε1 + iε2, (4.9)

In the classical Lorentz theory of optical properties for matter, charged par-

ticles are treated as simple harmonic oscillators subject to a driving force from

an applied electromagnetic field. This classical approach gives the same results

as for the quantum mechanical approach. The Lorentz model for the dielectric

function as a function of photon energy is [89]

ε̃Lor.(E) = ε1 + iε2 = 1 +
E2
p

E2
0 − E2 − iγE

, (4.10)

where the oscillator amplitude is defined by the plasma energy Ep, the center

energy E0 and the broadening of the oscillator γ. It can be used to describe

many features of optical excitations, although, in some cases corrections are

required in order to resemble experimental data better. One such correction is

the Tauc-Lorentz oscillator [90], which is a Kramers-Kronig consistent modifi-

cation of the Forouhi-Bloomer oscillator [91]. The Tauc-Lorentz model adds a

correction to the imaginary part of the dielectric function near the band-gap
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4. Spectroscopic Mueller matrix ellipsometry

Eg of the material

ε2Tauc-L. =

{
(E0−Eg)

2

E2
0

· ε2Lor., E > Eg

0, E < Eg.
(4.11)

The real part of the dielectric function is found by Kramers–Kronig integration

of ε2Tauc-L. [90]. It is mainly used for parametrization of the dielectric function

of amorphous materials.

Applying the classical approach of Lorentz to free electrons, the dielectric

function is found to be similar to the Lorentz oscillator when letting the cen-

ter energy be zero. It then becomes the Drude oscillator, with the dielectric

function given by [89]

εDrude(E) = 1− E2
p

E2 + iγE
. (4.12)

Parametrization of the dielectric function of materials using Kramers-Kronig

consistent oscillator models is a common method where properties such as

electronic band structures, doping levels, band-gap and conductivity, among

others, can be estimated.

Anisotropic dielectric function tensor

For non-cubic solids and other anisotropic media, the dielectric function must

be represented by a complex-valued second rank tensor ε, which, expressed in

Cartesian coordinates, is [92]

�D = ε̃0ε �E = ε̃0

⎛
⎝ εxx εxy εxz

εyx εyy εyz
εzx εzy εzz

⎞
⎠ �E. (4.13)

Here the displacement field �D and electric field �E are defined along the unit

directions x̂, ŷ and ẑ.

The relation between the laboratory frame of reference (x, y, z) and that of

the material (ξ, η, ζ), can be obtained by an Euler rotation [93]

ε(x, y, z) = A(ϕ, θ, ψ)ε(ξ, η, ζ)A(−ϕ,−θ,−ψ), (4.14)
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Figure 4.2.: Schematic defining the generalized Euler angles ϕ, θ and ψ used

for a general Cartesian coordinate system rotation.

where the rotation angles (ϕ, θ, ψ) are defined in Figure 4.2, and the rotation

matrix defined as [93]

A(ϕ, θ, ψ) =

⎡
⎣ cosψ sinψ 0

− sinψ cosψ 0

0 0 1

⎤
⎦
⎡
⎣ 1 0 0

0 cos θ sin θ

0 − sin θ cos θ

⎤
⎦
⎡
⎣ cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1

⎤
⎦

(4.15)

For orthorhombic, tetragonal, hexagonal and trigonal symmetries, the rotation

angles can be found such that ε is diagonal in (ξ, η, ζ)

ε = A(ϕ, θ, ψ)

⎛
⎝ εξ 0 0

0 εη 0

0 0 εζ

⎞
⎠A(−ϕ,−θ,−ψ). (4.16)

4.4.2. Effective medium theories

Heterogeneous materials with a local structure sufficiently smaller than the

wavelength of the probing electromagnetic field can be considered as a ho-

mogeneous material with effective optical properties. This makes it possible,
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Figure 4.3.: Surface roughness is commonly modeled using effective medium

theories.

using ellipsometry, to measure and analyze e.g. nanostructured surfaces (Pa-

per 10 and 11) or roughness of smooth surfaces, as illustrated in Figure 4.3.

Different effective medium theories and formulas for the mixing of the mate-

rials exist [94, 95]. These may give access to volume fill factors and inclusion

shapes. The common effective medium theories are all based on the Clausius-

Mossotti relation which relates the microscopic electric field response from a

lattice structure of dipoles to the macroscopic observable response, the dielec-

tric function [95].

Following the derivation of Aspnes [95] (using Gaussian units), it is as-

sumed that a uniform internal electric field �Eint is applied to a microscopic

lattice structure of dipoles (quasi-static approximation), with polarizability α,

extending to infinity. Resulting in a local dipole �pi = α�E(�Ri) at every lattice

point �Ri. Assuming a cubic lattice, symmetry ensures that the electric field

at each lattice point is the same local field �E(�Ri) = �Eloc..

The electric field at an arbitrary location in space �E(�r) can be found by the

sum of the applied electric field and the electric field induced by all dipoles [95]

�E(�r) = �Eint +
∑
i

�E(�pi, �r − �Ri), (4.17)

where

�E(�p, �r) = −∇
(
�p · r̂
r2

)
=

3(�p · r̂)− �p

r3

is the electric field at a distance �r from a dipole with dipole moment �p. Simi-
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is the electric field at a distance �r from a dipole with dipole moment �p. Simi-

larly the polarizability at the position �r is

�p(�r) =
∑
i

α�E(�Ri)δ(�r − �Ri), (4.18)

where the delta function (δ) is introduced because the dipoles are only located

on the lattice sites.

The local electric field at the origin (�r = 0) can now be calculated as [95]

Eloc = �E(0) = �Eint +
∑
i �=0

�E(α�Eloc, �Ri)

= �Eint, for high symmetries.

(4.19)

In Equation (4.19), the sum is over all dipoles except the singular point of
�R = 0. Because of the symmetry of the cubic lattice this sum goes to zero.

Thus, the local dipole moment and electric field can be found for all �r in terms

of the local microscopic parameters and the applied electric field

�E(�r) = �Eloc +
∑
i

�E(α�Eloc, �r − �Ri), (4.20a)

�p = (�r) =
∑
i

α�Elocδ(�r − �Ri). (4.20b)

The macroscopic polarization �P is found by taking the appropriate volume

integral of Equation (4.20b)

�P =
1

V

∫
V

d3r �p(�r) = Nα�Eloc, (4.21)

where N is the number of dipoles per unit volume. Similarly the macroscopic

electric field can be found by integrating Equation (4.20a)

�E =

∫
V

�E(�r) = �Eloc − 4π

3
Nα�Eloc

= �Eloc − 4π

3
�P .

(4.22)

A result which shows that, due to the local opposing electric field generated
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by the dipoles, the applied microscopically uniform field �Eint is actually larger

than the apparently applied macroscopic uniform field �E [95].

By substituting Equations (4.22) and (4.21) in the equation for the macro-

scopic response (4.8), the Clausius-Mossotti relation is found [95]

ε− 1

ε+ 2
=

4π

3
Nα. (4.23)

The Clausius-Mossotti relation is derived for a homogeneous material, but

the microscopical approach above may also be used to treat heterogeneous

materials.

Letting two different polarizabilities αa and αb be assigned uniformly at

random lattice sites in the cubic lattice, Equations (4.17) and (4.18) will remain

the same. Also, the high symmetry argument of Equation (4.19) still holds

such that �Eloc = �Eint. The volume averages are then

�P = (Naαa +Nbαb) �Eloc, (4.24a)

�E = �Eloc − 4π

3
�P , (4.24b)

where Na and Nb are the number of dipoles per unit volume of each type. It

follows that

ε− 1

ε+ 2
=

4π

3
(Naαa +Nbαb). (4.25)

The Clausius-Mossotti equation can be used to rewrite the material a and b in

terms of their dielectric function εa and εa and their volume fill fractions fa
and fb

ε− 1

ε+ 2
= fa

εa − 1

εa + 2
+ fb

εb − 1

εb + 2
, (4.26)

which is known as the Lorentz-Lorenz effective medium equation [95]. By

adding more terms, Equation (4.26) can be expanded to any number of mate-

rials.

The Lorentz-Lorenz equation assumes a uniform mixing of the dipoles of

the constituent materials. More commonly, heterogeneous materials consists

of microscopic regions sufficiently smaller than the wavelength of light, but

large enough to have a defined dielectric property, as for the surface roughness
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illustrated in Figure 4.3.

The simplest case is to consider spherical inclusions with dielectric function

εa and radius ra embedded in a medium with dielectric function εb. For an

applied electric field �E0, the local electric field at position �r is [88]

�E(�r) =

{
3εb

εa+2εb
�E0 |�r| < ra

�E0 + �E(�pa, �r) |�r| > ra,
, (4.27)

and the dipole moment of the sphere is [88]

�pa = αa
�E0 =

εa − εb
εa + 2εb

r3a �E0, (4.28)

where αa is the polarizability of the sphere. By rewriting Equation (4.8) to
�Pi(�r) = εi−1

4π
�E(�r), where i = a or b, and taking the volume averages, the

expression for the Maxwell-Garnett effective medium equation is found

ε− εb
ε+ 2εb

= fa
εa − εb
εa + 2εb

, (4.29)

where fa is the volume fraction of phase a.

In the Maxwell-Garnett effective medium equation the effective dielectric

function is different when interchanging the two media. For some systems the

latter is correct, but for example, in the case of surface roughness (Figure 4.3)

it is not clear which is embedded in the other. Bruggeman [96] suggested

that the two media both were inclusions in the effective medium itself. Which

can be accomplished by comparing the Lorentz-Lorenz and Maxwell-Garnett

equations and acknowledging that they are in fact of the same form, where a

more general effective medium equation can be considered as

ε− εh
ε+ 2εh

= fa
εa − εh
εa + 2εh

+ fa
εb − εh
εb + 2εh

, (4.30)

where εh is the dielectric function of the host medium. By letting εh ≡ ε in

Equation (4.30) the Bruggeman effective medium approximation is

0 = fa
εa − ε

εa + 2ε
+ fa

εb − ε

εb + 2ε
. (4.31)

In principle, the effective medium approximations presented are all of the form
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of Equation (4.30) and only differs by the choice of host material.

Figure 4.4.: An ellipsoid defining the three semi-axis a1, a2 and a3

Spherical symmetry was assumed for all the derivations of the effective

medium approximation above, if the inclusions have an ellipsoidal shape the

induced microscopic polarization and electric field will depend on the polar-

ization of the electric field. In specific, the polarizability along each semi-axis

ai of the ellipsoid (see Figure 4.4) is [94, 97]

αi =
a1a2a3

3

εa − εb
εb + Li(εa − εb)

, (4.32)

where Li is the depolarization factor for each direction

Li =
a1a2a3

2

∫ ∞

0

ds

(s+ a2i )
√

(s+ a21)(s+ a22)(s+ a31)
. (4.33)

Li must be in the range 0 to 1. The depolarization factors must also satisfy∑
Li = 1. For a sphere, where a1 = a2 = a3, the depolarization factors

will be [1/3, 1/3, 1/3]. Considering the two limits of a disc and a needle, the

depolarization factors are [1, 0, 0] and [0, 1/2, 1/2].

The Maxwell-Garnett generalized effective medium equation for ellipsoidal

inclusions is [94, 98]

εi − εb
εi + 3εb

=
fa
3

εa − εb
εb + Li(εa − εb)

. (4.34)

52



4.4. Ellipsometric modelling

Figure 4.5.: Schematic illustration of the incidence, reflected, transmitted and

back-travelling plane waves of a general multi layer structure [92].

Similarly, the generalized Bruggeman effective medium equation is [94,99–101]

0 = fa
εa − εi

εi + Li(εa − εi)
+ fb

εb − εi
εi + Li(εb − εi)

(4.35)

The effective medium is now anisotropic, and the dielectric function is a tensor,

see Equations (4.13) and (4.16).

In all the effective medium models discussed above a semi-infinite three di-

mensional material is assumed. When the medium is a two dimensional film, of

e.g. nano particles on a substrate, substrate interactions may give anisotropic

effective dielectric properties, even if every particle has a spherical symmetry

and they are arranged isotropically. Yamaguchi et al. [102, 103] extended the

Maxwell-Garnett equation to treat such cases. One other approach was the

introduction of effective substrate and near-field dependent depolarization fac-

tors by Granqvist and Hunderi [104]. More rigorous approaches to solve the

latter have been proposed by Simonsen et al. [105] and Letnes et al. [106].

4.4.3. Optical response of anisotropic layered structures

The reflected electromagnetic fields from a stack of stratified layers consists

of the superposition of the reflected fields from all layers, including multiple

reflections. For thin films, interference of the reflected fields from the various

layers can be modeled to find the dielectric functions and thicknesses of the
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A global transfer matrix T, describing the total response of the enitre stack

of films, is defined as⎡
⎢⎢⎣

Ei
s

Er
s

Ei
p

Er
p

⎤
⎥⎥⎦ = T ·

⎡
⎢⎢⎣

Et
s

Eb
s

Et
p

Eb
p

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

Et
s

Eb
s

Et
p

Eb
p

⎤
⎥⎥⎦ , (4.36)

where Ei, Er, Et and Eb are complex amplitudes of the incoming, reflected,

transmitted and back-traveling fields for p and s polarized light, as illustrated

in Figure 4.5. In the case where the stack of films are supported on an infinite

substrate, there will be no back-travelling modes (Eb
s = Eb

p = 0). The complex

reflection coefficients for the stack can then be calculated as

rpp =

(
Er
p

Ei
p

)
Ei

s=0

=
T11T43 − T41T13
T11T33 − T13T31

,

rps =

(
Er
p

Ei
s

)
Ei

p=0

=
T41T33 − T43T31
T11T33 − T13T31

,

rss =

(
Er
s

Ei
s

)
Ei

p=0

=
T21T33 − T23T31
T11T33 − T13T31

,

rsp =

(
Er
s

Ei
p

)
Ei

s=0

=
T11T23 − T21T13
T11T33 − T13T31

.

(4.37)

The total transfer matrix of the stack of N layers, each with a thickness di,

is found by the multiplication of the partial transfer matrix of each layer

T = L−1a

N∏
i=1

[Tip(di)]
−1Lf = L−1a

N∏
i=1

[Tip(−di)]Lf . (4.38)

L−1a is a matrix describing the ambient

L−1a =
1

2

⎡
⎢⎢⎣

0 1 −(ña cosϑ1)−1 0

0 1 (ña cosϑ1)
−1 0

(cosϑ1)
−1 0 0 1/ña

−(cosϑ1)−1 0 0 1/ña

⎤
⎥⎥⎦ , (4.39)
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where ϑ is the incidence angle and ña the isotropic refractive index of the

ambient. The matrix of the isotropic substrate is [22]

Lf =

⎡
⎢⎢⎣

0 0 cosϑ2 0

1 0 0 0

−ñs cosϑ2 0 0 0

0 0 ñs 0

⎤
⎥⎥⎦ . (4.40)

In the case of an anisotropic substrate, the Et modes may couple, and Lf will

take a form which is derived and given in [108].

In order to calculate the partial transfer matrix of each layer, a characteristic

coefficient matrix Δ is first found by solving four differential equations from

first order Maxwell equations derived by Berreman [109]. The in plane com-

ponents of the electric and magnetic field, for a Cartesian coordinate system

in Gaussian units, can for every position z be found by

�Ψ(z) = [Ex, Ey, Hx, Hy]
T (z), (4.41)

∂z�Ψ(z) = ik0Δ(z)�Ψ(z), k0 =
ω

c
, (4.42)

where ω is the angular frequency of the fields and c the vacuum speed of

light [92]. The characteristic coefficient matrix is given by the dielectric tensor

ε of the medium and the x-component of the incident wave vector (kx =

ña sinϑ1)

Δ =

⎡
⎢⎢⎣

−kx εzx
εzz

−kx εzy
εzz

0 1− k2
x

εzz
0 0 −1 0

εyz
εzx
εzz
− εyx k2x + εyz

εzy
εzz
− εyy 0 kx

εyz
εzz

εxx − εxz
εzx
εzz

εxy − εxz
εzy
εzz

0 −kx εxz
εzz

⎤
⎥⎥⎦ (4.43)

The solution to Equation (4.42) is an exponential, and can be expressed by

the partial transfer matrix as

�Ψ(z) = eik0Δd�Ψ(z0) = Tp
�Ψ(z0), (4.44)

Tp = eik0Δd. (4.45)

The partial transfer matrix describes the linear translation of the field com-

ponents from position z0 to z by a distance d = z − z0. By applying Cayley-
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Hamilton’s theorem [22,110], the exponential matrix Tp can be expressed as

Tp = β0I+ β1Δ+ β2Δ
2 + β3Δ

3, (4.46)

where βi is found by solving [110]

e−ik0λkd =

3∑
j=0

βjλk, k = 0, . . . , 3. (4.47)

Here λk are the four eigenvalues of Δ.

For an isotropic layer, Tp is simplified to

Tp =

⎡
⎢⎢⎣

cos(k0dλ) 0 0 iλ
ε sin(k0dλ)

0 cos(k0dλ)
−i
λ sin(k0dλ) 0

0 −iλ sin(k0dλ) cos(k0dλ) 0

(iε/λ) sin(k0dλ) 0 0 cos(k0dλ)

⎤
⎥⎥⎦
(4.48)

where ±λ are the degenerated eigenvalues of Δ,

λ1 = λ2 = −λ3 = −λ4 ≡ λ =
√

ε− k2x =

√
ñ2 − ñ2a sin

2 ϑa (4.49)

4.4.4. Figure of merit

When analyzing ellipsometric data and comparing the data to simulated val-

ues, a measure for the goodness of the fit is needed. The common and well

established methods are the χ2 and mean squared error (MSE) figures of merit.

They are of similar form, but differs in that χ2 also takes into account a wave-

length and parameter dependent standard deviation of the observables. In

terms of the Mueller matrix elements, the two functions are defined by

χ2 =
1

N · J −M

N∑
i=1

J∑
j=1

(
mmod

j (i)−mexp
j (i)

σj(i)

)2

, (4.50)

MSE = 1000

√√√√ 1

N · J −M

N∑
i=1

J∑
j=1

(
mmod

j (i)−mexp
j (i)

)2
, (4.51)
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where N is the number of wavelengths, J the number of observables (here the

Mueller matrix elements), M the number of fit parameters, σj(i) the standard

deviation, and mmod
j and mexp

j are the simulated and experimental Mueller

matrix elements respectively. The MSE is multiplied by a factor of 1000,

which is equivalent to a standard deviation of 0.001 in the χ2 function. When

working with spectroscopic Mueller matrices using multiple incidence angles

and planes it can be difficult to estimate a correct standard deviation for all

observables. The MSE is therefore used in many applications.

4.5. Overview of results

In this thesis, nanopatterned GaSb substrates and plasmonic anisotropic nanos-

tructures of Au and Cu are studied using spectroscopic dual rotating compen-

sator Mueller matrix ellipsometry. The spectroscopic range of the instrument

is from 210 nm (5.9 eV) to 1700 nm (0.73 eV). A complete ellipsometric char-

acterization of these films can only be made by measuring the spectroscopic

Mueller matrix for several incidence planes and angles. The incidence plane is

selected by rotating the sample plane, as illustrated in Figure 4.6.

PSG PSA

Figure 4.6.: Schematic of an ellipsometer in reflection mode. The incidence

angle is indicated by ϑ and the orientation of the incidence plane

by the angle ϕ.
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4.5.1. In plane Au nanowires

In Paper 12 the optical properties of in plane Au nanowires are studied. The

anisotropic Au nanopatterned surfaces were prepared in a two stage process.

First ion beam sputtering (IBS) was used to prepare nanoripples on a quartz

substrate. The spatial surface modulation is induced by a combination of an

erosive instability and energy relaxation, dominated by diffusion and hyper-

thermal mobility. After the production of nanoripples, Au was evaporated onto

the sample at gracing incidence. As a result of shadowing, Au nanoparticles

formed on the sides facing the Au source. Along the ripples, Au nanoparticles

formed nearly connected lines, whereas normal to the ripples they were more

separated. A schematic view of the sample and the local geometry is shown in

Figure 4.7.

Figure 4.7.: Schematic illustration of the in plane Au nanowire sample. The

local coordinate system is illustrated, along with the relevant di-

mensions. The figure is from Paper 12.

The sample was measured for incidence angles 50◦ to 75◦, and for a 360◦

rotation of the incidence plane. Figure 4.8 shows the measured spectroscopic

Mueller matrix at 50◦ incidence for all incidence planes. The incidence plane

has been mapped to the polar angle, while the wavelength has been mapped

to the radial direction. The measured Mueller matrix data show a strong

asymmetry in all elements. It is particularly interesting that the block off-

diagonal elements, in particular the m14/41 element, show a different symmetry
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originating from the biaxial form, induced by the tilt angle of the nanoparticles

(visualized by the tilt angle θ in Figure 4.7).

1700nm

210nm

650nm

Figure 4.8.: Polar color map of the experimental spectroscopic Mueller matrix

measured at 50◦ incidence for the Au nanowire sample. The figure

is from Paper 12.

An optical model, that was used to fit the complete data set, was developed

by parametrizing an effective spectroscopic dielectric tensor for the film. The

dielectric tensor elements are plotted in Figure 4.9, where the coordinates

refer to the local coordinate system indicated in Figure 4.7. Localized surface

plasmon resonances were found for all three axes. The tensor was parametrized

using 9 oscillators. By fitting the Euler rotations of the tensor, the tilt angle (θ

in Figure 4.7) was found to be 12.8◦, which was found to be in good agreement

with an AFM analysis.
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Figure 4.9.: The parameterized complex dielectric tensor. The figure is from

Paper 12.

4.5.2. Plasmonic resonant Cu in mixed oxide nanopillars

In Paper 13, plasmon resonances for Cu nanoparticles embedded in a mixed

oxide nanopillar film are studied by spectroscopic Mueller matrix ellipsometry.

The oxide nanopillars were fabricated by low energy IBS of a sol-gel film of cop-

per oxide and silica. By varying the ion energy and the substrate temperature,

different pillar populations can be manufactured. Cohin et al. [111] showed,

by transmission electron microscopy (TEM) that metallic copper nanoparti-

cles form on the top and inside shorter nanowires. On longer nanowires, the

metallic copper formed on the sides, as illustrated in Figure 4.10. As the mixed

nanopatterned film of Cu and oxide had an irregular structure, the current ap-

proach for analyzing the data is mostly phenomenological.

By inspecting the spectroscopic Mueller matrix, oscillations were observed

in all Mueller matrix elements. Figure 4.11 shows generalized ellipsometric pa-

rameters for the measurement at 65◦ incidence. The ellipsometric parameters

were found by fitting the measured Mueller matrix to the Mueller-Jones ma-

trix in Equation (4.7). It was found that the fringes in Ψ could not originate

from interference, but were rather different plasmon modes. In particular, in

Figure 4.11, it was found that the maximum and minimum in Ψ originated

from s-polarized and p-polarized modes respectively. The splitting of modes

60



4.5. Overview of results

Figure 4.10.: A sketch of the oxide nanopillars with copper particles on the

top, inside and on the side of the nanopillars [111].
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Figure 4.11.: Generalized ellipsometric parameters generated from the mea-

sured Mueller matrix.
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4. Spectroscopic Mueller matrix ellipsometry

Figure 4.12.: A sketch of the GaSb nanopillar geometry. The figure is from

Paper 11.

Figure 4.11, it was found that the maximum and minimum in Ψ originated

from s-polarized and p-polarized modes respectively. The splitting of modes

can in terms of effective medium theory be explained by the shape of the Cu

nanoparticles. Disk like Cu particles (similar to what was observed in TEM on

top of the shorter wires) correspond to low energy s-polarized and high energy

p-polarized modes. Needle shaped Cu particles (which was observed on the

side of long nanowires) correspond to p-polarized resonances at low energies

and s-polarized resonances at higher energies.

4.5.3. Determination of small tilt angles of GaSb nanopillars

Paper 10 describes the determination of small tilt angles of GaSb nanopillars.

In Paper 11, the ellipsometric results are partially confirmed through grac-

ing incidence small angle x-ray scattering (GISAXS). GaSb nanopillars have

previously been studied extensively by Nerbø et al. [22, 25, 112–115], using a

Mueller matrix ellipsometer with a spectral range limited to the visible. In

the current work, it is demonstrated that by including ultra violet light, the

sensitivity to the tilt angle is strongly enhanced. Two samples, made under

the same conditions, were studied. The samples were produced by low energy

IBS of a clean GaSb substrate, where the growth is driven by the difference in

diffusion velocity and sputtering yield of the two components of the semicon-

ductor [116]. As Sb has a higher sputtering yield, there will be an excess of Ga

on the surface. The Ga atoms form droplets which act as sputtering masks for
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4.5. Overview of results

In order to model the spectroscopic data, a 50 layer anisotropic Bruggeman

effective medium model was used (Equation (4.35)). Each layer was modeled

as a cylinder, i.e. using a depolarization factor of Lx,y = 0.5 for the x and y

direction, and Lz = 0 for the z direction. By geometrical considerations, the

GaSb fill factors of each layer were calculated as a function of the cylinder

radius. The height of the pillars of the two samples were found to be 39.3

nm and 37.0 nm. While the tilt angles were found to be 4.78◦ and 2.82◦. A

tilt angle accuracy of 0.25◦ was estimated by comparing the results for two

different radius models.

Further, GISAXS was used to confirm the film anisotropy induced by the

nanopillar tilt and to find the average nanopillar separation. The latter allowed

the average local geometry to be estimated.

63





5. Conclusions

Mueller matrix polarimeters based on ferroelectric liquid crystals (FLC) and

liquid crystal variable retarders (LCVR) were designed and realized. Opti-

mal broadband polarimeter designs were found by optimizing the condition

numbers of the polarization state generator and analyzer. As the optimiza-

tion search space has numerous local optima, a genetic algorithm (GA) was

selected to solve the challenging optimization problem. The resulting polarime-

ters show good performance over large spectral ranges. GA optimized FLC and

LCVR based polarimeters were subsequently implemented in measurement se-

tups. The eigenvalue calibration method for Mueller matrix polarimeters was

adapted to overdetermined polarimeters and used to calibrate the instruments.

An imaging FLC based Mueller matrix polarimeter was implemented and

used for several applications. In particular, retardance imaging was applied

to strain mapping in multi-crystalline silicon, directional mapping of colla-

gen fibers in biological tissue, and structural characterization of domains in

synthetic clay.

Spectroscopic Mueller matrix ellipsometry was used to characterize anisotropic

nanostructured samples of GaSb, in plane plasmonic Au nanowires and mixed

films of plasmonic Cu particles and oxide nanowires. By using a multilayer

anisotropic Bruggeman effective medium model, it was demonstrated that ul-

traviolet to near infrared Mueller matrix ellipsometry is sensitive to small tilt

angles of GaSb nanopillars. By combining Mueller matrix ellipsometry with

gracing incidence small angle x-ray scattering, the local average geometry of

the nanopillars was found.

The optical properties of in plane Au nanowires fabricated on a nanostruc-

tured quartz substrate was investigated with Mueller matrix ellipsometry. It

was found that the spectroscopic effective dielectric tensor was biaxial with

localized plasmon resonances both along and normal to the wires. A local

nanowire tilt coincided with the Euler angle rotations of the dielectric tensor.

Plasmon resonant Cu nanoparticles embedded on the top, the inside and

the side of oxide nanowires were detected by spectroscopic Mueller matrix

65
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ellipsometry. The plasmon resonances were found to split in two sets of s- and

p-polarized modes due to the shape of the Cu nanoparticles.

5.1. Suggested future work

The results in this thesis opens for new applications and venues of Mueller

matrix polarimetry. It was shown that FLC based polarimeters are fast and

allow for Mueller matrix sample rates of more than 100 Hz. Many dynamic

and fast changing phenomenas have properties which can be measured by a

polarimeter. One example is the alignment of clay particles in a magnetic field.

If the Mueller matrix imaging instrument was adapted to a microscope setup,

higher resolution could be obtained. Applying a hyper spectral camera would

also be interesting. As the penetration depth in many absorbing materials

are wavelength dependent one could envisage polarimetric depth profiling in

e.g. biological tissue.

Strain is currently an important topic in the silicon solar cell community.

Imaging of strain has a large potential to supply input to numerical models and

simulations for improved solidification. In-line strain characterization during

production can also be envisaged.

For the in plane plasmonic Au nanowires, the location of the plasmon res-

onance along the nanowires is uncertain. Using mid infrared Mueller matrix

ellipsometry, the location of the plasmon could be determined.

And finally, the spectroscopic Mueller matrix measurement of Cu nanopar-

ticles in mixed oxide nanopillars was not modelled. A model where a combina-

tion of scattering from the localized plasmons and the reflection from substrate

could in the future be envisaged. Whenever a model is developed, the growth

mechanisms of the fabrication process could be studied by real-time in-situ

investigations.
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Abstract: A fast multichannel Stokes/Mueller polarimeter with no
mechanically moving parts has been designed to have close to optimal
performance from 430− 2000 nm by applying a genetic algorithm. Stokes
(Mueller) polarimeters are characterized by their ability to analyze the full
Stokes (Mueller) vector (matrix) of the incident light (sample). This ability
is characterized by the condition number, κ , which directly in uences
the measurement noise in polarimetric measurements. Due to the spectral
dependence of the retardance in birefringent materials, it is not trivial to
design a polarimeter using dispersive components. We present here both a
method to do this optimization using a genetic algorithm, as well as simu-
lation results. Our results include fast, broad-band polarimeter designs for
spectrographic use, based on 2 and 3 Ferroelectric Liquid Crystals, whose
material properties are taken from measured values. The results promise to
reduce the measurement noise signi cantly over previous designs, up to a
factor of 4.5 for a Mueller polarimeter, in addition to extending the spectral
range.

© 2010 Optical Society of America

OCIS codes: (120.2130) Ellipsometry and polarimetery; (120.4570) Optical design of instru-
ments; (300.0300) Spectroscopy.
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1. Introduction

Polarimeters are applied in a wide range of elds, from astronomy [1–3], remote sensing [4] and
medical diagnostics [5, 6] to applications in ellipsometry such as characterizing gratings [7],
nanostructures [8] and rough surfaces [9–11]. As all polarimeters are based on inverting so-
called system matrices, it is well known that the measurement error from independent Gaus-
sian noise is minimized when the condition number (κ) of these system matrices is mini-
mized [12,13]. It has been shown that κ =

√
3 is the best condition number that can be achieved

for such a system, and that this optimal condition number can be achieved by several different
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approaches using various optical components (e.g. rotating retarders [14], division of ampli-
tude [15, 16], and liquid-crystal variable retarders [17]). In many applications it is necessary to
perform fast spectroscopic measurements (e.g. by using a Charge-Coupled Device (CCD) based
spectrograph) [18]. In that case, the wavelength dependence of the optical elements will cause
the polarimeter not to be optimally conditioned over the full range simultaneously. A system
based on two Ferroelectric Liquid Crystals (FLC) has been reported to be fast and reasonably
well conditioned over the visible or near infrared spectral range [18–20]. By introducing a third
FLC a similar system has been proposed to have an acceptable condition number from the visi-
ble to the near infra-red (430−1700 nm) [21]. The design of a system having the best possible
condition number over a broad spectrum is a challenging optimization problem due to the large
number of parameters; many optimization algorithms are prone to return local optimums, and
a direct search is too time consuming. To avoid this time-consuming exhaustive search, we
decided to employ the Genetic Algorithm (GA). A GA simulates evolution on a population of
individuals in order to nd an optimal solution to the problem at hand. Genetic Algorithms were
pioneered by Holland [22], and are discussed in detail in e.g. Ref. [23]. GAs have previously
been applied in ellipsometry to solve the inversion problem for the thickness and dielectric
function of multiple thin layers, see e.g. Ref. [24–26].

