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ABSTRACT

The bottom friction beneath random waves is predicted taking into account the effect of
seepage flow. This is achieved by using wave friction factors for rough turbulent, smooth
turbulent and laminar flow valid for regular waves together with a modified Shields parameter
which includes the effect of seepage flow. Examples using data typical to field conditions are
included to illustrate the approach. The analytical results can be used to make assessment of
seepage effects on the bottom friction based on available wave statistics. Generally, it is
recommended that a stochastic approach should be used rather than using the rms values in an

otherwise deterministic approach.

Keywords: Bottom friction; Shields parameter; Seepage flow; Random waves; Stochastic

method.



1. INTRODUCTION

At intermediate and shallow water depths the bottom wave boundary layer is a thin flow
region dominated by friction arising from the combined action of the wave-induced near-
bottom flow and the bottom roughness. The wave boundary layer flow determines the bottom
shear stress, which affects many phenomena in coastal engineering, e.g. sediment transport
and assessment of the stability of scour protection in the wave environment. A review is e.g.
given in Holmedal et al. (2003).

In coastal areas the seabed is often sandy and permeable, and seepage flow in the
seabed may occur naturally due to the horizontal pressure gradient caused by the difference
between the pressure at the seabed under the wave crest and the wave trough, respectively.
This will vary in time and space following the wave motion inducing flow into the seabed as
the wave crest passes and out of the seabed as the wave trough passes (see e.g. Lohmann et al.
(2006, Fig. 12)). This seepage flow has two opposing effects. First, the seepage flow into and
out of the bed modifies the wave boundary layer by increasing and decreasing the velocity
gradient at the bed, respectively, leading to that the bed shear stress increases and decreases,
respectively (see e.g. Lohmann et al. (2006, Figs. 12, 18)). Second, the seepage flow exerts a
vertical force on the sediments within the bed; the seepage flow into and out of the bed
stabilizes and destabilizes the sediment, respectively.

Effects of scepage flow due to regular waves have e.g. been discussed by Sleath (1984),
Soulsby (1997), Nielsen (1992, 2009). Moreover, Conley and Inman (1992) observed a wave
crest — wave trough asymmetry in the fluid — sediment boundary layer devclopment due to
seepage flow beneath near-breaking waves in field measurements. These observations were
supported by Conley and Inman (1994) in laboratory experiments for regular waves.
Lohmann et al. (2006) performed Large Eddy Simulation of a fully developed turbulent wave
boundary layer subject to seepage flow for regular waves, and obtained results in accordance

with the experimental results of Conley and Inman (1994). Nielsen (1997) was the first to



quantify the two opposing effects of seepage flow by defining a modified Shields parameter
for regular waves. He used the shear stress experiments of Conley (1993) for regular waves
and the slope stability experiments of Martin and Aral (1971) for steady flow to derive the
coefficients to use in this modified Shields parameter. Nielsen et al. (2001) used this modified
Shields parameter together with their own experiments for regular waves to investigate the
seepage effects on the mobility of sediments on a flat bed under waves. Obhrai et al. (2002)
extended this work to investigate the seepage effects on suspended sediments over a flat and a
rippled bed for regular waves. Myrhaug et al. (2014) provided a practical approach by which
the stochastic propetties of the net bedload sediment transport rate due to the seepage flow
can be derived from the irregular wave motion outside the seabed wave boundary layer.

For the prediction of the bottom friction under random waves, a commonly used

procedure 1s to use the rms (root-mean-square) value of the wave height (H_ ) or the near-

rms

bed orbital velocity amplitude (U, ) in an otherwise deterministic approach. However, this

approach does not account for the stochastic featurc of the processes included.

The purpose of the present paper is to provide a practical approach by which the
stochastic properties of the bottom friction duc to seepage flow can be derived from the
irrcgular wave motion outside the seabed wave boundary layer. For regular waves there is a
variety of bottom friction coefficient formulas available (see e.g. