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Abstract—In polar region operations, drift sea ice
positioning and tracking is useful for both scien-
tific and safety reasons. Modeling ice movements has
proven difficult, not least due to the lack of informa-
tion of currents and winds of high enough resolution.
Thus, observations of drift ice is essential to an up-to-
date ice-tracking estimate.
Recent years have seen the rise of Unmanned Aerial

Systems (UAS) as a platform for geoobservation, and
so too for the tracking of sea ice. Being a mobile
platform, the research on UAS path-planning is ex-
tensive and usually involves an objective-function to
minimize. For the purpose of observation however, the
objective-function typically changes as observations
are made along the path.
Further, the general problem involves multiple UAS

and — in the case of sea ice tracking — vast geograph-
ical areas.
In this paper we discuss the architectural outline of a

system capable of fusing data from multiple sources —
UAS’s and others — as well as incorporating that data
for both path-planning, sea ice movement prediction
and target initialization. The system contains tracking
of sea ice objects, situation map logic and is expand-
able as discussed with path-planning capabilities for
closing the loop of optimizing paths for information
acquisition.

I. Introduction
Drift sea ice is a major limiting factor in regions with

Arctic conditions, often restricting the operational season
to a few months of the year [8]. Ice Management is the
field encompassing all activities to reduce or avoid impact
from ice features [4]. In general terms, this includes
detection, tracking and forecasting of ice features but
also the threat evaluation and the physical management
of breaking or towing ice objects [4]. Traditionally, ship-
mounted radars and visual detection from e.g. manned
flights [1] have been used to detect potential threats, to
aid in the manual decision process to launch countermea-
sures [4, 22]. Also, in severely ice-plagued operations, ice-
breakers have used to pre-emptively break down large
upstream icefloes to managable pieces [15].

Recent years have seen increased availability of new
types of sensor platforms — autonomous unmanned
systems under [Autonomous Underwater Vehicle, AUV]
and over [Unmanned Aerial System, UAS] water [7] —
capable of aiding in the situation awareness of the oper-
ation. Not only is this new class of platforms capable of
operating with greater availability than previous sensors,
but potentially also at a reduced cost.
With a limited field-of-view, sensors rely on moving

to cover larger areas. Whereas traditionally sensors can
be attached to man-controlled vessels, the development
of autonomy for these sensors involve the automated
planning of new routes [2, 13] through which the carrier
should follow autonomously to aquire relevant sensor
data. As data is acquired, the planning relies on the
feedback of findings into the consideration of route re-
planning. This has also been studied for single-uas opti-
mal control in e.g. [13]. In [13], the proposed framework is
an optimal-control scheme generating uas intermediate-
level guidance, whereas the proposed approach in this
article is to provide high-level agent-generic paths which,
for each agent, can be converted locally to low-level
control signals. Further, ice tracking and path planning
using occupancy grids have been explored in e.g. [6, 10].
In Figure 1, an outline is presented with the overview of

a system for the continuous intergration of sensor input
and situation awareness into the optimization problem
of assigning sensor paths which maximize the utility of
each sensor. As reflected in Figure 1, the general tracking
problem formulation is that of multi-agent, multi-target
tracking. On a sensor level, expanded upon in Section II,
many senors of varying types can contribute to the full
image of the situation.
In our proposed architecture, the data from each sensor

is fed into a central controller — see Section III — which
summarizes the information for both user presentation
and optimization of paths for future data acquisition. For
this purpose, we also discuss — in Section III-B — the
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Figure 1: System overview

components available to form an optimization criterion
to use in the problem of path planning. Partial results
are presented in Section IV, followed by a discussion of
past and expected results in Section V.

II. Sensor Level
A wide variety of sensors can be of use in the process

of detecting and tracking sea ice, and a comprehensive
summary can be found in [7]. Sensors with varying field-
of-views are, often without distinction, considered to be
attached to a carrier — a movable sensor platform, such
as a ship or a UAS. One way to categorize the sensors
and sensor platforms is as
stationary sensors with known, fixed position and

field-of-view, such as ground-based radar;
traceable sensors with known but not fixed position

and field-of-view, albeit not controlable, such as
satellites;

controllable sensors with known position and field-
of-view, with the possibility to command to new
locations, such as UAS’s.

Whereas all above types of sensors are compatible with
the system in Figure 1, the feedback from the sensors of
the system can only be applied to controllable sensors.

