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Abstract

This paper presents an optimization approach to solve the short-term hydropower

unit commitment and loading problem with uncertain inflows. A scenario tree is

built based on a forecasted fan of inflows, which in turn comes from the weather

forecast and the historical weather realizations. The tree-building approach

seeks to minimize the nested distance between the stochastic process of histori-

cal inflow data and the multistage stochastic process represented in the scenario

tree. A two-phase multistage stochastic model is used to solve the problem. The

proposed approach is tested on a 31 day rolling horizon with daily forecasted

inflows for three power plants situated in the province of Quebec, Canada, that

belong to the company Rio Tinto.
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1. Introduction

Hydroelectric producers invest time and resources in developing optimization

tools to gain efficiency in the use of water, since these even small improvements

lead to significant savings. Short-term optimization is used at the power plant

level to dispatch available water for production between the turbines. Each5

turbine has a different efficiency. The amount of water available for produc-

tion, or reservoir trajectories, is determined from the medium-term optimiza-

tion and considers demand, uncertainty in the inflows and travel time of the

water between the plants. Short-term optimization is often considered to be

deterministic [1] by making the assumption that the inflows are known [2] or by10

neglecting water balance constraints [3] at such a short time scale, but does not

allow planning under different forecasts. Also, [4] have shown that considering

uncertainty in short-term decision models may lead to improvements.

The focus of this paper is stochastic optimization applied to the short-term

hydropower optimization problem. By considering uncertain inflows, turbines15

will be used in a more efficient manner since the stochastic model results in a

compromise between high and low forecasted inflows. For example, in situations

where reservoirs are nearly full, considering uncertain inflows when important

inflows are expected prevents lowering the reservoir and forcing turbines into

inefficient zones, which results in energy production loss in the future if these20

high inflows do not occur.

Few papers have looked specifically into short-term hydropower models with

uncertain inflows. In [5], a short-term hydropower optimization model treats

deterministic inflows. Water head variations are considered and nonlinearities

and nonconvexities of the hydropower production function are accounted for.25

In [6], uncertainty of prices and inflows is considered. They use time series

analysis to model the water inflows, which is represented by a scenario tree in the

stochastic programming model. Start-up costs are considered and a multistage

stochastic model is approximated by a two-stage model. A mixed-integer linear

program is used.30
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The net water head is assumed to vary with the water discharge only, so

hydropower production functions depend only on the water discharge. In [7],

the only uncertainty considered is demand. The deterministic model is a linear

integer model, which is an approximation of a nonlinear mixed integer model.

Once again, the hydropower production function depends only on water dis-35

charge. For some hydropower systems, neglecting the water head is not a pos-

sible avenue since many of the reservoirs have small capacities. Consequently,

the water head effect is important in a short-term optimization, even with short

time steps.

Many assumptions are made when solving the short-term unit commitment40

model, since they are complex to solve. They have a large amount of variables,

power production functions are nonlinear and efficiency is different for every

turbine. The most common assumption is to neglect water head variations

leading to linear power production functions.

When uncertainty arises and one wants to solve optimization models, two45

main streams of ideas have been applied in the optimization community. Stochas-

tic dynamic programming has been used extensively to solve hydropower opti-

mization models [8, 9], as well as variants such as sampling stochastic dynamic

programming [10] or stochastic dual dynamic programming [11]. These models

are well suited for long or medium-term horizons but for short-term models,50

the state space is huge and it is very difficult, if not impossible, to solve them.

In order to prevent the optimization process to empty out the reservoirs in the

short-term model, values are assigned to the remaining water at the end of the

planning horizon, which are obtained with stochastic dynamic programming or

stochastic dual dynamic programming for example. In [12], a new method to55

generate inflows, based on periodic autoregressive models, is used as input to

a stochastic dual dynamic programming algorithm that allows to schedule a

hydro-thermal system located in Brazil.

The other stream is stochastic programming. A two-stage stochastic model

[13] consists of two stages of decisions. The first stage decisions need to be60

taken without knowing the realization of the uncertainty in the future, while
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the second stage decisions are taken when the uncertainty is revealed.

Usually, uncertainty is represented by scenarios. Each scenario is a possible

realization of the uncertainty. Multiple scenario generation methods have been

used in the past to approximate the distributions of the stochastic parameters.65

An overview of these methods, as well as evaluating the quality of a scenario

tree is found in [14]. In [15], a periodic autoregressive process is used to fit

historical data of the prices and to generate prices for the stochastic model. The

scenario tree is built by sampling the distribution fitted with the model for the

different nodes. Another method creates a discrete distribution of the uncertain70

parameter by matching some specific statistical properties. In [16], the first four

moments, mean, variance, skewness and kurtosis are matched. Multiple pitfalls

arise from this method and one must ensure the scenario tree represents possible

outcomes of the uncertainty. A survey of techniques for generating scenario trees

appears in [17] and includes recombining of data paths, contamination method75

and matching. More recently, copulas have been used to generate scenarios for

two-stage stochastic problems [14]. This method offers the advantage of treating

dependencies better than with correlation alone. Other methods are scenario

reduction [18, 19]. An initial scenario tree is required and forward selection, or

backward reduction is applied in order to reduce it and diminish computational80

time to solve the stochastic optimization model. The effect of the reduction on

the solution accuracy, applied to a cascaded system of hydropower reservoirs is

found in [20].

Other methods to deal with uncertainty on the inflows include robust opti-

mization techniques [21] and probabilistic constrained programming [22]. Ro-85

bust optimization solves models that have uncertain parameters over uncertainty

sets. Therefore, the optimization seeks to find a solution that is feasible regard-

less of the outcome of the uncertainty. In [23], a rolling-horizon scheme is used

and robust optimization is applied to the decision of day 1 while the rest of

the horizon is considered deterministic. This is interesting as the uncertainty is90

applied to the important decisions. A drawback of robust optimization is the

formulation of the uncertainty. In the historical records, some values of inflows
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may be very low and others very high. Therefore, it is difficult to define what

are the best bounds for the uncertainty set, as well as capturing any nonlinear

dynamics present. In probabilistic constrained programming, constraints are95

to be respected given a certain probability. A cascaded hydropower reservoir

is solved with probabilistic constrained programming in [22]. As with robust

optimization, parameters on security-level and probability measures are to be

given to the model, which is a difficult task in practice.

