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in fluids
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We consider induced van der Waals interactions with corrections due to radiation
in fluids consisting of polarizable hard spheres. The fluctuating polarizations are
quantized while the positions of particles are treated classically. First the well known
result for the induced Casimir free energy for a pair of particles is used to establish
the resulting free energy at low density. The Casimir interaction includes the full
effect of the quantized radiating electromagnetic field. Then the situation with elec-
trostatic dipole-dipole interactions is considered for general density. For this situation
the induced interactions are the van der Waals interactions, and we evaluate numer-
ically the free energy based upon analytic results obtained earlier. These analytic
results were obtained by extending methods of classical statistical mechanics to the
path integral of quantum mechanics. We have realized that these methods can be
extended to time-dependent interactions too. Thus we here also make the extension
to the radiating dipole-dipole interaction between pairs of particles to obtain explicit
results for more arbitrary fluid densities, and radiation corrections to the induced free
energy are found both analytically and numerically. Copyright 2013 Author(s). This
article is distributed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.4792939]

I. INTRODUCTION

Atoms and molecules are polarizable. Their polarizability can be related to fluctuating dipole
moments, and with the electrostatic dipole-dipole interaction the well known attractive van der Waals
force between pairs of particles is induced. It was noticed that there were deviations from this force,
and by use of quantum electrodynamics the Casimir-Polder force was obtained where retardation
effects were taken into account.1 Further, the methods of the quantized electromagnetic field have
been used to obtain the Casimir force for various situations.2–4

Methods of quantum mechanics are not easily extended to general fluid density. But Chandler
et al. and Høye and Stell realized that the equilibrium properties of a fluid of quantized polarizable
particles could be evaluated by using methods of classical statistical mechanics5, 6 The basis for
this was the path integral representation of quantum mechanics. Feynman found that the partition
function of a quantum mechanical particle can be represented as a path integral in imaginary time
β = 1/(kBT) where kB is Boltzmann’s constant and T is temperature.7 The path integral can be
interpreted as a “classical” polymer in 4 dimensions where imaginary time is the fourth dimension
with periodic boundary conditions at times 0 and β. It can also be regarded as a random walk whose
properties have been studied and analyzed, and this has been used to solve problems in statistical
mechanics.8

Brevik and Høye reconsidered the evaluation of the Casimir-Polder force by applying the
statistical mechanical method of thermal equilibrium to the path integral.9 Then it was realized
that the method also was applicable to time-dependent interactions, and the Casimir-Polder force
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was recovered. The latter derivation coincides with the interpretation that the Casimir force can
be related to fluctuating dipole moments. In this way the electromagnetic field is fully replaced by
pair interactions between dipole moments.10, 11 The reason why this replacement is possible, is that
the field is quantized as a set of harmonic oscillators. A related conclusion was earlier noted by
McLachlan.2

The Casimir force becomes the van der Waals force when retardation effects are neglected,
i.e. the static dipole-dipole interaction is used. Thus the former includes corrections to the latter
from radiation. A purpose of the present work is to investigate these corrections for fluids where the
particles form a network of interactions. To do so we extend the statistical mechanical theory for
the Casimir force of a pair of particles. For low density one can simply add up pairs of particles.
However, for higher densities the “classical” methods applied to the quantized polarizable fluid
can be used.5, 6 We have realized that these methods also can be extended to the situation with
radiating dipole-dipole interaction, and we do so in this work. This extension makes evaluations
more demanding, and results of several previous works must be utilized and combined. But explicit
results can still be obtained in terms of the solution of the Ornstein-Zernike integral equation where
now a (transformed) direct correlation function is of Yukawa form outside hard cores.

A motivation for this work is to investigate the influence from radiation upon the free energy
of fluids as just indicated. Due to the time dependence or retardation properties of the interaction it
is not obvious how to perform evaluations at thermal equilibrium where also the particle structure
at the molecular level also should be taken into account. We are not aware of other approaches that
have obtained quantitative results for this problem. However, the statistical mechanical method that
we will utilize and extend to the situation with radiating pair interactions, can deal with the particle
nature on the molecular level to give quantitative results. To perform explicit evaluations the fluid is
modified in a way typical for developments in fluid theory. Thus in the present case the molecules
are approximated by hard spheres with fluctuating dipole moments located at their centers.

Another motivation for this work is to get some estimate of the influence from radiation on the
energy of electrons in molecules. This is a noticeable effect for large molecules, and it lead to the
evaluation of the Casimir-Polder force.1 In this respect one of us in recent works has included van
der Waals and Casimir energies as leading perturbations12–14 to ab initio Hartree-Fock or density
functional theory for molecular energies.15 These energies can be expressed in terms of the occupied
and excited eigenstates of the molecules. In Ref. 13 it was found that the system of electrons
in molecules may be regarded as a dielectric fluid and radiation corrections can be taken into
account. But incorporation of the van der Waals or Casimir energies in molecular evaluations will be
demanding; so the influence of radiation is not easily obtained. However, the dielectric fluid studied
in this work may be regarded as a strongly simplified model of a large molecule where the influence
of radiation between the electrons is studied. The energy shifts from this influence are expected to be
small since they are closely related to the Lamb shift as they both can be related to the consequences
of the vacuum fluctuations of the electromagnetic field.16 Our results will show that this is the case.

Perturbing contributions to molecular energies from non-local correlations are of central interest
and various recipes have been used. One of them is the RPA (random phase approximation) which
is in accordance with the van der Waals energy where radiation is absent.17, 18 This has been studied
by Lein et al. for the uniform electron gas where simulation results with which to compare are
available.19 They point out that the RPA gives too low energy (a situation similar to classical Debye-
Hückel theory). This is corrected by including a term in addition to the Coulomb interaction at
short range. In Ref. 14 it was suggested in view of the statistical mechanical approach that this may
be adjusted determined from a hard core condition upon the resulting correlation function as two
electrons can not be on the same position due to the repulsive Coulomb interaction (and for equal
spins). In any case this will need further investigations.