Each sensor has different ways of measuring the pres-
ence of ice, and a sensor platform can be equipped with
several types of sensors simultaneously. In the example
of Figure 2, detections are extracted from infrared im-

agery [14]. Each type of detection has unique charac-
teristics in terms of e.g. noise and error covariance [5].
For the purpose of forming a generic situation awareness
map, it is desirable to standardize the method of report-
ing measurements even though this will lead to loss of
information e.g. due to coordinate transforms [5].
Other considerations for the sensor–controller interface

involve the inclusion of other properties of the ice, such
as — as available in imaging sensors — Hu moments [9]
of each detection.

III. Centralized Controller

In the proposed architecture, from Figure 1, sensor re-
ports are fed to a central controller, with responsibility for
data fusion, situation map and high-level path planning.

A. Data Fusion
The first role of this controller is the fusing of the

information from all sensor sources into a combined map
of ice objects and ice coverage. The bounds of this map
are not necessarily defined, but can span the entire globe
with varying resolution. This means consideration has
to be taken to the scalability of the map and to the
algorithms employed. Sea ice coverage mapping can be
performed using occupancy grids [14] whereas identifi-
able individual objects are tracked with sparse target
tracking [7, 16, 17, 19]. In the former case, scalability
can be achieved through variable resolution, whereas in



Figure 2: Detections of ice can be extracted from infrared imagery from UAS-carried cameras. Left: Raw thermal
image; Middle: Enhanced features; Right: Segmented detected sea ice [14]. Image courtesy of Frederik S. Leira.

(a) Tracks after 2 h. (b) Tracks after 4 h. (c) Tracks after 7 h.

Figure 3: Drift ice tracks over time, showing the land mask in blue and stationary detections in green. Tracks and
targets retain an individual randomly assigned color over time.

the latter, objects can be stored in efficient datastruc-
tures [16, 17] to limit the number of objects involved in
each update. An example result of the data fusion, from
[19], is found in Figure 3.

Each choice of map coordinate system will have its ad-
vantages and drawbacks due to nonlinearities and discon-
tinuities. As ice tracking is constrained to the water sur-
face, our coordinate system of choice for global tracking
is by latitude/longitude/altitude — LaLoA. Since the
problem is constrained to the sea surface, this naturally
devolves to a two-dimensional latitude/longitude system.

B. Situation Map

Another role of the central controller is to form what
we call a situation map. The map of tracked objects in
Section III-A is one of the components of this map; other
examples include
• sensor locations;
• traffic information;
• weather conditions; and
• information quality.
The main objective of the proposed system is to pro-

vide good situational awareness of where the relevant ice
objects in the region are, as well as where there are no
ice objects. To achieve this the objective function should

reward paths resulting in large amounts of high-quality
information.
The tracks from the centralized tracking algorithm

naturally provide information on where the sea ice is as
well as measurements of the quality of that information.
This could directly be used to build an information
quality map. However, a disadvantage of only considering
the resulting tracks is that no information is available to
discern whether an area is empty or simply unobserved —
a lack of detections in a region also provides information
on the situation that should be incorporated into the
map. One aspect that is handled by the tracking algo-
rithm naturally is that information degrades over time.
This approach was studied in [18] for the uncertainties of
currents and winds from ice observations.
Another option is to bypass the information quality

obtained from the tracking algorithm and directly con-
sider the information obtained by the sensors. This is
done in [20] where the information in each point over a
grid is estimated using a large number of extended infor-
mation filters. This can be rather costly for large high-
resolution grids, but naturally handles the information
resulting from no detections. In this approach, forgetting
of information over time needs to be handled explicitly. A
relevant issue for both approaches is also discussed in [20]
regarding the conversion of information on matrix form



(a) Using the data from the mtt
tracker, we use Gaussian fields to
estimate both the velocity field in
an image as well as its estimated
model covariance (ranging from
red (high) to green (low)).

(b) The information map is deter-
mined by the trace of the Gaussian
field velocity covariance in each
point

(c) The data in 4b can also be
interpreted as a 3D landscape to
be navigated (z-axis is inverted).

Figure 4: The objective function used for path planning can be constructed from different information metrics
depending on the optimization objective. One such objective is the determination of a resulting velocity-field from
currents and wind.

to a comparable estimate on scalar form.
Weather and oceanic conditions (metocean data) can

be incorporated into the situation map in order to allow
the motion planner to for example account for winds, and
to avoid hazardous situations for the vehicles. In Arctic
conditions, icing and severe winds is a real problem which
need to be managed either through mitigation, as in e.g.
[21] or the cancellation of flight operations.