We contribute to the existing literature by considering inflow uncertainty100

in the short-term hydropower model. Few papers have looked specifically in

stochastic short-term models and we extend the modeling proposed in [5] to

consider uncertain inflows. For the producer, it is interesting to consider a

stochastic model since it gives a production plan for the whole planning horizon.

Applying the theory outlined in [24], we also detail/provide a nonparametric105

scenario generation approach that relies on the information in the history of

inflows. We expand [5] by introducing stochasticity to both the loading and

unit commitment problems.

The paper is organized as follows. Section 2 presents data available for inflows.

Section 3 describes the method to generate scenario trees. Section 4 gives an110

overview of the short-term hydropower problem and details the optimization

models. Numerical results are presented in Section 5 and final remarks are

presented in Section 6.

2. Scenario fan of inflows

This section presents the data available for the inflows. In the province of115

Quebec in Canada, consumers and producers of hydroelectric energy, except

Hydro-Quebec, are not allowed to bid on the spot markets [25]. The province-

owned integrated utility performs all power market activities. Hence, only un-

certainty related to inflows in the reservoirs is considered in this paper.

Before presenting the method for generating the scenario trees used in the120

optimization models, we pause to describe the available data sets. Precipitation
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Figure 1: Building inflow scenarios from a 7 day deterministic precipitation forecast.

forecasts are obtained from Environment Canada [26]. A 7 day deterministic

precipitation forecast is issued. The 7 day forecast is split in two groups: the

first 3 and the last 4 days. We make the assumption that the error for both

groups is independent from a meteorological point of view, as the correlation in125

precipitations between days is negligible. This assumption is motivated by the

great variability in Canadian weather conditions from one day to the next. For

example, we could have a few days of snow, followed by no precipitations then a

few days of rain. The last 15 years of historical data of precipitation forecasts is

searched for a given number (a) of precipitation forecasts that are the closest, in130

precipitation forecast (mm) to the first 3 days, and they are retained. The same

is conducted for the second group. Since the error is assumed independent, the

scenarios found for the first and second group are mixed and matched to create

a2 precipitation scenarios for the first 7 days. Note that the actual realizations

of precipitation on these days are used as scenarios. Then, considering that the135

forecast has no value after 7 days, the 62 years of available history of realizations

is appended to all of the scenarios for the first 7 days with a = 7, yielding a

total of a2×62 = 3038 scenarios of precipitation for 30 days of prevision. Then,

these precipitation scenarios are given as input to the CEQUEAU hydrological

model [27] which outputs inflow previsions for the reservoirs.140

Figure 1 illustrates this process. The goal of the scenario tree generation

method, in Section 3, is to create a scenario tree from the scenario fan of inflows.
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3. Scenario tree generation

The method chosen to construct a scenario tree suitable for the stochastic

optimization is taken from [24, 28]. The method is applied to real hydropower145

data. First, the structure of the scenario tree is fixed, then stochastic approx-

imation is used to improve the states of the nodes, considering all the data

available for every approximation. Improvement goes on until a convergence

criteria, based on the nested distance and explained in Section 3.4, is reached.

3.1. Fixing the initial scenario tree structure: k-means clustering150

The stage and the number of nodes per stage of the tree is fixed initially,

more precisely, the number of stages as well as the number of nodes per stage.

Aggregation is necessary since the scenario tree structure can be different from

the data available. The aggregation is straightforward: values of inflows for

each day are summed up.155

K-means clustering [29] is used to partition the data paths into clusters in

order to assign initial values to the scenario tree nodes. Note that initially

no probabilities are allocated to the nodes: simply values for the nodes. This

clustering method minimizes the distance from every data point to the mean of

the cluster to which it belongs. As an example, the k-means algorithm is applied160

to the 3038 inflow scenarios to form a scenario tree which has a structure as per

Figure 3b.

3.2. Improvement of the clusters

The method to improve the scenario tree nodes consists of two steps. First,

from the initial data paths, a random data path, that is not in the paths avail-165

able, is generated using density estimation. Next, the distance between this

random path and the closest state of the scenario tree nodes is minimized in

a stochastic approximation step in order to improve the tree. This method is

repeated for a given number of iterations and is explained in what follows.
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3.2.1. Step I: density estimation170

In order to generate a new random path, kernel density estimation is used.

We generate a random path that is close to the distribution of the data paths

and conditional on previous stages. To do so, the conditional probability density

function is estimated. For each stage of the desired scenario tree structure a

value of inflow is generated that is close in distribution to all of the data paths175

and incidental to the past.

A random path ξdk = (ξd1 , . . . , ξ
d
K)T is to be generated using available data

paths Xd
ik = (Xd

i1, . . . , X
d
iK)T where i is the index of available data paths, d is

the dimension and K is the number of stages. The conditional density estimator

is:180

f̂ (ξk|ξ1, . . . , ξk−1) =

n∑
i=1

k−1∏
j=1

κ
(
ξj−Xij

hj

)
∑n
m=1 κ

(
ξj−Xmj

hj

) × κ(ξk −Xik

hk

)
× 1

hk
, (1)

where the dimension d is dropped for clarity, n is the number of available data

paths, κ is the kernel and h is the bandwidth.

The analytical representation of the actual distribution is not computed, as

only samples from Equation (1) are necessary which can be generated quickly.

In practice, this is achieved by assigning weights to every data path available.185

The closer the observation is to the path, the higher is the weight. For every

stage from 1, . . . , k−1, the weights of the data path at each stage are multiplied.