2. Overdetermined polarimetry

A Stokes polarimeter consists of a polarization state analyzer (PSA) capable of measuring the
Stokes vector of a polarization state, see Fig. 1. The PSA is based on performing at least 4 dif-
ferent measurements along different projection states. A measured Stokes vector S can then be
expressed as S= A−1b, where A is a system matrix describing the PSA and b is a vector con-
taining the intensity measurements. A−1 denotes the matrix inverse of A, which in the case of
overdetermined polarimetry with more than 4 projection states will denote the Moore–Penrose
pseudoinverse. The analyzing matrix A is constructed from the rst rows of the Mueller matri-
ces of the PSA for the different states. The noise in the measurements of b will be ampli ed by
the condition number of A, κA, in the inversion to nd S. Therefore κA should be as small as
possible, which correspond to do as independent measurements as possible (i.e. to use projec-
tion states that are as orthogonal as possible).
A Mueller matrixM describes how an interaction changes the polarization state of light, by

transforming an incoming Stokes vector Sin to the outgoing Stokes vector Sout =MSin. To mea-
sure the Mueller matrix of a sample it is necessary to generate at least 4 different polarization
states by a polarization state generator (PSG) and measure the outgoing Stokes vector by at
least 4 measurements for each generated state. The measured intensities can then be arranged
in a matrix B = AMW, where the system matrixW of the PSG contains the generated Stokes
vectors as its columns. These generated Stokes vectors are found simply as the rst column
of the Mueller matrix of the PSG in the respective states. M can then be found by inversion
as M = A−1BW−1. The error ΔM in M is then bounded by the condition numbers according
to [27]

‖ΔM‖
‖M‖ � κWκA

‖ΔB‖
‖B‖ +κA

‖ΔA‖
‖A‖ +κW

‖ΔW‖
‖W‖ . (1)

The condition number is given as κA = ‖A‖‖A−1‖, which for the the 2-norm can be calcu-
lated from the ratio of the largest to the smallest singular value [28]. ΔA and ΔW are calibration
errors, which increase with κ when calibration methods using matrix inversion are applied. The
PSG can be constructed from the same optical elements as the PSA, placed in the reverse order,
which would give κA = κW ≡ κ . As the error in Mueller matrix measurements is proportional
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b) Mueller polarimeter

a) Stokes polarimeter

PSA

PSAPSG Sample Sensor

Sensor

Fig. 1. (a) A Stokes polarimeter measures the polarization state of an arbitrary light source
using a Polarization State Analyzer (PSA). (b) AMueller polarimeter measures how the po-
larization state of light, generated by with a Polarization State Generator (PSG), is changed
by a sample.

PSA

FLC1 WP1 FLC2 WP2 FLC3 WP3 Pol.

Fig. 2. Sketch of a PSA consisting of 3 FLC’s, 3 waveplates (WP), each with a retardance
δ and an orientation θ relative to the transmission axis of a polarizer.

to κ2, it is very important to keep this value as low as possible.
If 4 optimal states can be achieved (giving κ =

√
3), no advantage is found by doing a larger

number of measurements with different states, compared to repeated measurements with the 4
optimal states [14]. If, however, these optimal states can not be produced (κ >

√
3), the con-

dition number, and hence the error, can be reduced by performing more than 4 measurements.
For a FLC based polarimeter this can be done by using 3 FLCs followed by a polarizer as PSA,
with up to 3 waveplates (WP) between the FLCs to increase the condition number (see Fig. 2).
A PSG can be constructed with the same elements in the reverse order. Since each FLC can be
switched between two states (this switching can be described as a rotation of the fast axis of a
retarder by+45◦), 23 = 8 different states can be analyzed (generated) by the PSA (PSG). To ac-
curately measure the Stokes vector, the system matrix A needs to be well known. For a Mueller
polarimeter generating and analyzing 4 states in the PSG and PSA, the eigenvalue calibration
method (ECM) [29] can be applied. The ECM allows the measuring of the actual produced
states by the PSA and PSG (A and W), without relying on exact knowledge or modeling of
the optical components. However, the ECM is based on the inversion of a product of measured
intensity matrices B for measurements on a set of calibration samples. This product becomes
singular for a system analyzing and generating more than four states. A workaround of this
problem is to choose the subset of 4 out of 8 states which gives the lowest κ value, and build a
B matrix of those states to nd 4 of the 8 rows (columns) of A (W). More rows (columns) of
A (W) can then be found by calibrating on a different subset of the 8 states, giving the second
lowest κ value, and so on. By repeating the calibration on different subsets of states, all the 8
rows (columns) of A (W) can be found with low relative error ‖ΔA‖/‖A‖ (‖ΔW‖/‖W‖).

#134880 - $15.00 USD Received 9 Sep 2010; revised 5 Oct 2010; accepted 5 Oct 2010; published 18 Oct 2010
(C) 2010 OSA 25 October 2010 / Vol. 18,  No. 22 / OPTICS EXPRESS  23098



Reproduction Mutation

Mating contest Development

Fig. 3. The four essential processes in a genetic algorithm are shown above. Sexual repro-
duction is performed by multi-point genetic crossover, giving rise to the next generation
of individuals. Mutation can be simulated with simple bit negation (e.g. 0→ 1 and vice
versa). Development is the process where a genotype is interpreted into its phenotype, i.e.
the binary genome is interpreted as a polarimeter design. In the mating contest, one eval-
uates the tness of each individual’s phenotype, and let the more t individuals reproduce
with higher probability than the less t individuals.

3. Genetic optimization

In order to optimize κ(λ ), one can conceivably employ a variety of optimization algo-
rithms, from simple brute-force exhaustive search to more advanced algorithms, such as e.g.
Levenberg–Marquardt, simulated annealing, and particle swarm optimization. Our group has
previously performed optimization of a polarimeter design based on xed components, namely,
two FLCs and two waveplates. In this case, the optimization problem reduces to searching the
space of 4 orientation angles. With a resolution of 1◦ per angle, this gives a search space con-
sisting of 1804 ≈ 109 states to evaluate; on modern computer hardware, this direct search can be
performed. In order to optimize the retardances of the components as well, the total number of
states increases to about

(
109

)2
= 1018. Obviously, brute force exhaustive search is unfeasible

for such large search spaces.
A GA performs optimization by simulating evolution in a population of individuals (here:

simulated polarimeters). The three pillars of evolution are variation, heritability, and selection.
Our initial population must have some initial genetic variation between the individuals; hence,
we initialize our population by generating random individuals. Heritability means that the chil-
dren have to carry on some of the traits of their parents. We simulate this by either cloning
parents into children (asexual reproduction) or by performing genetic crossover (sexual repro-
duction) in a manner that leave children with some combination of the traits of their parents.
Finally, selection is done by giving more t individuals a larger probability of survival. For this
purpose, we used the tournament selection protocol, described in Ref. [23]. For a sketch of the
essential processes involved in a GA, see Fig. 3.
Our GA builds directly on the description given by Holland [22], using a binary genome as

the genetic representation. In this representation, a string of 0s and 1s represent the genome of
the individual. To simulate mutation in our genetic algorithm, we employ logical bit negation;
i.e. 0→ 1 or vice versa. Sexual reproduction is simulated by using multi-point crossover, i.e.
simply cutting and pasting two genomes together, as described by Holland [22].
The interpretation of the genome into a phenotype (development), in this case a polarimeter

design, is done in a straightforward way. For each variable in the polarimeter’s con guration,
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i.e. for each orientation angle and each retardance, we select m bits in the genome (typically,
m= 8) and interpret this number as an integer in the range from 1 to 2m. The integer is subse-
quently interpreted as a real number in a prede ned range, e.g., θ ∈ [0◦,180◦]. In order to avoid
excessively large jumps in the search space due to mutations, we chose to implement the inter-
pretation of bits into integers by using the Gray code, also known as the re ected binary code.
The most important parameter values in our GA are shown in Table 2. Making good choices
for each of these parameters is often essential in order to ensure good convergence.
After determining the phenotype, we must assign to each simulated polarimeter individual

a tness function (also known as the objective function). In order to do this, we rst calculate
κ(λ ). As discussed, κ−1(λ ) maximally takes on the value 1/

√
3. Hence, we de ne an error

function, e, as

e=
1
Nλ

Nλ

∑
n=1

(
κ−1(λn)−1/

√
3
)4

. (2)

In Eq. (2), λn = λmin+(n− 1)Δλ , with n = 1,2, . . . ,Nλ and Δλ = 5 nm. λmin and Nλ are
determined by the wavelength range we are interested in. The choice of taking the difference
between κ−1(λ ) and the optimal value to power 4 is done in order to “punish” peaks in the
condition number more severely. As GAs conventionally seek to maximize the tness function,
we de ne an individual’s tness as

f =
1
e
. (3)

This de nition is convenient because f takes on real and positive values where higher values
represents more optimal polarimeter designs.

4. Results

For the case of a polarimeter based on 3 FLCs and 3 WPs, we have minimized κ(λ ) by varying
the orientation angle, θ , and the retardance, δ , of all the elements. This yields a 12-dimensional
search space, i.e., 6 retardances and 6 orientation angles. θ is the angle between the fast axis of
the retarder (WP or FLC) and the transmission axis of the polarizer (see Fig. 2), taken to be in
the range θ ∈ [0◦,180◦]. The retardance, δ , is modeled using a modi ed Sellmeier equation,

δ ≈ 2πL
[

AUV
(λ 2−λ 2UV )1/2

− AIR
(λ 2IR−λ 2)1/2

]
, (4)

where AUV , AIR, λUV , and λIR are experimentally determined parameters for an FLC (λ/2@510
nm, Displaytech Inc.) and a Quartz zero order waveplate (λ/4@465 nm) taken directly from
Refs. [19] (for the FLCs, AIR = 0). L is a normalized thickness, with L = 1 corresponding to
a retardance of λ/2@510 nm for the FLCs and λ/4@465 nm for the waveplates. Each L and
θ are represented by 8 bits each in the genome. We use experimental values to ensure that our
design is based on as realistic components as possible.
The 3-FLC polarimeter design scoring the highest tness function is shown in Table 1. The

wavelength range for which we optimized the polarimeter was from 430 to 2000 nm. To visu-
alize the performance of this design, we show a plot of κ−1(λ ) in Fig. 4. The inverse condition
number, κ−1, is larger than 0.5 over most parts of the spectrum, which is close to the optimal
inverse condition number (κ−1 = 1/

√
3 = 0.577). This is a great improvement compared to

the earlier reported 3-FLC design [21], which oscillates around κ−1 ≈ 0.33. The new design
promise a decrease in noise ampli cation by up to a factor of 2.1 for a Stokes polarimeter, and
up to factor of 4.5 for a Mueller polarimeter. In addition the upper spectral limit is extended
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Table 1. Orientation angles, θ , and normalized thicknesses L, of the components of the best
3-FLC polarimeter. (WP = ( xed) waveplate)

Component θ [◦] L
FLC1 56.5 2.44
WP1 172.9 1.10
FLC2 143.3 1.20
WP2 127.1 1.66
FLC3 169.4 1.42
WP3 110.1 4.40

from 1700 nm to 2000 nm. Shorter wavelengths than 430 nm were not considered as the FLC
material will be degraded by exposure to UV light. Previous designs often suffer from κ−1(λ )
oscillating as a function of wavelength, whereas our solution is more uniform over the wave-
length range we are interested in. This uniformity in κ(λ ) will, according to Eq. (1), give a
more uniform noise distribution over the spectrum.
To give some idea of how fast the GA converges, a plot of f [see Eq. (3)] as a function of the

generation number is shown in Fig. 5. The mean population tness (μ) and standard deviation
(σ ) is also shown. As so often happens with genetic algorithms, we see that the maximal and
average tness increases dramatically in the rst few generations. Following this fast initial
progress, evolution slows down considerably, before it nally converges after 600 generations.
The parameters used in our GA to obtain these results are shown in Table 2.
A design using fewer components, in particular 2 FLCs and 2 waveplates, does have advan-

tages. These advantages include increased transmission of light, as well as reduced cost and
complexity with respect to building and maintaining the instrument. In addition some applica-
tions have weight and volume restrictions [3]. For these reasons, we have performed genetic
optimization of the 2-FLC design. In Fig. 6, we show the performance of two polarimeter de-
signs for the wavelength ranges 430−1100 nm (compatible with an Si detector) and 800−1700
nm. Both of these polarimeter designs show condition numbers which are considerably better

Fig. 4. Inverse condition number for the best GA-generated 3-FLC design. For comparison,
we show the inverse condition number of the patented 3-FLC design [21].
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Fig. 5. Convergence of tness as a function of generation number. μ and σ refer to the
average and standard deviation of the population’s tness, respectively. The best result
from this simulation is the one shown in Fig. 4.

Table 2. Genetic Algorithm parameters. The “crossover rate” is the probability for two
parents to undergo sexual reproduction (the alternative being asexual reproduction). The
parameter “crossover points” refer to the number of points where we cut the genome during
crossover (sexual reproduction). “Mutation rate” is the probability for any given individual
to undergo one or several bit ip mutations in one generation

Parameter Value
Crossover rate 0.7
Crossover points 2
Mutation rate 0.2
Population size 500

Table 3. Orientation angle, θ , and normalized thickness, L, of the 2-FLC polarimeters
shown in Fig. 6

Visible design NIR design
Component θ [◦] L θ [◦] L
FLC 1 90.4 1.17 177.9 2.60
WP 1 3.5 3.58 112.9 2.94
FLC 2 92.5 1.02 74.8 1.75
WP 2 19.8 3.52 163.1 4.71

than previously reported designs. The numerical parameters of the two designs based on 2 FLCs
are shown in Table 3.
Our optimization algorithm can, with little effort, be applied to a wider range of polarimeter

design. Any optical component can be included into our GA; for example, one can include xed
waveplates of different materials, prisms, mirrors, and other types of liquid crystal devices. The
material of each component could also be a variable, which could help alleviate the dispersion
problem. The only requirement is that the retardance of the component in question must be
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Fig. 6. Condition number for two designs using 2 FLC retarders and 2 waveplates. By op-
timizing κ(λ ) over a narrower part of the spectrum, we can design good polarimeters with
fewer components. The polarimeter designs labeled “Visible” and “IR” show our two de-
signs, optimized for 430 nm< λ < 1100 nm and 800 nm< λ < 1700 nm, respectively. For
comparison with our “NIR” design, we show the previous simulated design from Ref. [30].
The curve labeled “Commercial” shows the measured condition number of a commercial
instrument (MM16, Horiba, 2006) based on the same (FLC) technology.

possible to either model theoretically or measure experimentally. It is possible to optimize a
polarimeter for a different wavelength range, simply by changing program inputs. Focusing on
a wavelength range which is as narrow as possible typically results in higher condition numbers
than reported here. Evaluating different technologies, materials and components for polarimetry
should thus be relatively straightforward. The task is not computationally formidable: we have
used ordinary desktop computers in all our calculations.

5. Conclusion

In conclusion, we have used genetic algorithms to optimize the design of a fast multichannel
spectroscopic Stokes/Mueller polarimeter, using fast switching ferroelectric liquid crystals. We
have presented three polarimeter designs which promise signi cant improvement with respect
to previous work in terms of noise reduction and spectral range. Our approach requires rela-
tively little computational effort. One can easily generate new designs if one should wish to
use other components and materials, or if one wishes to focus on a different part of the opti-
cal spectrum. We hope that our designs will make polarimetry in general, and ellipsometry in
particular, a less noisy and more ef cient measurement technique.

Acknowledgements

The authors would like to thank professor Keith Downing at the Department of Computer and
Information Science at NTNU for helpful discussions regarding genetic algorithms and their
implementation.

#134880 - $15.00 USD Received 9 Sep 2010; revised 5 Oct 2010; accepted 5 Oct 2010; published 18 Oct 2010
(C) 2010 OSA 25 October 2010 / Vol. 18,  No. 22 / OPTICS EXPRESS  23103





L. M. S. Aas, P. G. Ellingsen, B. E. Fladmark, P. A.
Letnes, and M. Kildemo, Overdetermined broadband spec-
troscopic Mueller matrix polarimeter designed by genetic
algorithms, Opt. Express 21, 8753 (2013)

Paper 3 Foo

103





Overdetermined broadband
spectroscopic Mueller matrix

polarimeter designed by genetic
algorithms
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Abstract: This paper reports on the design and implementation of a liquid

crystal variable retarder based overdetermined spectroscopic Mueller matrix

polarimeter, with parallel processing of all wavelengths. The system was

designed using a modified version of a recently developed genetic algorithm

[Letnes et al. Opt. Express 18, 22, 23095 (2010)]. A generalization of the

eigenvalue calibration method is reported that allows the calibration of such

overdetermined polarimetric systems. Out of several possible designs, one

of the designs was experimentally implemented and calibrated. It is reported

that the instrument demonstrated good performance, with a measurement

accuracy in the range of 0.1% for the measurement of air.
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1. Introduction

Polarimeters measure the polarization state of electromagnetic waves. Methods based on po-

larimetry are thus non-invasive and have the possibility for remote sensing applications, which

makes them attractive in many fields of science. In the range of optical frequencies, polarime-

try has proven to be useful and promising in e.g. biomedical diagnostics [1–3], remote sensing

[4] and astronomy [5]. The sample measuring polarimeter (ellipsometer) is a key characteri-

zation technique for thin films [6–8], with recent applications to e.g. gratings [9], nanostruc-

tures [10–12], plasmonics [13], metamaterials [14] and scattering from rough surfaces [15–17].

A Mueller matrix ellipsometer/polarimeter consists of a complete polarization state generator

(PSG) and polarization state analyzer (PSA), which determines all the polarization altering

properties of a sample both in reflection and in transmission. A Stokes polarimeter consist only

of a PSA and is used to determine the complete polarization state of partially polarized light.

A PSA/PSG generally consists of a diattenuating polarizer and an active birefringent op-

tical component either modulated by azimuthal rotation or by an externally applied electric

field [18]. Typical examples are rotating (wave-plate/bi-prism) retarders [6, 19], electro-optical

modulation [20], photoelastic modulators [21, 22], and liquid crystal retarders [23, 24]. Disper-
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sion in the optical components is usually limiting the wavelengths range of the polarimeters,

but novel system designs may overcome this problem for at least a limited spectral range [23].

Certain wide band achromatic polarimeters (from the ultraviolet to the infrared) may be

constructed using near non-dispersive retarders, by exploiting the total internal reflection from

Fresnel prisms [19]. These retarders do commonly have a small aperture, are sensitive to align-

ment and require mechanical azimuth rotation for operation, and are thus not really suitable

for imaging and space applications. On the other hand, liquid crystal retarders have no moving

parts and can easily be made with large apertures, but they are strongly dispersive and a liquid

crystal based wide band polarimeter requires a more advanced design.

A common way of designing polarimeters with dispersive components, is to first choose

components based on a previous design or use a qualified guess. Secondly, the orientations of

the components and the electrically controlled states are estimated by a local exhaustive or a

gradient search. Due to a large search space, these latter search methods are computationally

expensive and require particularly good starting guesses in order not to converge to a local

minimum. Furthermore, for liquid crystal based wide spectral range multichannel polarimeters,

it is necessary to add more modulating components [25], or states in the original components, in

order to improve the conditioning of the system. The polarization state measurement is then said

to be overdetermined. This makes the system design even more complex, due to the addition of

more dimensions to the search space, hence requiring an efficient design algorithm [25].

Evolutionary algorithms are inspired by how nature evolves and how natural selection occurs.

Genetic algorithms [26] are a subcategory of these and are based on the use of a genome, com-

monly a series of binary numbers, to evaluate, breed and compare different solutions. Genetic

algorithms have proven to be effective at solving certain types of problems and are especially

effective in large search spaces with a number of local minima. However, it is important to note

that the algorithm does not search every solution and it cannot be guaranteed that the global

optimum is found, though with well configured parameters it should be a good one [27].

Advantages of overdetermined polarimeters and the use of genetic algorithms to design them,

was proven theoretically for a broadband system based on ferroelectric liquid crystal compo-

nents in [25]. The genetic algorithm was generically implemented in order to create designs us-

ing any polarization modulating component with known dispersive properties. We here report

for the first time an experimental implementation and testing of a genetic algorithm designed

wide-band liquid crystal variable retarder Mueller matrix polarimeter.

2. Theory

Let us first briefly review the theory and notation used to describe the measurement of Stokes

vectors and Mueller matrices using a PSA and a PSG, both for determined and overdetermined

systems. The calibration of overdetermined Mueller matrix polarimeters is thereafter explained

using a generalization of the eigenvalue calibration method (ECM) [28].

The polarization state of light, can generally be represented in vector form by the four ele-

ment Stokes vector defined by

S =

⎡
⎢⎢⎣

s1

s2

s3

s4

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

〈
Ex(t)2

〉
+

〈
Ey(t)2

〉〈
Ex(t)2

〉−〈
Ey(t)2

〉
2
〈
Ex(t)Ey(t)cosδ (t)

〉
2
〈
Ex(t)Ey(t)sinδ (t)

〉
⎤
⎥⎥⎦ ,

where Ex(t) and Ey(t) are time dependent, electric field amplitudes of the x− and

y−components, of an electric field propagating in the z−direction. 〈·〉 denotes time averages

and δ (t) is the time dependent phase difference between the x− and y−components of the
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electric field. Note that the averaging of time varying amplitudes and phases, results in a re-

duced degree of polarization.

The Mueller matrix is a 4×4 transfer matrix transforming an initial Stokes vector to the final

by Sfinal = MsampleSinitial. A Mueller matrix can describe all changes in the polarization state of

light upon the interaction with a sample, with quantifiable effects, like for instance polarizance,

diattenuation, retardance and depolarization [18].

In order to measure M, one needs at least four probing Stokes vectors [18]. Consequently

these Stokes vectors need to be measured by a polarimeter/PSA. A polarimeter/PSA projects

the incoming intensity to at least four carefully selected polarization states. These states are the

Stokes vectors in the PSA, organized into the rows of the PSA matrix A. The intensity vector,

b = AS, for an incoming Stokes vector can then be measured, and the Stokes vector found by

inversion; S = A−1b. Similarly, for the PSG in the Mueller matrix polarimeter/ellipsometer,

the generated Stokes vectors are organized as columns in the W matrix. The product MW
gives the Stokes vectors for the PSA to analyze, yielding the total intensity measurement ma-

trix B = AMW. As a result, the Mueller matrix can then, in principle, readily be calculated

by inversion of A and W, M = A−1BW−1. There are several ways of finding A and W for a

system, but a common method is the robust and increasingly popular ECM [28]. It uses the

measurement of a set of calibration samples to account for all systematic errors, such as align-

ment errors and time/temperature dependent variations in components of the system [23,24,29].

Prior knowledge is only required for the form of the reference sample Mueller matrix (i.e. if it

is a polarizer or retarder) and an initial qualified guess of the azimuth orientation, for solving

the system with the ECM. In our case, A and W result from six states in the PSA and PSG,

corresponding to 12 specific Stokes vectors SW1−6 and SA1−6

W = [SW1,SW2,SW3,SW4,SW5,SW6],

A = [SA1,SA2,SA3,SA4,SA5,SA6]
T .

The ECM is explained in the original paper [28] for systems using four Stokes vectors in the

PSG and PSA. Here we present the generalization needed to calibrate a system with n Stokes

vectors in the PSA and m Stokes vectors in the PSG. We start with a set of reference Mueller

matrices, {M}, corresponding to a set of intensity measurements, {B}. Bi is of size n×m and

is given by

Bi = AMiW.

For convenience, reference sample M0 is chosen to be air, such that B0 = AW. Next, two sets

of matrices, {C} and {C′}, are constructed using

Ci = B†
0Bi = W†MiW and C′i = BiB†

0 = AMiA†, (1)

where † denotes the Moore-Penrose pseudoinverse, which is the common way of defining the

inverse of a non-square matrix with noise [30]. In the case where Bi is of size four by four,

the sets {C} and {C′} have the same eigenvalues as the set of Mueller matrices {M}. As Ci
is independent of A, and C′i is independent of W, A and W may be found independently, and

{M} may be found both from {C} and {C′} independently.

In an overdetermined system Ci and C′i holds more eigenvalues than the corresponding

Mueller matrix Mi. One way of finding which of the eigenvalues that correspond to the Mueller

matrix Mi, is to do a search in the eigenvalues of Ci and C′i and compare them with expected

values. However, in a real measurement including noise, the latter approach did in our experi-

ence not appear robust. The noise is related to the relative error in M, shown by Stabo-Eeg et
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Fig. 1. (a) The measured retardance of a LCVR as a function of wavelength and the voltage

applied. (b) The retardance of the LCVR measured at 0 V with the temperature stabilized

at 26◦C, 28◦C and 30◦C. The figure shows the relative difference to the LCVR retardance

at 24◦C.

al. [19] to be
‖ΔM‖
‖M‖ � κWκA

‖ΔB‖
‖B‖ +κA

‖ΔA‖
‖A‖ +κW

‖ΔW‖
‖W‖ , (2)

where κW and κA are the condition numbers of W and A respectively. For a square non-singular

matrix the condition number is defined as κA = ‖A‖‖A−1‖, while for a non-square matrix the

generalized condition number is given by κA = ‖A‖‖A†‖ [31], where ‖ · ‖ denotes the second

norm of the matrix. From Eq. (2) it is seen that in order to minimise the noise in M, it is

necessary to reduce the condition numbers of A and W.

A robust solution to finding the correct eigenvalues of {M} from {C} and {C′}, is to (at

each wavelength) reduce B0 and Bi in Eq. (1) to the 4×4 subset of B0 and Bi resulting in the

lowest condition number for the reduced B0. When inverting B0, this ensures minimal noise

propagation into Ci and to the eigenvalues of Mi. After finding the eigenvalues of {M}, the

remainder of the calibration procedure follows the original paper by Compain et al. [28], using

the non reduced {B}.
Also worth noting is that the noise equation, Eq. (2), is the basis for the genetic optimisation,

which tries to maximise the inverse condition number.

3. Experimental

The essential optical components in the Mueller matrix polarimeter presented here, are polariz-

ers and liquid crystal variable retarders (LCVR). In the calibration, a polarizer and a waveplate

was used. We used a high extinction ratio near infra-red polarizer (LPNIR) from Thorlabs and

a true zero-order quarter waveplate at 1310 nm from Casix. The LCVRs were custom made for

the near infrared from Meadowlark Optics.

LCVRs are wave retarders having the retardance as a function of applied voltage. Compared

to ferroelectric liquid crystal retarders (previously proposed overdetermined polarimeter de-

sign [25]) which have only one fixed retardance, but with two stable azimuth orientations, they

typically have much longer transition times between two states [32], but have the advantage of

allowing the selection of all retardation values between a maximum and minimum value.

In order to design the optimal polarimeter, the retardance as a function of voltage and wave-

length needs to be known with reasonable precision. Although the calibration routine handles

small deviations in dispersive optical properties, high accuracy of the Mueller matrix elements
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Fig. 2. Schematic drawing of a typical spectroscopic Mueller matrix polarimeter using

liquid crystal variable retarders (LCVR), a broad band light source and spectrometer.

is only insured as long as the condition number is not strongly degraded with respect to the

design. In the instrument reported here, it was also found that there were, due to manufacturing

uncertainties, differences in thickness between the individual crystals. The crystals were there-

fore characterized individually in the range of 450 – 1680 nm using a commercial available

Mueller matrix polarimeter RC2 from J.A. Woollam Co.. Figure 1(a) shows as an example, a

surface plot of the resulting retardance as a function of voltage and wavelength for one of the

LCVRs. It is noted that for lower voltages the retardance reaches a threshold at the critical

voltage 1.5 V, while it approaches a low residual retardance for high voltages. The large retar-

dance in the visible insures the possibility for a reasonable retardance variation in the longer

wavelengths of the NIR spectrum.

It was found that the retardance was reduced significantly with the increased ambient tem-

perature. Figure 1(b) shows the deviation in the wavelength dependent retardance for 26◦C,

28◦C and 30◦C, relative to the retardance at 24◦C at 0 V. Thus, for reproducible and accurate

measurements, the LCVRs must be operated in an environment with a stable temperature.

Figure 2 shows a schematic drawing of a typical LCVR Mueller matrix polarimeter system

design, based on a broadband white light source, a spectrograph and four temperature controlled

LCVRs. The polarizer and the two crystals on the left side of the sample makes up the PSG,

while the components in the opposite order on the right side of the sample makes up the PSA

(i.e. a Stokes polarimeter).

The system design was done using a genetic algorithm based on the Pyevolve library [33].

The algorithm tries to maximize a fitness function, which was defined as

f =
1

e
,

where e is the error function defined as

e =
Nλ

∑
n=1

(
1√
3
− 1

κ (λn)

)4

.

Here Nλ is the total number of wavelengths and κ (λn) is the generalized condition number of

A or W for a given wavelength λn. This fitness function is similar to the one previously defined

in [25] and incorporates experimentally measured optical properties of the components using

the Mueller formalism to calculate the generalized condition number of A or W. As for the

previous fitness function, it punishes inverse condition numbers far away from the theoretical

maximum inverse condition number
(
1/
√

3
)
, by taking the difference to the fourth power. Fi-
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nally, it is noted that since the genetic algorithm is based on bit strings, the conversion from bits

to numbers will not always yield a voltage, or wavelength where the LCVRs were experimen-

tally characterized, in these cases the closest measured retardance value was used.

The genetic optimization was performed using the settings given in Table 1. 8 bits was con-

sidered sufficient to represent the voltage and the rotation angle, i.e. a step size of 0.04 V and

0.7◦. The wavelength range was selected to be 900 – 1700 nm, the range of a typical indium

gallium arsenide (InGaAs) near infrared detector. In particular, we used the NirQuest512 spec-

trograph from Ocean Optics. The number of generations, population size and mutation rate

were found by trial and error, by encouraging diversity and avoiding formation of large groups

of individuals focused around one minimum. Elitism (copying of the best individual from one

generation to the next), two point crossover and tournament were also used.

Table 1. General settings for the genetic optimization

Property Values
Voltage bits per LCVR 8

Rotation bits per LCVR 8

Wavelength range 850−1700 nm in 200 equal steps

Number of generations 500

Population size 200

Crossover method Two point crossover

Crossover rate 70%

Selection method Tournament with 4 individuals

Elitism The best individual

Mutation rate 4%

4. Results and discussion

Several Mueller matrix polarimeters were optimized in order to cover the near infrared spectral

range. By using two LCVRs in both the PSG and the PSA, one may in principle generate a large

number of states. However, a system that approaches the theoretically optimal inverse condition

number 1/
√

3 will need 16 states for every measured wavelength, as long as a retardance of

π/2 is available. For a large number of wavelengths (typically > 500), such a system results in

an unreasonable high total measurement time. Therefore, several Mueller matrix polarimeters

were designed and evaluated with only a limited number of states in the PSG and the PSA,

in order to keep the measurement time low. Three Mueller matrix polarimeter designs were

optimized and evaluated. All designs used an equal number of states in the PSG and the PSA.

The first design used two states in each of the LCVRs, totaling 4 (2× 2) states for the PSA

or the PSG, and 16 (42) states for the complete system. The second design had two states in

the first LCVR and three in the second LCVR, totaling 6 (2× 3) states for the PSA/PSG and

36 (62) in the complete system. Similarly the last design had two states in the first and four in

the second LCVR, resulting in a total of 8 (2×4) states for the PSA/PSG, and 64 (82) for the

complete polarimeter. For simplicity, these three designs will from now on be denoted as 2×2,

2×3 and 2×4. The resulting designs are summarized in Table 2, whereas the resulting inverse

condition numbers are shown in Fig. 3. It is evident that by going from a 2×2 to a 2×3 design

the condition number is increased on the two edges of the spectrum. By moving to 2×4 states,

the condition number increases over the whole spectrum. It is clear that there will be a trade-off

between the measurement time and the gain in the increased condition number, and hence the
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Fig. 3. The inverse of the generalized condition number of W as a function of wavelength.