In Sec. II the expression for the Casimir free energy of a pair of polarizable particles is considered.
By integration over separations outside the hard core diameter of the particles the induced free energy
per particle for a fluid at low density is obtained. This is compared with the induced van der Waals
free energy where radiation is disregarded.

In Sec. III a polarizable fluid at arbitrary density, where the particles interact via the electrostatic
dipole-dipole interaction, is considered, and the van der Waals free energy is evaluated. For this
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situation we study how the induced energy deviates from the value that would be obtained from a
direct sum of low density pair energies.

In Sec. IV the polarizable fluid at arbitrary density, where the full radiating dipole-dipole
interaction is present, is considered.The induced energy for this situation is evaluated, and we study
how it deviates from the induced van der Waals free energy.

II. A PAIR OF PARTICLES

The Casimir free energy between a pair of polarizable particles is given by Eq. (5.15) of Ref. 9
as

F = − 3

2βr6

∞∑
n=−∞

e−2τ

[
2

(
1 + τ + 1

3
τ 2

)2

+
(

2

3
τ 2

)2
]

α2
K . (2.1)

Here

τ = |K |r
�c

with K = 2πn/β (2.2)

where n is integer, r is separation between the particles, c is velocity of light, and K is the Matsubara
frequency

K = i�ω (2.3)

where ω is the frequency and i is the imaginary unit. It is to be noted that imaginary values of
ω are used in expression (2.3) and other expressions below where real values of K, according to
Eq. (2.2), are used. (The K was defined with opposite sign in Ref. 9. As noted in Refs. 13 and 14
that was a mistake that did not influence results so far. This sign will depend upon how the Fourier
transform is defined with −iωt or iωt in the exponent, i.e. −iωt = iKλ with imaginary time λ = it/�
means K = i�ω.) Finally αK is the frequency dependent polarizability of the particles. When each
particle is modeled as a simple harmonic oscillator, which will be used throughout this work, it is
given by (with −(�ω)2 = K2)

αK = α(�ω0)2

K 2 + (�ω0)2
(2.4)

where α is the zero frequency polarizability and ω0 is the eigenfrequency (which is real). The well
known Casimir-Polder result (for T = 0) is recovered when αK = α for all K, i.e. ω0 → ∞.1 This
and result (2.1) were earlier obtained by a Green function method.20

It can be remarked that the αK of Eq. (2.4) is a simplified version of real molecules as it contains
only one resonance frequency. However, it can be replaced with any realistic polarizability by which
results below will become less explicit. Further it can be noted that the polarizability α is here
used in Gaussian units since the dipole-dipole interaction defined through Eqs. (3.2)–(3.5) below
(and Eq. (4.1) instead of (3.5) in the radiating case) are in Gaussian units as is commonly used in
models of ionic and dielectric fluids. In SI units the corresponding polarizability is αSI = 4πε0α

where ε0 is the permittivity of vacuum.
Compared with the energy quantum �ω0 the thermal energy kBT will be regarded as small. Thus

we will consider T = 0 to simplify. With this the summation in Eq. (2.1) is replaced by integration
where

1

β

∞∑
n=−∞

→ 1

2π

∞∫
−∞

d K → 1

π

∞∫
0

d K . (2.5)

We will consider fluids. Thus one should take the average over separations, and in the low
density limit expression (2.1) is to be used for particle separations larger than the hard core diameter
R. With number density of particles ρ the induced free energy per particle becomes (with factor 1/2
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to avoid double counting of interactions)

f = 1

2
ρ

∫
F dr = 2πρ

∞∫
R

Fr2 dr = −ρα2
�ω0

R3

∞∫
0

d K e−2z 2(1 + z)2 + z3

(K 2 + 1)2
(2.6)

where the replacement of integration variable

K → �ω0 K , d K → �ω0 d K (2.7)

has been made to simplify. Further with this

z = γ K , γ = ω0 R

c
. (2.8)

Integral (2.6) can be verified by differentiation with respect to R → r (and z ∝ R). The inverse of
γ multiplied with 2π is the wavelength of radiation relative to the hard core diameter at resonance
frequency ω0. Thus for small molecules the γ and thus radiation effects will be small.

A limiting case of Eq. (2.6) is the electrostatic limit γ → 0 (z → 0) by which

f = f0 = −πρα2
�ω0

2R3
. (2.9)

Another limit is the Casimir γ → ∞ (ω0 → ∞) case where the denominator in Eq. (2.6) can
be put equal to one to obtain

f = fC = 23

4πγ
f0 = −23ρ�cα2

8R4
. (2.10)

Eq. (2.9) is the van der Waals interaction F = −3α2
�ω0/(4r6) integrated while Eq. (2.10) is the

corresponding Casimir interaction F = −23�cα2/(4πr7) integrated. Eq. (2.6) may also be expanded
for small γ to obtain

f = (1 − γ 2 + · · ·) f0. (2.11)

The γ 2 term of Eq. (2.11) represents the leading radiation correction to the free energy of van der
Waals interactions. A notable feature of this correction is that it depends directly upon R since

γ 2 f0 ∝ ω3
0

R
. (2.12)

Thus the greater part of it must come from separations r close to the minimum r = R. Immediately
this may be somewhat counterintuitive since with interaction F given by Eq. (2.1) the corresponding
relative correction is largest for large r where retardation effects dominates, but clearly, this is
outweighed by the rapid vanishing of the interaction for large r.

The f as given by Eq. (2.6) is evaluated numerically and the ratio f/f0 is shown in Fig. 1 as
function of λ = 2π /γ = 2πc/(ω0R).

As a numerical example we will make estimates for Ar (argon) where the atoms interact
via the Lennard-Jones potential φ(r) = 4εLJ[(σ /r)12 − (σ /r)6]. For Ar the critical temperature is
Tc = 151 K and εLJ/(kBTc) ≈ 0.8. Thus with kB = 1.38 · 10−23 J/K

4εL J = 6.67 · 10−21 J ≈ 42 meV. (2.13)

The attractive part of φ(r) is to be identified with the van der Waals interaction F given below
Eq. (2.10). So with R ≈ σ = 3.4 Å we have

4εL J R6 = 3

4
�ω0α

2. (2.14)

The dielectric constant may here be estimated with the Clausius-Mosotti relation (ε − 1)/(ε
+ 2) = (4π /3)ρα. With mass density 1.4 g/cm3, atomic weight 39.95, ε = 1.6 in liquid state, and
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FIG. 1. Casimir free energy per particle f given by Eq. (2.6) divided by its electrostatic limit f0 given by Eq. (2.9) as function
of dimensionless wavelength λ = 2π /(ω0R) on logarithmic scale. The ω0 is the oscillator eigenfrequency while R is the hard
core diameter.

Avogadros number NA = 6.022 · 1023 mol−1 the particle density becomes ρ = 2.1 · 1028 m28 by
which

ρR3 = 0.82 and
α

R3
= 3

4πρR3

ε − 1

ε + 2
= 0.0485. (2.15)

With Eq. (2.14) this gives

�ω0 = 16εL J

3(α/R3)2
= 3.78 · 10−18 J ≈ 24 eV. (2.16)

Thus with � = 1.054 · 10−34 Js and c = 3.0 · 108 m/s

γ = �ω0 R

�c
= 4.1 · 10−2, γ 2 = 1.7 · 10−3, and λ = 2π

γ
≈ 150. (2.17)

For the van der Waals energy per particle (2.9) we get

f0 = −π

2
�ω0

( α

R3
)
)2

ρR3 = −4π

6
4εL J ρR3 ≈ 72 meV. (2.18)

The repulsive part of the Lennard-Jones interaction when integrated for r > σ ≈ R reduces this by
one third. The change in free energy due to radiation is thus

� frad = −γ 2 f0 ≈ 0.12 meV. (2.19)

For larger molecules the influence of radiation will increase due to larger molecular diameter R and
thus increasing γ .

III. ELECTROSTATIC INTERACTION

For higher densities and polarizabilities the resulting free energy will deviate from adding
contributions from pairs of particles. However, the solution of the quantized polarizable fluid is then
applicable.5, 6 By use of the path integral its solution turned out to be the one of the corresponding
classical fluid for each Matsubara frequency K. Then the mean spherical approximation (MSA)21

was used where the spatial positions of the particles were not quantized.
To sketch the solution we may merely consider the classical case which is for K = 0. This is

based upon the solution of the Ornstein-Zernike equation with MSA boundary conditions22, 23

h(12) = c(12) +
∫

ρ(s3)c(13)h(32) ds3dr3 (3.1)
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where h(12) and c(12) are the pair correlation function and the direct correlation function respectively.
Here the number i = 1, 2, 3 denote the position ri and the dipole moment si of particle i. The ρ(s3)
is the density distribution of fluctuations of the dipole moment of particle i = 3 in the harmonic
oscillator potential. Further the dipole moment of each particle is modelled as a point dipole located
at its center. With the MSA one can write

c(12) = c0(r ) + βs1s2[c�(r )�(12) + cD(r )D(12)]
(3.2)

h(12) = h0(r ) + βs1s2[h�(r )�(12) + hD(r )D(12)]

with

�(12) = ŝ1 · ŝ2; and D(12) = 3(r̂1 · ŝ2)(r̂1 · ŝ2) − ŝ1 · ŝ2. (3.3)

where the hats denote unit vectors. The MSA boundary conditions for hard spheres of unit diameter
are

c(12) = −β�(12) for r > 1
(3.4)

h(12) = −1 for r < 1

The condition on c(12), where �(12) is the pair interaction, is an approximation while the condition
on h(12) is the exact hard core condition for spheres of unit diameter. With static dipole-dipole
interaction this means

c0(r ) = 0; c�(r ) = 0; cD(r ) = 1/r3 for r > 1
(3.5)

h0(r ) = −1; h�(r ) = 0; hD(r ) = 0 for r < 1.

With the MSA it is found that the resulting density distribution is such that (ρ = ∫
ρ(s) ds)22

R0 = βρm2 = 3ρα

1 + αc�(0)
; m2 = 〈s2〉. (3.6)

In Appendix A we give more details about the solution of the above MSA problem.
In the quantum mechanical case it turned out that the solution is a straightforward extension of

the classical MSA problem above.5, 6 The main change is to extend the polarizability to non-zero
Matsubara frequencies, i.e. α → αK with αK given by Eq. (2.4) in our case. But a general αK that
represents a sum of harmonic oscillators, can be used. With this Eq. (3.6) is generalized to (with the
rescaling (2.7) for K)

RK = 3ρα

K 2 + 1 + αcK
� (0)

, (3.7)

and Eqs. (A18) and (A19) for the solution in Appendix A becomes (with c�(0) → cK
� (0) etc.)

cK
� (0) = −2κ(q(2ξ ) − q(−ξ )), ξ = π

6
κ RK ., (3.8)

q(2ξ ) − q(−ξ ) = 4π

3
RK , (3.9)

where the parameter κ is defined by Eq. (A12) and q(x) is given by Eq. (A15). These quantities are
the only ones needed in the electrostatic case at T = 0. From this one sees that

cK
� (0) = −16ξ. (3.10)