With these weights calculated, a value of inflow is to be generated at stage k.

To illustrate refer to Figure 2. There are three data paths of inflow. The

random value of inflow has been generated for stage 1 and is located with a190

star marker. From there, a value of inflow is to be generated for subsequent

stages, always conditional on the past. As per the figure, it is necessary to find

a value of inflow at stage 2 that is consistent with the conditional distribution.

Therefore, weights are calculated as follows, in this case for stage k:

wi(ξ1, . . . , ξk−1) =

k−1∏
j=1

κ
(
ξj−Xij

hj

)
∑n
m=1 κ

(
ξj−Xmj

hj

) , (2)

where
∑n
i=1 wi = 1 and w ≥ 0.195
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Figure 2: Generation of a random path based on three available data paths of inflows. The

generated value of inflow for stage 1 is shown with a star marker.

The value of inflow ξk at stage k is generated as follows. A data path with

index i∗ is chosen randomly among the available data paths at stage k − 1 to

satisfy
i∗−1∑
i=1

wi(ξ1, . . . , ξk−1) ≤ randu ≤
i∗∑
i=1

wi(ξ1, . . . , ξk−1), (3)

where randu is chosen from the uniform random distribution on the interval

[0, 1]. The cumulative sum of the weights leads to a high probability of picking200

a data path near an observation.

The value of inflow ξk is obtained by setting the value at stage k

ξk = Xi∗k + randκhk
, (4)

where randκhk
is a random value sampled from the kernel estimator using the

composition method [24].

This newly generated inflow value is according to the distribution of density205

of the current stage and dependent on the history of all the data paths.

Referring again to Figure 2, weights are calculated for the 3 data paths as

per Equation (2). Then, a data path is chosen randomly at stage 1 and the

thick filled line has a high probability of being picked. Consider it is the case.

To generate the value of inflow at stage 2, the value of the thick filled line at210

stage 2 is perturbed randomly. This method is then repeated at each stage in

order to generate a random data path and is represented on Figure 3a with a
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thick dashed line.

It is shown that the choice of the kernel does not have an important effect

on the density estimation [30]. Hence, in this paper, the logistic kernel is used:215

κ(ξ) =
1

eξ + 2 + e−ξ
. (5)

The bandwidth is the smoothing factor applied to the estimation of the

density. Silverman’s rule of thumb [31] is employed to determine the optimal

bandwidth:

hk = σ(Xik)n−
1

d+4 = σ(Xik)n−
1
7 , (6)

where n is the number of data paths, d is the dimension and σ is the standard

deviation. In this paper, d = 3 because there are three values of inflows per220

scenario tree node, representing three different reservoirs.

3.2.2. Step II: stochastic approximation

Once the new random path of inflows is generated, a stochastic approxima-

tion step is conducted. This step allows to update the value of some scenario

tree states. During this step, a scenario from the scenario tree, more precisely a225

path of nodes in the scenario tree is identified. This path of nodes in the scenario

tree minimizes the Wasserstein distance W between the random generated path

during Step I of the algorithm, found in Section 3.2.1, and current scenario tree

nodes values.

The Wasserstein distance is minimized as follows:230

W 2 = min
ω∈Ω

K∑
k=1

||Γ(ω)− ξk||2, (7)

where Ω are the scenario tree paths, Γ(ω) are the states corresponding to the

nodes in the path ω in the scenario tree, from the set of all possible scenarios Ω,

and ξk is the value of inflow generated randomly at stage k. Referring to Figure

3b, Ω = {(1, 2, 3, 5), (1, 2, 3, 6), (1, 2, 4, 7), (1, 2, 4, 8)}. Equation (7) allows to

find this path of nodes and is identified as ω = (1, 2, 4, 8) on Figure 3b.235

To achieve this, a stochastic gradient descend method that minimizes the

nested distance is used. Starting from the root of the scenario tree, W is com-
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puted for the children node. The children node with the smallest value of W

becomes the parent node. W is then computed for the children node of the new

parent node and so on until a leaf node has been reached.240

The identified path of scenario tree nodes values Γ(ω) that minimizes the

Wasserstein distance for the current stochastic approximation iteration p =

1, 2, . . . is updated in the following manner:

Γ(ω)p+1 = Γ(ω)p − αp∇Wp, (8)

where Γ(w) are the values of the scenario tree nodes to improve, αp is the

step-size and ∇Wp the gradient of the distance.245

The step-size αp = 1
(p+30)3/4

, where p is the stochastic approximation iter-

ation, is chosen since it is shown that the method will converge since αp > 0,∑
p αp =∞ and

∑
p (αp)

2 <∞.
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(a) Randomly generated path of inflows, shown

with thick dashed line, from three available data

paths of inflows.
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(b) Scenario tree. The path of nodes in the sce-

nario tree that minimizes the Wasserstein dis-

tance is shown in bold.

Figure 3: Illustration of the 2 steps of the algorithm. Generation of a random path of inflows

from available data paths of inflows and stochastic approximation to improve the value of

some scenario tree nodes.

As an illustration, consider one iteration of the algorithm and refer to Figure 3.

First, a random data path of inflows is generated using kernel density estima-250

tion. This can be seen on Figure 3a: it is the thick dashed line. The Wasserstein
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distance between this new generated path of inflows and the current values of

the scenario tree nodes is minimized and a path of nodes in the scenario tree is

retrieved in order to be improved. The path of nodes minimizing this distance is

shown on Figure 3b. Hence, the value of the inflows for the thick nodes, which255

are 1, 2, 4 and 8 will be improved using Equation (8).

3.3. Probabilities

During the first stochastic approximation iteration, assigned probabilities of

the nodes are 0 since, as explained in Section 3.1, the scenario tree is initialized

with values for the nodes only.260

Node probabilities are updated every stochastic approximation iteration. A

counter is assigned to each node and initialized at 0. Every time a path of nodes

minimizing the Wasserstein distance is retrieved, the corresponding counters of

the nodes in this path are incremented by 1.