Figure (a) shows the comparison between the best designs for a 2×2, 2×3 and 2×4 states

system, where the systems are presented in terms of the number of retardance (voltage)

states for each of the two LCVRs making up the PSG or the PSA. Figure (b) shows both

the simulated, measured and calibrated inverse condition number of the experimentally

realized polarimeter with 2×3 states.

noise reduction at the edges of the spectrum. As a compromise, we found it practical to use the

2×3 design for the experimental realization of the Mueller matrix polarimeter.

Table 2. Configuration of the optimal polarimeters

Polarimeter type
Component property 2×2 2×3 2×4

Orientation of LCVR1 (◦) 135.5 40.9 60.7

Orientation of LCVR2 (◦) 112.9 105.7 101.6

Voltages of LCVR1 (V) 3.6, 9.7 3.8, 9.9, 2.8 3.7, 1.6, 2.6, 2.1

Voltages of LCVR2 (V) 2.6, 6.8 2.9, 8.8 8.5, 2.7

In comparison to previously reported ferroelectric liquid crystal (FLC) designs [25] obtained

using a similar genetic algorithm, the 2× 3 LCVR design has a much narrower wavelength

range and a slightly lower inverse condition number. This is as expected, since the design using

three FLCs has three compensating wave-plates in addition to the liquid crystals, giving extra

degrees of freedom. Specifically, these degrees of freedom arise from the fact that both the

thickness (birefringence) and the azimuthal orientation of each component can be selected, and

as a result one would expect an overall higher inverse generalized condition number. However,

more optical components reduce the transmitted intensity, which in some cases results in a

greatly reduced signal to noise ratio. A high signal to noise ratio is particularly important for

applications with a limited flux, for example a large field of view imaging or space applications.

The 2× 3 design was mounted in custom made temperature controlled holders, one for the

PSG and one for the PSA. These were then separately mounted in the beam-path of the RC2,

and by switching through all the 2×3 states of the LCVRs, the Stokes vectors of the W and A
matrix was determined in the range 350 – 1680 nm, by selecting the first column of the meas-

ured Mueller matrix. The resulting inverse generalized condition number is shown in Fig. 3(b)

(in green stippled lines), together with the simulated inverse generalized condition number
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resulting from the design obtained by the genetic algorithm (solid line). As seen, the corre-

spondence between the experimental and simulated inverse generalized condition numbers is

excellent. This demonstrates the power of such a system design and implementation, utilizing

genetic algorithms and re-characterization of the optical components after arrival. The PSG

and the PSA were then mounted in the transmission geometry shown in Fig. 2, making up the

complete LCVR based Mueller matrix polarimeter. A and W were found using the ECM, as

discussed in section 2. The generalized condition number of the calibrated W matrix is plotted

in Fig. 3(b). It is observed from the figure that the general spectral features in the optimized

condition number are reproduced in the experimental version, although it suffers from small

offsets in some parts of the spectrum. The latter offsets are possible due to that the compo-

nents of the PSA/PSG were slightly realigned between the measurement using the commercial

Mueller matrix ellipsometer compared to the final implementation of the LCVR Mueller ma-

trix polarimeter. On the other hand, it shows that the modified ECM automatically compensates

for alignment errors during assembly, and the final system calibrate correctly with only minor

changes in the propagation of noise.
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Fig. 4. The measured spectroscopic Mueller matrix of air normalized to the m11 element.

An important measure of the Mueller matrix polarimeter accuracy is the measurement of air,

whose Mueller matrix is simply the 4× 4 identity matrix. Figure 4 shows the spectroscopic

Mueller matrix measurement of air (normalized to the m11 element). The deviation from the

identity matrix is small, since the error is less than 0.1% over most of the spectrum, and is

never more than 0.17%.

It is recalled that the wide band LVCR design uses few components and thereby has small

reflection losses from the optical interfaces. Hence, the designed Mueller matrix polarimeter

should also be well suited for a fast imaging setup with low loss of light, compared to a FLC

based setup, while insuring small measurement errors across the spectral range of operation,

even suitable for hyperspectral imaging. The reduction in number of components also enables

a more compact design. Another advantage of the setup will be the possibility to redesign the

spectral characteristics without having to rotate the components, since the voltage of the LCVRs
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is software controlled. By using the genetic algorithm, it is possible to fix the rotation angles and

only optimize on the LVCR voltage in order to fulfill other system specifications. Finally, one

may envisage a system that can improve itself by self-characterization and intelligent design by

implementing an in-line version of the genetic algorithm.

5. Conclusion

Genetic algorithms have been used to design multichannel Mueller matrix polarimeters based

on liquid crystal variable retarders for the near infrared with 2×2, 2×3 or 2×4 voltage states

for the polarization state generator and analyzer. The design using 2×3 states was experimen-

tally realized and calibrated, based on its advantageous trade-off between total measurement

time and overall performance with respect to error propagation (optimized inverse condition

number). The resulting Mueller matrix polarimeter demonstrated here, shows good perfor-

mance in the design wavelength range (900-1700 nm) with less than 0.1% error on the Mueller

matrix of air, making it suitable in for example hyperspectral or multispectral imaging applica-

tions.
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Design, optimization and realization of a ferroelectric liquid crystal based Mueller matrix

ellipsometer using a genetic algorithm
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Abstract

The design of complete broadband polarimeters with high performance is challenging due to the wavelength dependence of optical

components. An efficient genetic algorithm computer code was recently developed in order to design and re-optimize complete

broadband Stokes polarimeters and Mueller matrix ellipsometers. Our results are improvements of previous patented designs based

on two and three ferroelectric liquid crystals (FLC). FLC based polarimeters are suited for broadband hyperspectral imaging, or

multichannel spectroscopy applications. We have realized and implemented one design using two FLCs and compare the spectral

range and precision with previous designs.

Keywords: Mueller matrix Ellipsometer, Optical Design, Ellipsometry, Polarimetry

1. Introduction

A polarimeter is an instrument that measures the polariza-

tion state of light to gain information about light sources, or

materials interacting with polarized light. By measuring how

the polarization of light is altered after being reflected from a

smooth surface, the technique is often referred to as ellipsome-

try.

The need for fast broadband Mueller matrix ellipsometers

and Stokes polarimeters result in challenging design problems

when using active polarization modulators which are intrinsi-

cally strongly dispersive. Although designs based on e.g. the

Fresnel rhomb and alike are nearly achromatic, these are not

well suited for neither imaging nor high speed applications. In

the case of polarimeters and Mueller matrix ellipsometers based

on liquid crystal modulators, the direct search space may be-

come huge [1] and standard optimization methods can evidently

result in local minima far away from the optimum. An effi-

cient Genetic Algorithm (GA) computer code was recently de-

veloped in order to design and re-optimize complete broadband

Stokes polarimeters and Mueller matrix ellipsometers (MME) [1].

This code is here used to search systems generating and ana-

lyzing optimally selected polarization states, in order to reduce

the propagation of noise from the intensity measurements to

the Mueller matrix elements. Although the GA code was ini-

tially motivated by the challenging task of searching the com-

ponents, states and azimuthal orientations for optimally condi-

tioned broadband liquid crystal based polarimeters [1, 2], the

software is written in a versatile manner in order to handle gen-

eral polarimeters based on any polarization changing compo-

nents. For small scale production, we propose that the GA al-

gorithm can be used to re-optimize the design due to imper-

fect polarization components, e.g. due to small deviations in

Email address: lars.martin.aas@gmail.com (Lars Martin S. Aas)

the specifications of the optical components. Any addition of

“non-conventional” polarization altering components in the po-

larimeter, such as mirrors and prisms can be included in the GA

algorithm, given that the dispersive properties of such compo-

nents are known.

A classical GA [3, 4] was chosen to optimize the polarime-

ters based on Ferroelectric Liquid Crystals (FLC). FLC based

polarimeters were first proposed by Gandorfer [5], and Jensen

and Peterson [6]. They have the advantage of being fast [7]

and having no moving parts, which is an advantage for imaging

applications. A commercial FLC multichannel spectroscopic

(430-850 nm) Mueller matrix ellipsometer [16] is available from

Horiba Yvon Jobin. The FLC system is based on optical com-

ponents with known properties [7, 8]. Its overall performance

depends on the components in a complex manner. Traditional

optimization methods are hampered by local minima in the large

search space. A genetic optimization algorithm is more robust

and will normally move out of local minima. Resulting in a

polarimeter design with less noise amplification on a broader

spectral range.

In this work, a new design for the commercial FLC based

MM16 system has been implemented. Furthermore, we demon-

strate how the GA algorithm may be used in small scale produc-

tion, where we may simply re-optimize the design in the case

of an off-specification component.

2. Theory

The complete polarization state of light, including partially

polarized states, can be expressed concisely using the Stokes

vector. It completely describes the polarization state with four
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(a)PSA Sensor

FLC3 FLC2 FLC1 WP1WP2WP3 Polarizer

(b)

Figure 1: A schematic drawing of a polarimeter, (a) shows a general polarime-

ter where the polarization state of incident light is analyzed by the Polarization

State Analyzer and a light intensity detector. In (b) the components of a Po-

larization State Analyzer is exemplified through a combination of two or three

FLCs and waveplates (WP) and a linear polarizer.

real elements [9]

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
Q
U
V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈E0,x(t)2〉 + 〈E0,y(t)2〉
〈E0,x(t)2〉 − 〈E0,y(t)2〉

2〈E0,x(t)E0,y(t) cos δ(t)〉
2〈E0,x(t)E0,y(t) sin δ(t)〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where 〈· · · 〉 denotes time average over, the in general, quadratic

time dependent orthogonal electric field components (E0,x(t)
and E0,y(t)) and phase (δ(t)).

The change of a polarization state can be described by a 4×4

real-valued transformation matrix called a Mueller matrix, M,

connecting an incoming Stokes vector Sin to an outgoing Stokes

vector

Sout =MSin. (1)

Any linear interaction of light can be described by the Mueller

matrix. A Mueller matrix can describe a range of polarization

effect, such as diattenuation (different amplitude transmittance

or reflectance for different polarization modes), retardance (i.e.
changing δ), and depolarization (which increases the random

component of the electric field).

A Stokes polarimeter consists of a polarization state ana-

lyzer (PSA) capable of determining the Stokes vector by per-

forming at least four intensity measurements. For a given state

(i), the polarization altering properties of the PSA can be de-

scribed by its Mueller matrix MPSA(i), which can be found as

the matrix product of the Mueller matrices of all the optical

components in the PSA. These components are a linear polar-

izer, and a number of phase retarders (e.g. FLCs and wave-

plates), see Figure 1. An FLC is a phase retarder which can

be electronically switched between two states. The difference

between the states corresponds ideally to a rotation of the fast

axis by 45◦ (θ(0) = θ0 and θ(1) = θ0 + 45◦). By using a linear

polarizer and two FLCs as a PSA, one can generate 22 = 4 dif-

ferent projection states, by using three FLCs one can generate

23 = 8 states, etc.

If an unknown polarization state with Stokes vector S passes

through the PSA, for a state i, the detector will measure an in-

tensity I depending only on the first row of MPSA(i)

I =
4∑

j=1

MPSA
1, j (i)S j.

The intensity can be considered to be the projection of S along a

Stokes vector equal to MPSA
1,1..4

T , where T denotes the transpose.

These Stokes vectors are organized as rows in the system matrix

A. When operating on a Stokes vector the result is

b = AS.

Here b is a vector composed by the intensity measurements at

the different projection states. An unknown Stokes vector can

then be found by S = A−1b. The noise in S comes from the

measurement noise in b but is amplified by the condition num-

ber (κ) of A [10]. Therefore κ of a polarimeter should be as

small as possible [11]. A low κ indicates that the probing po-

larization states are close to orthogonal. The condition number

of A is given as κ = ‖A‖‖A−1‖, which for the 2-norm is equal

to the ratio of the largest to the smallest singular value of the

matrix [10]. Theoretically the best condition number that can

be achieved for a polarimeter is κ =
√

3 [11]. If four opti-

mal states can be achieved, no advantage is found by doing a

larger number of measurements with different states, compared

to repeated measurements with the four optimal states [12]. If,

however, these optimal states can not be produced (κ >
√

3),

the condition number, and hence the error, can be reduced by

measuring more than four states. For an FLC based polarimeter

this is accomplished by using three FLCs in the PSA, with up to

three waveplates (WP) coupled to the FLCs to reduce the con-

dition number (see Figure 1), or components with more than

two states, such as liquid crystal variable retarders (LCVR). In

this case A will not be a square matrix, and the Moore-Penrose
pseudoinverse is then used to invert A [2].

To measure the Mueller matrix of a sample, it is necessary

to illuminate the sample with at least four different polarization

states. The Stokes vectors of these states can be organized as

columns in a polarization state generator (PSG) system matrix

W. After interaction with the sample the product MW gives

the resulting four Stokes vectors. They are then measured by

the PSA, yielding the intensity matrix B = AMW. The Mueller

matrix can then be found by multiplying the expression by A−1

and W−1 from each side, M = A−1BW−1. The PSG may be

constructed from the same optical components as the PSA.

3. Fitness evaluation

It has already been established that κ should be as small as

possible in order to reduce noise in the polarimetric measure-

ments. It is a fairly trivial exercise to optimize κ for a single

wavelength. However, there are two sources of wavelength de-

pendence of the optical properties of the components.

One of these is the explicit wavelength dependence of the

2



retardance ΔR, which can be calculated as [13]

ΔR =
2πl(Δn)

λ0

, (2)

where l is the physical thickness of the component (e.g. wave-

plate or FLC), λ0 is the vacuum wavelength of the light, and

Δn is the birefringence of the material. Birefringence is the

difference in refractive index between the fast axis (index of

refraction nf) and the slow axis (ns), i.e. Δn = |nf − ns| [13].

There is an explicit wavelength dependence in Eq. (2), which

complicates the design of the PSA. A weaker, but still impor-

tant, effect is the wavelength dependence of the birefringence,

i.e. Δn = Δn(λ). Both of these effects are taken into account by

using experimental data for the retardance [2, 14].

To evaluate the performance of a polarimeter design, we

compare the inverse condition number (κ−1(λ)) to the theoreti-

cally optimal value (1/
√

3). The argument for using κ−1 rather

than κ is that
√

3 < κ < ∞ while 0 < κ−1 < 1/
√

3, which

is more numerically convenient. In detail, we define an “error

function” (e)

e =
1

Nλ

Nλ∑

n=1

(
κ−1(λn) − 1/

√
3
)4
. (3)

In the above equation, we typically use λn = λmin + (n − 1)Δλ,
with n = 1, 2, . . . ,Nλ and Δλ = 5 nm. It is, of course, possible

to choose other discretization schemes for λ: for some applica-

tions, one can e.g. be interested in optimal performance near a

few spectral lines (wavelengths). We take
(
κ−1 − 1/

√
3
)

to the

power of four to punish unwanted peaks in κ more severely. As

GAs conventionally seek to maximize the fitness function, the

fitness function is defined as

f =
1

e
. (4)

As e will never be zero in practice, there is no need to add a

constant term in the denominator. The fitness function does

not carry any physical significance on its own; it is simply an

overall measure of how well the polarimeter can measure along

orthogonal polarization states for the chosen wavelengths.

4. Genetic algorithm

The GA was based on the open Python library Pyevolve [15],

and was written to handle any kind of optical components. We

have, however, so far concentrated our efforts on systems based

on liquid crystals (here in particular FLCs) as polarization mod-

ulators, with fixed waveplates “sandwiched” between them. An

achromatic design is enabled by the coupling of waveplates and

FLCs. Both polarimeter designs based on three and two FLC

retarders were optimized. Each FLC has two variables, the nor-

malized thickness L (normalized to a reference component) and

its azimuthal orientation angle θ. The same is true for the fixed

waveplates. For three and two FLC system, this yields 12- and

8-dimensional search spaces: six and four components with two

variables each.

In the GA, “polarimeter designs” are represented using a

traditional binary genome. Each component is assigned a num-

ber of bits for θ and a number of bits for L. θ is the simplest case,

as its possible values are limited: the best achievable alignment

accuracy is estimated to Δθ ≈ 0.5◦. With the range of θ being

from 0◦ to 180◦, 8 bits were found sufficient to represent the az-

imuth orientation of the components. For L, one should choose

a minimum and a maximum value according to which compo-

nents can be realistically purchased. Here, too, is the experi-

mental resolution somewhat coarse, such that a large number

of bits is not required for its representation (8-10 bits is suffi-

cient). After determining L and θ for each of the six or four

components, we proceed by determining the full transfer ma-

trix of the PSA, MPSA(λ, i) for each discrete wavelength λn and

each projection state i. As described in Section 2, one can deter-

mine the condition number κ(λ) for A from the transfer matrices

MPSA(λ, i). The first generation of polarimeters was initialized

by generating genomes with the bits chosen randomly with a

uniform distribution.

Initially, the component ordering was a variable in the genome.

In that case, the first few bits of the genome determines the or-

dering of the components. This was done by interpreting these

bits as the index in a list of components. However, the best re-

sults from initial simulation runs almost always had the same

component ordering as older “non-genetic” designs [7, 14, 16].

Hence, we removed this feature to speed up convergence.

The genetic operators that were used are the well known

ones for binary genomes [3, 4]. For mutation, the simple bit-

flip operator was used; i.e. flipping 0 → 1 or vice versa. The

mutation rate per individual was typically set to 0.2 per gener-

ation. Crossover was performed by multi-point crossover. Ex-

perience indicates that two crossover points combined with a

crossover rate of 0.7 gives the best convergence performance.

The selection protocol we used was tournament selection with

K = 4 individuals in the tournament pool and ε = 0.3 proba-

bility of an “underdog” selection. The elitism rate was set to

1 individual per generation. It should be noted that depending

on the number of components and, hence, the genome length,

the exact rates may have to be adjusted somewhat for optimal

performance.

In the final simulations a population of 500 individuals evolved

over 600 generation. Several equivalent simulation runs were

performed with different initializations of the random number

generator. As the theoretically optimal performance for realis-

tic materials is not known, no other convergence criteria than

the maximum number of generations was used. Decent results

can, however, be achieved more quickly with smaller popula-

tion sizes and a lower number of generations.

5. Results

While the GA can handle components with arbitrary disper-

sion relations, our discussion is limited to components whose

wavelength-dependent retardance can be fitted to the following

3



modified Sellmaier equation

Δ(λ) ≈ 2πL
⎡⎢⎢⎢⎢⎣

AUV

(λ2 − λ2
UV )1/2

− AIR

(λ2
IR − λ2)1/2

⎤⎥⎥⎥⎥⎦ . (5)

Here, L is the normalized thickness of the component, which

is proportional to the component’s physical thickness. L = 1

correspond to an FLC with λ/2 at 510 nm. The parameters

AUV , AIR, λUV , and λIR can be found by fitting experimental

data to this model. Initially, for the results presented in this pa-

per, numerical values from quartz waveplates and FLCs were

used [14]. FLCs were manufactured according to the specifica-

tions of the initial optimization. Waveplates were manufactured

after re-optimizing, using measured values for the thicknesses

of the FLCs. Finally the orientation of all components were op-

timized after all the waveplates were characterized. As a result,

the PSA and the PSG are not equal, due to differences in the

individual optical components.

As the typical upper wavelength limit of a silicon spectro-

graph is 1000 nm, the range was set from 430 nm to 1000 nm.

It is noted that the commercial system ranges from 430 nm to

850 nm. We also aimed at a better condition number for the

whole spectral range.

The resulting condition number for the polarimeter using

two FLCs is shown in Figure 2. It is noted that the system

design was somewhat limited by the fact that thin FLCs could

not be manufactured. Only a quasi-optimal system within the

manufacturer limitations was designed. The results from the

PSG and the PSA are plotted separately.

All new designs show a better condition number than the

commercial instrument, and allow for measurements of the Mueller

matrix across a broader spectral range. The final measured con-

dition number is slightly poorer compared to the simulated. As

the components were not covered with anti-reflective coatings,

the oscillations appearing in the spectrum may originate from

multiple reflections. Another source of errors are the mount-

ing accuracy of the optical components. It has previously been

shown that the FLC rotation angle is not always 45◦, but varies

with a few degrees between individual components [7]. One

could envisage to include such individual switching angles and

possibly also a higher weight on stable solutions into the fitness

function.

We briefly recall that we have recently reported systems de-

signed using three FLCs in the PSG and PSA for an extended

wavelength range from 430 nm to 2000 nm [1]. Here, the power

of the GA design algorithm becomes even more evident, which

is clearly seen by the polarimeter design shown in Figure 3. The

design parameters of the polarimeters, i.e. the θ and L values,

for both the three and two FLC design are shown in Table 1.

For comparison with previous designs, a recently patented de-

sign [19] is plotted for comparison with the GA generated one.

The GA generated design is based on three FLCs and three

waveplates, while the previous patented design is based on three

FLCs and one waveplate. A disadvantage of using additional

waveplates is the reduced transmittance with more reflective

surfaces. The new design is useful over a broader spectral range

(here defined as the parts of the spectrum where κ−1 � 0.2) and
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Figure 2: Inverse condition number for polarimeter designs based on two FLCs

and two waveplates. Results are shown for an older design in the visible [18].

We also show GA generated designs that cover a wider spectral range with a

better condition number for optimal theoretical design (solid black), best design

after characterization (dashed blue) and best achieved design after mounting

and calibration (solid blue).

has an overall lower noise amplification due to a lower condi-

tion number (higher inverse condition number). It should be

noted that the FLC technology is limited downwards in wave-

length to 430 nm, due to material degradation when exposed to

ultra violet light.

One can get an impression of how complex the fitness land-

scape is from Figure 4. Here, a plot of f (θ1, θ2) is shown, where

θ1 is the orientation angle of FLC3 and θ2 is the orientation an-

gle of WP3, the two first components in Figure 1. All other

parameters, i.e. θ and L values for the other components, were

set to the optimal value as given in Table 1. Note that f (θ1, θ2)

is periodic in both variables with a period of 180◦. Due to the

enormous number of local minima, even in only 2 of the 12

search dimensions, a clever optimization algorithm is required.

The Mueller matrix ellipsometer based on two FLCs in the

PSG and the PSA (Figure 2) were inserted into the MM16 in-

strument from Horiba and calibrated the normal way using the

eigenvalue calibration method [20] implemented in the software

DeltaPsi 2. To verify the precision of the instrument, ten mea-

surements of air were made, these are plotted in Figure 5 to-

gether with a measurement using the old design (red curve).

4



Table 1: Orientation angle, θ, and normalized thickness, L, for all components of the best polarimeter based on three and two FLCs, as shown in Figures 3 and 2.

For comparison, the wavelength where the retardance is λ/4 is also included(for some components, for λ/2) for our design as well as the patented design with three

FLCs. The notation WP1, FLC1 etc. is explained in Figure 1. Note that the previous patented design uses only one fixed waveplate, while our design uses three.

Three FLC design Three FLC Patent 2 FLC Visible design

Component θ[◦] L λ/4 @ θ[◦] λ/4 @ θ[◦] L λ/4 @

FLC1 56.5 2.44 1991 nm 46.0 1150 nm 100.6 1.06 894 nm

WP1 172.9 1.10 493 nm 10.2 3.37 1404 nm

FLC2 143.3 1.20 1009 nm −5.0 1050 nm 89.9 1.05 901 nm

WP2 127.1 1.66 722 nm 92.0 λ/2 (Achromatic) 18.5 3.75 1552 nm

FLC3 169.4 1.42 1181 nm 72.0 600 nm

WP3 110.1 4.40 1798 nm
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Figure 3: Inverse condition number (κ−1(λ)) for a GA-generated and a previ-

ously patented design [19]. The GA-generated design is based on three FLCs

and three waveplates, while the previous patented design is based on three FLCs

and one waveplate.

The mean of the ten measurements are plotted with a dark blue

curve and the standard deviation is plotted as the light blue area

around the curve. There is no evident difference in accuracy

or precision between the measurements using the two different

designs. Both designs have a maximum error of approximately

one per cent. The obvious improvement is the increased spec-

tral range.

An important application of FLC based polarimeters are in

addition to the spectroscopic ellipsometry the Mueller matrix

imaging [21–23]. The increased bandwidth allows for a multi-

purpose instrument with multiple wavelengths.

6. Conclusion

Genetic Algorithms (GA) are able to generate optimized de-

signs of Stokes polarimeters and Mueller matrix ellipsometers

covering a broader spectral range with reduced noise amplifi-

cation (lower system matrix condition numbers). Compared to

previous optimization techniques used for this purpose, often

based on direct or gradient searches in small parts of the search

space, the GA outperforms these methods when having multi-

dimensional search spaces with many local minima. An instru-

ment based on ferroelectric liquid crystal retarders optimized

Figure 4: A two-dimensional “cut” of the fitness landscape around the optimal

value for the GA-generated design with three FLCs shown in Figure 3. θ1 is the

orientation angle of FLC3 and θ2 is the orientation angle of WP3, as shown in

Figure 1. The other θ and L parameters were set to the optimal values.

using the GA was assembled and characterized showing sys-

tem properties as expected from the simulations, with extended

spectral range.
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We report on the design and performance of a near infra-red Mueller matrix imaging ellipsometer, and apply
the instrument to retardance imaging of strain in near infra-red transparent solids. Particularly, we show that
the instrument can be used to investigate complex strain domains in multi-crystalline silicon wafers.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper the near infra-red (NIR) ferroelectric liquid crystal
(FLC) based Mueller matrix ellipsometer (MME) design reported
recently [1], is modified to an imaging set-up, and used to
demonstrate the application to retardance imaging of strain in
transparent crystals. Neither a NIR imaging MME system nor an FLC
based imaging MME has to our knowledge been previously reported.

Several non-scanning imaging MME systems based on Variable
Liquid Crystal Retarders (VLCR) have recently been reported [2,3].
These systems have so far only been operated in the visible range, and
will generally be many orders slower than an FLC based system [1].
Using such systems, it has been reported that imaging MME is an
interesting tool in both bio-applications [3–6], and strain imaging [7].
Recent non-imaging Mueller matrix ellipsometric studies of bio-tissue
demonstrate the usefulness of the Mueller matrix in combination with
polar decomposition techniques [8–11].

The advantage of the complete Mueller matrix measurement relies
on the possibility to use polar decomposition techniques [11–15] and
that the Eigenvalue Calibration Method (ECM) may be used for the
calibration of the system [16,17]. Furthermore, the Mueller matrix will
not suffer from unexpected properties initially believed not to be part
of the sample properties, such as polarization dependent scattering or
depolarization, different types of diattenuation, and both circular and
linear birefringence components.

Several FLC based designs have been proposed, although the first
proposed system similar to the one reported here, appears to be by
Gandorfer et al. [18]. FLC based MMEs are appealing since they involve
no moving parts, and supply a highly stable beam. They are both
suitable for direct imaging applications (hyper-spectral and mono-
chrome), or in conjunction with for example stripe CCD spectrographs
commonly used in spectroscopy. Furthermore, FLCs modulate rapidly
for a fast determination of the Mueller matrix. The disadvantage of
liquid crystals, and in particular the current FLCs is the well known
degradation upon UV-radiation. Applications of liquid crystal tech-
nology in MME are so far limited to the visible and the infra-red.

Reducing material costs is a great concern for the silicon solar cell
industry. One approach is to reduce the wafer thickness. A factor
making the latter difficult, is the internal residual strain, which is often
induced in the process of casting. To control and verify a successful
wafer production with lower strain, effective instruments are needed
to measure the residual strain. In addition to a report of the system
instrumentation, we demonstrate the application of the FLC based NIR
MME imaging system to make a map of two dimensional projections
of strain fields in multi-crystalline silicon wafers. The strain fields are
proportional to the retardance, when neglecting multiple reflections
in the sample [24,25].

2. Experimental

2.1. Overview of the system and concept

The NIR-MME imaging setup was designed to operate both in
transmission and reflection mode. The applications demonstrated in
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this paper are only from transmission mode measurements. The
system was designed to operate in the range 700–1600 nm [1,19]. A
schematic drawing of the setup is shown in Fig. 1. In particular, the
Polarization State Analyzer (PSA) and the Polarization State Generator
(PSG) are both composed of a NIR dichroic polarizer (P1/P2), a zero
order quarter wave-plate at 465 nm (R1/R4), a half wave-plate at
1020 nm (R2/R3), an FLC half wave retarder at 510 nm (F1/F4) and an
FLC half wave retarder at 1020 nm (F2/F3). The FLCs have fixed
retardances and can switch between two orientations of the fast axis.
A suitable combination of wave-plates and FLCs ensures that the PSG
generates four sub-optimal Stokes vectors for all wavelengths in the
design range. These four Stokes vectors define the column vectors of
the PSG matrix (W). The four analyzer states of the PSA define the
rows of the analyzer matrix (A). A Mueller matrix measurement is
carried out by measuring the 16 intensities obtained when switching
through all possible FLC combinations. The measurement and the
calibration process is similar to the one proposed for the LCVR systems
[20], and the rotating compensator systems [21]. The 16 measured
intensities form a matrixB, which correspond to the matrix product ofA,
the sample Mueller matrix (M) and W

B = WMA: ð1Þ

M can then be found by multiplying B by the inverse of W and A from
each side

M = W−1BA−1
: ð2Þ

It is evident from linear algebra that for Eq. (2) to be solvable, A and
W need to be non-singular. Specifically, it has been shown that the error
in the intensity measurements (B) and the calibration errors of A and W
are amplified into the errors of a measured Mueller matrix as [21]

j jΔM j j
j jM j j ≲κA

j jΔA j j
j jA j j + κW

j jΔW j j
j jW j j + κWκA

j jΔB j j
j jB j j ; ð3Þ

where κW= ||W||||W−1|| and κA are the matrix condition numbers of
A and W, where we use the L2 norm which is the ratio of the largest to
the smallest singular value [22].

In order to find W and A, an implementation of the ECM is used.
The method allows W and A to be calculated without exact knowledge

of the Mueller matrix of the calibration samples. More details about
the FLC MME system and its calibration are reported elsewhere [1,19].

2.1.1. Light sources and detectors
The system is operated with three different light sources. For

spectroscopic, and for measurement of weakly scattering samples, a
tungsten halogen white light source (150 W) is used in combination
with a grating monochromator or band pass filters. For samples with
more absorption or scattering, higher intensity was needed and a
980 nm diode laser (max 300 mW) source or a LED array with centre
wavelength at 1300 nm (110 mW) was used. In all cases, the light is
collimated before entering the PSG. In the case of the diode laser, a
rotating diffuser was used to reduce speckle.

The digital camera was a Xenics Xeva camera operating at 15 Hz,
consisting of a 14-bit InGaAs FPA detector with 640× 512 pixels and
sensitive to the spectral band 0.9–1.7 μm. In addition, due to less
thermal noise and dead pixels, a silicon camera from Hamamatsu was
used in combination with the 980 nm laser. The field of view of the
system is 1 cm × 1 cm with a diffraction limited resolution of 12.5 μm.

2.2. Analysis of the Mueller matrix

The polarimetric information in a measured Mueller matrix can in
many cases be extracted using polar decomposition techniques.
Several decomposition techniques have been proposed [12–14]. In
particular, the forward polar decomposition technique, described in
details elsewhere [8,10–12,14], was applied to all measurements
presented here. The basic principle of the forward decomposition is to
assume that the polarizing properties of the measured Mueller matrix
(M) is taking place in the following order, diattenuation (MD),
retardation (MR) and depolarization (MΔ), which gives

M = MΔMRMD: ð4Þ

It is further convenient to calculate a numeric quantity for the
polarimetric properties, in this paper only the retardance and the
orientation of the slow axis are explicitly used.

Due to detector noise, the measured Mueller matrix will always
have an error. The error may result in a slightly unphysical Mueller
matrix. By putting appropriate physical constraints on the measured
matrices, a measure of the matrix physicality can be found. It is further
possible to calculate the closest physical matrix of an unphysical
matrix. In particular, the constraints proposed by Cloude [23] was
applied in this work.