Eq. (3.9) with expressions (3.7) and then (3.10) inserted gives the required equation for the parameter
ξ = ξ (ρ, α, K).
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For the quantized polarizable fluid the total internal energy per particle ut is given by Eq. (76)
in Ref. 6 as

βρut = 3ρ
∑

K

1 + αcK
� (0)

K 2 + 1 + αcK
� (0)

(3.11)

when the replacement (2.7) for K is used. (In the reference 1/α = σ�
2ω2

0.) At T = 0 one again can
integrate, so with Eqs. (2.5) and (2.7)

ut = 3�ω0
1

π

∞∫
0

d K
1 + αcK

� (0)

K 2 + 1 + αcK
� (0)

. (3.12)

With cK
� (0) = 0 one gets the result for non-interacting oscillators (3 dimensions)

u0 = 3�ω0
1

π

∞∫
0

d K
1

K 2 + 1
= 3

2
�ω0. (3.13)

The difference gives the induced energy

u = ut − u0 = 3�ω0
1

π

∞∫
0

d K
K 2αcK

� (0)

(K 2 + 1)(K 2 + 1 + αcK
� (0))

. (3.14)

At temperature T = 0 this is also the induced free energy f = f(ρ) since the entropy vanishes at
T = 0 for quantized systems.

For general density the f must be evaluated numerically, but the low density limit may be checked
against result (2.9). From Eq. (3.10) cK

� (0) = −16ξ , and from Eqs. (A12) and (3.5) in the limit
ρ → 0 one finds κ → 1/3 as hD → cD = 1/r3, and from (3.9), (A15), and (3.7) 24ξ + · · · = (4π /3)RK

by which 16ξ → (8πρα/3)/(K2 + 1). Thus in this limit

f = u = −8ρα2
�ω0

∞∫
0

d K
K 2

(K 2 + 1)3
= −πρα2

�ω0

2
(3.15)

which is result (2.9) for spheres of unit diameter R = 1.
In Figs. 2 and 3 the induced free energy (van der Waals energy) (3.14) divided by its low density

expression (2.9) is shown as a function of density ρ and polarizability α respectively. It is seen
that this ratio decreases somewhat with respect to increasing density. This decrease is due to the
interaction via many particles by which the direct pair interaction is modified into an effective one.
The attractive part of the potential between neutral particles (e.g. the Lennard-Jones potential) is the
above van der Waals interaction. Commonly it is assumed to be constant independent of density.
Our results show that this is a reasonable approximation. Thus for the situation considered for Ar at
the end of Sec. II with α/R3 → α = 0.0485 and ρR3 → ρ = 0.82, one from Figs. 2 or 3 finds the
change �f in the van der Waals interaction f compared to its low density value f0 to be

� f = f − f0 ≈ −0.03 f0 ≈ 2 meV. (3.16)

It can be noted that our numerical results below are limited to α = 1/8 since for larger α the MSA
solution will fail to be unique. This value may reflect an instability of “close-packed” clusters in the
fluid. The Clausius-Mosotti relation for the dielectric constant ε on a regular cubic lattice would give
(ε − 1)/(ε + 2) = (4π /3)ρα = 1 for ρ = 6/π when α = 1/8, i.e. ε → ∞. Thus our results may cover
realistic values of α for fluids. (In SI units the limiting value α/R3 → α = 1/8 corresponds to the
polarizability αSI = 4πε0α = (π /2)ε0R3, where ε0 is the permittivity of vacuum). Also our results
cover densities of interest for fluids below close packing of hard spheres. The dielectric constant
of the MSA fluid itself is given by ε = q(2ξ )/q(−ξ ) (K = 0).22, 24, 25 The problem with larger α is
connected to the properties of Eqs. (3.6) and (3.10) where one notes that R0 → ∞ for ξ < 1/2 when
α > 1/8. On the other hand the R0 of Eq. (A19) in Appendix A is finite for ξ < 1/2 with q(2ξ )
defined by Eq. (A15).
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FIG. 2. Induced free energy (van der Waals energy) per particle f = f(ρ) = u in the electrostatic case as given by Eq. (3.14)
divided by the low density limit f0 = f(0) given by Eq. (2.9) (or Eq. (3.15) where R = 1) as function of dimensionless density
ρR3 → ρ. The curves are for various values of the dimensionless polarizability α/R3 → α (in Gaussian units). In SI units the
polarizability will be αSI = 4πε0α → 4πε0R3α where ε0 = 8.85 · 10−12 As/(Vm) is the permittivity of vacuum.

FIG. 3. Same as Fig. 2, but as function of polarizability α/R3 → α for various values of density ρR3 → ρ.

IV. RADIATING INTERACTIONS

The quantum mechanical problem can be extended to time-dependent interactions as mentioned
before. Within the MSA the problem again turns out to be solvable in terms of a simple fluid problem,
i.e. hard spheres with added interaction of Yukawa form where also an analytic solution has been
worked out. The c(12) and h(12) can still be written in the form (3.2), but the c�(r ) and cD(r) will
change.24, 25 The radiating dipole-dipole interaction is a solution of Maxwell’s equations, and with
Eq. (5.10) of Ref. 9, one now instead of Eq. (3.5) will have26

c�(r ) = −2

3
z2 e−zr

r
; cD(r ) = e−zr

r3

(
1 + zr + 1

3
(zr )2

)
, r > 1 (4.1)

where z is given by Eq. (2.8) and r/R → r such that again hard spheres of unit diameter are considered.
(By a misprint the ψ�K = −c� has wrong sign in Ref. 9. As commented below Eq. (2.3) its K should
have opposite sign too.) Like the static dipole-dipole interaction defined through Eqs. (3.2)–(3.5), the
radiating one defined through Eqs. (3.2)-(3.4) is an interaction between pairs of particles. Radiation
means exchange of energy between particles. But like the situation for one pair of particles in
Sec. II such exchange does not enter evaluations at thermal equilibrium.
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Now we apply transformation (A10) in Appendix A to the new cD to obtain

ĉD(r ) = 1

3
z2 e−zr

r
for r > 1. (4.2)

It can be noted that the Yukawa form of ĉD(r ) is an exact transformation of the radiating dipole-dipole
interaction. Thus it does not serve as an approximation in the present case contrary to the typical
situation by other applications in the statistical mechanics of fluids.