In addition to the awareness of the physical properties
in an area, the situation map should also take into
account user priorities. This can be provided either by
an operator or by some other source, such as traffic
information. For example, it is more useful to have high-
quality information in regions with heavy traffic than in
those in lack of human activity. Besides constructing the
information used by the subsequent agent path planner,
the same data can be used to create other situation maps,
tuned for example for presentation to operators.

C. Path Planning

Since uass are mobile sensor platforms they need to be
controlled. Control of an aircraft is a multi-level control
problem, and whereas low-level control is assumed to be
handled locally by each agent, the situation awareness of
the centralized controller can be used to provide each uas
with a path to follow. This path could in the simple case
be a pre-determined route to scout along, but in the more
advanced case, feedback control for the data acquisition
is possible.

The main objective of the proposed system is to pro-
vide good situational awareness of the relevant ice objects
in the region, as well as where there are no ice objects. To
achieve this the objective function should reward paths
resulting in large amounts of high-quality information.
An estimate of this quantity, given the path, can be

obtained using the information quality map discussed in
Section III-B.
Formulations and solutions to problems of this form are

discussed in [20], including constraints such as dynamics
of the vehicles and field of view. A concern with the solver
algorithm used in [20], namely receding horizon, is that
it quickly becomes very costly. Mitigating solutions often
include finding sub-optimal paths by reducing the time
horizon. Other methods, such as Multiple-shooting meth-
ods [3] and Rapidly-exploring Random Trees (RRT) [11,
12] should also be considered.
A path planner generally generates paths for its agents

by trying to optimize an objective function, and the
natural approach is to propose a function of the maps
discussed in Section III-B by weighted summation. In
general, the local value can then be calculated as

m (x) =
∑

i

wi (x) mi (x). (1)

for information maps mi (x) and weights wi (x) evaluated
at position x.
This equation yields a two-dimensional landscape —

exemplified in Figure 4 with estimated velocity covariance
in ice flows — which can be navigated to find an optimal
path. Note that actually following the path will yield
information which possibly warrants re-planning.
Further, note that (1) implies that to form a two-

dimensional map {m (x)}x∈X over region X, information
is only needed from the individual maps {mi (x)}x∈X ,
i.e. the cut-outs from the same region of each map. This
means that we can partition the map into independent
parts, for example assigning different areas to different
groups of agents.
Besides from optimizing the objective function, the

optimization routine should also take into account the
limitations of the problem, such as maximum total



(remaining) range of an agent. In the path-planning,
multiple agents can be planned for simultaneously, to
collaborate towards a common goal.

The path-planning described in this section constitutes
future work in terms of the implementation of the system
of Figure 1.

IV. Results
Partial results of the different subsystems have been

published previously in [17–19], but are recapitulated
here as a descriptive example of the accomplished work.

In [17, 19], we introduced the spatially indexed Labeled
Multi-Bernoulli (lmb) filter for scalable tracking of sea
ice. The lmb implementation was used to track the ice
movements in Kongsfjorden, Svalbard, over a period of
seven hours, with scans delivered every three minutes. In
Figure 3, we see the tracks of tracked ice objects build
up over time.

The stationary sea ice, shown in green, changes only
slightly over the course of the experiment, suggesting it
would remain largely undetected if treated as drift ice.
The detections of drift ice, shown in red, suffer many false
alarms, but the lmb filter manages to confirm the targets,
shown as ellipses, and maintain their tracks, shown as
lines, over large stretches of water.

In [18], these results were expanded upon to generate
Gaussian field-maps of the estimated winds and currents,
as in Figure 4a.

V. Conclusion
In this paper we discuss the high-level design of an ice

management system capable of feeding back the infor-
mation it collects to the optimization of paths for future
data acquisition. The principle is based on a feedback
loop with high-level paths as the interface to the moving
agents. Since all the components of the proposed system
can be partitioned, it is believed to be well suited for
scaling up to the geographical expanse that is the Arctic.
Further, a standardized sensor interface is discussed to
accomodate a range of available sensors. While path-
planning has yet to be implemented to close the loop in
a true system, several algorithms have been mentioned
- and several others exist - to solve the multi-agent
planning problem at hand.

In previous papers, the implementation of various of
the other subsystems have been discussed, and in this
paper we wish to put them all into context and perspec-
tive of the greater goal. In continued work, we expect
to move further towards closing the loop through further
consideration of scalable metrics for information quality,
as well as applying path-planning algorithms to the posed
problem in a scaled-up scenario.
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