Fig. 1. (Color online) Schematic drawing of the Mueller matrix imaging system. The system consists of two sources, Polarization State Generator and Analyzer, imaging optics and a
camera.
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3. System performance, results and discussion

3.1. Validation of calibration of the NIR MME imaging system

For an image the average inverse condition number of A and W is
0.46. An estimate of the accuracy of the Mueller matrix imaging

system can be made by considering a measurement of the well
defined Mueller matrix of air (the identity matrix). The mean matrix
of a measured Mueller matrix image was

1:000F0:00 −0:004F0:01 −0:003F0:01 0:006F0:01
0:000F0:01 1:002F0:02 −0:001F0:02 −0:002F0:02
0:001F0:01 −0:002F0:02 1:006F0:03 −0:003F0:02
0:001F0:01 0:002F0:02 0:007F0:02 0:998F0:03

2
664

3
775;

with the standard deviation from the mean value given as the ±. The
error in the mean matrix is in the third decimal, while the standard
deviation from the mean is in the second. The variations found over
the pixels may have many sources, but is most likely due to detector
noise. The mean noise (fidelity) found from Cloude filtering is
−23.7 dB with standard deviation of 0.8 dB. The non-uniformity
and error is found to be satisfactory.

3.2. Polarimetric images and strain mapping

Polarimetric imaging can be used to investigate strain fields in
transparent crystals. An isotropic material which experiences a non-
isotropic stress, becomes, as described by the photoelastic theory
[24,25], anisotropic (birefringent) due to the induced internal strain.
Polarimetry is very sensitive to changes in the retardance

δ = Δnd d = nslow−nfastð Þd d; ð5Þ

which is proportional to the birefringence (difference in refractive
index from slow to fast axis, Δn) and the thickness of the sample (d).
The refractive index will increase in the direction of the positive strain
(compression). Hence the direction of the slow axis will give the
direction of the positive strain. The retardance will be a projection of
the strain in real space to the xy-image plane. A quantitative
calculation of the strain using the photoelastic properties and
known crystal orientation [24,25], is out of the scope of the current
proof of concept report.

3.2.1. Retardance imaging of strain in stressed CaF2
The capability of the MME system to image strain patterns was

investigated by inducing a direct force onto a crystalline CaF2 prism,
which is isotropic and transparent from the UV to the infrared. The
prism was placed on a platform in the image plane of the system, and
stress was applied through a metal plug. The upper edge of the prism
was opaque, such that the interface region between the metal plug
and the crystal could not be examined. Fig. 2 shows Mueller matrix
images of the prism without and with applied stress. It is evident from
the non stressed image that the crystal is isotropic, and has no

Fig. 3. (Color online) Calculated retardance from the Mueller matrix image in Fig. 2. (a) shows the retardance map when no stress is applied, and (b) when stress is applied. The lines
show the direction of the slow axis, while the color-map indicates the retardance in degrees with wavelength of 980 nm.

Fig. 2. (Color online) Mueller matrix images of non stressed (a) and stressed (b) calcium
fluoride crystals. The elements are normalized to m1, 1, except from the m1,1 image which
shows the transmission intensity image. In (a) the crystal is found isotropic, i.e. no strain
induced birefringence is observed in the crystal, while in (b) the crystal is found with a
graded anisotropy due to the non uniform applied stress.
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retardance or diattenuation. After the stress is applied, the crystal
becomes anisotropic, seen by the appearance of the non diagonal
lower right 3 × 3 matrix. The magnitude of the retardance and the
orientation of the slow axis are then calculated from the measured
Mueller matrix.

The corresponding retardance plots for the two Mueller matrix
images in Fig. 2 are shown in Fig. 3. It is evident that when no stress is
applied, there is no slow axis, and the calculated direction is therefore
random, as a result of noise. When stress is applied, the direction of
the slow axis corresponds to the direction of the positive strain.

Evidently, this sample could have been studied with any visual
MME imaging system. However, in case of more rough surfaces or a
low band-gap crystal, the use of near infra-red light becomes
imminent.

3.2.2. Retardance imaging of strain in a multi-crystalline silicon wafer
The band-gap of Si makes the material transparent for photons

with lower energy than 1.1 eV, which means that a visible MME
cannot perform bulk strain measurements in transmission.

In this experiment the sample was initially a 150 μm thick multi-
crystalline wafer, with a surface of about 4 cm × 2.5 cm and a
trapezoidal shape (see Fig. 4). Crystalline silicon is isotropic with a
diamond cubic lattice structure. In multi-crystalline wafers the grains
are through-going and the grain boundaries go straight through the
wafer, eliminating the problem of shading grains. In order to avoid
large losses of intensity and to obtain a good signal to noise ratio, the
wafer was polished on both sides, down to a thickness of
approximately 100 μm. The wafer was placed in an assembly
consisting of two bars with slits, keeping the wafer vertically stable
and in position (see Fig. 4). Stress was then applied to the wafer by
buckling [26], which is a well known method for material strength
tests. The strain is induced when the bars are forced towards each
other such that the wafer bends by the control of a fine threaded
screw.

In order to map the whole wafer, the assembly is mounted on a
translation stage which automatically moves to the next position after
each Mueller matrix image acquisition. For simplicity and proof of
concept, only one of the images is considered here, the location of this
area on the wafer is indicated by the red square in Fig. 4.

Fig. 5 shows the calculated retardance and the orientation of the
slow axis of the selected area on the strained wafer. The crystal grains
show contrast in both the orientation of slow axis and the retardance
maps, which indicates that both different magnitude and orientation
of strain can be found. The two areas (1 and 2) indicated by the red
squares in Fig. 5(a) are enlarged and shown in Figs. 6 and 7.

The retardance image of area 1 (Fig. 6) shows a grain boundary
where the retardance is higher for the grain located in the lower part
of the image, compared to the upper grain. Various domains of lower
and higher retardance can also be observed inside the two grains.
Fig. 6(a) shows that at the grain boundary there appears to be
domains with lower retardance than the surrounding grains. It is

Fig. 4. The assembly made for the buckling of the wafer. The wafer is placed between a
fixed and a non fixed bracket, which then can be translated by a fine threaded screw.

Fig. 5. Figure (a) shows the calculated retardance map of the area indicated by the red
square in Fig. 4, with applied strain, while figure (b) shows the orientations of the slow
axes for the area in interest. Areas 1 and 2 indicate the two areas that are described in
more detail within the text.

Fig. 6. (Color online) Figure (a) shows the calculated retardance map of area 1, with
applied strain. There is good contrast at the grain boundary, also interesting is the low
retardance domain along the grain boundary, which may be induced due to a relaxation
of strain at the boundary. Figure (b) shows the calculated orientation of the slow axis.
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observed from Fig. 6(b), that the orientation of the strain is very
different in this particular domain. These observations may possibly
be due to a relaxation of strain at the grain boundary.

In area 2 (Fig. 7) the grain is observed to have a higher retardance
than the adjacent grains. One may expect that the whole grain
experienced the same retardance, but in this case a higher retardance
is found in the lower part of the grain. This observation can possibly be
explained by the low retardance on the grain boundary around the
upper part of the grain, where a relaxation may have occurred. The
corresponding orientation of the slow axis (Fig. 7(b)) shows a
different strain orientation than the surrounding grains. The details of
the structures within the domains can without great difficulty be
studied in a lab set-up. A production line equipment can be evisaged
in order to inspect strain over large areas, or strain above a particular
threshold level. Polarimetric imaging may also be useful in several
other occasions e.g. to characterize the polarization dependent optical
properties of optical components, such as lenses, wherever these have
to be taken into account.

Surface roughness, multiple reflections and depolarization, and its
effect on the measured retardance, are important effects, and will
together with quantitative analysis of strain be addressed in future
work.

4. Conclusions

In conclusion, we have constructed a near infra-red (NIR) Mueller
matrix imaging ellipsometer based on ferroelectric liquid crystal
retarders. The system has been demonstrated to be a valuable tool in
the characterization of strain in NIR transparent solids, and in
particular multi-crystalline silicon. Through the use of Mueller matrix
analysis tools, a detailed analysis of strain field domains can be made,
which in the future can be quantified and used as input to numerical
models.
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ABSTRACT

We present the application of a near infra red Mueller matrix imaging ellipsometer to the characterization of
plasmonic polarizers. The samples are prepared by evaporation of Au onto SiO2 ripples. The nanostructured
ripple surface has been produced by ion beam sputtering at an off normal angle of incidence. Au was thereafter
evaporated onto the surface at an grazing angle. As a result, thin lines of nearly connected Au nanoparticles
form along the illuminated side of the ripples, resulting in a large in-plane anisotropy of the structure. Mueller
matrix imaging is used to determine the lateral uniformity of the optical signal in correlation to the real space
topography of the sample, and to determine to what degree the nanoparticles tend to form a connected wire, or
whether there are well separated Au particles. The success of this method in order to produce polarizers, lies
in controlling the process to allow well connected lines of Au particles along the ripples, with a high degree of
homogeneity. Mueller Matrix images of the sample recorded at normal incidence are shown, and the information
that can be extracted from such images is discussed.

Keywords: Mueller matrix, imaging, plasmonics, ellipsometry, polarimetry

1. INTRODUCTION

Standard Spectroscopic Ellipsometry (SE) has for a long time, and recently also spectroscopic Mueller Matrix
Ellipsometry (MME), been the technique of choice for the inspection of surfaces, thin films and recently also
nanostructured surfaces, due to the enhanced phase sensitivity introduced by the measurement of the phase
difference between p and s polarized light.1 Most semiconductor processing factories will perform a large number
of ellipsometric measurements during the production. A fundamental problem of SE has been the standard spot
size, which traditionally has been on the order of 1-4 mm in diameter. Such a large spot size is often incompatible
with research quality samples, and also for in-line monitoring of the homogeneity of a process. Such an issue
becomes further important, when the process is a low cost fabrication method which requires even more strict
attention to homogeneity issues. The standard ellipsometer may partially recover some of its deficits by aiming
at a micro-spot, which will typically be on the order of 100 μm in diameter, at the cost of much reduced flux
due to the lack of commercially available incoherent sources with a high radiance. The use of laser sources could
allow a true microspot ellipsometer. But still, a complete overview of the sample will require a complete spatial
mapping, where the mapping time scales with the spot size. The imaging ellipsometer, and in particular the
imaging MME, may be the response to many of these issues, allowing better process control.

There are several advantages of measuring the complete Mueller matrix compared to traditional ellipsometric
measurements, among them are the possibility to use polar decomposition techniques,2–6 and the Eigenvalue
calibration Method (ECM)7 for instrument calibration.

In this work, a near infra red Mueller Matrix Imaging Ellipsometer (MMIE) is applied to the characterization
of nano patterned plasmonic polarizers. The samples are prepared by evaporation of Au onto SiO2 ripples. The
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nanostructured ripple surface has been produced by ion beam sputtering at a grazing angle of incidence. Au
was thereafter evaporated onto the surface at an inclined angle. As a result, thin lines of nearly connected Au
nanoparticles form along the illuminated side of the ripples, giving large in-plane anisotropy of the structure.
Figure 1 shows AFM images of the surface showing a clear anisotropy. Several studies have recently been
reported on aligned metal nanoparticles, exhibiting an anisotropic plasmon resonance.8–12 This anisotropy is
usually examined by studying the transmission of linearly polarized light. In this work we will explore the
advantages of performing spatially resolved full Muller matrix measurements on such samples.

2. MUELLER-STOKES THEORY

For a monochromatic plane wave the polarization state is elegantly described by the Jones calculus, however in
many cases the wave can have a random component making the orthogonal amplitude and phase components
time dependent. The electromagnetic wave is then said to be partially polarized and can no longer be described
by the time independent Jones vector. By describing the polarization state in terms of intensities or time averages
in stead of complex fields, the complete polarization state, including partially polarized and non-polarized light,
can be expressed concisely using the four real elements in the Stokes vector

S =

⎡
⎢⎢⎣

I
Q
U
V

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

〈E0,x(t)2〉 + 〈E0,y(t)2〉
〈E0,x(t)2〉 − 〈E0,y(t)2〉

2〈E0,x(t)E0,y(t) cos δ(t)〉
2〈E0,x(t)E0,y(t) sin δ(t)〉

⎤
⎥⎥⎦ ,

where the notation 〈· · · 〉 denotes time average of time dependent electric field component amplitudes (E0,x(t)
and E0,y(t)) and phase difference (δ(t)) for light propagating along the z-axis. The first element (I ) is a measure
of the total light intensity, while the three others describe the relative intensity of polarized light. Specifically
Q is the difference between the components of linearly x and y polarized light, U the difference between the
components of linearly ±45◦ polarized light and V the difference between the left and right handed circular
polarization components.

The linear transformation of polarized light is elegantly described by the Mueller matrix (M), connecting an
incoming (Sin) to an outgoing Stokes vector (Sout),

Sout = MSin.

The Mueller matrix completely describe any polarization interaction of light such as polarizance, diattenuation,
retardance and depolarization.

2.1 Stokes vector and Mueller matrix measurement

Stokes vectors are measured with a polarimeter or polarization state analyzer (PSA) projecting the incoming
polarization state to at least four well chosen Stokes vectors and measure the intensities of those states. The four
Stokes vectors are organized as the rows in the PSA matrix A. The intensity of each projected state is measured
in an intensity vector b = AS. The unknown Stokes vector is then found by inverting A,

S = A−1b.

Mueller matrices are measured by incidenting at least four well chosen Stokes vectors onto the sample and
then measure the outgoing Stokes vector with the PSA, giving at least 16 intensity measurements (B). The
four polarization states made by the polarization state generator (PSG) are organized in a matrix W. Giving
B = AMW for the intensity measurements. M is then found by multiplying by the inverse of A and W from
each side,

M = A−1BW−1.

The relative error propagating into M is related to the choice of Stokes vectors in A and W, and it has been
shown that the relative error scales with the condition number of A and W.13,14 Optimizing the Stokes vectors
in A and W is therefore an important part of the design of a Mueller matrix ellipsometer.15
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2.2 Analysis of the Mueller matrix

The fact that Stokes vectors and Mueller matrices have always real elements make it more convenient to measure,
and formalisms have been developed to make the measurement. One of the major advantages of complete
Mueller matrix measurements is in many cases the possibility to easily extract polarimetric information such as
diattenuation, retardance and depolarization. This can be done by direct analysis of the measured matrix and
by the use of polar decomposition techniques, where it is assumed that the polarization effects are taking place
in a specific order.4,6

A lot of information of the sample can be found by just concidering the elements of the normalized Mueller
matrix

M =

⎡
⎢⎢⎣

1 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎤
⎥⎥⎦ .

After measurement, the matrix elements are scaled by the relative intensity of each pixel, such that general
normalization is needed especially when locking at Mueller matrix images, however, the unnormalized M11

element may be usefull for relative transmittance or reflectance conciderations. The vector �D = [m12, m13, m14]T

determine the diattenuation of the sample, describing how much the sample attenuate different polarization
states, while polarizance vector �P = [m21, m31, m41]T describes the outgoing polarization if the incoming light
was unpolarized. The polarizance is the length of this vector, and specifically the linear polarizance is P =√

m2
21 + m2

31 with orientation θP = 1
2 arctan (m31/m21). For a sample that gives depolarization the degree of

polarization is reduced after interaction with the sample. The depolarization index Pd of a Mueller matrix is
calculated by the diagonal elements of the Mueller matrix16

Pd =

√∑4
i,j=1 m2

i,j − 1
3

.

In the so called forward polar decomposition technique the ordering is diattenuation (MD), retardation (MR)
and depolarization (MΔ) giving the Mueller matrix

M = MΔMRMD.

From the pure retarding matrix is it further useful to find the retardance vector

r =

⎡
⎣ r1

r2

r3

⎤
⎦ =

R

2 sin R

⎡
⎣ mR34 − mR43

mR42 − mR24

mR23 − mR32

⎤
⎦ ,

where R is the total retardance and the length of r, R = arccos ((Tr(MR) − 1)/2), and mRij
are the elements of

MR. Linear retardance (δ) is found by

δ = 2 arccos
√

r2
3 (1 − cos2 (R/2)) + cos2(R/2)

The orientation of linear retardance also refered to as slow axis (θδ) is found similar to the orientation of polar-
izance.17 Decomposition algoritms have also been proposed for different ordering of the polarization effects.2,5

3. EXPERIMENTAL

3.1 Sample preparation

The samples are prepared recurring to a two step approach which combines defocused ion beam sputtering (IBS)
of a SiO2 substrate to form a ripple undulation orthogonal to the ion beam projection, followed by a subsequent
deposition of Au at grazing angle of incidence.10
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Figure 1. (Color online) AFM images of Au nanoparticles on ripples, on two different areas of the sample

IBS is a simple and low cost nanofabrication technique capable of patterning metallic and dielectric substrates.
In this process the competition between an erosive instability, due to sputtering action of the ion beam, and
relaxation mechanisms, dominated by thermally activated diffusion and by hyperthermal ion induced mobility,
lead to the selection of a preferential spatial modulation of the surface profile. This corresponds to the formation
of a self-organized periodic ripple pattern onto the substrate surface.11,18–20 Depending on the nature of the
substrate material and on the irradiation parameters (ion beam energy, incidence angle, gas species, substrate
temperature) different morphological features can be enhanced.18,21 In our case, irradiation of the SiO2 substrates
is performed in an UHV system at an off normal sputtering angle (θ = 45o) using a gridded multi aperture Ar+
source at an ion energy of 800 eV and a constant flux of 4.0 × 1015ions/cm2 s. A well defined rippled pattern
oriented orthogonal to the ion beam projection is obtained on the surface after irradiation doses in the range of
3×1019ions/cm2. After IBS, the patterned SiO2 substrate is used as a template to induce the lateral confinement
of the Au nanoparticles recurring to grazing angle deposition in the same UHV system. The deposition is
performed by thermal evaporation from an alumina crucible at an angle of 80o from the surface normal while the
constant flux is monitored by means of a quartz microbalance until a deposited gold thickness of 10nm is reached
(thickness value evaluated with respect to a flat compact film). The spatial distribution of the metal atoms onto
the corrugated template is now modulated by shadowing effects so that higher local fluxes are recorded at the
top of the illuminated ridges where preferential nucleation of metal cluster takes place; on the contrary, the glass
regions in the troughs of the ripple not illuminated by the atom beam remain uncovered by gold. This leads to
the formation and agglomeration of metal clusters which coalesce until connected Au nanowires are formed as the
thickness of the metal film increases. Along the direction orthogonal to the ripple axis, the nanowires are instead
well disconnected. In Figure 1 the AFM images of the surface show very clearly the presence of a morphological
anisotropy on a micrometer lateral scale. The morphological anisotropy is reflected in the optical response of
the nanowire arrays, as revealed by far field optical transmission spectra of the samples when illuminated with
different linear polarized light. The measurements reveal the excitation of localized plasmon resonances when
light is polarized orthogonally to the nanowires.10

3.2 Measurement

The Mueller matrix imager is based on a polarizer, two waveplates and two ferroelectric liquid crystals (FLC) in
the PSG, and similarly (but in reverse order) in the PSA.22–24 The Mueller matrix images presented in this work
is recored with an illumination wavelength of 980 nm. The instrument is, however, designed to be spectroscopic
in the wavelength range of 800-1700 nm. Figure 2 shows a sketch of the Mueller matrix imaging system. The
instrument were equipped with a 8 bit silicon CMOS camera from Edmund optics. The FLCs and camera are
controlled and synchronized through LabView software, while post processing is done in Matlab.

4. RESULTS AND DISCUSSION

A full Mueller matrix image of the plasmonic polarizer, consisting of aligned Au nanoparticles on a patterned SiO2

surface, is presented in Figure 3. The image is recorded at normal incidence and shows an area of about 1×1 cm2.
An imperfect sample was deliberately chosen, to demonstrate the advantages of Mueller matrix imaging as an
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Figure 2. (Color online) The PSG and PSA consist of the modulating components ferroelectric liquid crystals (F1-4), zero
order waveplates (R1-4) and polarizers (P1-2). As illumination either a 980 nm diode laser or a 1300 nm LED source
is used, in both cases the source is collimated before entering the PSG. The sample is placed in the image plane of the
camera optics.

inhomogeneity and imperfection discovery tool. The surface is clearly imperfect, with small scratches and spots
with pollution scattered across the surface. The spatial resolution of the Mueller matrix image allows extracting
the polarizing properties of the sample at the undamaged areas. In addition, the microscopic structure of the Au
nanoparticles gradually changes over the surface, leading to different optical properties. A typical polarimetric
measurement without spatial resolution would result in an average measurement over a relatively large area of
the sample (depending on spot size), including damaged parts, leading to depolarization and errors.

In the Mueller matrix image the sample is aligned approximately with the ripples parallel to the vertical
axis (y-axis). Since the Au dots are aligned along ripples, the surface will have a higher absorption for light
polarized along this direction than normal to the ripples, leading to positive values in element m12 and m21. The

−1

−0.5

0

0.5

1

Figure 3. (Color online) Normal incidence transmission Mueller matrix image of aligned Au nanoparticles deposited on a
patterned SiO2 surface. All elements have been normalized by M11
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Figure 4. (Color online) Linear polarizance (a) and orientation of polarizance (b) found from decomposition of the Mueller
matrix image in figure 3

Figure 5. (Color online) Retardance found from decomposition of the Mueller matrix image in figure 3

four elements in the bottom right of the matrix show that the sample is retarding, revealing a difference in the
effective refractive index parallel and normal to the ripples. The Mueller matrix is close to being block-diagonal,
with the 2 × 2 upper right and 2 × 2 lower left elements being close to zero. This indicates that the principal
axes of the effective dielectric function of the sample approximately corresponds to the experimental coordinate
system. By decomposing the Mueller matrix the exact eigenpolarization states can be found. An image of the
linear polarizance (P ) is presented in Figure 4 (a) together with the orientation of the transmission axis (Figure 4
(b)). Similarly the retardance and its orientation is presented in Figure 5, the intensity (M11) image is presented
in Figure 6 (a) and the polarization index in Figure 6 (b).

By decomposing the Mueller matrix, different types of defects in the surface can be observed. Shallow
scratches that have removed the Au nanoparticles, but not damaged the surface bellow, is clearly visible in the
polarizance (Figure 4) and retardance (Figure 5) images. In these areas the surface have lost its anisotropic
properties, and does not work as a polarizer. The area without nanostructures shows no retardance, indicating
that there is no significant strain in the glass substrate. Deeper scratches can be seen from the depolarization
index images, such as the blue part in the left of Figure 6 (b), which is a deep scratch made to mark the
direction of the ripples. In the upper part of the depolarization index image, an inhomogeneous area with some
depolarization can be observed. This part still have intact nanostructures on the front surface, the depolarization
is caused by scratches on the backside of the glass substrate. From the intensity image (M11, Figure 6 (a)) one
can see some spots of contamination (probably glue left from sample handling) on the backside of the sample.
These spots mainly change the total intensity,but not the polarization, and is not visible in the normalized
Mueller elements.

From the linear polarizance image presented in Figure 4, we see that the undamaged parts of the surface
behaves as a partial polarizer, with a polarizance gradually varying between 0.5 to 0.3. The direction of the
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Figure 6. (Color online) Intensity image (a) and degree of polarization index image calculated from the Mueller matrix in
Figure 3

transmission axis varies by as much as 5◦ from the top to the bottom of the sample, and does not seem to be
directly connected to values of the polarizance. The polarizing properties of the surface is attributed to the
Au nanoparticles being aligned along the direction of the ripples, creating long partially connected chains. The
structure will then have optical properties similar to a metal for an electric field parallel to the ripples, resulting
in high absorption. The various values of polarizance observed is likely to be caused by an unevenly distribution
of Au on the surface. From the intensity image (proportional to M11) it is observed that the areas with high
polarizance also have the highest intensity. This indicates that there is probably too much Au deposited on
the areas with low polarizance, making the nanoparticles partially connected also in the direction normal to the
ripples.

The retardance image (Figure 5) shows that there is less retardance in the areas with high polarizance. If the
structure is represented by an effective dielectric function, this means that the difference in refractive index times
the thickness (Δn ·d) is less in these areas compared to the areas with a lower polarizance. The orientation of the
slow axis of the retardance is approximatly equal to the orientation of the transmission axis for the polarizance,
meaning that the real and imaginary part of the index of refraction share the same principal coordinate system.

5. CONCLUSION

A spatially inhomogeneous plasmonic partial polarizer have been characterized by near infra red Mueller matrix
imaging. The plasmonic polarizer was prepared by evaporating Au on a rippled SiO2 substrate at grazing
incidence, resulting in nanoparticles aligned along the ripple ridges. The sample was found to have different
kinds of defects, such as scratches and contaminations, and these defects could be distinguished from the Mueller
matrix image. The spatial resolution allowed to find the polarization altering properties of the nanostructure at
the undamaged areas of the sample. The polarizability of the undamaged areas was found to vary from 0.3 to
0.5, and was attributed to a variation in the difference in the the nanoparticle connectivity along and orthogonal
to the ripples. From the total transmission image it is concluded that the areas with low polarizability probably
correspond to ares with too much Au, resulting in some contact between particles across the ripples.
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Quantitative characterization of articular cartilage using
Mueller matrix imaging and multiphoton microscopy
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Abstract. The collagen meshwork in articular cartilage of chicken knee is characterized using Mueller matrix
imaging and multiphoton microscopy. Direction and degree of dispersion of the collagen fibers in the superficial
layer are found using a Fourier transform image-analysis technique of the second-harmonic generated image.
Mueller matrix images are used to acquire structural data from the intermediate layer of articular cartilage where
the collagen fibers are too small to be resolved by optical microscopy, providing a powerful multimodal measure-
ment technique. Furthermore, we show that Mueller matrix imaging provides more information about the tissue
compared to standard polarization microscopy. The combination of these techniques can find use in improved
diagnosis of diseases in articular cartilage, improved histopathology, and additional information for accurate
biomechanical modeling of cartilage. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3643721]
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1 Introduction
Articular cartilage covers and protects the bones in joints, and
its integrity is essential for normal function. It imparts two im-
portant properties to a joint. First, it provides a low-friction
surface for smooth articulation of the joint; second, it provides
a cushioning layer to distribute loads and protect the underly-
ing bone. The structure of articular cartilage is typically divided
into three distinct morphological zones: (i) The superficial layer
with a dense collagen network and the collagen fibers oriented
primarily tangential to the articulating surface, (ii) the interme-
diate layer, where the fibers are more randomly distributed, and
(iii) the radial layer, where the fibers are oriented perpendic-
ular to the bone surface. The collagen fibers are cross-linked
with proteoglycans in a fluid-saturated gel of glycosaminogly-
cans and proteoglycans. Scattered throughout the cartilage are
chondrocytes that reside in lacunae and are responsible for the
formation of new cartilage.1

Osteoarthritis is a disease in articular cartilage symptomized
by pain and reduced joint function, affected by a variety of
factors (genetic, traumatic, age, excessive loading).2 It is the
leading cause of disability in the U.S. and will likely see an
increased incidence in the future due to an aging and more
obese population.3 Osteoarthritis is characterized by structural
changes in the cartilage, accompanied by a loss of proper func-
tion. The loss of function will lead to changed loading conditions
in the knee and, therefore, further changes in the microscopic
structure. In order to predict the outcome of this biological cas-
cade, it is necessary to have methods to characterize the current
tissue structure. Osteoarthritis is usually diagnosed based on
clinical findings, sometimes with the addition of radiographic
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Science and Technology, Department of Physics, Faculty of Natural Sciences
and Technology, 7491 Trondheim, Norway; Tel: +0047 73593211; E-mail:
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imaging. However, in a significant fraction of symptomatic pa-
tients, no radiographic changes are found.4 Magnetic resonance
imaging may be used for further stratification, but the associa-
tion between clinical symptoms and findings from images is not
always strong.5 Therefore, a more detailed investigation using
novel imaging techniques, is necessary to enhance diagnosis.

Bright-field light microscopy of haematoxylin-eosin–stained
sections is the standard method to assess the microscopic struc-
ture of cartilage, even though it is not possible to see the structure
of the collagen network. Polarization microscopy is sometimes
used but can only provide qualitative information on the direc-
tion of collagen fibers due to the complex nature of the polariza-
tion properties of tissue. Novel methods to study the microscopic
structure of cartilage will provide more details on the current
pathological status and perhaps differentiate between conditions
that cannot be distinguished with standard techniques.

Multiphoton microscopy (MPM) is a nonlinear optical pro-
cess used to acquire images of biological specimens.6 Because
of the nonlinearity of the signals, the technique is intrinsically
confocal (no need for confocal optics), and many biological
molecules exhibit specific intrinsic nonlinear signatures such
that no staining is required. The second-harmonic generation
(SHG) signal can be used to image the collagen type II fibers
present in cartilage.7, 8 In vivo imaging is possible and yields
high-resolution, three dimensional images.9 In vivo MPM would
be a valuable complementary technique to standard arthroscopy.
Methods have been developed to generate quantitative mea-
sures of the structure of the collagen fabric10 and its optical
properties.11 The drawback of MPM is that high-resolution
imaging of macroscopic volumes is time consuming. Further-
more, in the intermediate and radial layers, the collagen fibers
are below the resolution limit of optical microscopy, such that
individual fibers cannot be resolved.
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Mueller matrix imaging (MMI) provides a complementary
technique to MPM and extracts the full Mueller matrix for ev-
ery pixel in the image of a sample.12 Because the resolution is
adjustable (but usually worse than MPM by a factor of around
10), and camera-based imaging is used instead of point scanning,
larger areas are scanned faster compared to MPM. Because MMI
also is an optical technique, it cannot resolve the small collagen
fibers in the middle layer. However, the advantage of MMI is that
it is based on the rich polarization information contained in the
full Mueller matrix, such that the directionality of the fibers may
be derived, as well as the optical rotation and depolarization of
the sample, by using forward polar decomposition.13, 14 The use
of decomposed Mueller matrix measurements to characterize
tissue phantoms and biological samples has been described,15, 16

but to our knowledge never on samples of cartilage. Compared
to other polarimetric imaging systems that only measure some
of the components of the Mueller matrix17–19 and require signif-
icant prior knowledge of the sample and the desired measure-
ments, the Mueller matrix imaging system is much more flexible,
enabling the characterization of more complex and unexplored
samples with the possibility to fully characterize the polarization
properties of the sample. Here, we show that the combination
of MPM and MMI provide more detailed information about
the articular cartilage structure compared to conventional meth-
ods and potentially a better understanding of the progression of
osteoarthritis.

2 Materials and Methods
2.1 Materials
The medial femoral condyle of chicken cartilage (n = 2) was
cut in 100-μm-thick sections to a depth of 2 mm using a vi-
bratome (Leica VT-1000). After sectioning, the samples were
transferred to microscope slides and a cover glass placed on top.
The edges were sealed with Vaseline to avoid dehydration. Sec-
tions were cut in the transversal plane. The sections were kept
at 4◦C between measurements.

2.2 Multiphoton Microscopy
The MPM images where acquired using a commercial system
(Zeiss LSM 510), equipped with a Ti:sapphire laser pumped by
a 5-W solid state laser (Coherent Mira and Verdi, respectively).
The Ti:sapphire laser was tuned to 800 nm for excitation of the
SHG signal. A dichroic short-pass filter at 650 nm was used
to collect the backscattered light. A second dichroic at 475 nm
and a bandpass filter at 390–425 nm were used to separate the
SHG from the fluorescence. All images were acquired in the epi
configuration.

Images were acquired with a 10×, 0.6 numerical aperture
(NA) objective. For samples larger than the field of view, several
images were juxtaposed automatically using the microscopy
control system. Images were acquired at four to eight different
depths, with an interval of 10 μm, depending on the quality of
the signal in the deeper sections.

On the basis of an image-analysis algorithm described in de-
tail elsewhere,10 we derived the primary direction and anisotropy
of the fibers at every pixel in the image. Briefly, the algorithm
calculates the two-dimensional discrete Fourier transform of a
small subframe around a given pixel. Typically, the strongest
Fourier components will tend to lie on a line perpendicular to

the fibers in the image. The direction of this line was found by
minimizing the sum of angles, weighted by the Fourier power
spectrum relative to this line. The anisotropy is extracted as a
measure of how close the strongest frequency components are
clustered around this line.