The definition (A12) of κ will remain. But with c̃1 and c̃2 given by Eq. (A8) the boundary
conditions (A13) are modified into

ĉ1(r ) = 0 and ĉ2(r ) = −1

3
z2 e−zr

r
for r > 1,

(4.3)
ĥ1(r ) = −2κ and ĥ2(r ) = κ for r < 1.

One can note that ĉ1 is unchanged. It corresponds to the longitudinal part of the dipolar interaction,
i.e. the J1 term of Eq. (A5), while ĉ2 may be related to radiation of transverse waves, i.e. the J2

term. Again transformation (A14) in Appendix A is performed, and for C1 one has the same PY
problem as before while for C2 one will get an MSA problem with one Yukawa term with boundary
conditions (for density −κRK)

C2(r ) = Kyez e−zr

r
, Ky = z2

3κ
e−z for r > 1,

(4.4)
H2(r ) = −1 for r < 1.

For q1 = q(2ξ ) the solution will be given by Eq. (A15) as before, but the q2 is replaced by a below.
As found by Waisman the C2(r) will have the following form for r < 127, 28

− C2(r ) = a + br + 1

2
xar3 + v

1 − e−zr

zr
+ v2 cosh zr − 1

2r Kyz2ez
(4.5)

with x = (π /6)n2 where n2 is number density. For the coefficients a and v one has the relations

a = a(x) = 1 − n2C̃2(0)

v = v(x) = 24x Kyez

∞∫
1

re−zr g(r ) dr (4.6)

where g(r) = H2(r) + 1. Further from Eq. (4.5) one finds

− C2(0) = a + v (4.7)

The integral for v is proportional to the internal energy of the Yukawa fluid, and for low density
and in the mean field limit z → 0 one finds with expression (4.4) inserted and with x = −ξ

v = 24x Ky
1 + z

z2
→ −8ξ

(1 + z)e−z

κ
= −4π

3
RK (1 − 1

2
z2 + · · ·). (4.8)

With expression (4.1) for cD(r) one now will find from transformation (A10) that

c̃D(0) = 0 (4.9)

instead of Eq. (A19) with the consequence that Eq. (3.9) now turns into

q(2ξ ) − a(−ξ ) = 0. (4.10)

This seems to be a discontinuous change of the equation, but it is not so. To see that one can take
the z → 0 limit for which Eq. (4.8) gives v → −(4π/3)RK . In the electrostatic case with z = 0
the ĉD(r ) of Eq. (4.2) vanishes by which the v of Eq. (4.6) will vanish too. However, the −C2(0)
= q(− ξ ) will have the limiting value of Eq. (4.7). Thus a + v → q(−ξ ), (z → 0). With this
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Eq. (4.10) becomes Eq. (3.9) in the limit z → 0, and the discontinuity is avoided. Further, with use of
Eq. (4.10), Eq. (3.8) will be modified to

cK
� (0) = 2κ(C1(0) − C2(0)) = −2κ(q(2ξ ) − (a(−ξ ) + v(−ξ )) = 2κv(−ξ ) (4.11)

while Eq. (3.7) will remain unchanged.
Eq. (4.10) will be the equation to be solved for ξ . This is done together with Eq. (3.7) where

Eq. (4.11) is inserted. Then the solution for a and v for the one Yukawa fluid problem is needed.
Simplified expressions for this solution were worked out by Høye and Stell.28 These expressions are
used, and those needed here are given in Appendix B. Together they give a relation that are solved
numerically with respect to the unknown parameter a ( = a( − ξ )). Then “reduced density” x = −ξ

is assumed known. As shown in Appendix B the other quantities of interest can all be expressed
explicitly in terms of a and ξ . With known a Eq. (4.10) may again be solved with respect to ξ in an
iteration procedure.

When radiation is included expression (3.11) for the internal energy will be modified. The
reason is the temperature dependence of the transformed interaction (4.3) outside the hard core.
Thus we must turn to the free energy expression which is still valid. For the total free energy per
particle ft we can write

− βρ ft = I0 +
∑

K

(
I R

K + IK
)

(4.12)

where from Eqs. (66), (67), and (64) of the Ref. 6 one has (with σ�
2ω2

0 = 1/α)

I R
K = 3

2
ρ ln

(
σ RK

3ρη2

)
+ 1

2
RK cK

� (0), (4.13)

IK = −1

2

1

(2π )3

∫ {
ln

[
1 − RK c̃K

1 (k)
] + 2 ln

[
1 − RK c̃K

2 (k)
]}

dk − 1

2
RK cK

� (0). (4.14)

Here I R
K is the contribution from the reference system (with a modified RK due to pair interactions)

while IK is the perturbation. To obtain expression (4.13) correctly the path integral was discretized
such that

β = Nη, K = 2πn/β, n = 0, 1, 2 · · · , N − 1, (4.15)

and the limit N → ∞ (η → 0) was considered. The I0 is merely hard spheres alone and will not
contribute to the configurational internal energy as classical kinetic energy may be disregarded in
this connection.