Once the stochastic approximation iterations are completed, probabilities265

are computed by dividing the counter value with the number of stochastic ap-

proximation iterations, which yields sums of child nodes probabilities equal to

1, as in Figure 4.

In a multistage stochastic program model, each path from the root to a

leaf node represents a scenario. The unconditional probabilities of a scenario is270

obtained by multiplying the unconditional probabilities of all the nodes in the

scenario, yielding probabilities πj , where j is the scenario in Figure 4.

An interesting feature of the scenario tree generation method is that the

extreme (low and high) scenarios are accounted for, according their occurrence

in the historical data set. The law of large numbers insures that the probabilities275

are asymptotically consistent.

3.4. Termination criterion

The scenario tree generation algorithm terminates when the nested distance

has converged to a certain ε for the 10 last iterations. Thus, Step I and Step II

of the algorithm are repeated until convergence is obtained.280
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Figure 4: A scenario tree with node probabilities (over the node) and scenario i probabilities

(indicated with πi)

The main advantage of the scenario tree generation method presented in this

section is that all of the data paths are used at every iteration to improve the

value of the scenario tree nodes. By doing so, the underlying discrete distribu-

tion of the available data paths, approximated by a scenario tree, is improved

consistently with the data.285

4. Stochastic short-term hydropower model

The two phase deterministic optimization models taken from [5] are updated

to consider stochastic inflows. This section presents the modeling of the short-

term problem as well as the mathematical formulations.

4.1. Modeling of the short-term problem290

The modeling of the problem considers head-dependency, as well as efficien-

cies of each turbine. Power P (kW ) produced by a single turbine is defined as

P (hn, Q) = η(Q)×G×Q× hn(Qtot, v), (9)
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where G is the gravitational acceleration (m/s2), Q is the unit water flow and

Qtot is the total water flow (m3/s), η(Q) is the efficiency of the turbine and295

hn is the net water-head (m). The net water-head is a function of the forebay

elevation hf (m), the tailrace elevation ht (m) and losses in the penstock ϕ (m)

that is given by:

hn(Qtot, v) = hf (v)− ht(Qtot)− ϕ(Qtot), (10)

where v is the volume of the reservoir (hm3). For notational purposes and

since there is a relation between net water head and volume, we consider that300

power is a function of the volume and water flow. We propose a modeling with

combinations of units instead of single units. To achieve this, a dynamic pro-

gramming algorithm, where each sub-problem is a turbine, is used to calculate

the power produced by a combination of units. As an example, if a power plant

has a total of 5 turbines and requires three active turbines, there is a total of 10305

combinations of 3 turbines, 5 combinations of 4 turbines and 1 combination of 5

turbines. Water flows are discretized and the dynamic programming algorithm

is executed for each possible combinations, 16 in this case, for each power plant

and discretizations of reservoir volumes and water flows.

4.1.1. Dynamic programming algorithm310

The objective of the problem is to maximize the power output and it is

found recursively. Given state sj , the dynamic programming algorithm seeks to

choose decision variables qj that solves:

f∗j(sj) = max
qj

P (sj , v) + f∗j+1(sj − qj), (11)

where j = n − 1, n − 2, . . . , 1, n is the number of turbines at the power plant,

sj ∈ {1, 2, . . . , r} is the remaining water to dispatch given the number of dis-315

cretizations r and qj ∈ {1, 2, . . . ,min{qj , Q}} the water flow with qj maximum

water flow. The optimal water flow is q∗j = sj that maximizes f∗j(sj). For

j = n, the optimal power output is given by f∗j(sj) = P (sj).
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4.1.2. Maximum power output surfaces

We then build one surface of the maximum power output for each power320

plant. For a plant with 5 turbines requiring at least 3 working, three surfaces

are built, more precisely one for 3 turbines working, one for 4 turbines working

and one for 5 turbines working. The maximum power output for every possible

combination of number of working turbines is retained for every discretization

of volume and water flow. Such surfaces can be viewed in Figure 5. To ob-
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Figure 5: Maximum output surfaces

325

tain them, the dynamic programming algorithm is executed for every number

of turbines in the combination, every discretization of the reservoir volume,

every discretization of the water flow and every power plant. The surfaces of

maximum power outputs are then modeled using polynomial equations in the

objective-function of the optimization problem. Modeling of the hydropower330

production functions is done by constraining these functions with two surfaces.

A two-phase optimization strategy is used to penalize the startup of turbines.

The first phase, namely the loading problem, optimizes values of water dis-

charges, volumes and number of turbines in the combination for every plant

and node. The second phase, namely the unit commitment problem, uses the335

solution of the first optimization model to determine the exact combination

of turbines working at each plant and node in the scenario tree. Startups of
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turbines are penalized with a fixed cost. Multistage stochastic models are de-

veloped for both optimization phases, in order to consider uncertainty in the

inflows of the reservoirs.340

4.2. Phase I: loading problem

Optimization variables of this nonlinear stochastic multistage mixed integer

problem are water flows, volumes and number of working turbines, for each node

and plant in the scenario tree. The model must choose one surface of number

of working turbines among those available, but we have shown [5] that relaxing345

these variables leads to an integer solution. Therefore, we solve a nonlinear

stochastic multistage continuous problem.