2.3 Mueller Matrix Imaging
The near-infrared Mueller matrix imaging (NIR MMI) system
used here is described in greater detail elsewhere.12 Note that
the light source used here is the 980-nm laser diode and that the
numerical aperture of the system is 0.04. It uses two ferroelectric
liquid crystals (FLCs) together with a polarizer and two wave
plates to generate four orthogonal Stokes vectors in what is
know as a polarization-state generator (PSG), which then are
used to probe the sample. After passing through the sample, the
resulting polarization-state is analyzed by a polarization state
analyzer (PSA), consisting of the same components as the PSG,
in reverse order. Sixteen intensity images are acquired using
different settings of the PSG and PSA. The Muller matrix M
is then calculated from the configurations of the PSG and PSA
using the eigenvalue calibration method.20 Repeating this for
every pixel in the images results in a Mueller matrix image,
Mim. The Mueller matrix is normalized, meaning that all of the
elements in the matrix is divided by the M11 element.

The measured M is decomposed into depolarization, (M�),
retardation, (MR), and diattenuation, (MD), matrices using for-
ward polar decomposition, M = M�MRMD, first described by
Lu and Chipman13 and applied by Manhas et al.14 to tissue
characterization.

From MR, it is further possible to find the linear retardance,
direction of the slow axis (perpendicular to the fast axis), and
the optical rotation (see Manhas et al.14). We assume that the
collagen fibers can be modeled using the Bruggeman effective
medium theory,21 and thus assign the slow optical axis to the
long axis of the fibers.

3 Results
3.1 Multiphoton Microscopy
SHG images of the superficial layer show a distinct collagen
structure, which is illustrated in Fig. 1(a). By employing the
direction analysis method described in Sec. 2.2, we derived the
primary direction and degree of anisotropy of the fibers, which
is shown in Figure 1(b). The direction is coded according to
color using the provided legend and the anisotropy is mapped to
the intensity of the color. Figure 2(a) shows a sample where both
the superficial and intermediate layers can be seen. The center
region, which belongs to the superficial zone, exhibits clear
fibrillar structure, whereas in the intermediate layer, shown in the
lower right part of Fig. 2(a), no collagen fibers can be discerned.
Only the lacunae can be seen as dark voids, embedded in a
smooth SHG signal. Figure 2(b) shows that the analysis picks up
the direction in the superficial region but that in the intermediate
layer where no structure can be discerned, the anisotropy is very
low, corresponding to low intensity in the color image.

3.2 Mueller Matrix Imaging
MMI images were acquired from the same samples as imaged
with MPM. The MMI images were first Cloude filtered22 and
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Fig. 1 (a) SHG intensity image of a transverse section of cartilage in the
superficial layer (100 μm below the surface), where the collagen fibers
are clearly visible. This image is the result of four images tiled together.
(b) Result of the directional analysis. The calculated direction of the
fibers is color coded according to the semicircle legend. The intensity
of the color has been scaled to the calculated anisotropy value. Scale
bar is 200 μm.

then decomposed using the forward polar decomposition de-
scribed in Sec. 2.3. An example of the full Mueller matrix for
a cartilage sample is illustrated in Fig. 3. The M11 element has
been substituted by the intensity image, because this element
would be equal to 1 as a result of the normalization. The values
of the diattenuation matrix MD were found to be very small and
are not included here.

After the decomposition, the direction of the slow axis is
found from the retardance matrix MR .14 The corresponding im-
age of the directions is illustrated in Fig. 4. Because the long
axis of the collagen fibers corresponds to the optical slow axis,
the directional image shows the collagen fiber direction and can
be compared to the MPM image of the same sample, as shown
in Fig. 5.

The forward polar decomposition enables in addition to the
direction of the slow axis, the calculation of the amount of double
refraction in the sample known as the linear retardance (which
is seen in Fig. 6), the amount of left or right circular polarization
induced by the sample, known as the optical rotation (shown
in Fig. 7), and the depolarization index (as seen in Fig. 8). The

Fig. 2 (a) SHG intensity image of a transverse section of cartilage from
slightly below the superficial layer (500 μm below the surface). The
central part of the image belongs to the superficial region, and here,
the fibers are clearly visible. The lower right part belongs to the inter-
mediate layer. No clear structure of fibers can be seen in this region,
only the lacunae are distinguishable as dark voids. (b) Result of direc-
tional analysis. The calculated direction of the fibers is color coded
according to the semicircle legend. The intensity of the color has been
scaled by the calculated anisotropy value. In the intermediate layer,
only a weak random direction is picked up. Scale bar is 200 μm.

Fig. 3 Full Cloude-filtered Mueller matrix image for a sample of carti-
lage, from a transversal section at a depth of 500 μm, with the intensity
image overlaid the M11 element. The central dark area in M11 is the
intermediate layer, and the surrounding bright area is the superficial
layer.

depolarization index shows how much of the incoming polarized
light is converted into partially polarized light.

The intermediate zone of the cartilage (center of Figs. 4
and 6) exhibits more variation and features in the MMI images
compared to what can be seen in the MPM images. In this
intermediate zone, the direction and retardance images show
regions with differing structure.

4 Discussion
The Mueller matrix was decomposed into three polarization
properties of which only the retardation and depolarization were
used directly in this study. The retardance (circular, linear, and
direction of fast axis) will, in terms of effective medium theory,
yield results from features smaller than the resolution in the
image. The latter property is useful, beacuse it can be used to
characterize collagen fibers from the intermediate and radial
zone of the cartilage, where the collagen fibrils are below the
resolution limit of MPM.

Because the collagen fibers have a higher refractive index
than the surrounding medium,23 they will have the slow axis

Fig. 4 Visualization of the direction of the slow axis found from MR .
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Fig. 5 (a) SHG images from the same area as the MMI images and
(b) calculated directions of image in (a).

along the long axis. The difference in the refractive index of
the slow and fast axes can be calculated using the simple linear
dispersion relation for a birefringent medium

�n = λδ

2π L
,

where λ is the wavelength (here, 980 nm), δ the linear retardance
(in radians), and L the thickness of the sample (here, 100 μm).
Using a representative value of δ = 50 deg for the edges of the
sample, as seen in Fig. 6, and δ = 15 deg for the intermediate
region, results in an apparent birefringence �n = 1.4 × 10−3

for the edges, similar to previously reported values,24 and �n
= 0.4 × 10−3 from intermediate regions. As Fig 6 shows, there
are large differences in the linear retardance across the sample,
resulting in large differences in �n, such that care should be
taken when reporting birefringence measurements of collagen
in turbid media.

The slow axis found from the decomposed Mueller matrix is
the projection of the three-dimensional slow axis into the imag-
ing plane. In addition, since directions found from the Mueller
matrix measurement are from a volume, the directions seen in
Fig. 4, will be an average of the collagen fibers through the
sample as opposed to the MPM images, which are acquired at
a certain depth (Fig. 5). Even when taking the latter into con-
sideration, the directions in the sample correspond well to the
direction in the corresponding MPM image, indicating that the
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Fig. 6 Retardance image, showing the absolute value of the linear
retardance. Color bar is in degrees.
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Fig. 7 Optical rotation in degrees.

direction of the collagen fibers are mostly homogeneous through
the sections. However, when characterizing the samples using
MPM some variation in the direction with respect to the depth
was observed, which would result in a intermediate direction in
the MMI image and correspondingly different calculated values
for the directional parameter.

In the intermediate layer (center of Fig. 6), where the MPM
images cannot resolve individual collagen fibrils that are smaller
than the imaging resolution limit, the MMI directional image
shows structure variations and, thus, the ability to characterize
the subresolution structures in this area of cartilage.

The collagen fibers in the cartilage scatter the incoming light,
contributing to the depolarization (see Fig. 8). The depolariza-
tion will increase with the density and size of the collagen fibers,
and could thus be useful for extracting more information about
the collagen structure. By comparing the depolarization image
(shown in Fig. 8) to the retardance image (shown in Fig. 6),
one can see that the areas with a high depolarization index are
mostly the same areas as the ones with high retardance, indicat-
ing a higher concentration or larger size of the collagen fibers,
resulting in the higher depolarization. The reason the retardance
is small in some areas of high depolarization could be attributed
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Fig. 8 Depolarization index, where 1 is fully polarized and 0 fully
depolarized.
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Table 1 Specific rotation for hyaluronic acid (HA), keratane sulfate
(KS), and chondroitin sulfate (CS) in a water solution (Ref. 28). In addi-
tion, the specific rotation of collagen in 0.5M CaCl2 is given (Ref. 27).
The temperature at which the specific rotation is measured is given,
when given in the source. The concentration of the chemical com-
pounds in human femoral head cartilage from ages 3 to 19 are also
given (Ref. 29). Total wet volume of tissue per unit weight of collagen
(d−1

c ) is 4.96± 0.041 ml/g (Ref. 29).

Chemical
substance

Specific rotation
[α]589

Wet tissue weight
percentage w

HA −68.2 deg
at 27◦C

0.16

KS 4.5 deg 0.83 ± 0.095

CS type A −25 deg 2.86 ± 0.10

Collagen −360 deg
at 8◦C

18.5 ± 1.4

to the collagen fibers in that area being aligned at an angle to
the image plane, reducing the measured linear retardance.

An interesting observation is that the optical rotation (see
Fig. 7) appears large compared to commonly reported values
from solution. However, such large values may be justified by
considering the triple helix25 structure of the collagen together
with proteoglycans. The left-handed collagen helix will induce
optical rotation to the incoming polarized light. The amount of
induced optical rotation is dependent on the orientation of the
collagen fiber, with little contribution from out-of-plane fibers.
Cartilage consists of proteoglycans, which contain26 hyaluronic
acid (HA), keratane sulfate (KS), and chondroitin sulfate (CS),
all of which are optical active. The optical activity of these
components are given in Table 1, together with their concen-
trations in femoral head cartilage. On the basis of these values,
the expected optical rotation from a 100-μm-thick solution of
cartilage is calculated using

φ = [αc]583 Ld , (1)

where φ is the expected optical rotation, [αc]583 the specific ro-
tation in Table 1 for the given compound, L the thickness of
the sample in decimeter (here, 10−3 dm), and d the density in
(grams per milliliter), given here by d = dcws/wc, where dc is
the collagen density, ws the substance weight percentage, and
wc the collagen weight percentage. Using (1) and values from
Table 1 gives an optical rotation due to proteoglycans of
−8.6 × 10−4 deg, and due to collagen of −0.07 deg at 583
nm, assuming that a 0.5 M CaCl2 solution has the same optical
rotation as water. The proteoglycan contribution to the optical
rotation is thus negligible. The measurements of the optical ro-
tation here were done at 980 nm, which is expected to give lower
optical rotation due to the two-term Drude equation.27 The op-
tical rotation of the collagen fibers depends on their orientation.
Hence, one would expect the ordered collagen fibers in the car-
tilage to have a higher optical rotation compared to randomly
ordered collagen fibers in solution. This corresponds well to
the observed values of optical rotation. Figure 7 shows struc-
tural variation across the image plane, believed to be caused
by changes in the fibril direction relative to the image plane.
However the variation in signal across the sample is different

compared to the retardance and depolarization images, indicat-
ing that additional information is stored in this image.

The comparison between the direction found from the MPM
images and from the MMI images showed that they overall
agreed quite well. Discrepancies could be seen toward the edges
and at some isolated interior regions. Toward the edges, the
Fourier analysis technique used in the MPM analysis will ex-
hibit some artifacts as it picks up the edge of the sample as
a strong frequency component (interpreted as a fiber) running
tangential to the edge. If the fibers run perpendicularly to the
edge, then this will be picked up by MMI and large discrepan-
cies are expected. Other sources of discrepancies could be due
to small collagen fibers not resolved by MPM and/or changes in
the collagen direction through the sample (MPM could not im-
age completely through the thickness of the sample). The tiling
of the microscope images to create images of larger regions is
evident in Figs. 1(a) and 2(a), which is due to uneven excitation
over the imaging plane, probably due to movement of the beam
at the back aperture of the objective. However, it appears that
the transition between images is quite well filtered out during
image analysis.

MMI will be unable to differentiate between collagen fibers
running parallel to the sample surface and fibers that are at an
angle to the surface. One way to distinguish these two cases
would be to rotate the sample in the beam such that the Mueller
matrix is extracted with the collagen fibers rotated at different
angles to the incoming beams. By having enough different di-
rections, it should be possible to extract a three-dimensional
average direction of the fibers.

The structure of the collagen fibers as seen in the MPM
images could be useful in the diagnosis and assessment of os-
teoarthritis. In this study, the MMI was performed in trans-
mission mode; however the technique can also be applied in
reflection mode, which would make it applicable for in vivo use.
MMI can also be used in conjunction with high NA objectives to
achieve even higher resolution images of the polarization prop-
erties. In the current setting, however, it is perhaps its ability
to image large regions relatively fast that is its main advan-
tage. Histopathology is another field where MMI could be very
valuable. Its ability to generate more detailed polarization prop-
erties could make it valuable for better assessing the structure
of diseased cartilage in histopathology studies. For example, the
depolarization index and differences in linear and circular retar-
dation are not picked up by regular polarization microscopes.
The detailed structure that is possible to extract with these two
imaging techniques could also have important applications in
the study of the biomechanics of cartilage.

5 Conclusion
By applying an image-analysis technique based on the Fourier
transform on the MPM images, we were able to quantify the di-
rection of the fibers in the superficial layer. Combining this with
Mueller matrix imaging proved to be a powerful combination,
allowing for the extraction of directional parameters from the
intermediate layer. The structure in the intermediate layer is usu-
ally assumed to be isotropic, but the retardance images clearly
show that there is structural inhomogeneities in the connective
tissue in these areas as well. In conclusion, the combination of
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MMI and MPM provides a powerful technique in the study of
osteoarthritis and other cartilage diseases.
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Mueller matrix 3D directional imaging of collagen fibers
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Abstract. A method for measuring the 3D direction images of collagen fibers in biological tissue
is presented. Images of the 3D directions are derived from the measured transmission Mueller matrix
images, acquired at different incidence angles, by taking advantage of the form birefringence of the
collagen fibers. By comparing the 3D direction images with images of the collagen fibers from second
harmonic generation microscopy, a good agreement is found. The Mueller matrix images are decomposed
using the newly developed differential decomposition, which is more suited to biological tissue samples
than the common polar decomposition method.

Keywords: Mueller matrix imaging, collagen, directional imaging, SHG

1 INTRODUCTION

Biomedical research is experiencing a revolution due to the development of systems for spectral and
spatial characterisation. In addition, pulsed lasers are readily available for nonlinear optical applications.
Recently polarisation sensitive techniques, known from the thin film community, have been developed for
biomedical applications. In the thin film community, the polarisation sensitive technique spectroscopic
ellipsometry has been successfully used to characterise material properties of many kinds for several
decades.1 As a consequence, ellipsometry now plays an important role in the semiconductor industry.
More recently, spectroscopic Mueller matrix ellipsometry has been employed to characterise anisotropic
nanostructured materials and plasmonic structures.2–5 Due to the turbidity of biological tissue,6 the
modeling is more complicated than for more uniform samples such as thin films. In addition, partial
depolarisation of light in the sample requires acquisition of the full polarisation properties, i.e. the
Mueller matrix, and not only the ellipsometric parameters Ψ and Δ. Nevertheless, it has shown promise
for characterisation of biological tissue.7–12

Currently, several setups have been developed to acquire Mueller matrix images of biological sam-
ples. Pierangelo et al.12 demonstrated the use of a reflection imaging Mueller matrix ellipsometer to
characterise and diagnose colorectal cancer. Several broadband Mueller matrix designs for imaging se-
tups have been proposed13 and some have been implemented.14 Such systems are non-destructive and
have the possibility to achieve a sub micrometer resolution, as well as information about the structures
smaller than the diffraction limit. By carefully choosing the wavelength, it is possible to make the
technique sensitive to a certain depth range in the tissue.6 If Mueller matrix imaging is combined with
hyperspectral imaging it would be possible to study depth dependent effects.

There are a range of different polarisation effects which change a Mueller matrix, the common being
depolarisation, diattenuation, birefringence and optical activity. If a material possesses several of these
effects, it is not always easily seen from the Mueller matrix which of the effects are responsible for a
certain part of the measured data. One way of simplifying the analysis, is to decompose the measured
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Mueller matrix. Up until recently, the most common way to decompose the matrix has been the
forward polar decomposition.15,16 Recently Ossikovski et al.17 pointed out that polar decomposition
assumes the effects to be multiplicative, which is not the case for biological media. They suggested a
more suitable approach for decomposing simultaneous effects, namely the differential decomposition,
originally proposed by Azzam18 and later extended to include depolarising media by Ossikovski.19

Differential decomposition has recently been applied on biological tissue by Kumar et al.,11 whom in
addition, showed how to calculate physical properties from the decomposed matrices.

With the decomposed Mueller matrix from biological tissue containing collagen fibers, it has been
shown possible to extract the in plane direction of the fibers from their induced birefringence.10 Our
work generalises this idea to find the 3D direction of collagen fibers in biological tissue. The method is
tested and validated by comparing a 3D direction image of tendon derived from Mueller matrix images,
with second harmonic images of the same sample.

2 MATERIALS AND METHODS

2.1 Sample preparation

Tendon tissue was taken from medial femoral condyle of the knee of a chicken, bought fresh from the
supermarket. A small section of the tissue was embedded in a mounting medium for cryo-sectioning
(O.C.T., Sakura). Rapid freezing of the O.C.T. embedded tissue was completed using liquid nitrogen.
These frozen section were stored in a freezer (−60 ◦C) until cut using a cryostat, into 50 μm thin tissue
sections. The cutting plane was parallel to the collagen fibers. The thin sections were placed on standard
microscope glass slides and stored in a freezer (−60 ◦C). Before measurements, the tissue samples were
brought back to room temperature and covered with a standard cover slip. Edges of the cover slip were
sealed with Vaseline to avoid dehydration. Between measurements the slides were stored at 4 ◦C.

2.2 SHG imaging

SHG images were collected on a Zeiss LSM 510 meta micrscope using a Coherent Mira 900 for excitation
at 790 nm. Imaging was done with a 40× 1.2 NA objective. A custom built polarisation set up, which
compensates for any birefringence in the optical path, was used to ensure circular polarization. The
average power at the focal plane was about 8mW.

2.3 Mueller matrix imaging setup

After the samples were imaged with SHG, they were measured in a custom built Mueller matrix imaging
(MMI) ellipsometer. The system uses ferroelectric liquid crystals for the polarisation state generator
and analyser. Details of the system can be found in Aas et al.20 An improvement was made to
the illumination, by replacing both the laser and rotating diffuser, with a 940nm collimated LED. In
addition, a motorised rotation stage for the sample was introduced in order to image the sample at the
different projections needed to extract the 3D direction, as described below.

The system was calibrated using the eigenvalue calibration method21 on four reference samples (air,
two polarisers and a retarder), ensuring the correct measurement of the Mueller matrix. By comparing
the measurement of air to the identity matrix an error estimate was made, resulting in a measure for
the accuracy of the system.



2.4 Decomposition of the Mueller matrix

As the differential decomposition method is able to decompose simultaneous polarisation effects, it was
chosen for the decomposition of the measured Mueller matrices presented here. Due to measurement
noise, some of the measured Mueller matrices are slightly unphysical, which was compensated for by
using the filtering described by Cloude22 prior to the decomposition.

The differential decomposition results in two matrices, Lm and Lu,19 where Lm contains the elements
used to calculate the retardance and the diattenuation. Using Lu, the errors in the retardance and the
diattenuation can be calculated by using the same matrix elements from Lu as originally used from Lm.
Furthermore, from Lu the depolarisation can be calculated. In this study the relevant properties are
the linear retardance δ, the angle of orientation of the linear retardance θ and the depolarisation∗ Δ.11

2.5 Directional calculation

From our daily life we are familiar with determining the orientation of an object just by looking at it.
As our eyes are placed a distance apart, they see two different projections of the image, enabling our
brain to deduce the orientation of the object we are looking at. The MMI setup can only image one
projection, but it is possible to rotate the sample in two different sample rotations α, see figures 1 and 2,
and then use the two resulting images to calculate the direction of the imaged birefringent structure,
here the collagen framework.

Illumination - PSG Imaging - PSA

x

y
y′

x′α

zk k

Figure 1: Rotation α of the sample seen from above the setup.

In order to derive the direction of the structure, the easiest is to start with the Euler transforma-
tions.23 They require the definition of two coordinate systems, the laboratory frame of reference and
the sample frame of reference. Let p = [x, y, z] describe a vector in the laboratory frame of reference.
The frame of reference is defined in such a way that the x axis points along the direction of illumination,
y axis is horizontal and z axis vertical, see figure 1. Let p′ = [x′, y′, z′] be a vector in the sample frame
of reference. The sample frame of reference coincides with the laboratory frame for a rotation α = 0◦,
see figure 1. The sample is only rotated around the z = z′ axis, see figures 1 and 2, resulting in the
following Euler rotation matrix

R(α) =

⎡
⎣ cosα sinα 0
− sinα cosα 0

0 0 1

⎤
⎦ (1)

∗It is here noted that the depolarisation (Δlog−M , eq. 19 in the paper by Kumar et al.11) has the wrong signs
of the exponential, it should be Δlog−M = 1 − (1/3) (eα1 + eα3 + eα3) as discussed in a private correspondence
with Ossikovski, one of the authors of the original paper.



α = 0◦α = −30◦ α = 30◦x

z

y

x′

y′

z′

α

Figure 2: The coordinate systems used for the directional calculation. The laboratory frame (xyz) is
identical to the sample frame of reference (x′y′z′) at α = 0. The x axis points along the illumination
direction towards the camera, and z is vertical. As the rotation is around z, z′ = z for any α. The
lower row of figures show the projection of the a vector onto the imaging plane at different values of α.

By using this transformation it is possible to transform from the sample frame of reference p′ to the
laboratory frame of reference p, by p = R(−α)p′. Applying this transformation gives the following
relations

x = x′ cosα− y′ sinα
y = x′ sinα+ y′ cosα (2)
z = z′

The goal is to determine p′ by measuring the Mueller matrix at two different sample rotations, α1 and
α2, by looking at the projections into the laboratory frame of reference (the measured image), resulting
in the measured (y1, z1) and (y2, z2). By choosing α2 = −α1 = α, (in our setup α2 < 0 due to the
direction of rotation) and solving equation (2), the components of p′ results in

x′ =
y2 − y1
2 sinα

, y′ =
y1 + y2
2 cosα

, z′ = z1 = z2 (3)

As the MMI measurement only yields the direction of the slow axis, θ, and not the projected length
(the length in the yz plane) of the fibre, it is not possible to find the absolute value (length) of the
vector. In order to resolve this, we define the projected length of the fibre as

l =
√
y2 + z2 =

√
x′2 sin2 α+ y′2 cos2 α+ 2x′y′ sinα cosα+ z′2

It is now possible to define the coordinates with respect to the measured angles

y1 = l1 cos θ1, z1 = l1 sin θ1

y2 = l2 cos θ2, z2 = l2 sin θ2

Using z1 = z2 = z we find that

y1 = z cot θ1, y2 = z cot θ2



which, when inserted into equation (3), gives

x′ =
z (cot θ2 − cot θ1)

2 sinα
, y′ =

z (cot θ1 + cot θ2)

2 cosα
, z′ = z

These equations are dependent on the absolute length of z, however, as we are only interested in the
direction of the fibre we can set z = 1. This limits the solution to only include positive z, which is not
a problem since all solutions with negative z can be represented by the opposite vector located in the
positive z space. In addition, it will not be possible to get a solution purely in the xy plane (z = 0).
A real measurement contains some noise, both from the measurement itself and from numerical noise,
ensuring that the angle is never exactly zero. In addition, the rotation around z means that it is not
possible to see difference between different vectors in the xy plane if z = 0. The final equations are then

x′ =
cot θ2 − cot θ1

2 sinα
, y′ =

cot θ1 + cot θ2
2 cosα

, z′ = 1 (4)

When presenting results derived with equation (4), the vector is normalised to its length
√
x′2 + y′2 + z′2.

Another consideration to make is that the angle of incidence is not the same as the rotation angle
of the sample, due to the difference in refractive index. The tissue is sandwiched between two glass
slides, but these do not effect the correction, according to Snell’s law. Thus the correction for α is ,
α = arcsin (sin(αr)/nt), where αr is the angle of rotation (incidence angle on the glass) and nt the
refractive index of tissue, assumed here to be 1.4.6

2.6 Directional imaging

By changing the angle of incidence on the sample, obtained by rotating the sample, and using the slow
axis direction found from the decomposition, it is possible to calculate and hence make an image of the
3D direction of the fibers as describe in subsection 2.5. The calculation is done using incidence angles
of αr = ±30◦. The resulting images are resampled, using αr, such that the stretching due to rotation
is counteracted and the pixels are square. αr is used because the image is seen on the surface of the
glass.

3 RESULTS AND DISCUSSION

3.1 Depolarisation and linear retardance

Linear retardance describes how much the polarisation in one direction is phase shifted with respect
to its orthogonal polarisation. Figure 3 shows the linear retardance together with its uncertainty for
the tendon sample. As has been described elsewhere,10 the high amount of collagen results in a high
retardance, mainly due to the form birefringence induced by the shape of the fibers in the effective
medium. A previous study10 looked at cartilage, which is less ordered than the tendon. Being less
ordered means that the structure should be modelled as a layered effective medium (requiring a layered
decomposition of the Mueller matrix) with one orientation for every layer. The larger degree of order in
the tendon makes the results clearer and remove the need for considering the sample as a multilayered
system.

Figure 3(b) shows the uncertainty of the linear retardance, which is seen to be above the random
noise level in some areas. As the uncertainty is a result of scattering, depolarisation and measurement
uncertainties it is useful for the analysis of the sample. Since the knowledge of the uncertainty has
previously been limited to the measurement error known from the calibration, specifically the error
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Figure 3: Linear retardance (a) and the uncertainty (b) for the tendon sample at normal incidence.
Both images are in degrees.
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Figure 4: Depolarisation at normal incidence for the tendon sample. The color scale is from 0 for fully
polarised to 1 fully depolarised.

on measuring air, this is new and potentially important information. The measurement error of the
current system, provided by the calibration procedure, is on the order of a few percent. Hence most of
the uncertainty seen in figure 3(b) is due to other effects. By comparing the uncertainty measurement
to the depolarisation shown in figure 4, it is observed that they correlate well, indicating that the
largest uncertainty in the linear retardance is due to depolarising effects such as multiple scattering and
integration of several polarisation states in one pixel.

3.2 Directional imaging

From the retardance found in the decomposition it is not only possible to calculate the linear retardance,
but also the direction of the fast axis of the birefringence. This property can, together with the correct
effective medium model, be used to find the direction of collagen fibers as explained in section 2.

The directional image and the SHG image for the tendon sample are shown in figure 5. As the 3D
image in figure 5(a) shows, the fibers are mostly in the plane as expected due to direction of the cryostat
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Figure 5: 3D directional image (a) with a zoomed view (b), a SHG image (c) with a zoomed in view
(e) and an overlay of the SHG and the out of plane direction of the tendon (d). The colourwheel beside
the directional image shows the out of plane direction in degrees, with 0◦ being in the image plane and
±90◦ normal to the image plane. +90◦ is the direction towards the reader (positive x). The overlay
(d) (area outside of the sample masked for clarity) shows the SHG and out of plane directions overlain.
The yellow colour represent the negative out of plane direction and the cyan the positive direction. No
colour represents an in plane direction and increasing colour more out of plane.

cut. The calculated in plane direction (black lines in figure 5(a) and 5(b)) corresponds very well with
the apparent direction in the SHG images. There are some areas that are clearly out of plane (red in
the 3D image), which are either dark or show some weak structure in the SHG image. The latter can
be explained by the SHG signal generation. Fiber orientations of are important, as a fiber in plane has
a much larger cross section for generating SHG, compared to one out of plane. This means that the
darker parts of the image in figure 5(c) probably are due to out of plane orientation of the fibers, as
found in the 3D image. Figure 5(d) shows an overlay of figures 5(a) and 5(c).

The lower right of the sample shows an offset between the directional image and the SHG. There
could be several reasons for this offset, one being that the size of the fibers are around the upper limit
of the validity of the effective medium model. In this study it was necessary that fibers were sufficiently
large to visualise with SHG, which is limited by the diffraction limit. It is expected that the Mueller
matrix imaging results will be better for smaller fibers.

It is clear that the large out of plane directions correspond well with the same areas in the SHG
image. Additionally, by studying the image 5(a) and the zoomed in views in figure 5(b) and figure 5(e),



it is possible to see that the oscillating structure (the oscillation between green and blue) along the
fibers is visible both in the SHG image and the out of plane direction image. Both of these results
confirm that the 3D directional imaging finds the correct directions. The ability to find the direction
in MMI, even though the resolution is much poorer than for SHG, is one of its advantages.

4 CONCLUSION

The method for finding the 3D direction of collagen fibers embedded in biological tissue from Mueller
matrix images is shown to be in good agreement for tendon when compared to SHG images. In
particular, it is possible to see oscillating structures in the collagen orientation, as well as the out of
plane directions of fibers. The possibility to see effects from collagen fibers below the diffraction limit
could be an important input to the understanding of how the collagen framework looks. Additionally,
the use of the differential decomposition instead of the, until now, most common polar decomposition,
has provided a good insight into the uncertainties in the calculation of the physical properties.
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ABSTRACT   

A Mueller Matrix Imaging Ellipsometer system is operated in transmission and used to study nematic textures 
in colloidal dispersions of synthetic Na-fluorohectorite clay platelets in solution. It is clearly observed that the 
anisometric particles organize into phases with strong birefringence, which results in a strong retardance. The 
Mueller matrix imaging technique supplies an image of the retardance matrix, even in the presence of other 
effects such as light scattering and diattenuation. The spatial variation of the absolute value of the retardance, 
the orientation of the fast axis of the retardance, the total diattenuation and the orientation of the diattenuation 
are presented. In particular, from knowledge of the anisotropic shape of the particles, the orientation of the 
particles within ordered domains, and the density of the particles within the domains are spatially determined. 
The experiments are based on adding synthetic clay particles into a solution contained in a thin rectangular glass 
container. Upon letting gravitation act on the sample, different phases appear after a few weeks. One phase 
contains nematic textures and we are able to determine the ordering and also estimate the density of the 
domains/texture within the phase, in addition to estimating the local order within a domain with an image 
resolution of 12 m. 

 

Keywords: Polarimetry, Imaging, Colloidal liquid crystals, Ellipsometry 
*Morten.Kildemo@phys.ntnu.no; Tel.: +47 73593211 

1. INTRODUCTION  
Mueller matrix imaging is a relatively new and interesting technique that has become largely simplified in 
recent years, due to the appearance of a simplified formalism for the design and calibration of such an optical 
imaging system.1-4 In order to perform high resolution Mueller matrix imaging, it is largely advantageous to use 
non-rotating or non-moving active polarization components, such as e.g. liquid crystals. For many applications, 
it is further interesting to enable reasonably fast imaging. We have developed a ferro electric liquid crystal 
(FLC) based Mueller Matrix Imager (FLC-MMI), designed to operate achromatically in the range 800-1700 
nm.5 Such a system can also be denoted a Mueller Matrix Imaging Ellipsometer, and it differs from the imaging 
polarimeter, in that it has a polarization state generator, which generates four optimally selected polarization 
states for the illumination. One of the key features of the current FLC based system is that it may be operated 
fast, as long as sufficient flux is available on each pixel, which requires a powerful source, a sufficiently high 
gain and a high frame rate camera. In the current work, collimated light from a 980 nm laser was passed 
through a rotating scrambler and then used for illumination. A standard silicon based CCD camera was used for 
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detection, and since the kinetics of the process to be imaged was extremely slow, no concern with respect to 
acquisition time has been made.  