Again for T = 0 it is convenient to consider the expression for the internal energy ut

βρut = −
∑

K

(I R
Kβ + IKβ), I R

Kβ = β
∂ I R

K

∂β
, IKβ = β

∂ IK

∂β
. (4.16)

Now with expression (4.15) one has

β
∂

∂β
= −K

∂

∂K
= η

∂

∂η
. (4.17)

Further with Eq. (3.7) one can put RK cK
� (0) = 3ρ − RK (K 2 + 1)/α for the last term of expression

(4.13). With this substitution one will find that the partial differentiation with respect to RK will
vanish and thus will not contribute to ut. This reflects the method used to differentiate the free energy
in Ref. 6 where the density distribution ρ({sn}) of polymer configurations is considered constant (as
it should) by differentiation with respect to temperature. (Here RK/η is the corresponding quantity
to be kept constant in this respect, according to its definition given by Eq. (47) of Ref. 6.) With this
we find

− I R
Kβ = 3ρ − 1

α
K 2 RK = 3ρ

1 + αcK
� (0)

K 2 + 1 + αcK
� (0)

, (4.18)
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− IKβ = 1

2

1

(2π )3)

{∫
RK K ∂

∂K c̃K
1 (k)

1 − RK c̃K
1 (k)

dk + 2
∫

RK K ∂
∂K c̃K

2 (k)

1 − RK c̃K
2 (k)

dk

}
− 1

2
RK K

∂

∂K
cK
� (0).

(4.19)
When Eq. (4.18) alone is inserted in Eq. (4.16) the static result (3.11) is recovered in full. The reason
for this is that here RK is kept fixed by differentiation instead of RK/η by which a contribution has
moved from IKβ to I R

Kβ . (If differentiation with respect to RK had been included, one would get the
integral

∫
[h̃1(k) + 2h̃2(k)] dk = 0 with use of Eq. (A9) and the core condition (A13) (ĉi (r ) → ĉK

i (r )
etc.). Now one can write (i = 1, 2)

RK

1 − RK c̃K
i (k)

= RK + R2
K h̃K

i (k). (4.20)

Inserted in the integrals of Eq. (4.19) the RK term of Eq. (4.20) will give a common term multiplied
with (cf. Eq. (A18))

ĉK
1 (0) + 2ĉK

2 (0) = cK
� (0) (4.21)

which will cancel its last term. Integration in k-space can be replaced with integration in r-space,
and we are left with

− IKβ = 1

2
R2

K

[∫
ĥK

1 (r )K
∂

∂K
ĉK

1 (r ) dr + 2
∫

ĥK
2 (r )K

∂

∂K
ĉK

2 (r ) dr
]

. (4.22)

With boundary condition (4.3) on ĥi (r ) the sum of integrals would vanish if ĉ2(r ) like ĉ1(r ) were
non-zero only for r < 1 since Eq. (A8) and condition (4.9) implies c̃1(0) − c̃2(0) = 0. Thus the
net result is that only the part of ĉK

2 (r ) for r > 1, where h̃K
2 (r ) deviates from its core condition,

contributes to Eq. (4.22). So we get

− IKβ = R2
K

∫
r>1

[−κ + ĥK
2 (r )

]
K

∂

∂K
ĉK

2 (r ) dr. (4.23)

For small z the first term is the leading one. Also in the low density limit ĥ2(k) → ĉ2(k) by which
simple explicit expressions can be obtained. However, the Fourier transform h̃2(k) may be utilized
to evaluate the last integral more generally.29 A simpler method would be to evaluate the Laplace
transform of r [−κ + ĥ2(r )] (i.e. of r[H2(r) + 1]) and its derivative29 since with Eqs. (2.8) and (4.3)

K
∂

∂K
ĉK

2 (r ) = z
∂

∂z
ĉK

2 (r ) = −2

3
z2 e−zr

r
+ 1

3
z3e−zr . (4.24)

However, for simplicity we here will use ĥ2(r ) = ĉ2(r ) for all densities as z will be considered small,
and we find

−IKβ = 4π R2
K

⎡
⎣−κz

∂

∂z

∫
r>1

cK
2 (r )r2 dr + 1

2
z

∂

∂z

∫
r>1

(cK
2 (r ))2r2 dr

⎤
⎦

= 4π R2
K

[
−1

3
κz2e−z + 1

36
(3z3 − 2z4)e−2z

]
(4.25)

where κ follows from its relation (3.8) to ξ and Rk. Again for non-interacting oscillators one has
cK
� (0) = 0 (and IKβ = 0) with contribution u0 given by Eq. (3.13). When subtracting this from

contribution (4.18) expression (3.14) for the static case is recovered. By including expression (4.25)
to this the induced energy u and thus the induced free energy f is obtained

f = u = ut − u0 = �ω0

πρ

∞∫
0

[
3ρK 2αcK

� (0)

(K 2 + 1)(K 2 + 1 + αcK
� (0))

− IKβ

]
d K . (4.26)

It is of interest to show that the low density limit of this coincides with the Casimir energy. This is
verified in Appendix C.
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FIG. 4. Induced free energy (Casimir) per particle f = f(ρ) = u with radiating interaction as given by Eq. (4.26) divided by
the low density limit f0 given by (2.9) (electrostatic case) as function of density. The curves for different polarizabilities α

are for dimensionless wavelength λ = 2π /(ω0R) = 100.

FIG. 5. The same as Fig. 4 for λ = 20.

In Figs. 4 and 5 the induced free energy (Casimir energy) (4.26) divided by the low density
value (2.9) (static case) is shown as function of density for λ = 2π /γ = 2πc/(ω0R) = 100 and
λ = 20 respectively. When compared with the electrostatic case (γ = 0) shown in Fig. 2 one sees a
small change due to radiation effects.