The objective is to maximize total energy production in stage 0, expected energy

production in future stages and expected value of the water remaining in the

reservoir at the end of the planning horizon:350

max
∑
c∈C

nc
0∑

s=1

χcs0y
c
s0ζ0 +

∑
j∈J

∑
c∈C

πcjP
c
j +

∑
c∈C

∑
j∈E

πcjΦ
c
j(V

c
j ) (12)

subject to: χcsi ≤ ΨAc
s (qci , v

c
i ), ∀c ∈ C,∀i ∈ N, ∀s ∈ nci (13)

χcsi ≤ ΨBc
s (qci , v

c
i ), ∀c ∈ C,∀i ∈ N, ∀s ∈ nci (14)

δci = vci+1 − vci + γwiq
c
i

−
uc∑
m=1

γwmqm, ∀i ∈ N, ∀c ∈ C (15)

nc
i∑

s=1

ycsi ≤ 1, ∀i ∈ N (16)

ycs0 = ŷcs0, ∀s ∈ nci ,∀c ∈ C, ∀i ∈ N (17)

vcmin ≤ vci ≤ vcmax, ∀i ∈ N, ∀c ∈ C (18)

qcmin ≤ qci ≤ qcmax, ∀i ∈ N, ∀c ∈ C (19)

qci ≥ 0,∀i ∈ N, ∀c ∈ C (20)

vci ≥ 0,∀i ∈ N, ∀c ∈ C (21)

ycsi ≥ 0, ∀s ∈ nci ,∀i ∈ N, ∀c ∈ C. (22)
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Hydropower production surfaces are constrained by (13)-(14). Water balance

constraints are represented by (15) and the choice of a single number of active

turbines is shown in (16). Constraints (17) are the initial number of active

turbines while constraints (18)-(19) are the bounds on reservoir volumes and355

water discharges. Finally, constraints (20)-(22) impose nonnegativity.

The above short-term loading problem is described in more details in [5]. We

now show how to integrate a water-value function for the remaining water at

the end of the planning horizon.

Water-value function. The water-value function is the expected energy pro-360

duction in the future at the end of the planning horizon. In a deterministic

framework, inflows are known with certainty, thus volume in the reservoir at

the end of the horizon is easier to determine. In a stochastic framework, it is

not possible to give a goal for the volume at the end of the horizon since it may

not be feasible for every scenario. On the other hand, neglecting this feature will365

cause the optimization to empty the reservoir at the end of the horizon, since

the objective is to maximize energy. Hence, maximizing the expected value of

future energy production, or water-value function, will prevent the optimiza-

tion of doing this. The water-value functions are computed with a stochastic

dynamic algorithm [32] at Rio Tinto. A planning horizon of one year, with370

weekly time steps is used.

4.3. Phase II: unit commitment

This linear stochastic multistage integer model is solved using solution found

in Phase I. The purpose of this model is to determine the on-off schedule of

the turbine combinations (found in Phase I). Given water flows and reservoir375

volumes found in the loading problem, the dynamic programming algorithm is

used to calculate power outputs for every possible combination of turbines, given

the number of working turbines found in Phase I, and are stored in parameter

βcli. The model maximizes the energy production and penalizes turbine startups.

Initial combination of turbines working at stage 0 is given in x̂cl0.380

17



The objective is to maximize energy production at stage 0 and future energy

production and penalize startup of turbines at stage 0 as well as future expected

startups:

max
∑
c∈C

nc
0∑

l=1

βcl0x
c
l0ζ0 −

∑
c∈C

T c∑
t=1

dct0θζ0 +
∑
j∈J

∑
c∈C

πcjE
c
j −

∑
j∈J

∑
c∈C

πcjG
c
j (23)

subject to:

nc
i∑

l=1

xcli = 1, ∀i ∈ N, ∀c ∈ C (24)

xclif
c
lit − xcli−1f

c
li−1t ≤ dcti, ∀l ∈ nci ,∀i ∈ N, ∀c ∈ C, ∀t ∈ T c (25)

xcl0 = x̂cl0, ∀l ∈ nci ,∀i ∈ N, ∀c ∈ C (26)

xcli, d
c
it ∈ B, ∀l ∈ nci ,∀i ∈ N, ∀t ∈ T c,∀c ∈ C. (27)

The choice of a single turbine combination is given by (24). Constraints that385

allow to penalize a startup by flagging them is shown in constraints (25). The

initial combinations are given in (26) and imposition of binary variables are

constraints (27).

This two phase optimization process allows to find a solution efficiently. Also,

even though an approximation of the energy produced is conducted in the first390

phase, the actual energy production is retrieved in the second phase, seeing that

the actual hydropower production functions are used to compute the actual

energy production given a water discharge and volume, which are solutions of

the first phase.

5. Results395

This section details the system on which the stochastic hydropower models

are tested and results are presented.

5.1. Hydroelectric system studied

The hydroelectric system studied is situated in the Saguenay Lac-St-Jean

region in the province of Quebec, Canada and is owned by Rio Tinto. For the400

purpose of this paper, three hydroelectric plants, which are Chute-du-Diable,
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Chute-Savane and Isle-Maligne are considered. The two first plants have 5

turbines each and the latter has 12. Figure 6 represents the system studied.

Triangles represent reservoirs and squares power plants.

Chute-du-diable

Chute-savane

Lac-St-Jean

Isle-MalignePetite décharge

Figure 6: Hydroelectric system studied.

Chute-du-Diable, Chute-Savane and Isle-Maligne plants reservoir are quite405

small, respectively 452 hm3, 119 hm3 and 171 hm3. In the optimization model,

there is no water value function associated to these plants since they have small

reservoirs. Instead, a full reservoir constraint at the last period is imposed as

a goal in the model. The only water-value function used is for the Lac-St-Jean

reservoir, therefore volume of this reservoir at the last period is an optimization410

variable. The capacity of this reservoir is of 5596 hm3. Water flow in Petite

décharge is limited by a function dependent on the volume of Lac-St-Jean.

5.2. Rolling horizon procedure

A rolling horizon methodology is retained to validate the optimization mod-

els developed in this paper. The planning horizon of the rolling-horizon is of415

31 days. For every day of the rolling-horizon, the forecast is for 30 days. For

day 1 of the rolling-horizon, previsions are from days 2 to 31, for day 2 of the

rolling-horizon, previsions are from days 3 to 32, and so on. The stochastic

optimization models presented in section 4 are solved every day, but only the
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solution for the first stage is retained. Forecasts are updated daily. Once the420

forecast is updated, the scenario tree is generated for the corresponding day.