 Mueller matrix imaging is interesting due to the fact that many polarization modifying phenomena are 
spatially varying, and can thus supply enhanced spatial information about the sample. Typical examples of 
polarization altering phenomena are birefringence which induces retardance, dichroism that induces the so-
called diattenuation, and light scattering that induces depolarization. All of these are spatially varying functions 
across a given sample, and are connected to the locally intrinsic properties of the material. The Mueller matrix 
effectively probes all these phenomena, although separation of each phenomenon may in certain cases be a 
challenging task. However, in many cases the polar decomposition technique can be used, and allows the 
retardance, depolarization and diattenuation to be effectively separated.6-8 Furthermore, organic materials, 
strained solid state materials nanostructured materials and colloids/liquid crystals often show anisotropic optical 
properties as a function of e.g. anisotropic shaped particles (form birefringence), anisotropically induced strain, 
inherent optical anisotropy due to reduced symmetry (both birefringence and dichroism). These effects are in 
addition to standard effects described by Fresnel coefficients from surfaces and thin films. 

 In this work, we exemplify the Mueller matrix imaging technique, using a single wavelength of 980 
nm, to study nematic textures in colloidal aqueous dispersions of synthetic Na-Fluorohectorite clay particles. 
The polydisperse particles are platelet-shaped with thicknesses in the range of 10 – 150 nm along the sheet 
normal, and diameters of around 1 m. Previous work using crossed polarizers, has demonstrated that such 
particles in aqueous solutions have a strong birefringence.9-11 

The strong birefringence will give a strong retardance if the particles are locally ordered. The Mueller matrix 
imaging technique together with the forward polar decomposition6 is able to determine the corresponding 
retardance matrix, even in the presence of other effects such as light scattering and diattenuation. From the 
retardance matrix one determines the local orientation of the particles and the local degree of ordering. We have 
here studied samples similar to those that have been previously thoroughly studied by the use of crossed 
polarizers,9-11 by x-ray scattering9-13 and by magnetic resonance imaging11, 14 As a result we show that the 
Mueller matrix imaging technique can directly supply high quality images, with information that would require 
the combined effort of both small- and/or wide-angle x-ray diffraction (using synchrotron radiation), and 
crossed polarizer imaging. In particular, the orientation of ordered domains of particles, and the density of such 
particles are spatially determined at high resolution. The experiments are based on adding synthetic clay 
particles into a solution contained in a thin rectangular glass container. Upon letting gravitation act on the 
sample, different phases appear after a few weeks. At certain concentrations, the samples show nematic textures 
and we are able to determine the ordering and visualize density differences of the domains/texture within the 
phase, in addition to estimating the local order within a domain. Similarly, we are able to separate this phase 
from regions of differing order. Studies on related samples are planned in the near future. 

2. EXPERIMENTAL 
2.1 Mueller Matrix Imager  

The Mueller matrix imaging ellipsometer consists of a light source, a Polarization State Generator (PSG), the 
sample, a Polarization State Analyzer (PSA), an imaging lens, a plane mirror and a CCD camera. Different 
sources could be connected to the system, but in this work, the illumination was obtained by a 980 nm laser 
source collimated after passing through a rotating scrambler, as shown in Figure 1. A 980 nm bandpass filter 
was mounted on the camera to make the system insensitive to background illumination. The camera in this 
work was a Hamamatsu C4742-95 camera. The current setup (Figure 1) had a magnification close to one and a 
very small numerical aperture due to the apertures in the PSG and the long focal length of the imaging lens. The 
resolution was estimated to 12 m. The PSG (Figure 1) consists of a high extinction ratio NIR polarizer (P1) 
followed by a zero order wave plate (R1), a FLC (F1), a second fixed wave plate (R2) and a second FLC (F2). 
A FLC is basically operating as a wave plate that is rotated by 45 degrees with an electric field applied over the 
cell.1 The orientations of the FLCs and the fixed wave plates, and their retardances have been carefully selected 
by optimization in order to generate four Stokes vectors that span the polarization space of the Poincare sphere. 
The PSA basically consists of the components of the PSG in reverse order, as seen in Figure 1. Its role is to map 
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the Stokes vectors exiting from the sample onto four optimally spaced analysis states on the Poincare sphere. 
The latter measurement procedure results in an optimally conditioned system of equations that allow for 
minimal noise propagation upon solving for the desired 16 Mueller matrix elements, which completely describe 
the polarization altering properties of the sample. In order to do this conversion one uses  

 B = AMW , 

where M  is the Mueller matrix of the sample, B  is the 16 measured intensities, W and A the system matrices 
for the PSG and the PSA found using the eigenvalue calibration method.4 M is found by multiplying the inverse 
of A and W from each side, 

 -1 -1M = A BW . 

By applying this to every pixel in the image for the 16 intensity images, the complete Mueller matrix image is 
found. In order to find the retardance ( RM ), the diattenuation ( DM ) and the depolarization ( MD ) matrices, the 
forward polar decomposition was applied by defining 6 

 R DM M M MD= . 

In this work the retardance matrix and the diattenuation matrix that appears as the most interesting information 
carriers, while the depolarization matrix helps to control the process involved, for example rejecting spurious 
signals, but also localizing strongly scattering particles (which can be observed as e.g. depolarization). From the 
diattenuation matrix the total linear diattenuation and the orientation of the transmission axis are found, while 
fore the retardance matrix it is possible to find the linear retardance and the orientation of the fast axis for each 
pixel.7 These scalars are represented in an image map and give an overview of the spatial variations across 
sample. The orientation of the fast axis is very interesting as it may in an effective medium approach for the 
clay particles be the normal to the clay plates (i.e. the so called form-birefringence). By plotting the fast axis, 
presumed normal to the plates, the orientation of the plates may in principle be spatially determined. 

 
Figure 1. The setup of the Mueller matrix imager. The sample is a rectangular container filled with the 
nanoparticles in solution, as shown in Figure 2. 

 

2.2 Preparation of the Colloidal dispersions of Na-fluorohectorite synthetic clay in solution 

Synthetic Li-fluorohectorite clay was purchased in powder form from Corning Inc., NY and ion-exchanged to 
produce Na-fluorohectorite. As illustrated in Figure 1, individual Na-fluorohectorite particles are composed of 
around 20-100 silicate lamellae that stack by sharing Na+ ions between their basal planes. The lateral sizes of 
these lamellae can be as large as several m, whereas each lamella is only 1 nm thick. Na-fluorohectorite 
particles carry a layer charge of 1.2e- per unit cell that originates from substitution of Li+ for Mg2+ in the 
atomic structure of the particles. This high layer charge causes Na-fluorohectorite lamella to remain stacked 
when suspended in water, in contrast to lower-charge smectites. Under the influence of gravity, aqueous 
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suspensions of Na-fluorohectorite particles phase-separate to form distinct regions of differing particle 
concentrations and order. The samples in the current study were prepared as dispersions of 0.5 g Na-
fluorohectorite in 45 mL distilled water, that were centrifuged to remove particle aggregates before the samples 
were allowed to settle under the influence of gravity. A nematic gel region, formes over the course of a couple 
of days in such a sample, as ordered tactoids sediment and gradually build an extended nematic region of 
several domains. These domains then continue to evolve during several weeks. Figure 2d shows the sample 
holder used for the Mueller matrix imaging ellipsometry: a rectangular borosilicate capillary from Hilgenberg, 
which is 80 mm long, 4.2 mm wide, and 1.25 mm thick (1 mm inner thickness).  

  

(d)
 

Figure 2. (a) Representation of Na-fluorohectorite particles in nematic order. In this illustration the platelets are 
lying on average horizontally and the platelet normals are oriented vertically. (b) Cross-section of a single clay 
particle, which consists of about 100 stacked crystallized lamellae. The lamellae are layered with a thickness of 
around 1 nm each. (c) Atomic configuration of fluorohectorite, where the intercalated cation is Na+for NaFh. 
Adapted from refs 11, 15. (d) Image of the flat glass capillary used as sample cell. 

 

2.3 Mueller matrix images of colloidal dispersions 

The rectangular shaped container with the colloidal dispersions see Figure 2d, was positioned on an automatic 
x-y stage that allowed the full container to be observed by performing only five vertically consecutive Mueller 
matrix images that were numerically stitched together. The imaging process with a very high resolution (12 m) 
could thus easily be performed without any micro spot optics and slow scanning. The imaging process in the 
current work was slowed down due to triggering issues with the reasonably old camera, using approximately 2 
minutes per image. The imaging speed was simply limited by the camera, and there should be no major obstacle 
in order to perform each image within a few seconds. Further improvement of speed would possibly require 
improving the light transmission of the PSG and PSA which involves both AR-coating of components and an 
increase of the numerical aperture. The current FLC based Mueller matrix ellipsometer has been shown to have 
a lower limit of 16 ms per Mueller matrix, using a single (pixel) fast detector1. 

3. RESULTS AND DISCUSSION 
Figure 3 shows the results of Mueller matrix imaging the sample, and after decomposing the measured Mueller 
matrix images. The figure shows from the left to the right, (a) the total retardance calculated from the retardance 
matrix, (b) orientation of the retardance, (c) the total diattenuation calculated from the diattenuation matrix, and 
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(d) the orientation of the transmission axis of the diattenuation vector. Figure (e) shows finally for completeness 
the degree of polarization calculated from the depolarization matrix. The color bars explaining the scale for 
each phenomenon is plotted below the images. In particular, the total observed retardance (Figure 3a) varies 
between 0 and 60 degrees, where the higher retardance gives brighter colors (dark blue means no retardance). 
From the retardance image, one clearly observe several regions from the top to the bottom, which we denote air, 
zones A, B, C and D. Between the air and zone A, there is a cap layer which gives no signal and should be 
regarded as an artifact (see the depolarization image). However, just below the surface, domains causing 
retardance is observed. This is due to partial evaporation of water from the air-water interface, increasing the 
particle concentration and forcing the particles to align to the interface. Zone A appears as mainly isotropic, and 
is thus probably an isotropic dispersion of small clay particles. There seems to be a strong phase transition from 
zone A to zone B, where zone B consists of domains of higher retardance. The bottom of zone B gives a gradual 
change to zone C, which again appears isotropic. The bottom of the container consists of a zone D with 
apparent layers of ordered domains with higher retardance. Such effects have basically been described 
previously using a simple set-up of crossed polarizers11. The advantage of the retardation matrix is evident in 
Figure (3b), which gives the orientation of the retardance. The blue colors indicate a vertical orientation of the 
fast axis, whereas red colors indicate that the fast axis is horizontal. If the retardance and the orientation of the 
retardance are viewed together, it is observed that the phase transition from zone A to zone B consists of a well-
defined region of strong retardance with an orientation of the fast axis along the gravitational (vertical) axis. A 
close up of the latter region is shown in Figure 4, where the retardance (color-coded) and the orientation of the 
fast axis (lines points in the direction of the fast axis) are plotted together. It is clearly observed that the high 
retardance region at the phase transition has a fast axis pointing normal to phase transition (plate normals in the 
direction of the gravitation axis). Further into zone B, the sharp red colors in the orientation map, see Figure 3c, 
show that there is a larger tendency for preferential ordering of the fast axis within domains along the 
perpendicular to the gravitational axis. The latter may also clearly be observed from Figure 4.  

Figure (3c) shows an image of the total diattenuation of the sample. In particular, the zones of high 
diattenuation appears correlated to the zones of higher retardance, but with a more fine grained structure than 
the retardance. The orientation of the diattenuation vectors, see Figure (3d), seem primarily to be in 
correspondence with the slow axis of the birefringence (Figure 3b), however, there are apparent large zones of 
deviation from the latter. Finally, the depolarization is shown to enable us principally to rule out zones of poor 
measurement quality, as most of the important part of the sample has a rather uniform depolarization. The zones 
of red colors in Figure (3e) thus define the useful part of the sample. An exception is the deep red vertical 
colored line at each edge of the sample, which was interpreted as a spurious specular reflection artifact from the 
sample container, and should not be considered in the analysis of images (a) to (d). Furthermore, there is an 
increased tendency for higher depolarization in the zone of strong diattenuation (zone B).  

A preliminary analysis of these results in comparison with previous work,9-14 indicate that the fast axis is indeed 
pointing in the direction of the normal to the clay-plates (see Figure 2). The retardance is then nominally a 
function of the density of particles and the number of particles ordered with their surface normal in the x,y 
plane in the image (here perpendicular to the probing beam). One becomes thus at normal incidence virtually 
blind to particles oriented with their normals along the beam direction. Since the clay particles’ preferred 
orientation in the vicinity of a wall is  homeotropic (i.e. particle normal perpendicular to the plane of the walls), 
we are in this sample geometry imaging only a fraction of the particles. Further experiments are planned where 
other container geometries and magnetic fields will be used to orient particles in such away that the retardance 
is maximized. However, there appears to be more information in the diattenuation image than in the retardance 
image, as the diattenuation appears to be enhanced rather at the edges of the domains, resulting in an apparent 
doubling of the number of observed lines/features in both the diattenuation and the orientation of the 
diattenuation vector (orientation of transmission axis). This will be further investigated in future work. In 
comparison with previous work on colloidal Na-fluorohectorite suspensions,9-14 the present technique provides 
data on anisotropic sample properties with an excellent spatial resolution which exceeds that obtained with 
traditional x-ray scattering by at least one order of magnitude. 
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Figure 3. Result of Mueller matrix imaging of the clay-water sample. The retardance (colormap) image (a), the 
orientation of the fast axis (colormap) image (b), the total diattenuation (colormap) image (c), the orientation of 
the diattenuation vector (transmission axis) colormap image (d) and the degree of polarization (1-depolarization 
index) (e). The retardance is color coded between 0 and 180 degrees (see color bar). Both the orientation of the 
retardance and the diattenuation are color coded between 0 and 180 degrees, where the same color is given for 0 
and 180 degrees. The diattenuation is color coded between 0 and 1, while the degree of polarization is color 
coded between 0.5 and 1. 
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Figure 4. The retardance image (color map) and the orientation of the retardance (lines), corresponding to the 
transitional zone A to B in figure 3a and 3b. The direction of the lines indicates the fast axis. The number of 
lines have been strongly reduced in order for visibility. The horizontal color bar gives the value of the 
retardance. 

 

4. CONCLUSION 
The Mueller matrix imaging (MMI) ellipsometer system operating in the NIR is proven to be extremely useful 
for studying aggregation of anisotropic nanoparticles in solution. The combination of both retardance, 
orientation of the retardance, the diattenuation and the orientation of the diattenuation, and possibly also the 
degree of polarization, is a unique and powerful imaging tool that is particularly suitable for studying 
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dispersions of anisotropic nanoparticles. Furthermore, the high spatial resolution, together with the speed of 
acquisition makes it ideal for resolving both spatial features and dynamics. The simple and high performance 
calibration of the MMI makes it trivial to operate and supplies data that allows for future quantification. We 
have shown here that the MMI can be used for separation of the different aggregate phases and the complex 
nematic domain structures in colloidal dispersions of Na-fluorohectorite. 
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We demonstrate that small tilts away from the substrate normal, of short (30–40 nm high) nanopillars, may
be detected and modeled by spectroscopic UV–Visible Mueller Matrix Ellipsometry (MME). The pillars were
produced by sputtering a GaSb substrate with a low energy unfocused ion beam. It has previously been found
that the pillars will point in the direction of the ion flux. For both samples reported here, the ion-incidence
was unintentionally tilted away from the substrate normal by 2.8 and 4.8°. The MME measurements were
performed using both multiple angles of incidence, and 360° rotation of the incidence plane. Graded uniaxial
effective medium models were fitted to the experimental data, and through Euler angle rotations of the
dielectric tensor, the tilt angle and the orientation of the pillar direction, were obtained. The UV part of the
spectrum enhanced the tilt angle sensitivity down to 0.02–0.05°. A data presentation that enhances the
understanding of the symmetry in the crystallographic information obtained from spectroscopic MME is
proposed. The off block diagonal Mueller matrix elements are more sensitive to the in-plane anisotropy,
whereas for small tilt angles m14 scales approximately with θsin(ϕ).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Semiconductor nanopillars are currently intensively investigated
as building blocks for metamaterials and efficient light harvesting
photovoltaic devices [1–4]. As such, self-organized nanopatterned
GaSb is also an interesting model system in terms of developing
metrology methods in order to serve both for in-situ and ex-situ
monitoring and the control of the formation process. Furthermore,
the formation mechanism of such GaSb nanopillars is a fascinating
materials science that deserves special attention.

It has been observed that a dense pattern of nanopillars forms on
GaSb [5], InP [6], InSb [7], InAs [7], and GaAs surfaces [8], upon low
ion energy bombardment, i.e. through abrasion (not to be confused
with sputter deposition). The idea of nanopatterning by ion beam
sputtering was probably motivated by the discovery of ripple forma-
tion on glass surfaces upon low energy ion bombardment [9]. The
mechanisms of the ripple formation on glass substrates are well de-
scribed by the commonly accepted Bradley–Harper model [5–8,10].
However, the explanation of the formation of tall nanopillars (up to
500 nm high) of III–V semiconductors has been much disputed. In
recent studies [11–16], it was demonstrated, by in-situ characteriza-
tion using spectroscopic Mueller Matrix ellipsometry, that the most
likely formation mechanism of the nanopillars could be described
by a three stage process [11] driven by the difference in diffusion

velocities and sputtering yields of the two components of the
semiconductor. The initial stage is related to the removal of oxides,
creation of an amorphous surface layer which finally lead to segre-
gated Ga droplets on the surface [11]. The Ga droplets act as a self-
assembled etch-mask resulting in the formation of GaSb nanopillars
under the droplets. The abrasion of the Ga droplets is compensated by
the diffusion of Ga atoms toward the top of the pillars, supplied by the
apparent preferential sputtering of Sb. The third stage of the growth
results in a steady state where the supply and abrasion of Ga reaches a
dynamic equilibrium because of the limited diffusion length of Ga
atoms at the surface [11].

The optical characterization (MME), both in-situ and ex-situ, in
combination with Scanning Electron Microscopy (SEM), Scanning
Transmission Electron Microscopy and X-ray photoemission spectros-
copy proved to be crucial in order to reveal the mechanism of
the formation for the GaSb nanopillars. Furthermore, through the
optical characterization, it was proven that the Bradley–Harper model
was insufficient to describe the formation process especially for taller
pillars, and that the “diffuse interface model” [11] better matches the
in-situ growth curves obtained from spectroscopic ellipsometry. In partic-
ular, the in-situ Mueller matrix spectroscopic data recorded for sputtering
at different substrate temperatures revealed together with the diffuse
interface model that taller cones could be formed due to the increased
Ga diffusion length by resupplying the Ga etch-mask [11]. Finally, visible
spectroscopic MME could reveal the formation of nanopillars pointing in
the direction of the incident sputtered ions, a fact that was independently
proven by destructive cross-sectional SEM [16].
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2. Experimental details

In this work two samples of nanopatterned GaSb were prepared by
sputtering a clean GaSb surface by low energy (300 eV) Ar+ ions with
an average flux of 2.4×1015ion cm−2 s−1 at a mean temperature of
308 K. Both samples (A and B) were prepared under the same experi-
mental conditions as the previously reported sample C in Ref. [13],
resulting in a nanopillar density of 711+/−56 cones/μm2, with a long
range hexagonal pattern resulting in an effective lattice constant of
ahex =40.4 nm. The Voronoi tessellation technique applied to SEM im-
ages resulted in an average pillar separation of 42.2 nm with a standard
deviation of 10 nm, while a similar analysis of the images from Atomic
Force Microscopy (AFM) resulted in an average separation of 45 nm.
Typical AFM and SEM images of such pillars are found in Refs. [12–14].

Spectroscopic MME was performed in the current work using a
dual rotating compensator ellipsometer (RC2 from JA Woollam
Company). Spectra were recorded from 0.73 to 5.9 eV, with simulta-
neous detection using InGaAs and Si based spectrographs with a
total acquisition time of 20 s per spectrum. The measurements were
performed using collimated light, whereas the large original beam
waist diameter was reduced by an aperture down to approximately
1.5 mm before instrument calibration. The measurement accuracy
was calibrated to 0.002 for the Mueller matrix elements of air. The
sample surface was carefully aligned to allow for all azimuthal rotations
of the sample (0° to 360° in steps of 5°). The full spectra were recorded
for all of the azimuthal orientations at three incidence angles 45, 55 and
65°. The sample was realigned prior to the recording of each incidence
angle.

3. Theory

A graded anisotropic Bruggeman effective medium model has been
shown to appropriately model the optical response of GaSb nanostruc-
tured by ion abrasion. The model regards the cones as a stack of
cylinders, see Fig. 1, whereas the anisotropy is introduced by the basic
cylindrical shape. As a result, the long axis along the cones is assumed
to have a depolarization factor Lz=0 (i.e. infinite screening factor
σ→∞), while perpendicular to the cones, the depolarization factor is
given by Lx,y=0.5 (screening factor σ=2). As a result, the depolariza-
tion factors L may be fixed for each sub-layer in the fit, which is impor-
tant in order to reduce parameter correlations. The resulting effective
dielectric function ε|| parallel to the optic axis is the volume average of
the dielectric function of GaSb and void ε||= fGaSbεGaSb+ fvεv. The effec-
tive dielectric function normal to the optic axis (ε⊥) is found by the
solution of f GaSb

εGaSb−ε⊥
ε⊥þεGaSb þ f v

εv−ε⊥
ε⊥þεv ¼ 0, where fv/GaSb are the volume

fill factors and εv/GaSb are the dielectric functions, of void and crystal-
line GaSb, respectively. In the limit of very short cones, the latter

approximation may be too crude since the cylinders will be strongly
truncated, and one would then rather expect 0bLzb1.0 [17].

The grading was introduced by fitting for a relative diameter of the
bottom of the cones (D1), and the top of the cones (D2). The fill factor
entering into the effective medium model could thereby in an appro-
priate fashion introduce the fact that the pillars are distributed in a
network with an average of 6 nearest neighbors (thus approximated
by a hexagonal network). The fill factor for each subdivided layer
was therefore modeled as follows [13]:

f GaSb nð Þ ¼ πffiffiffiffiffiffi
12

p d2 nð Þ; with d nð Þ ¼ D1− n−1ð ÞD1−D2

N−1
; n ¼ 1::N; ð1Þ

where d(n) is the diameter of each layer n and N is the total number
of layers, denoted linear in d in Table 1. The dielectric function of
c-GaSb used in this work was compiled data files, previously presented
in Ref. [14] and references therein. An alternative grading profile was
also investigated, where the assumption was a linear grading in the
GaSb fill factor fGaSb(n). In terms of a hexagonal network, the resulting

diameter of each pillar is then given byd nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12
p
π f GaSb nð Þ

q
. The advan-

tage of the linear gradient in the diameter is that the conical shape of the
pillars is properly modeled, and it has previously been shown to supply
accurate heights for the cones, in comparison to AFM [12]. As a result,
the real time monitoring of the nonlinear growth of GaSb cones has
proven to be extremely valuable in order to reveal the formation pro-
cess for such self-organized dense pattern of nano cones [12]. The
models are in this work still simplified, since we are neglecting a layer
of a-GaSb and oxide covering the pillars and are only considering a
c-GaSb core of the cones together with void [13], which requires more
advanced constraints to obtain physically acceptable solutions.

4. Results

Fig. 2 shows (symbols) the experimentally recorded standard
ellipsometric elements, M12=N, M33=C and M34=S elements [18]
recorded at a given azimuthal orientation for the three angle of inci-
dences 45, 55 and 65°, for sample A. Fig. 3 shows (symbols) the full
Mueller matrix spectrum for three azimuthal orientations of the sam-
ple, recorded at an angle of incidence of 45°. To better understand the
crystallographic problem at hand, it is here suggested to present the
data as a polar color map, where the radius is the photon energy in
the range 0.73–5.9 eV, and the polar angle represents the incident
plane, i.e. the sample is stationary. Fig. 4 shows the measured spectro-
scopic Mueller matrix of sample A, for all incident planes with incidence
angle 45°. Figs. 3 and 4 visualize well the increased sensitivity for the
anisotropy in the sample for higher photon energies. The anisotropy
increases particularly strongly for photon energies above approximately
3.0 eV. By considering the dielectric function of GaSb, which has its main
critical points in the visible near UV, this increase in sensitivity may
therefore be scaling with both the complex refractive index and the
photon energy.

The model described in Section 3 was first fitted to the standard
ellipsometric block diagonal elements (N=m12, C=m33 and S=m34),
where the tilt of the cones was to a first approximation neglected. Fig. 4
shows that the off-diagonal elements are small and oscillating around

Fig. 1. Sketch of the geometry used in the optical model. The height (h) of the GaSb
nanopillars, the bottom diameter D1, the top diameter D2, and the tilt angle θ are illus-
trated in the figure.

Table 1
The fitted parameters in the optical model for the two different gradients as described
in the text. The diameters D1 and D2 were constrained to be within 0 and 1.

Sample Gradient Height (nm) θ (°) D1 D2 MSE

A Linear d(n) 39.3 4.78 1 0.04 4.46
A Linear fGaSb(n) 33.4 4.56 0.93 0.15 6.25
B Linear d(n) 37.0 2.82 1 0.03 5.91
B Linear fGaSb(n) 31.9 2.67 0.94 0.10 4.84
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zero when rotating the incidence plane, while the block diagonal ele-
ments only have small oscillations around a large value, see Figs. 2 and
3. The tilt of the cones was implemented by two Euler rotations (ϕ,θ).
The tilt-angle and the relative orientation of the tilt direction with respect
to the incidence plane, was determined by fitting only the off-diagonal
Mueller matrix elements. The latter procedure was chosen since small
modeling or systematic measurement errors result in a loss of sensitivity

to the Euler rotations when fitting directly on the large block-diagonal
Mueller matrix elements. An alternative approach would be to strongly
modify the weights of the off-diagonal elements. The Euler angles were
then fixed, and the model was re-optimized to the block diagonal ele-
ments (N, C and S). The process was repeated until convergence.

The simulated Mueller matrix elements using the fitted parameters
are shown as full lines in Figs. 2 and 3, and as a polar color map in Fig. 5.
It is particularly observed that the elements N, C and S are within an ac-
ceptable accuracy for all three incidence angles. The off-diagonal ele-
ments have also been fitted to a reasonable accuracy, as seen in Fig. 3,
and also by comparing Figs. 4 and 5. By comparing the simulated and
the experimental data for the three incidence planes plotted in Fig. 3,
it is evident that the goodness of the fit varies as a function of ϕ. In par-
ticular, the MSE varies by a factor of 1.6 with 180° symmetry. The MSE
variation may be due to sample inhomogeneity and the elliptical
shape of the light beam on the sample. It is noted that for clarity, the
experimental and simulated data has been rotated by the azimuthal
angle determined from the fit, in order for the pillars to point along
the horizontal axis in Figs. 4 and 5 (i.e. the condition for a diagonal
Jones matrix and equivalently block diagonal Mueller matrix) and
along ϕ=0° in Fig. 3. The fitted parameters for the two samples A and
B using the two variations of the optical model described above are
summarized in Table 1. It shows that sample A has slightly taller
nanopillars and higher tilt angle (θ) compared to sample B. For both
samples, it is observed that the height and the tilt angle depend on
the choice of gradient (nanopillar diameter profile), i.e. the linear in
fill-factor or the linear in diameter. This is illustrated in Fig. 6, which
shows the diameter and the fill-factor profile for sample A using these
two models. Due to the very low fill factor in the top of the linear in di-
ameter profile (i.e. D2 is small) the correlation to the height is increased.
This problem was suggested in previous work resolved by constraining
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the top diameter D2 to e.g. 0.1, as a layer of near unit refractive index
only marginally changes the optical response of the layer [13]. On the
other hand, in the linear in fill-factor gradient model, the resulting
diameters are well within the constrained limits (i.e. diameters D1b1
and D2 >0). The linear in diameter profile shows, however, a more sim-
ilar diameter to the pillars observed directly by cross-section SEM

[12–14], and such a profile also supplied systematically a height in bet-
ter correspondence to AFM data, when fitted in the range 1.46–2.85 eV
[13].

Some simple conclusions can be made by inspection of the data
recorded upon azimuthal rotation of the incidence plane with re-
spect to the sample, see Figs. 4 and 5. First of all, the simple nearly

3.0eV

5.9eV

Fig. 4. The measured normalized spectroscopic Mueller matrix of sample A, at 45° incidence. The data is presented in a polar plot where the radius represents the photon energy,
r=Eph[eV], and ranges from 0.73 eV (from the white circle) to 5.9 eV (at the outer edge). The orientation of the incidence plane with respect to the pillar axis, is given by the polar
angle (azimuth orientation (ϕ)), as seen from the inset. The tilt axis is here in the horizontal direction.

3.0eV

5.9eV

Fig. 5. The simulated spectroscopic Mueller matrix of sample A, at 45° incidence, using the fitted parameters in Table 1, and using a linear in diameter gradient. The data is presented
in a polar plot where the radius represents the photon energy, r=Eph[eV], and ranges from 0.73 eV (from the white circle) to 5.9 eV (at the outer edge). The orientation of the
incidence plane with respect to the pillar axis, is given by the polar angle (azimuth orientation (ϕ)), as seen from the inset. The tilt axis is here in the horizontal direction.
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sinusoidal variation of the m14 element upon rotation of the
incidence plane is striking, and makes a simple interpretation in
terms of the tilt orientation (ϕ). The accuracy of ϕ was, by compar-
ing to the noise level and systematic errors, estimated to be in the
range of 0.5°. It is well known that the Mueller matrix is block diag-
onal (all the off-diagonal elements are zero) for no in-sample plane
anisotropy, and will thus only be non-zero in the case of anisotropy
in the sample plane, such as a small nanopillar tilt. Furthermore, it is
observed that the amplitude of the oscillation in the m14 element is
a factor 2–3 larger than variations in the block diagonal elements.
Finally, from the fitted model, we have performed several simulations,
where we inspect the change of the m14 element upon varying the tilt
angle (θ), and have concluded that the amplitude seems to be propor-
tional to the tilt angle. As a result, we propose that m14 may, for small
tilt angles, be roughly approximated by m14∝θ⋅sin(ϕ), with θ in
radians. By comparing to the typical noise level of the instrument, a
high sensitivity is obtained on the tilt angle θ, and we estimated the
ability to detect nanopillar tilts as low as θ=0.02–0.05°. The tilt angle
changes by 0.2° depending on gradient profile, i.e. the absolute accuracy
is strongly correlated to the choice of gradient. However, for a given
gradient the tilt angle was determined to the second decimal (Table 1).
Previous work [12,13,16] showed that the linear in diameter grading

is consistent with SEM measurements with respect to the nanopillar
height, but by comparing the tilt angle from the two grading profiles it
gives a realistic indication of the absolute tilt angle accuracy.

Although the amplitude of oscillation of the block diagonal ele-
ments are smaller than the off-diagonal elements, they may possibly
strongly contribute to the overall solution of the problem, if it is no-
ticed that they also oscillate around an average value upon azimuthal
rotation of the sample, which will be investigated further in future
work.

5. Conclusions

UV–vis spectroscopic Mueller Matrix Ellipsometry using a dual
rotating compensator ellipsometer operating in the range 0.73–5.9 eV,
shows that the sensitivity to anisotropy increases considerably as a
function of photon energy. We observe particularly a strong increase
in the anisotropy above 3 eV. A high accuracy is obtained on the tilt
angle θ, for a given gradient profile, and for the two samples studied
here it was determined to the 2nd decimal place. A reasonable optical
model allowed to estimate the sensitivity to pillar tilts down to θ=
0.02–0.05°. The off-diagonal Mueller matrix elements allow for a higher
sensitivity to anisotropies in the sample plane.
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Abstract

Producing surfaces textured with a homogeneous pattern of nanoscale structures is increasingly important for fabrication of semi-

conductor devices. Although techniques exist for imaging surface nanostructures on a local scale, these techniques are often

impractical for use over large areas for finding average structural information. The nanostructured surface in this study consists of

densely packed cones produced by sputtering a mono-crystalline GaSb substrate with a low-energy unfocused ion beam, yielding

self-organized cones that are slightly tilted away from the sample normal. Here, we devise an all-optical non-destructive character-

isation scheme using Grazing-Incidence Small-Angle X-ray Scattering (GISAXS) and Spectroscopic Mueller Matrix Ellipsometry

(MME) for characterising all main dimensions including average height, lateral spacing and packing motifs, and the cone top and

bottom diameters. It is further shown that both MME and GISAXS are sensitive to small tilts of the nanopillar axis from the surface

normal.