In Figs. 6 and 7 the small difference �f between the Casimir energy (4.26) and the van der Waals
energy (3.14) divided by f0 given by Eq. (2.9) is shown for different values of λ. A notable feature of
this difference relative to f0 is that it is almost independent of density and polarizability. This was not
expected. However, by further considerations it seems to us that the physical interpretation of this
unexpected independence can be understood from Eq. (2.11) where Eq. (2.12) is the perturbation
from radiation. As commented below the latter equation, the largest correction from radiation
comes from separations where particles are close to each other. In this way the influence from
correlations with surrounding particles further away becomes small, and the correction becomes
mainly the contribution from the direct sum of all separate pairs of particles like it is for low density.
The counterintuitive aspect of this is that the relative influence from radiation upon the induced
interaction dominates for large separations; but since the interaction decays rapidly with increasing
separation anyway, this has little influence upon the resulting energy when integrated.

For the situation with liquid Ar considered at the end of Sec. II the correction from radiation
can be read off from Figs. 6 or 7. As the relative change in free energy is almost independent of ρ
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FIG. 6. The difference �f between the induced Casimir free energy given by Eq. (4.26) and the van der Waals energy
given by Eq. (3.14) divided by f0 given by Eq. (2.9) as function of dimensionless density. The curves for different values of
λ = 2π /(ω0R) are for dimensionless polarizability α = 0.075. A notable feature of these curves is that there is almost no
dependence upon α.

FIG. 7. The same as Fig. 6, but now as function of polarizability α for density ρ = 0.5.

and α, it remains essentially the same as already found at the end of that section for λ ≈ 150 where
�frad = 0.12 meV was found.

V. SUMMARY

We have studied corrections from radiation for a simplified fluid model consisting of hard
spheres with fluctuating dipole moments located at their centers. The fluctuating dipole moments are
quantized as harmonic oscillators. First the well established Casimir interaction between a pair of
particles is studied. Its electrostatic limit is the induced van der Waals interaction. For low density of
particles the contribution to the energy of the fluid is obtained by averaging the Casimir energy over
particle positions. The influence of radiation or retardation effects depends upon the ratio of the hard
sphere diameter and the characteristic wavelength of the electromagnetic radiation at the harmonic
oscillator eigenfrequency. Then general fluid density is considered for the electrostatic case, and
changes in the van der Waals interaction are found. The fluid model used, is the quantized polarizable
fluid evaluated by a method based upon classical statistical mechanics. Finally radiation effects are
taken into account by further extension of the polarizable fluid model. Results are presented in
Figs. 1–7. As a general feature we find that the average van der Waals interaction per pair of particles
decreases slightly with increasing particle density. Radiation effects are small, but will increase in
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magnitude for increasing particle size relative to characteristic wavelength of radiation. As a specific
example, numerical values are found for Ar in liquid state.

APPENDIX A: SOLUTION STATIC CASE

The classical polarizable fluid may be regarded as a polar fluid with (fixed) dipole moment m.
With this Eq. (3.1) can be written (with ρ(s3) → ρ)

h(12) = c(12) + ρ

∫
c(13) ∗ h(32) dr3 (A1)

where * denotes the remaining integration over orientations of the dipole moment. Its Fourier
transform is

h̃(12) = c̃(12) + ρc̃(13) ∗ h̃(32) (A2)

where the tilde denotes Fourier transform. We can write

c̃(12) = c̃0 + βm2(c̃�� + c̃D D)

h̃(12) = h̃0 + βm2(h̃�� + h̃D D) (A3)

where c̃� = c̃�(k) etc. with Fourier variable k. The � = �(12) as given by Eq. (3.3) and

D = D̃(12) = 3(k̂1ŝ2)(k̂1ŝ2) − ŝ1ŝ2. (A4)

The c0 and h0 represent the reference system hard spheres and do not couple to the remaining
terms by solution. The remaining terms decouple by introduction of24, 25

J1 = D + � and J2 = 2� − D (A5)

by which (J1J1 = J1*J1 etc.)

J1 J1 = J1; J2 J2 = J2; J1 J2 = 0. (A6)

Then we have

c̃ = c̃0 + c̃1 J1 + c̃2 J2

(A7)
h̃ = h̃0 + h̃1 J1 + h̃2 J2

where

c̃1 = (c̃� + 2c̃D)/3; c̃� = c̃1 + 2c̃2

(A8)
c̃2 = (c̃� − c̃D)/3; c̃D = c̃1 − c̃2

with similar expressions for h̃1 and h̃2. With this the Ornstein-Zernike equation (A2) separates into
the following equations (besides the one for c̃0 and h̃0)

h̃1 = c̃1 + R0c̃1h̃1

(A9)
h̃2 = c̃2 + R0c̃2h̃2

where R0 = βρm2 as given by Eq. (3.6). With this the angular dependence has disappeared such
that the c̃D and h̃D can be regarded as Fourier transforms of functions of spherical symmetry. These
functions to be denoted by hats are obtained by the transform (c → cD, hD)24, 25

ĉ(r ) = c(r ) − 3

∞∫
r

c(r ′)r ′−1 dr ′

(A10)

c(r ) = ĉ(r ) − 3

r3

r∫
0

ĉ(r ′)r ′2 dr ′.
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Then boundary conditions (3.5) imply

ĉD(r ) = 0, r > 1
(A11)

ĥD(r ) = −3κ, r < 1

where

κ =
∞∫

1

hD(r )r−1 dr. (A12)

Thus with this and Eqs. (3.5) and (A8) the boundary conditions become

ĉ1(r ) = 0 and ĉ2(r ) = 0 for r > 1
(A13)

ĥ1(r ) = −2κ and ĥ2(r ) = κ for r < 1.

With a final transformation

ĥ1 = 2κ H1; ĉ1 = 2κC1
(A14)

ĥ2 = −κ H2; ĉ2 = −κC2

one obtains Ornstein-Zernike equations with the boundary conditions for hard spheres, the Percus-
Yevick (PY) approximation, for two cases with densities 2κR0 and −κR0 respectively.