The two-phase optimization process is launched and the first stage solution is

retained, that is: volume, water discharge and turbine combination. Then, con-

sidering the actual realization of the inflow, the water balance constraints are

used to determine the actual volume of the reservoirs at the end of the period.425

More precisely, the water discharge from the optimization is combined with the

actual realization of the inflow in order to calculate the reservoir volumes. The

same process is repeated for the 31 days. In the end, a production plan for 31

days is available, which consists of the reservoir volumes, total water discharges

at the plants and turbine combinations in use. See [33] for a different approach430

to rolling-horizon evaluation of short-term hydropower operation.

The solution obtained from the scenario tree generation is compared to the

solution obtained from the median scenario of the inflows. Therefore, we com-

pare our method to a rolling median. Every day, the median scenario is found

throughout all available scenarios and a scenario tree of 1 node per stage is435

solved in a deterministic fashion.

5.3. Numerical results

The scenario tree generation method is coded in Matlab [34]. The optimiza-

tion models are coded through AMPL [35]. The optimization software for the

loading problem, which is the relaxation of a nonlinear mixed-integer problem,440

is IPOPT [36] and the unit commitment model, a linear integer problem, is

solved with XPRESS [37].

Six test cases, which consist of monthly periods are available. The biggest

problems to solve have 7 stages with 48 scenarios, 1123 nonlinear variables, 33

linear variables and 1237 constraints for the loading problem and 3475 binary445

variables and 825 constraints for the unit commitment problem.

Different stages, more precisely 5, 6 or 7 as well as different number of

scenarios, namely 16, 32 or 48 are tested.
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5.3.1. Computational time
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Figure 7: Average computational time of scenario tree generation and optimization for one

day in the rolling-horizon.

The average time to construct the scenario tree and to optimize is shown on450

Figure 7. The average time is in seconds, for a single day in the rolling horizon

procedure, more precisely for one problem including construction of the scenario

tree and optimization of the two phase process. It takes less than 5 seconds to

build the scenario trees for all test cases, while the optimization requires more

time given higher numbers of scenarios. Less than 42 seconds, for a single day in455

the rolling-horizon are necessary to construct the scenario tree and optimize the

two-phase process, which is acceptable in the real operating environment. The

current implementation of the scenario tree generation method and optimiza-

tion is tested on three cascaded hydropower plants. For this specific producer,

the whole hydropower systems consists of five hydropower plants, therefore cal-460

culation time would be acceptable for the whole system. Considering another

system of, for example, 50 hydropower plants, the actual method would take ap-

proximately 350 minutes. The proposed method in this paper is applicable to a

larger system, probably by decomposing the system in smaller sub-systems. To

do so, the system is to be studied and depending on its configuration, distances465
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between plants and others, modeled in an acceptable manner. Depending on

the scope of the application, the calculation time may or may not be satisfac-

tory. If a producer does not mind solving a 7 hour model every day, then the

computational time is satisfactory. In order to diminish computing time, an

avenue is to solve the model for a given number of days then weeks. In this way,470

the number of variables is greatly reduced and so is the computing time. This

model is applicable to a larger hydropower system, but it would be necessary to

decompose the system in sub-systems and review the modeling to diminish the

number of optimization variables, given a producer requiring fast computational

time.475

5.3.2. Results

Table 1 illustrates the difference in energy, in TWh, produced throughout

the 31 days rolling horizon combined with the value of water remaining in the

reservoir at the end of the planning horizon. This implies that the difference

in energy can be compared to annual production but absolute numbers are un-480

fortunately not thus interpretable. A positive value indicates the scenario tree

method produces more than the median scenario and a negative value indicates

the contrary. For 4 of the test cases, the stochastic solution produces more

energy. For 1 test case, the median scenario solution produces more energy.

Finally, for the August case, the stochastic solution produces more energy with485

a 5 stage or 6 stage scenario tree, and the median scenario with a 7 stage.

For the 4 test cases for which the scenario tree produces more energy than the

median scenario, average improvements are 0.0679812% for June, 0.0273551%

for July, 0.1620522% for September 2011 and 0.0251653% for September 2010.

Despite the low percentages, this represents huge savings for the producer. As490

an example, the current value of a 1 GWh improvement, in the province of Que-

bec, is around 20,000$. Therefore, for June, the 0.0679812% higher production

translates into 10,932,489$.
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June 2011 July 2011 August 2011

Nb. Stoch. Median Diff. Stoch. Median Diff. Stoch. Median Diff.

Sc. (TWh) (TWh) (TWh) (TWh) (TWh) (TWh) (TWh) (TWh) (TWh)

5 stages

16 804.5143 804.0265 0.4878 740.2678 740.0631 0.2047 710.1115 710.0795 0.0320

32 804.7050 804.0251 0.6799 740.2783 740.0631 0.2152 710.1108 710.0794 0.0314

48 804.6894 804.0249 0.6645 740.2496 740.0631 0.1865 710.0988 710.0794 0.0194

6 stages

16 804.5059 804.1495 0.3564 740.2698 740.0665 0.2033 710.0783 710.0733 0.0050

32 804.6796 804.1479 0.5317 740.2652 740.0665 0.1987 710.1139 710.0733 0.0406

48 804.6715 804.1481 0.5234 740.2608 740.0665 0.1943 709.9826 710.0732 -0.0906

7 stages

16 804.5171 804.0881 0.4290 740.2676 740.0578 0.2098 710.0693 710.0867 -0.0174

32 804.7166 804.0881 0.6285 740.2566 740.0578 0.1988 710.0732 710.0867 -0.0135

48 804.7063 804.0879 0.6184 740.2686 740.0578 0.2108 710.0806 710.0867 -0.0061

September 2010 September 2011 October 2011

Nb. Stoch. Median Diff. Stoch. Median Diff. Stoch. Median Diff.