Keywords: Grazing-Incidence Small-Angle X-ray Scattering, GISAXS, Spectroscopic Ellipsometry, Mueller Matrix, Surface

structure, Gallium antimonide, Sputtering

1. Introduction

Nanostructured surfaces of semi-conducting materials are

promising for applications within optical and optoelectronic ap-

plications, such as solar cells, photodetectors and lasers. In par-

ticular, self-assembled nanostructures have raised interest in re-

cent years due to the low cost and high effectiveness of such

bottom up techniques [1–9]. Ion Beam Sputtering (IBS) of

mono-crystalline GaSb surfaces leads to self-assembled nanos-

tructures over large sample areas in a one-step procedure, yield-

ing densely packed oriented nano-cones [1–4].

Spectroscopic Mueller Matrix Ellipsometry (MME) is a tool

for investigating surfaces, based on measuring the change of

polarisation state of specularly reflected light. This technique

gives access to the anisotropic electronic characteristics of the

material, and through mathematical models parameters like the

tilt of the cones and the relative diameters and height of the

cones can be found. Grazing-Incidence Small-Angle X-ray Scat-

tering (GISAXS) is an X-ray technique where surface sensitiv-

ity is obtained by using a grazing incident angle of the X-rays,

giving a greatly reduced scattering contribution from the sub-

strate because of total external reflection [10]. This technique

is thus especially well suited for investigating surface structures

such as the GaSb nano-cones [11, 12], yielding information

about the in-plane average distance between the cones and lat-

eral structuring.

GISAXS and MME are bothcalling non-destructive and area-

averaging techniques that require no special sample prepara-

Email address: dag.breiby@ntnu.no (Dag Werner Breiby)

tion, and the complementary nature of the two techniques makes

their combined use desirable for investigation of nano-structured

surfaces. In this work the nanostructured surface of a GaSb

sample is investigated by using and comparing the results from

the complementary methods of MME and GISAXS. We report

the average height, lateral spacing and structure, the cone pro-

file, and the small tilts of the cone axes of nano-cones.

2. Experimental

The sample investigated in this work was prepared by sput-

tering a clean GaSb(100) substrate by low energy (300 eV) Ar+

ions for 10 minutes with an average flux of 2.4×1015 ions cm−2

s−1 at a mean temperature of 308 K. The sputter direction was

intended to be normal to the sample surface, but a slight mis-

alignment of the ion gun by up to a few degrees might have

been present.

A sketch of the idealized geometry of the nano-cones with

tilt angle θ, bottom diameter D1, top diameter D2, height h and

distance between nano-cones d is shown in Figure 1.

Spectroscopic MME was performed using a dual rotating

compensator ellipsometer (RC2 from JA Woollam Company).

Spectra were recorded from 0.73 to 5.9 eV, with simultaneous

detection using InGaAs and Si based spectrographs with a to-

tal acquisition time of 20 seconds per spectrum. The measure-

ments were performed using collimated light with a beam waist

of approximately 1.5 mm. The sample surface was carefully

aligned to allow for azimuthal rotations of the sample (φ of 0◦
to 360◦ in steps of 5◦). Full spectra were recorded for all of the

azimuthal orientations at the incidence angles 45◦, 55◦ and 65◦

Preprint submitted to Thin Solid Films November 6, 2013



Figure 1: Sketch of the cone geometry. The height h of the GaSb nano-cones,

the bottom diameter D1, the top diameter D2, the inter-cone distance d, the tilt

angle θ and the base angle β are indicated in the figure. A Cartesian coordinate

system is defined.

(defined from the surface normal). The sample was realigned

prior to the recording of each incidence angle.

GISAXS measurements were performed using X-rays of

wavelength 1.54 Å from a copper microfocus source with source

current of 1 mA and acceleration voltage 50 kV. Optics from

Xenocs and JJ X-Ray were used for collimation. For detection

a Pilatus (1M) area detector from Dectris [13] positioned a dis-

tance 2112 mm from the sample was used, with an exposure

time of 4 hours. Using a goniometer the grazing incident an-

gle αi was set to 0.23◦ ± 0.01◦. Between each measurement

the sample was realigned to ensure that the same central area of

the sample was measured. Complementary Grazing-Incidence

Wide-angle X-ray Scattering (GIWAXS) measurements were

performed in order to investigate the crystalline structure. The

experimental geometry is similar to that for GISAXS, except

that the detector is moved closer to the sample (146 mm) to

cover the wider scattering angles, and the CuKα radiation used

was generated by a rotating anode source. The grazing incident

angle was set to 0.25◦ ± 0.01◦, and φ was rotated in steps of 2◦.
The scattered intensity is measured as a function of the scatter-

ing vector Q ≡ kf − ki, where ki and kf denote the incoming

and scattered wave-vectors, respectively.

3. Results and discussion

MME results are shown in Figure 2, with a polar map of

the normalized spectroscopic Mueller matrix for all incidence

planes. The radial direction represents a linear mapping of the

photon energy from 0.73 to 5.9 eV while the angle φ represents

the incidence plane. The sample is aligned so that the nano-

cones are pointing in the direction of the incidence plane at φ =
0, for this angle the block off-diagonal elements are zero and

may be seen as pseudo isotropic. As the incidence plane is

rotated the block off-diagonal elements exhibit one minimum

and one maximum, suggesting that the material is uniaxial and

tilted [14].

The ellipsometry data was modelled using a structure with

a graded anisotropic Bruggeman effective medium, where the

cones are represented as a stack of 50 cylinders. The Schubert

algorithm [15], based on the 4 × 4 differential matrix formal-

ism by Berreman [16], was used to calculate the reflection co-

efficients for each of these anisotropic layers. In the effective

medium approximation a stack of cylinders corresponds to a

depolarization factor equal to zero in the z−direction and 0.5

in the x− and y−directions for each of the layers. The effec-

tive dielectric function parallel to the optical axis, ε‖, was the

volume average of the dielectric function of GaSb and void,

ε‖ = fGaSbεGaSb+ fvεv. The dielectric function normal to the axis

was found by solving fGaSb
εGaSb−ε⊥
ε⊥+εGaSb

+ fv
εv−ε⊥
ε⊥+εv = 0. The dielectric

function of crystalline GaSb, εGaS b, is tabulated data [17].

From previous atomic force microscopy analyses the cones

were found to be distributed with six nearest neighbours [18],

allowing the assumtion of a hexagonal lattice. Assuming that

the radius is linearly decreasing by height, the fill factor of each

layer was modelled as [14, 18, 19]

fGaSb(n) =
π√
12

d(n)2,

where

d(n) = D1 − (n − 1)
D1 − D2

N − 1
, n = 1, 2, . . . ,N.

Here d(n) is the cone diameter at layer n, normalised to the

model restriction on the cone diameters (D1,2) of a close-packed

hexagonal lattice. The tilt angle of the nano-cones was mod-

elled by two-angle Euler rotation of the effective dielectric ten-

sor of each layer.
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Figure 3: The measured (solid line) and simulated (dashed line) spectroscopic

Mueller matrix for the incidence planes φ = 0◦, 90◦ and 270◦, at 45◦ incidence

angle.

The measured data was fitted for all incidence angles and

incidence planes. The height h, top diameter D2 and bottom

diameter D1 were estimated using the N ≡ m12, C ≡ m33 and

S ≡ m34 parameters. Subsequently, the tilt angle was intro-

duced and the block off-diagonal Mueller elements included, as
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Figure 2: The measured normalized spectroscopic Mueller matrix of the sample, at 45◦ incidence. The data is presented in a polar plot where the radius represents

the photon energy, Eph, ranging from 0.73 eV (at the central white circle) to 5.9 eV (at the outer edge). The orientation of the incidence plane with respect to the

cone axis is given by the azimuth orientation φ, as seen in the inset. The tilt axis of the cones is in the horizontal direction, towards φ = 0.

they are the ones most sensitive to the optical anisotropy. The

resulting best fit was found with nano-cone height 39 nm, tilt

angle 4.8◦, base diameter 1 (i.e. close-packed base) and top di-

ameter 0.04. The experimental and simulated Mueller matrix

for a selection of incidence planes are shown in Figure 3.

GISAXS patterns from four sample orientations, obtained

by rotating the incidence plane (φ) in steps of 90◦, are pre-

sented in Figure 4. An asymmetry in the scattered intensity

is observed in Figures 4(a) and 4(c) for the Qz-width of the

diffraction peaks. This asymmetry is highlighted with the ex-

tracted lines shown in Figure 5. As the scattered intensity is

proportional to the modulus square of the Fourier transform of

the scattering objects (the “form factor”), the asymmetry in the

scattered intensity patterns gives further evidence that the nano-

cones are indeed slanted.

If considering the main scattering peaks as arising from

the packing motif (the “structure factor”) alone, a rough es-

timate of the mean inter-cone distances can be obtained from

d = 2π/Qxy, where the results for each of the four orientations

are listed in table 1.

The curious “wings” above the main diffraction peaks, best

visible in Figure 4(d), are another feature of interest. The “wings”

also appear in the simulations (see below), and are found to

originate from the form factor of the cones.

Simulations using IsGISAXS [20] were done for one of the

symmetric orientation measurements (the Figure 4(d) orienta-

tion). In the simulation, the Distorted Wave Born Approxima-

tion (DWBA), including a graded interface effect, was used.

The dependence between the shape and position of the cones

was described using the Local Monodisperse Approximation

Table 1: The Qxy peak positions from Figure 4, and the corresponding estimated

real-space distances. The distance d is longer for the symmetric orientations,

(b) and (d), than for the asymmetric orientations, (a) and (c).

Orientation Peak position d [nm]

Qxy [Å−1]

Fig. 4(a) ki || ŷ 0.017 37

Fig. 4(b) ki || x̂ 0.015 41

Fig. 4(c) ki || −ŷ 0.017 36

Fig. 4(d) ki || −x̂ 0.014 44

(LMA), which assumes that the system is made of locally monodis-

perse domains that interfere incoherently [21]. The break down

of long-range order in the lateral structure was introduced by

using a 2D paracrystal model and the lateral packing of the

cones was taken to be hexagonal.

The IsGISAXS simulations themselves do not give reliable

information about the cone-height, base diameter and base an-

gle of the cones, as it proved possible to find multiple com-

binations of these parameters that fit the experimental results

similarly well. On the other hand, neither of these parameters

correlate significantly with the cone spacing, thus facilitating

extracting the inter-cone distance d from the GISAXS measure-

ments.

The average cone separation was found from the IsGISAXS

simulations to be d = 40 nm using a Gaussian probability dis-

tribution in the paracrystal model with standard deviation σd =

11 nm. Combining the cone-spacing from GISAXS with the

relative diameters of the cones from MME, the absolute diam-

eters, D1 = 40 nm and D2 = 1.6 nm were readily obtained. Ge-
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Figure 4: Experimental GISAXS patterns. The most intense peak in the centre

is the specular reflection from the sample surface, whilst the peaks at each side

originates from scattering by the nano-cones. In (a) the wave vector is parallel

to the positive y-direction (ki || ŷ), in (b) parallel to the positive x−direction

(ki || x̂), in (c) parallel to the negative y−direction (ki || −ŷ) and in (d) parallel

to the negative x−direction (ki || −x̂). Note the asymmetry about the Qz-axis

as seen in (a) and (c), consistent with a tilt of the GaSb cones. The white

broken lines indicate where the data in Figure 5 were taken. The intensity scale

is logarithmic and the glitches with missing data-points are due to insensitive

detector areas.
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Figure 5: Extracted lines of intensity from the data shown in Figure 4,

Qxy = −0.017 Å−1 (red) and Qxy = +0.017 Å−1 (blue). The panels (a)-(d)

correspond to (a)-(d) in Figure 4. Note the full symmetry seen in (b) and (d),

as opposed to (a) and (c). The intensity distribution is consistent with tilted

nano-cones.

ometry then gives the value of the base angle, β ≈ 64◦. An Is-

GISAXS simulation with these parameters is presented in Fig-

ure 6, being in good qualitative agreement with the experimen-

tal data. Exploiting the sensitivity of GISAXS to in-plane struc-

tures, and the structural model parameters from MME, thus fa-

cilitate establishing a rather detailed model for the GaSb nanos-

tructured surface, cf. Table 2. We emphasise that the structural

information, giving an averaged model representative of an area

of several mm2 on the sample, is obtained fully by gentle phys-

Qxy [1/Å]

Q
z [1

/Å
]

0.04 0.02 0 0.02 0.04

0.02

0.03

0.04

0.05

0.06

Figure 6: Simulation of GaSb nano-cones made by IsGISAXS assuming base

angle β = 64◦, base radius R = 20 nm (σR = 3 nm), height h = 39 nm

(σh = 4 nm) and average cone separation d = 40 nm (σd = 11 nm). See

text for details. The vertical line along Qxy is an artefact of the simulation for

Qxy ≈ 0. The simulation is in good qualitative agreement with the experimental

data, cf. Figure 4(d).

Table 2: Parameter values from MME and GISAXS simulations.

Combining

MME GISAXS GISAXS & MME

h ∼ 39 nm - ∼ 39 nm

θ ∼ 5◦ - ∼ 5◦
D1 1 · d - 40 nm

D2 0.04 · d - 1.6 nm

d - (40 ± 2) nm (40 ± 2) nm

β - - 64◦

ical optics methods.

As presented in Figure 7, the GIWAXS measurements [22]

show that the sample is predominantly mono-crystalline GaSb,

but with some un-oriented domains. Although a layer of surface-

oxides could be anticipated on the surface, it was not observed

with neither GIWAXS nor with ellipsometry.

4. Conclusion

We have demonstrated that by using the complementary

techniques of MME and GISAXS large-area (∼ mm2) self-assembled

nanostructured surfaces can be characterised in a non-destructive

way. In this work, GaSb nano-cones produced by ion beam

sputtering have been studied, finding the average structural mea-

sures of the nano-cones; height h, tilt angle θ, base diameter D1,

top diameter D2, inter-cone distance d and base angle β as sum-

marised in table 2.
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Abstract: Gold nanoparticles deposited on self-organized nano-rippled

quartz substrates have been studied by spectroscopic Mueller matrix

ellipsometry. The surface was found to have biaxial anisotropic optical

properties. For electric field components normal to the ripples the periodic

and disconnected nature of the in plane nanowires gives rise to an optical

response dominated by the localized plasmon resonance. In the direction

parallel to the ripples the gold nanoparticles are aligned closely leading to

localized plasmon resonances in the infrared. As Au was deposited at an

angle oblique to the surface normal, the gold nanoparticles were formed

on the side of the ripples facing the incoming evaporation flux. This makes

the gold particles slightly inclined, correspondingly the principal coordi-

nate system of the biaxial dielectric tensor results tilted. The anisotropic

plasmonic optical response results in a strong polarizing effect, making it

suitable as a plasmonic nanowired grid polarizer.

© 2013 Optical Society of America

OCIS codes: (260.2130) Ellipsometry and polarimetry; (160.1190) Anisotropic optical mate-
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1. Introduction

The optical excitation of collective oscillations of free electrons from noble metal nanoparticles,

known as localized surface plasmon resonances, are known to have spectroscopic properties

resulting in e.g. various color effects. One example is the well known “Lycurgus cup” [1],

in which silver nanoparticles distributed in glass provides a different color to it depending if

illumination is performed in transmission or in reflection. It is known that nanoparticle size,

spacing and substrate, affects the plasmonic resonance frequency [2], and is an effective way

to design selective optical properties. A recent wave of interest in plasmonics is motivated by

the proven increase in photon absorption and thus in efficiency of photovoltaic devices [3]

caused by the strong localization of the electric field and by enhanced scattering from the metal

nanoparticles. On the fundamental level the strongly anisotropic plasmonic nanostructures are

used to form metamaterials [4] with possible applications to e.g. negative refractive materials

in the visible [4] or in non-linear applications [5–7].

The anisotropic optical response of plasmonic nanoparticles and metamaterials can

favourably be studied by spectroscopic generalized ellipsometry, as recently reviewed by Oates

et al. [8]. In particular, several studies of the optical properties of in plane silver nanowires on

various substrates have been reported [9–11], where in particular the effective dielectric tensor

of silver nanoparticle arrays on a silicon substrate was determined with spectroscopic Mueller

Matrix Ellipsometry [10]. Also ellipsometric studies of isotropic and anisotropic silver and gold

island films have been reported [12, 13].

In this work, we are exploring the enhanced sensitivity of Mueller matrix spectroscopic el-

lipsometry from the ultra violet to the near-infrared, combined with azimuthal rotation of the

sample around the sample normal, using multiple angles of incidence, in order to determine

the complex biaxial properties of a plasmonic layer of gold nanoparticles supported on a nano-

patterned quartz substrate. Such nano-patterned plasmonic wires have many similarities to the

standard infrared wire grid polarizer [14]. However, due to the localized plasmons, an inverse

polarizing effect can be observed in the visible spectral range using polarized transmission

spectroscopy at normal incidence [5, 15]. It has been observed that the anisotropic localized

surface plasmonic properties change the polarizing properties of the sample from transverse

electric (TE) to transverse magnetic (TM) [16], but the details of the dielectric tensor for such

a complex plasmonic system based on aligned and partially connected gold nanoparticles have

so far not been reported. The development of systematic optical methods to reveal the dielectric

function of such gold based nanoplasmonic samples is further of fundamental interest due to

the common use of gold nanoparticles in applications of plasmonics and metamaterials.

The samples studied in this paper was prepared by shadow deposition of gold at grazing inci-

dence onto a quartz self-organized nano-rippled surface produced by ion beam sputtering [15],

similar to samples in [17, 18].

2. Experimental

The anisotropic gold nanopatterned surfaces were prepared in a two stage process combining

self-organized ion beam sputtering (IBS) to produce ripples on the surface of the quartz sub-

strate, and gold deposition by thermal evaporation. IBS is a low cost nano-fabrication process

used to pattern a range of materials from metallic to dielectric [19, 20]. A spatial modulation

of the surface profile is induced by a combination of an erosive instability induced by the ion

beam and energy relaxation dominated by the thermally activated diffusion and hyperthermal

mobility induced by the ion beam [21,22]. Variations of the surface morphology is made possi-

ble by changing the irradiation parameters such as ion energy, incidence angle, gas species, and

sample temperature [23]. A clean quartz substrate was irradiated by Ar+ ions in an ultra high

vacuum (UHV) system at an incidence angle of 45◦. The ions are ejected from a gridded multi



aperture source having an energy of 800 eV at a constant flux of 4.0×1015 ions/cm2s. The IBS

process results in a surface having well defined rippled pattern, facing the ion beam. An atomic

force microscope (AFM) micrograph of such a surface is shown in Fig. 1(a). The ripples have

a period of approximately Λ = 70±5 nm and an amplitude around 6 nm.

(a) (b)

Fig. 1. (a) shows the AFM image of the glass substrate after patterning but prior to deposi-

tion of Au. (b) shows the AFM image of the surface after deposition of Au.

Gold was evaporated in the same UHV system onto the surface at a gracing incidence angle

(80◦), forming nanoparticles on the surface. The spatial distribution of the nanoparticles is lo-

cally modulated by the shadowing of the nanoripple ridges, such that more material is deposited

onto the facing ridges. The shadowed ridge is then mainly uncovered by Au. During the deposi-

tion the distribution of particles are limited in the direction normal to the ripples. In the direction

along the ripples, the particles are partially connected, forming in some cases elongated planar

nanowires. Figure 1(b) shows an AFM micrograph of the nanopatterned surface.

A schematic of the cross-section of the sample system is shown in Fig. 2, where the coor-

dinate system is aligned with the x−axis in the long direction of the nanowires, and the y− z
plane rotated by an angle θ so that the y−axis is in the plane of the gold nanoparticle-substrate

interface. θ is in the following regarded as the tilt angle of the biaxial system. Cross-section

electron microscope micrographs were not easily obtained due to the charging of the dielectric

substrate. A geometrical model of the nanowires based on the AFM topographies and on the

deposited amount of gold, allows to estimate the local height of the Au nanowires (h = 29.5
nm) measured along the z-axis and their width (w = 72 nm), measured along the y-axis.

For the optical characterization a variable angle multichannel dual rotating compensator

Mueller matrix ellipsometer (RC2) from JA Woollam Company was used. The instrument has

a collimated 150 W Xe source and operates in the spectral range from 210 nm (5.9 eV) to

1700 nm (0.73 eV), using a combination of silicon and indium gallium arsenide spectrographs

having a resolution of 1 nm below 1000 nm and 2.5 nm above. The initial collimated beam has

a waist of approximately 3 mm, but in the present work focusing and collection lenses with a

focal length of 80 mm were applied, allowing a normal incidence spot size of 150 μm. This

spot size allowed us to study a reasonably spatially homogeneous region of the sample [18].

The spectroscopic Mueller matrix was measured for the incidence angles 50◦ to 75◦ in steps

of 5◦. Full azimuthal rotation of the sample (360◦) in steps of 5◦ was performed for each angle

of incidence in order to fully map the anisotropy of the sample. When using focusing optics

the sample alignment upon rotation is very sensitive, and was therefore adjusted prior to the

measurement of each incidence angle. The same instrument was also used to measure the spec-

troscopic transmission Mueller matrix of the sample.



Au deposition

Fig. 2. The gold nanoparticles are preferentially deposited along the ridges of the quartz

nanoripples. Where nucleation and agglomeration take place. Optical model based on a

biaxial cartesian coordinate system where the optical axes are indicated to be aligned along

the nanowires (x−axis), along the slope of the ripples, and normal to the ripple edge. The

tilt angle θ is indicated as the local slope. The thickness of the effective layer is h.

3. Theory

With ellipsometry, the polarization nature of light is used to indirectly measure extrinsic and

intrinsic properties of e.g. thin films, nanostructures or bulk materials [24–26]. In specific, the

change of polarization state of monochromatic light upon reflection from a smooth surface can

be formulated by the 2×2 complex Jones matrix transforming the incoming polarization state

to the reflected by the Fresnel coefficients (rpp,rps, etc.) by [27]

[
Ep
Es

]refl.

=

[
rpp rps
rsp rss

][
Ep
Es

]inc.

(1)

Ep and Es are orthogonal plane wave electric field components, where Ep is parallel and Es per-

pendicular to the incidence plane. In practical applications, in Mueller matrix polarimetry and

ellipsometry in particular, the polarization state is commonly described using the four element

Stokes vector

S =

⎡
⎢⎢⎣

s0

s1

s2

s3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

Ip + Is
Ip− Is

I+45◦ − I−45◦
IR− IL

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

〈
Ep0(t)2

〉
+

〈
Es0(t)2

〉〈
Ep0(t)2

〉−〈
Es0(t)2

〉
2
〈
Ep0(t)Es0(t)cosδ (t)

〉
2
〈
Ep0(t)Es0(t)sinδ (t)

〉
⎤
⎥⎥⎦ . (2)

Where the elements s0, s1, s2 and s3 are time averages over electric field components resulting

in the total intensity (s0), the intensity difference between p and s polarized light (s1), +45◦ and

−45◦ linearly polarized light (s2), and the right and left polarized part of the light (s3).

The change of polarization upon interaction with a sample using the Stokes vector is de-

scribed using the 4× 4 element Mueller matrix. For reflection measurements of an isotropic



surface the Mueller matrix is

Miso =

⎡
⎢⎢⎣

1 −cos2Ψ 0 0

cos2Ψ 1 0 0

0 0 sin2ΨcosΔ sin2ΨsinΔ
0 0 −sin2ΨsinΔ sin2ΨcosΔ

⎤
⎥⎥⎦ , (3)

where Ψ and Δ are the two classical ellipsometric angles found taking the ratio of the Fresnel

coefficients rpp/rss = tanΨexp(iΔ), see e.g. Azzam and Bashara [27]. In Mueller matrix el-

lipsometry the Mueller matrix is measured directly, and may, for anisotropic samples, have no

elements that are zero. Then the coupling between the s and p polarized light becomes impor-

tant, and the corresponding Mueller matrix expressed using the Fresnel reflection coefficients

from the Jones matrix (Eq. (1)) becomes

Maniso =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2 (|rpp|2 + |rsp|2 + |rps|2 + |rss|2) 1

2 (|rpp|2 + |rsp|2−|rps|2−|rss|2) . . .
1
2 (|rpp|2−|rsp|2 + |rps|2−|rss|2) 1

2 (|rpp|2−|rsp|2−|rps|2 + |rss|2) . . .
Re(rppr∗sp + rpsr∗ss) Re(rppr∗sp− rspr∗ss) . . .
−Im(rppr∗sp + rpsr∗ss) −Im(rppr∗sp− rpsr∗ss) . . .

Re(rppr∗ps + rspr∗ss) Im(rppr∗ps + rspr∗ss)
Re(rppr∗ps− rspr∗ss) Im(rppr∗ps− rspr∗ss)
Re(rppr∗ss + rpsr∗sp) Im(rppr∗ss− rpsr∗sp)
−Im(rppr∗ss + rpsr∗sp) Re(rppr∗ss− rpsr∗sp)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

When reporting Stokes vectors and Mueller matrices, they are normalized to the first (s0 and

M11) element.

Spectroscopic Mueller matrix can through the appropriate modelling be used to invert for

the dispersive optical properties of thin plasmonic layers/plasmonic surfaces. Commonly avail-

able effective medium theories, such as Yamaguchi [28, 29], anisotropic Bruggeman [30] and

anisotropic Maxwell-Garnett [31], do not well capture the plasmonic response of nanoparticles

on a substrate. Furthermore, tabulated reference optical properties of metallic nanoparticles are

uncertain. On the other hand, recent rigorous numerical approaches [2, 32, 33] require the par-

ticles to be of regular shape and regularly distributed, and in [2] not in direct contact with the

substrate. However, the latter approach supplies useful physical insight into the line shape of

the dielectric function. An appropriate and practical approach to extract the intrinsic optical

response of the nano-plasmonic layer, is to make an anisotropic parametric dispersion model

based on oscillators in order to capture the plasmonic, interband and free electron response,

in addition to appropriate Euler angles to capture the possibility of a biaxial dielectric tensor

with principal axes tilted away from the substrate normal. This model allows to simulate and

compare to the large Mueller matrix data set. By trial an error, a reasonable set of starting pa-

rameters can be found, and finally fitted to the full data-set. As the nanowires are anisotropic,

the dielectric function is a tensor with at most three orthogonal axes with different properties

when assuming an orthogonal coordinate system. The inherent tilt and the truncation of the

gold nanoparticles on the rippled surface, suggested a biaxial tensor with appropriate Euler an-

gles. The anisotropic dispersion model approach is here used to determine the biaxial dielectric

tensor and the Euler angles for the gold nanowires deposited on the quartz rippled substrate.

4. Results and discussions

Figure 3 shows the fascinating information captured by the full spectroscopic Mueller matrix

recorded at 50◦ incidence for a complete azimuthal rotation of the sample. The Mueller matrix



Fig. 3. A polar color map of the experimental spectroscopic Mueller matrix measured at

50◦ incidence. The radius correspond to the wavelength from 210 nm (5.9 eV) at the inner

radius circle to 1700 nm (0.73 eV) at the outer edge. The Mueller matrix is normalized to

the m11 element. The color bar shows the scale at each element.

is here presented as a polar color map, where the wavelength is mapped linearly to the radial di-

rection, and the incidence plane orientation is mapped to the polar angle. The color map shows

the numerical value of the Mueller matrix element at a particular incidence plane and wave-

length, at the given incidence angle. The incidence plane has initially been rotated so that 0◦
and 90◦ correspond to the directions where the block off-diagonal elements are at a minimum,

a close to pseudo isotropic orientation where the Mueller matrix may be approximated using

Eq. (3), i.e. the incidence plane is coinciding with the long and short axis of the nanowires.

In Fig. 4 the Mueller elements m12, m33 and m34, the standard ellipsometry N, C and S
parameters respectively, are plotted for these two incidence planes (φ = 0◦ and 90◦) for the

incidence angles θ = 50◦, 60◦ and 70◦, as a function of photon energy. All three elements shows

large differences between the two incidence planes. In particular below 3 eV the difference is

largest, while for higher energies the data is similar.

The fabrication method employed leads to the formation of gold nanowires which are pref-

erentially aligned along the side of the quartz nano ripples illuminated by the gold atom flux

during evaporation, as illustrated in Fig. 2. For the optical model, localized surface plasmon res-

onances from strictly monodisperse noble metal nanoparticles in a well defined infinite regular

array can be modelled by a Lorentzian line shape given by [34]

ε̃Lor.(E) =
Ak

E2
k −E2− iγkE

, (5)



1 2 3 4 5

Photon Energy (eV)

1.0

0.5

0.0

0.5

N,m12

= 50
= 0

= 50
= 90

= 60
= 0

= 60
= 90

Model

= 70
= 0

= 70
= 90 C,m

1 2 3 4 5

Photon Energy (eV)

33

1 2 3 4 5

Photon Energy (eV)

S,m34

Fig. 4. The spectroscopic Mueller matrix elements m12, m33 and m34 for the incidence

angles 50◦ and 70◦ and incidence planes 0◦ and 90◦. The solid colored lines show the

experimental data, while the dashed black lines show the simulated data.

where Ak is the amplitude, Ek energy location, γk a broadening parameter and E the photon

energy. Such a Lorenzian model may be readily understood also in terms of Maxwell-Garnett

theory for particles within a host matrix. Normal to the local plane surface supporting the gold

particles (z-direction), the model also includes a standard Drude dispersion term

ε̃D(E) =−
E2

p

E2 + iγkE
, (6)

where Ep is the plasma energy and γk is the broadening parameter.

The self-organized formation of the nano ripples recurring to a stochastic process of sputter-

ing may result in small variations of the plasmon resonance energy. This can be represented by

a sum of Lorentzians distributed around a center energy Ek. The resulting line shape may for

the imaginary part of the dielectric function then more simply be expressed by a Gaussian line

shape

ε2Gauss. = Ak

[
exp

{
−

(
E−Ek

γk

)2
}
+ exp

{
−

(
E +Ek

γk

)2
}]

, (7)

where the parameters γk is the broadening, Ak the amplitude and Ek the center energy position.

Equation (7) is a sum of two Gaussians with positive and negative center energy making it

an odd function which is needed for Kramers-Kronig consistency [35]. The real part of the

dielectric function is calculated using Kramers-Kronig relations, and results

ε1Gauss. = Ak

[
Γ
(

E−Ek

γk

)
+Γ

(
E +Ek

γk

)]
. (8)



Here Γ is a convergence series that produces the Kramers-Kronig consistent line shape.

We let the localized plasmons be described by one or several Gaussians, where each localized

plasmon is denoted εLoc. Several localized plasmons was found necessary to account for a

distribution of nano particle sizes, and a distribution of connectivity between the particles. The

Drude contribution εD is the special case of near bulk gold behaviour such as expected for

completely connected nanowires. We also let, for the simplicity of the model, the interband

contribution be accounted for by a Gaussian (Eq. (7)), and denote it εIB. The dielectric function

for the three tensor components q = x,y,z is then proposed described by:

ε̃q
Total(E) = εq

∞ +∑εq
Loc + εq

IB + εq
D (9)

A total of 9 oscillators were needed in order to have an acceptable mean square error be-

tween the simulated and measured data for the whole spectral range, three for each orthogonal

direction. The complex inverse problem was found to be most easily solved using an iterative

process. First, the common ellipsometric parameters (N, C and S) were used to determine an

approximate solution to the biaxial effective dielectric tensor by assuming that the principal

axes of the tensor were in the sample plane. All incidence planes and the different incidence

angles were used in order to increase the sensitivity to the effective properties normal to the

surface (z-direction). The (N, C and S) parameters were also found to be most sensitive to the

effective layer thickness, such that the first analysis supplied an estimate of the effective film

thickness in addition to a first estimate to the dielectric tensor.