From the solution of the hard spheres PY problem30 one finds6, 24, 25

1 − ni C̃i (0) = qi , (i = 1, 2)
(A15)

qi = q(xi ) = (1 + 2xi )2

(1 − xi )4
, xi = π

6
ni

with number densities

n1 = 2κ R0 and n2 = −κ R0. (A16)

Further for hard spheres28, 30

− Ci (0) = qi (A17)

from which with use of Eqs. (A8) and (A14) one obtains

c�(0) = ĉ1(0) + 2ĉ2(0) = −2κ(q1(2ξ ) − q2(−ξ )), ξ = π

6
κ R0. (A18)

From the Fourier transform of cD(r) (→ 1/r3, r → ∞) or by use of transformation (A10) one
finds

c̃D(0) = −4π

3
.

Together with Eqs. (A8), (A14), and (A15) this gives R0c̃D(0) = 2κ R0C̃1(0) − (−κ R0)C̃2(0) or

q(2ξ ) − q(−ξ ) = 4π

3
R0. (A19)

APPENDIX B: SOLUTION RADIATING CASE

To obtain the solution of the one Yukawa problem with boundary condition (4.4) auxiliary
quantities U0 and U1 are found. Eq. (2.31) of Ref. 28 then gives for U0

U0 + A − p = 1

2

(
−p − z

√
A +

√
p2 + 2pz

√
A + z2 p

)
(B1)

A = (1 − x)2a; p = (1 − x)2q(x) =
(

1 + 2x

1 − x

)2

.
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Further its Eqs. (2.24) and (2.26) give for U1

U1 = (2 − √
p)U0 − �

2
√

p � = (U0 + A − p)(U0 + A) + 1

4
z2(p − A). (B2)

With this the connection between a and Ky is given by its Eq. (2.38) as

Ky = z2

6x(z + 2)2

[
σ − τ y

(σ − τ )y

]2

U0 (B3)

where from its Eqs. (2.35) and (2.36)

σ = 1

2z

[
z − 2

z + 2
+ e−z

]
; τ = 1

2z

[
z2 + 2z − 4

z2 + 2z + 4
+ e−z

]
(B4)

y = 4 + 2z − z2

2(2 + z)

U0

U1
. (B5)

However, Ky depends upon κ , but with expressions (3.8) for ξ and (4.4) for Ky one notes that

6ξ Ky = π

3
z2e−z RK . (B6)

Further expression (4.11) for cK
� (0) is to be inserted in expression (3.7) for RK. Then the quantity

v(−ξ ) is needed, and Eq. (2.37) of the reference gives

v = v(x) = Ky
1 − y

σ − τ y
. (B7)

Eq. (B3) with Eqs. (B1), (B2), and (B4)–(B6) inserted for fixed x = −ξ gives the relation that
can be solved numerically with respect to a = a(− ξ ). This is then used in Eq. (4.10) to obtain ξ

by iterations. (Also Eq. (4.10) may be solved explicitly as ξ = ξ (a) by which a will be the only
parameter to solve for.)

For small Ky → 0 (A → p, U0 → 0) one may utilize a more transparent linearized version by
which numerical solution of Eq. (B3) is avoided. The solution for this situation may be used as input
for the non-linear case. Then Eq. (2.42) of Ref. 28 or Eqs. (B1) and (B2) above give a fixed ratio

U1

U0
= 2 − √

p −
1
4 z2

√
p + 1

2 z
(B8)

to be used in Eq. (B7) via Eq. (B5) to determine v. Further its Eq. (2.39) or Eq. (B1) determine a
since then

A − p = −
[

1 −
1
4 z2

(
√

p + 1
2 z)2

]
U0 (B9)

where with known Ky and v the U0 follows from Eq. (2.34) of the reference as

U0 = 6ξ Ky

(
z + 2

z

)2 (
1 − σ

v

Ky

)2

. (B10)

With this the a(− ξ ) is obtained by use of Eqs. (B8), (B5), (B7), and (B10) in Eq. (B9). This is
further inserted in Eq. (4.10) to be solved numerically with respect to ξ .
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APPENDIX C: LOW DENSITY LIMIT

In the low density limit one finds from Eq. (3.7) RK → 3ρα/(K2 + 1), and a partial integration
can be performed on the first part of integral (4.26) for the induced free energy to obtain

f = �ω0

πρ

∞∫
0

{
1

4
R2

K

[
cK
� (0)

RK
+ K

∂

∂K

(
cK
� (0)

RK

)]
− IKβ

}
d K . (C1)

Then low density values of κ and c�(0) are needed. The κ is most easily obtained from its definition
(A12), and with hD(r) → cD(r) expression (4.1) gives

κ = 1

3
(1 + z)e−z . (C2)

Likewise cK
� (0) given by Eq. (4.11) is most easily obtained via definition (4.6) of v. Then H2(r)

→ C2(r) with C2(r) given by Eq. (4.4), and we find

v = v(−ξ ) = −24ξ

(
Ky

1 + z

z2
+ K 2

y

1

2z

)
= −24ξ

(
(1 + z)e−z

3κ
+ z3e−2z

18κ2

)
. (C3)

Thus with Eqs. (3.8), (4.11), (C2), and (C3)

cK
� (0)

RK
= πκ2κv(−ξ )

6ξ
= −4π

9
[2(1 + z)2 + z3]e−2z, (C4)

z
∂

∂z

(
c�(0)

RK

)
= 4π

9
z2(4 + z + 2z2)e−2z . (C5)

With expression (C2) for κ inserted in Eq. (4.25) and then compared with expression (C5), one finds
that the last two terms of integral (C1) cancels. Then expression (C4) is inserted in its first term to
obtain

f = −�ω0

9ρ

∞∫
0

R2
K [2(1 + z)2 + z3]e−2z d K (C6)

which is the low density Casimir free energy (2.6) (with R = 1).
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