Sc. (TWh) (TWh) (TWh) (TWh) (TWh) (TWh) (TWh) (TWh) (TWh)

5 stages

16 729.5792 729.3811 0.1981 733.0375 731.6799 1.3576 704.7842 704.8494 -0.0652

32 729.5841 729.3821 0.2020 733.0530 731.6799 1.3731 704.7847 704.8494 -0.0647

48 729.5810 729.3804 0.2006 733.0818 731.6799 1.4019 704.7877 704.8496 -0.0619

6 stages

16 729.5856 729.3917 0.1939 732.9971 731.7773 1.2198 704.7690 704.8636 -0.0946

32 729.5779 729.3929 0.1850 733.0188 731.7773 1.2415 704.7928 704.8636 -0.0708

48 729.5800 729.3924 0.1876 733.0937 731.7774 1.3163 704.7326 704.8634 -0.1308

7 stages

16 729.5854 729.4151 0.1703 732.9428 731.9647 0.9781 704.7608 704.8566 -0.0958

32 729.5775 729.4156 0.1619 732.9599 731.9647 0.9952 704.7879 704.8566 -0.0687

48 729.5834 729.4139 0.1695 732.9702 731.9648 1.0054 704.7873 704.8567 -0.0694

Table 1: Results for 6 test cases (5 are data sets from the year 2011 and 1 from 2010). Energy

produced by the stochastic solution and the median scenario rolling horizon is given. Also,

the difference in energy between both solutions is shown.
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5.3.3. In sample stability test

An in sample stability test allows to verify if the scenario tree generation495

method is consistent. It is taken from [38]. Since the scenario tree is generated

from random samples, one wants to verify if the solution given by the opti-

mization, with a different scenario tree each time, give more or less the same

solution. If so, then the scenario tree method is consistent.

As an example, July 2011 and June 2011 data sets were chosen for this500

verification. For both data sets, 6 scenario trees were generated with the same

number of stages and scenarios. Then, the optimization was conducted on all

of these scenario trees to verify the effect on the objective function value. Table

2 gives, for these two data sets and 6 instances each, the values of the objective

function, for the scenario tree and median scenario methods.505

Data Inst. Stoch. Median Diff.

(TWh) (TWh) (TWh)

July 1 740.2652 740.0665 0.1987

2 740.2759 740.0665 0.2094

3 740.2725 740.0665 0.2060

4 740.2581 740.0665 0.1916

5 740.2799 740.0665 0.2134

6 740.2878 740.0665 0.2213

June 1 804.6715 804.1481 0.5234

2 804.6707 804.1484 0.5223

3 804.6709 804.1474 0.5235

4 804.6824 804.1489 0.5335

5 804.6769 804.1486 0.5283

6 804.6571 804.1472 0.5099

Table 2: Objective function values for 6 random scenario trees with the same number of stages

and scenarios, on two data sets.

Results show that the scenario tree generation method is consistent, as the
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difference between the objective functions of the stochastic and median scenario

methods present slight variations. For the July test case, the median is 0.2077

TWh, the mean 0.2067 TWh and the variance 0.9308 TWh and for the June

test case, the median and the mean are 0.5235 TWh and the variance 0.0516510

TWh.

5.3.4. Interpretation of the results

The following figures illustrate the 31 day rolling horizon backtesting solution

more precisely: water discharge and reservoir levels for the power plants and

reservoirs studied in this paper.515
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Figure 8: June 2011, 5 stages, 16 scenarios.
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Figure 8 pictures June 2011 data set with 5 stages and 16 scenarios. Solu-

tions obtained from the scenario tree method and the median scenario are quite

similar. Also note that when a method turbines more water, it is penalized

accordingly so it is not advantaged. The difference between the volumes at the

end of the 31 day planning horizon is taken into account and transformed into520

energy, then added to the method that is disadvantaged.
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Figure 9: June 2011, 7 stages, 16 scenarios.

Figure 9 also illustrates the June 2011 data set with 7 stages and 16 scenarios.

Again, results are very similar.

Without any surprise, the numerical experiment reveal that the solutions

to the cases with more stages are closer to the operational ones because the525

hydropower sytem operation is more realistic. For example, Figures 8 and 9
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Figure 10: Comparison of September (upper figures in each subfigure) and October (lower

figures in each subfigure) day 1 data sets. The dashed lines are the minimum and maximum

scenarios. The median scenario is the full line. The actual realization of the inflows is the

plus sign line.

show that the solutions with 5 and 7 stages lead to a similar improvement, but

the implementation with 7 stages is preferable. Figures 9a, 9b and 9d present

reservoir volumes that are more stable than Figure 8a, 8b and 8d.

The October data set is the only one for which the median scenario produces530

more energy for all number of stages. The interest of a stochastic method is

to account for uncertainty in the future. As we compare our method with the

median scenario, if the actual realization of the inflows is close to the median

scenario, the stochastic solution will not produce more energy, as the median

scenario depicts correctly the future. In practice, this may happen during the535

fall period, for example when low variability exists in the weather and storms

have less chances of developing. This can be seen on Figure 10. Each subfigure
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corresponds to a reservoir. The minimum and maximum scenarios are illustrated

with the dashed lines. The median scenario is the full line and the actual

realization of the inflows is plus sign line. Figure 8a is Chute-du-Diable. The top540

figure is the day 1 October forecast and the bottom figure is the day 1 September

forecast. For the 15 first days, the October forecast median scenario is very close

to the inflow realization and therefore, as we keep the day 1 decision only, the

median scenario produces more energy. The other subfigures are represented

in the same fashion. Again, Figures 10b and 10c show that for Chute-Savane545

and Lac-St-Jean, the actual inflows in October are very close to the median

scenario, therefore there is no gain in using a stochastic optimization model,

as the deterministic median scenario allows to obtain a good solution. For

this unusual October case, solving the short-term unit commitment and loading

problem with a median scenario is acceptable. This affirmation is to be used550

with caution as situations like these have a low probability of occurring. These

results show that there is certainly a gain in using a stochastic model for the

short-term hydropower optimization model, as relying on the median scenario

offers a less robust solution than multiple scenarios.