Upon rotation of the incidence plane it is observed from the polar plots in Fig. 3 that the

block-diagonal Mueller elements have a 180◦ symmetry. The off block-diagonal elements,

which are probing the cross polarization i.e. the anisotropy (cf. Eq. (4)) show a more com-

plex behaviour. It is particularly observed that they are oscillating with a different amplitude

for the maxima and mimima. The m23 and m32 elements have an additional feature at about 2.2

eV (560 nm) near φ = 90◦ (incidence plane along the nanowires), which is strongly asymmet-

ric. This may be explained by some randomness that can be found in the structure along the

ripples by examining the AFM image in Fig. 1. Further, for φ = 0◦ (incidence plane normal to

the nanowires) the Mueller matrix is pseudo-isotropic (i.e. a diagonal Jones matrix).

The metallic nano particles on a substrate indicate that the dielectric tensor has principal

axes aligned with, and perpendicular to the local surface normal. The local slope (θ in Fig. 2)

is approximated to be the the Euler rotation angle for the dielectric tensor. The z−axis of the

tensor is then no longer orthogonal to the global sample plane and does also have a component

in the y−direction, in principle one could expect that the plasmonic resonance may also be

weakly observed in this part of the dielectric tensor. The off-diagonal elements were therefore

used to fit the tilt angle θ by applying an Euler rotation of the dielectric tensor. This process

was repeated until convergence.

The tilt angle converged to 12.8◦ and the effective thickness of the nanoparticle film amounts

to 28 nm. The parameters were found to have an accuracy within ±4 nm and ±2◦. The pa-

rameters of the dielectric tensor is summarized in Table 1, while Figure 5 shows the real and

imaginary part of the dielectric functions for the principal axes, where we have used the fitted

dispersion model parameters in Table 1.

The most striking feature is the localized plasmonic absorption peak at 1.58 eV for the εy
component (normal to the wires, but in the sample plane), although it also appears to contain

an additional localized plasmonic feature around 0.9 eV. The εx component appears to contain

strong contributions from two localized plasmons located in the IR region of the spectrum. The

exact locations of these plasmons are uncertain, and may be further revealed in upcoming work

using IR Mueller matrix ellipsometry. As previously mentioned, it is speculated that several

such localized plasmons may be the result of incomplete connectivity within the chains of



1 2 3 4 5

Photon Energy [eV]

−15

−10

−5

0

5

10

ε 1

×10

εx

εy

εz

εAu

1 2 3 4 5

Photon Energy [eV]

0

5

10

15

20

25

30

ε 2

εx

εy

εz

εAu

Fig. 5. The complex dielectric tensor parametrized using Eq. (9) and Table 1. The dielectric

function of Au [36] is shown for comparison.

Table 1. The parametrization of the dielectric tensor of the film. The amplitudes, broadening

and energy corresponds to the parameters of a Lorentzian, Drude and Gaussian line shapes

in Eq. (5), Eq. (6) and Eq. (7). The blank fields indicate that the oscillator was not included

for the corresponding axis.

x y z
Ak γk Ek Ak γk Ek Ak Ep γk Ek

εLoc1Gauss
53.43 0.92 0.13 8.67 0.43 1.58 0.48 – 0.20 2.33

εLoc2Gauss
– – – 4.30 0.68 0.87 – – – –

εLoc2Lorentz
22.69 0.47 0.60 – – – – – – –

εIBGauss
1.39 2.22 3.75 1.66 2.31 3.57 0.42 – 1.69 4.83

εD – – – – – – – 2.47 6.58 –

ε∞ 1.41 1.41 1.43

particles making up the ”nanowires” along the x-axis. A completely connected chain should

thus be represented by the Drude model, while the reduced chain lengths may result in the IR

localized plasmons. For comparison a typical dielectric function for Au is included in Fig. 5.

The interband transitions in the plasmonic film are strongly attenuated compared to Au, and the

plasmon resonances in εx, εy and εz makes 1 increasing in the infrared.

An interband contribution with center energy 3.75 eV and 3.57 eV was found for both the εx
and εy components. The εz component was found to be dominated by a weak Drude component

in the near infrared and some weak interband contribution with center energy 4.83 eV. Another

weak localized plasmon contribution at 2.33 eV appeared in εz. The blue shift for the out of

plane resonance follows the the results of polarizability calculations for silver hemispherical

islands on MgO substrate by Lazzari and Simonsen [32]. The εz component also has a Drude

component, which was also found for silver hemispherical nanowires supported on silicon sub-

strate in [10], while the effective film appears much less dense than bulk gold properties. The

blue shifted out of plane resonance predicted by Lazzari and Simonsen was, however, not re-

ported by Oates et al. [10]. The effective thickness of the layer is probably much larger than

the truncated particle thickness on the ”hills” of the ripple along the z-axis, i.e. the local surface

normal. This may be correlated by the weak Drude contribution.



In Fig. 6 the measured spectroscopic Mueller matrix at 50◦ incidence for the incidence planes

0◦, 45◦, 135◦, 180◦, 225◦ and 270◦ is plotted together with the simulated data using the fitted

parametric model. The simulated data is also plotted as dashed lines for different incidence

angles in Fig. 4. The figure of merit was calculated using the root mean square error of the

entire data set, where the weighting on all Mueller matrix elements and measured wavelengths

in nm are the same.

In order to verify the optical model, a direct analysis of the slope distribution of the AFM

image in Fig. 1(a) is performed. Fig. 7 shows a histogram of the slope in the image. It is found

that the most dominant inclination is 12◦-13◦, which much verify the tilt angle found by Mueller

matrix ellipsometry.

The polarizing properties of the sample was investigated by spectroscopic transmission

Mueller matrix measurements. Figure 8 shows the measured data at normal incidence as a

solid curve and the simulated data using the model from above where only the relative orien-

tation of the sample was refitted. The simulations reproduce all features of the measurement,

except a very small Gaussian like “bump” (amplitude 0.002) in the m14/41 elements indicating

an induced circular dichroism. The Mueller matrix is largely block-diagonal, meaning that the

optical axis of the sample coincide with the axes of the instrument, only small deviations of a

few per cent origin from sample orientation misalignment of approximately 3◦.
The linearly polarizing properties are directly observed in the m12/21 elements, and through

the model, we can now observe that the main features are related to the plasmon resonances in
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dashed black curves show the simulated data.
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εy and εx.

For the y direction the transmission measurements show a peak at 1.84 eV that is the max-

imum in the extinction coefficient κ = ε2/2n, where n is the real part of the refractive index

n2 = 1
2 ε1 +

1
2

√
ε2

1 + ε2
2 . The m12/21 elements go to negative values for the oscillator in the εx

on the edge of the spectral range in the infrared. This anisotropy is of inverse polarizing char-

acter [37, 38], where the polarization shifts spectrally.

The features in the lower right 2×2 matrix comes from the spectral birefringence (Δn = nx−
ny). A polar decomposition [39] of the Mueller matrix supplies the magnitude and orientation

of the retarding and diattenuating (polarizing) properties. Figure 9 shows the linear retardance

(δ ), linear diattenuation, and the orientations of the two. It is interesting to observe that as ε2y
crosses ε2x (see Fig. 5), the orientation of the diattenuator (polarizer) changes abruptly from x-

axis to y-axis. In the infrared the sample is a polarizer with transmission axis in the y-direction

(with respect to the coordinate system in Fig. 2), at ∼ 1.4 eV a retarder with slow axis in the

y-direction, and ∼ 2 eV the sample is a polarizer with transmission axis along the x-direction.

These interesting properties can in principle be shifted spectrally by varying the period of the

rippled structure, and the distance between the Au nanoparticles forming the nanowire.
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Fig. 9. The decomposed and orientation of slow axis of retardance and transmission axis of

polarizer

5. Conclusion

The localized plasmonic optical properties of in plane gold nanowire array deposited at grazing

incidence on a nano-rippled quartz substrate has been determined by variable angle spectro-

scopic Mueller matrix ellipsometry (MME) with complete azimuthal rotation of the sample.

The sensitivity to the anisotropy is strong in all Mueller elements, including the elements meas-

ured in standard ellipsometry. The off block-diagonal elements show a lower symmetry, sug-

gesting that the shadowing effects during deposition leaves the nano-wires tilted with respect

to the surface normal. The dielectric tensor axes are proposed tilted by the same angle, as

was found non-destructively by MME. The three components of the dielectric tensor were de-

termined through parametric dispersion models for each component. The extracted dielectric

functions complete the understanding of the observed wire-grid and inverse polarizing prop-

erties. The parametric dispersion models extracted from the effective thin surface layer com-



posed of aligned gold nanoparticles on the nano-rippled glass surface, is expected to be a useful

model starting point for many similar nano-plasmonic systems. Finally, a systematic approach

was proposed to attack the complex modelling issue with such a large MME data-set.
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Abstract: Broadened plasmon resonances of Cu nanoparticles in nanopat-

terned mixed oxide sol-gel nanopillars are shown to be readily detected by

spectroscopic Mueller matrix ellipsometry. The plasmonic nanomaterials

are obtained by low energy ion sputtering of a CuO sol-gel film. Both s-

and p-polarized plasmon resonances are present in the off-block-diagonal

and the block-diagonal Mueller matrix elements as well as generalized el-

lipsometric parameters. The resonant features in all elements correlate with

both maximum depolarization and a minimum in the reflected intensity.

Analyzing the spectral position of s- and p-polarized plasmon resonances

using effective medium theory provide information about the size and shape

of the Cu nanoparticles as well as of the host medium.

© 2013 Optical Society of America
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1. Introduction

The spectacular properties of photonic crystals and metamaterials have spurred an increasing

interest for the synthesis and characterization of complex biological and manmade nanomate-

rials. In many cases these materials exhibit a complex 3D organization obtained through self-

assembly where objects of various composition, form and size are localized in more or less

organized patterns. A systematic approach to the characterization of such materials is often

a major hurdle and it hampers the progress in the synthesis. Spectroscopic ellipsometry (SE)

and Generalized Ellipsometry (GE) measures the change in polarization state of light upon re-

flection from a surface over a wavelength range [1, 2]. SE and GE are particularly useful for

investigating the pattern formation in self assembly nanostructuring processes [3–5], while for

a complete measurement of anisotropic and depolarizing samples, a full Mueller matrix ellip-

sometry (MME) measurement is generally required. Although SE is an established technique

for in line production control and real time study of thin film processes, GE and MME have

recently been demonstrated as promising techniques for in-situ real time studies of nanostruc-

turing processes [6,7]. For example, spectroscopic MME in the visible range has been success-

fully utilized to investigate formation mechanism of GaSb nanopillars in ion beam sputtering of

GaSb films [6, 8–10]. Furthermore, it has recently been shown that ex-situ UV-VIS-NIR spec-
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troscopic MME over a complete azimuthal rotation of the sample and multiple incidence angles

is highly sensitive to small tilts of nanopillars away from the surface normal [10]. The spectro-

scopic MME method is thus a powerful tool to characterize self assembly nanomaterials, and

we here aim at extending the use of MME as an additional tool to nano-structured sol-gel ma-

terials with plasmonic nanoparticles. Indeed, such a non-destructive characterisation method,

can have major advantages compared to the more commonly used direct imaging methods such

as Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Transmission

Electron Microscopy (TEM).

The abundance and interesting optoelectronic properties of CuO has made it an appealing

choice for photovoltaic applications [11]. Self assembly of mixed oxide sol-gel film of CuO can

introduce new possibilities in photonics and plasmonics. Low energy ion sputtering of CuO sol-

gel film is a simple and low cost technique for fabricating a large area of dense nanopillars [12].

Variations of film temperature and ion energies result in the formation of different patterns.

The nanopillar formation mechanism can partially be explained by the theory of self-sustained

etching mask [13]. According to the latter theory, the metallic Cu on top of the pillars plays the

role of an etching mask [12]. Indeed, real time spectroscopic ellipsometry can provide more

evidences for the evolution and growth mechanism of nanopillars [6, 8, 9, 13]. Since the pres-

ence of metallic copper nanoparticles in the oxide nanopillars supports plasmonic resonances,

a strong sensitivity of spectroscopic MME to these resonances can be exploited to reveal more

information both about the formation mechanism, and the characteristics of the resonances.

Strong field enhancement and confinement in metallic nanoparticles at localized surface plas-

mon resonances (LSPR) has inspired many applications in nanophotonics [14]. The spectral

position of these resonances can be measured with various spectroscopic methods [15]. The

common far field method is to measure either scattering, absorption or extinction cross sec-

tion over the desired spectral range. The position of LSPRs are highly sensitive to the size

and shape of metal nanoparticles as well as optical properties of the host medium. Therefore,

any non-uniformity in the sample, leads to broadening of the resonance over the spectral range.

Thus the characterization of LSPRs in highly nonuniform self assembled samples become prob-

lematic with common methods. LSPRs are resonances in polarizability of a scattering medium,

and consequently the polarization of the light scattered from this medium contains information

about these plasmon resonances. As a result, ellipsometry is an appropriate tool to study the

evolution of such plasmon resonances [16].

Recently, it has been demonstrated analytically and experimentally that a maximum depolar-

ization occurs in the spectral regions of LSPRs [17], and that for anisotropic randomly oriented

nanoparticles, the crossed polarized scattering events increase near the plasmon resonance re-

gion [18]. However, spectroscopic MME is the most appropriate method to fully measure the

polarization properties of a complex scattering medium that show strong anisotropies [19] and

is partially depolarizing. Indeed, we expect that the LSPRs will exhibit sharp resonances in both

the on and off-block-diagonal Mueller matrix elements, and consequently also in the general-

ized ellipsometric parameters derived from the so-called Mueller-Jones matrix. Thus we expect

that MME is sensitive to both the polarization, here referring to the tensor properties, and the

spectral position of the plasmon resonances.

In this paper we use spectroscopic MME with azimuthal rotation of the sample to charac-

terize the nanopillars fabricated by low ion-energy sputtering of CuO sol-gel film [12]. The

fabrication and characterization methods are briefly reviewed in section 2, while the meas-

ured spectroscopic Mueller matrix elements are presented in section 3. The spectral behavior

of the Mueller matrix elements near the plasmon resonance regions are further investigated

in section 3. The GE parameters are utilized to further reveal the polarization characteristic

of each plasmon resonance. Finally, the measured position of two sets of s-polarized and p-
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Fig. 1. SEM images of the surface of samples A and B. The view angle is 40° in both

images.

polarized plasmon resonances are discussed in terms of the shape of the Cu particles inside the

mixed oxide-void matrix.

2. Fabrication and characterization methods

The oxide nanopillars were fabricated by low ion-energy sputtering of a sol-gel film of mixed

copper oxide and silica [12], with further details of the sol-gel procedure in e.g. Ref. [20]. The

nanopillar growth is initiated when the film is heated and exposed to low energy Ar+ ions. The

pillars tend to point in the direction of the incident ion beam similar as for the formation of

GaSb nanopillars reported in previous work [6, 8, 9]. In practice, the ion incidence will slightly

deviate from the normal incidence (unless carefully aligned with e.g. optical methods). As a

result, the fabricated nanopillars become slightly inclined and consequently the samples have

small in-plane anisotropies [10]. Optical studies of two different samples with the fabrication

parameters given in Table 1 are reported here.

Table 1. Fabrication parameters for the samples

Sample Temperature Flux Exposure time Ion energy Pillar density
◦C mAcm−2 s kV μm−2

A 300 0.2 360 1 10.7

B 400 0.6 120 1 3.2

Figure. 1 shows representative SEM images of the two samples. It is observed that the dis-

tribution of the pillars is spatially non-uniform. A further analysis of the corresponding AFM

images, shows that the height of the pillars in sample A is normally distributed around an av-

erage value, while the height of the pillars in sample B has two (or more) populations of long

and short pillars, see Ref. [12] for further details. As a result, it is expected that the plasmon

resonances will be broadened in the far field.

The spectroscopic MME measurements were performed using a RC2 spectroscopic Mueller

matrix ellipsometer from J.A.Woollam Co.. The instrument is a complete Mueller matrix sys-
tem based on two rotating retarders. The illumination part consists of a 150 W Xe lamp with

a source pin-hole of 100 μm and collimation optics giving an initial beam waist diameter of

approximately 3mm. The detection system consists of a combination of an InGaAs and a Si

spectrograph, where the data are recorded at wavelength from 210 to 1700 nm (0.73 to 5.9

eV) with a resolution of 2 nm for wavelengths > 1000 nm, and 1 nm for wavelengths < 1000

4



nm. The measurements were performed using multiple angles of incidence from 45° to 70° and

complete 360° rotation of the incidence plane, both in steps of 5°. Micro focusing probes of

80 mm focal length is used to limit the spot size to approximately 150 μm at normal incidence,

consequently reducing the influence of spatial inhomogeneities.

3. Results and analysis

Figure 2 shows the measured spectroscopic 4× 4 Mueller matrix as a polar color map where
the photon energy in the range 0.73 - 5.9 eV is mapped to the radial direction, and the azimuthal

angle in the plane of incidence is mapped to the polar angle. This is thus a complete presentation

of the spectroscopic data with azimuthal rotation of samples A and B. In the figure, the Mueller

matrices of samples A and B are plotted for incidence angles of 65° and 70°, respectively. Note

that all mi j elements have been normalized to the total intensity m11.
It is observed that for both samples in Fig. 2, the block-diagonal elements have higher am-

plitudes compared to the off-block-diagonal elements, and they contain spectral features that

can be mistaken as interference fringes. There are also small variations in the block diagonal

elements upon azimuthal rotation in Fig. 2, but these variations are masked by the much larger

amplitudes of the spectrally dependent features. On the other hand, the off-block-diagonal ele-

ments, which are nominally zero for isotropic materials and uniaxial materials with the extra-

ordinary axis perpendicular to the sample surface, show features that appear anti-symmetric

by 180° upon rotation of the incidence plane. Two sets of rings are observed in the off-block-

diagonal elements. An inner ring that is typically located in the range of 1 to 3 eV and an outer

ring that is typically located in the range of 3 to 5 eV.

The Mueller Jones matrix for a non-depolarizing anisotropic sample [21] shows that these

rings are the result of polarization coupling between s- and p-polarized light. Furthermore, the

observed 180° asymmetry is similar to the uniaxial anisotropy observed for tilted and slightly

tilted GaSb nanopillars in previous work [9, 10]. In the latter case, the in plane projection of

the direction of the tilt-axis resulted in an in-plane anisotropy. However, a small tilt of the

low density CuO pillars should not result in an anisotropy with such large amplitudes in the

off-diagonal elements. It is therefore proposed that these rings are indeed localized plasmon

resonances resulting from Cu nanoparticles within the pillars. The Cu particles are directly

observed in scanning transmission electron microscope images reported by Cohin et. al. [12],

and they form as a combined result of the sputtering process and the substrate temperature

during sputtering. Cohin et al. further reported that single-crystal Cu particle segregate to the top

of the pillars, whereas the pillars were determined to be mainly of silica. The top Cu particles

most likely contribute as sputtering masks in the abrasion process during the growth of the

pillars. However, smaller Cu particles are also found within the pillars, while thin Cu wires

were observed on one side of very long pillars. A schematic diagram summarizing the latter

a-priori information is shown in Fig. 3 [12].

Having studied the symmetry of the spectroscopic Mueller matrix upon azimuthal rotation,

we now focus on the spectroscopic features. We select to study the spectroscopic data for az-

imuthal rotations of the samples with steps of 45°, as these angles will capture most of the

symmetric features observed in Fig. 2. Fig. 4 shows the upper right triangular elements of the

Mueller matrix as a function of photon energy for samples A and B. The calculated depolariz-

ation index [22] is also shown in the bottom of the figure, while the total intensity is shown in

the top. We observe that there is a distinct correlation between the structures in the off-block-

diagonal elements (m13,m23,m14,m24) and the block-diagonal elements (m12,m33,m34). There
is also a certain correlation with the depolarization index and the total intensity. The positions

indicated by the red lines show the maxima of the m33 element.
A careful comparison of the structures in theMueller matrix elements in Fig. 4, shows that the
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Fig. 2. Measured spectroscopic Mueller matrix for a complete 360° azimuthal rotation of

the samples a) A and b) B with incidence angles of 65° and 70°, respectively. The radial

and azimuthal axes correspond to photon energy and in plane rotation, respectively.
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peaks in the m33 element correlate to the zero crossing in the m14 element, and simultaneously
a maximum of the m24 element. The m34 element shows certain corresponding extrema. On the
other hand, the m12 element shows a maximum and a minimum around the peaks of the m33
element. Furthermore, the extrema of them12 element correlate to the peaks of them14 element.
Finally the dip in the intensity occurs at the positions of the peaks in the depolarization. It should

be noted that the m33 element of sample B have two broad maxima between photon energies of
1.5 eV and 1.59 eV that are not resolved, and form a wide maximum in this region. However,

the Mueller matrix elements follow the same trend as above at the photon energy in the center

of this region, as shown by the shaded red region in Fig. 4.

These observations allow us to infer that the rings in the block-diagonal elements in Fig. 2

are also strongly related to the localized plasmons, and are not interference fringes. As a result,

the oxide nanopillars studied here should not be regarded as a film on a substrate, but rather as

free standing scattering particles on top of, within or on the side of oxide-pillars on a substrate.

Consequently, the system is proposed to be more appropriately modelled as a combination of

a scattering problem and a standard dichroic retarder for the bottom film-substrate reflection.

The fully developed nano-pillars can possibly be modelled by forming the scattering Mueller

matrices for the localized plasmons Min
LP and Mout

LP , in addition to the film-substrate reflection

Mueller matrix M(ψ,Δ), where one further assumes that for the particles, it is mainly the
forward scattered light that is detected.

M = Mout
LP M(ψ,Δ)Min

LP (1)

It is clear that a complex situation will take place during the initial phase of the sputtering

process, where the sol-gel film will remain underneath the pillars, giving rise to interference

fringes represented by the matrixM(ψ,Δ).
The plasmon resonances are not as easily detected for all samples, as is demonstrated by

sample B. Sample B has a lower density of pillars and a larger distribution of pillar heights

compared to sample A, but it can still be favourably studied with MME, as shown in Fig. 4.

The correlation between the m24 and m14 elements is less obvious for sample B, and similarly
m33 only shows a single broad low energy peak. Furthermore, the depolarization appears to take
place somewhat below the apparent dip in the intensity, particularly for the resonance around

2.2 eV.

With a complete Mueller matrix ellipsometer one may choose between analyzing the com-

plete Mueller matrix, or by neglecting the depolarization, find the closest corresponding Jones

matrix and study the generalized ellipsometric parameters [23, 24]. This method can be used

as long as the depolarization is small. The ellipsometric parameters are defined as the ratio of

the reflection coefficients of orthogonal polarization states. In isotropic materials there are no

coupling between orthogonal polarization states and therefore the Fresnel coefficients rsp and

Fig. 3. Sketch of the nanopillars with Cu nanoparticles on top, inside or on the side of the

nanopillars [12].
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Fig. 4. Reflected intensity, selected Mueller matrix elements and depolarization factor for

a complete azimuthal rotation of samples A and B versus photon energy with incidence

angles of 65° for sample A and 70° for sample B. The positions indicated by the red lines
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rps are zero, corresponding to zero off-block-diagonal elements of the Mueller matrix. Here

rps denotes conversion from p-polarized to s-polarized light, while rsp denotes conversion from

s-polarized to p-polarized light. In this case the generalized ellipsometric parameters, i.e. the

relative amplitudes ψ , ψps,ψsp and the phase shifts Δ, are defined by:

rpp

rss
= tanψ e iΔ,

rsp

rss
= tanψsp e iΔsp ,

rps

rpp
= tanψps e iΔps . (2)

Figure 5 shows the generalized ellipsometric parameters of samples A and B with azimuthal

angle of 0°, where the parameter ψ basically conveys the same information as m12. However,
ψsp and ψps appears to take more appropriate peak shapes that can facilitate the localization

of the plasmon resonances. Due to the non-uniformity of the nanopillars in these samples, the

plasmon resonances are broadened.

ps
,
sp

 (d
eg

.)
 (d

eg
.)

Eph(eV) Eph(eV)

0
10
20
30
40
50
60
70

A

1 2 3 4 50
2
4
6
8

10
12
14 ps sp

B

1 2 3 4 5

ps spA B

Fig. 5. Generalized ellipsometric parameters ψ , ψsp and ψps of samples A and B for the

azimuthal angle 0°. The parameters are calculated using the Mueller matrix in Fig. 4.

The data are proposed interpreted as follows. The peaks in ψ , orm12, are related to dichroism
as a result of the localized plasmon resonance, with the principal ”absorption”-axis in the s-

polarized component (perpendicular to the oxide pillars). Indeed, the maximum in m12 and
the dip in the intensity may be understood as the combination of a Brewster effect from the

c-Si substrate (working nearly as a s-polarized polarizer near the pseudo-Brewster angle) and

absorption of s-polarized light. This resonance results further in a peak in ψsp which correlates

to a peak in the m33 element, i.e. a strong retardance effect. The dips in ψ , or m12, are believed
to be related to a dichroism due to the localized plasmon resonance with the principal axis in the

p-polarized component (here this notation is redefined to be parallel to the oxide pillars, and

not along the p-component of the electromagnetic field with respect to the incidence plane).

As mainly s-polarized light is reflected from the substrate near the pseudo-Brewster angle, the

latter resonance only results in a minor dip in the total intensity, but gives a peak in ψps, which

also correlates to a peak in the m33 element.
A combined analysis of the above data, allow us to make an approximate determination of

the spectral position of the modes as well as its polarization characteristics. The resonances are

divided into four main resonances LP1-LP4 and their position and polarization characteristics

are given in Table 2.
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Table 2. Rough estimate of position of the localized plasmon resonances and their polar-

ization characteristics for samples A and B

Sample LP1 LP2 LP3 LP4

(eV) (eV) (eV) (eV)

A 1.6 (s-pol) 2.1 (p-pol) 3.9 (s-pol) 4.3 (p-pol)

B 1-1.3(s-pol) 1.5-2.3 (p-pol) 3.4-3.7(s-pol) 4-4.3(p-pol)

Two pairs of resonances are found for both samples. For sample A, the resonances are split in

a low energy resonance at 1.6 eV of principally s-character and a high energy resonance at 4.3

eV of principally p-character, a low energy resonance at 2.2 eV of p-character and a high energy

resonance at 3.9 eV of s-character. Sample B does on the other hand show a large distribution

of resonances, which correlates well with the analysis of the AFM and SEM images.

We infer that the observed depolarization is due to a physical effect taking place at the reso-

nance, and not a system calibration artifact due to e.g. low light intensity, based on the following

arguments. It is expected an incomplete coverage or inhomogeneous spatial distribution of the

pillars and Cu particles results in a depolarization. Furthermore, small Cu particles are strongly

radiating at the resonance, and some of this radiation is collected by the micro-focus lens used

in the system. Depending on the radiation pattern and hence the type of scatterer, the detected

light may become depolarized. This is in principle similar to including a small contribution

of reflected light from the particles, which add incoherently to the forward scattered light re-

flected by the substrate. However, we were not able to detect such radiation with a commercial

scatterometer using monochromatized white light illumination.

An accurate interpretation of the data involves scattering calculations of small anisotropic

shaped metal particles that have an orientation which resembles the nanopillar orientation.

However, since the particles may be on top of the pillars, inside the pillars or on the side of

the pillars (Fig. 3), a rigorous determination of the resonances for such a disordered system

is challenging. On the other hand, effective medium theory (EMT) can be used to explain the

localization and splitting of the resonances as well as the measured anisotropy. For a phe-

nomenological model, it is useful to consider the particle scattering matrix in terms of EMT

[25–28], similar to e.g. liquid crystals. Note that the variation of the EMT proposed by Yam-

aguchi et al. [27,28], takes the substrate effect (here c-Si) into account. However, in the current

case, the substrate effect is negligible as the Cu particles are suspended in the nano-pillars

several hundred nanometers away from the substrate.

First we consider spherical Cu particles within the anisotropic host medium of an oxide pillar

in air that are slightly tilted away from the sample normal. The depolarization factors along and

perpendicular to the pillars are different for biaxial materials in the generalized EMT [6, 25].

Therefore, the dielectric function of the effective host medium is a tensor. Assuming the pillars

to be mainly silica [12], one can then obtain two orthogonal resonance modes that are slightly

split, but both located around 3.4 eV. Note that a host medium of Cu2O, SiO2 and air would

result in a wider range of resonances and a larger splitting.

Now, we consider the case where the Cu particles take a prolate shape. We further assume

that the Cu particle have the same principal axis as the surrounding oxide pillar. A s-polarized

resonance defined by an absorption line perpendicular to the incidence plane is only allowed

for lower energies for a disk-shaped Cu particle. In this case, the p-polarized resonance defined

here by an absorption line parallel to the pillars will be shifted to higher energies. As a result,

the observed low energy s-polarized resonance accompanied with a high energy p-polarized

resonance must then be dedicated to disk shaped particles. On the other hand, needle shaped

Cu particles parallel to the oxide pillars have p-polarized resonances located at lower energies,
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accompanied with an s-polarized resonance at higher energies.

The pair of resonances at 1.6 eV (s-pol) and 4.1-4.3 eV (p-pol) for sample A are thus a result

of disk shaped Cu particles, while the resonance at 2.1 eV (p-pol) accompanied with resonances

around 3.9 eV (s-pol) are a result of a more needle shaped Cu particles. A similar trend can be

observed for sample B, although the resonances are here smeared out due to a larger distribution

of the pillar heights. The disk shaped Cu particles are on top of the pillars, i.e. acting as the self-

sustained etching mask during the nanopillars growth, while the needle shape is on the side of

the pillars as shown in Fig. 3.

4. Conclusion

We have shown that spectroscopic Mueller matrix ellipsometry is an appropriate far field

method to investigate the broadened plasmon resonances of non-uniform self assembled sam-

ples, such as the mixed oxide nanopillars fabricated by low energy ion sputtering of sol-gel

mixed oxide films containing Cu-oxide nanoparticles. Dips in the total intensity, peaks in the

depolarization, peaks in m33, and minima and maxima of m12 are observed to be correlated at
the spectral position of the localized plasmon resonances resulting from Cu particles on top

of, inside or on the side of the nanopillars that mainly consist of silica. Since the slight tilt of

oxide pillars without Cu particles can only result in minor deviations of the off-block-diagonal

elements from zero, the strong signal in these elements at the plasmon resonances is a result

of the Cu nanoparticles, which further supports the interpretation of the features in the block-

diagonal elements. The generalized ellipsometric parameters ψps and ψsp exhibit clear peaks

at plasmon resonance regions as a result of the slight anisotropy in the samples. These param-

eters present two sets of the s-polarized and p-polarized plasmon resonances. An interpretation

of the position of these resonances using effective medium theory, indicates the presence of

both disk shaped and needle shaped Cu particles. The strong sensitivity to the localized plas-

mons produced by the Cu particles in the low density nanopillar matrix, makes Mueller matrix

ellipsometry a suitable technique for studying the related complex polarization phenomena.

However, commercial ellipsometric thin film software appears unsuited for the exact modeling,

and future work will focus on developing suitable modeling which will allow us to directly fit

the lineshapes of the plasmon resonances. Finally, real time in-situ investigation using MME

during the fabrication process is envisaged to reveal more details of the formation process.

11



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 15%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /UseDeviceIndependentColor
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Europe Prepress)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Subsample
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Subsample
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Subsample
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