6. Conclusion555

This paper presents a stochastic short-term hydropower optimization method

which emphasizes inflow scenario trees. Few papers looked specifically into

stochastic short-term models and we extend the modeling presented in [5] to

consider uncertain inflows. The optimization method considers inflow uncer-

tainty, head variations and nonlinear and nonconvex relationship between dis-560

charge and power output. The scenario tree generation method first uses kernel

density estimation to generate random values of inflows. Then, the path of

nodes, from root to leaf, that minimizes the Wasserstein distance is found in

the scenario tree and the corresponding nodes are updated using stochastic ap-

proximation. The process is repeated until the termination criterion, which is565

the convergence of the tree in Wasserstein distance, has been reached. A sta-
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bility test has shown that the scenario tree generation method is consistent. A

highlight of this method is that it uses all data available at each iteration to

improve the values of the scenario tree nodes. The scenario trees are inputs

to a two phase optimization process. The first phase, loading problem, allows570

to find water discharge, volume and number of turbines working in each plant.

The second phase, unit commitment, chooses the exact combination of turbines

to use, to maximize energy production and penalize unit startups. A major

feature of this modeling of the problem is that the water head is not neglected.

For this paper, the models are tested on three hydropower plants. A rolling575

horizon procedure is retained on a 31 day planning horizon. The stochastic so-

lution is compared to the median scenario. Furthermore, fast computation time

allows this method to be scaled in order to be applied in full to the Saguenay-

Lac-St-Jean hydroelectric system. Future work based on this paper consists

on investigating the complexity required in the scenario tree structure. Since580

a rolling-horizon framework is retained and that only the solution of the first

stage is kept, tests with scenario fans instead of scenario trees will be conducted.

Acknowledgments

The authors would like to thank Marco Latraverse, and Rio Tinto, for provid-

ing data necessary to this study. This work was supported by NSERC, FRQNT585

and Rio Tinto. Also, a grant for international mobility, awarded by FRQNT

through GERAD allowed the research to be conducted at the Norwegian Uni-

versity of Science and Technology. Fleten acknowledges financial support from

the Research Council of Norway through project 243964/E20. Alois Pichler

gratefully acknowledges support of the Research Council of Norway through590

grant 207690/E20. The authors are thankful to two anonymous referees, for

providing constructive comments that greatly improved the paper.

29



References

[1] R. Taktak, C. D’Ambrosio, An overview on mathematical programming

approaches for the deterministic unit commitment problem in hydro valleys,595

Energy Systems (2016) 1–23doi:10.1007/s12667-015-0189-x.

[2] E. C. Finardi, E. L. da Silva, Solving the hydro unit commitment prob-

lem via dual decomposition and sequential quadratic programming, IEEE

Transactions on Power Systems 21 (2) (2006) 835–844. doi:10.1109/

TPWRS.2006.873121.600

[3] A. Arce, T. Ohishi, S. Soares, Optimal dispatch of generating units of the

itaipu hydroelectric plant, IEEE Transactions on Power Systems 17 (1)

(2002) 154–158. doi:10.1109/59.982207.

[4] D. Schwanenberg, F. M. Fan, S. Naumann, J. I. Kuwajima, R. A. Montero,

A. Assis dos Reis, Short-term reservoir optimization for flood mitigation un-605

der meteorological and hydrological forecast uncertainty, Water Resources

Management 29 (5) (2015) 1635–1651. doi:10.1007/s11269-014-0899-1.
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Appendix A. Notation

The following notation is used throughout the paper:

i ∈ {0, 1, . . . , N} index of the nodes

e ∈ {1, 2, . . . , E} index of leaf nodes

c ∈ {1, 2, . . . , C} index of hydroelectric plants

r ∈ {1, 2, . . . , uc} index of hydroelectric plants upstream of plant c

j ∈ {1, 2, . . . , J} index of scenarios

s ∈ {1, 2, . . . , nc
i} index of surfaces corresponding to number

of active turbines associated to

hydroelectric plant c and node i

l ∈ {1, 2, . . . , nc
i} index of combinations associated to

hydroelectric plant c and node i

t ∈ {1, 2, . . . , T c} index of turbines of hydroelectric plant c

πc
j probability of scenario j for plant c

vci volume of plant reservoir c at node

i (hm3)
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qci water discharge at plant c and node

i (m3/s)

θ start-up penalty for any turbine (MW )

βc
li power generated by combination l ∈ nc

i

at plant c and node i

ycsi =


1 if surface s is chosen at node i

for plant c

0 otherwise

fc
lit =


1 if turbine t of combination l

for plant c is working at node i

0 otherwise

xcli =


1 if combination l of plant c

is chosen at node i

0 otherwise

dcti =


1 if turbine t of plant c is started

at node i

0 otherwise

χc
si power for surface s at node i and plant c (MW )

ΨAc
s (qci , v

c
i ) power production function without spillage for surface s and plant c

ΨBc
s (qci , v

c
i ) power production function with spillage for surface s and plant c

δci inflow of plant c at node i (m3/s)

wi duration of node i (h)

V c
j final volume for plant c and scenario j

P c
j expected value of energy produced by scenario j and plant c (loading problem)

Ec
j expected value of energy produced by scenario j and plant c (unit commitment problem)

Gc
j expected value of startups, in energy units, produced by scenario j and plant c

γ conversion factor from water discharge (m3/s) to (hm3/h)

Φc
j(V

c
j ) water-value function for plant c and scenario j

ζi conversion factor to energy units (GWh)

vcmin minimal volume of plant c reservoir (hm3)

vcmax maximum volume of plant c reservoir (hm3)
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qcmin minimum water discharge at plant c (m3/s)

qcmax maximum water discharge at plant c (m3/s).
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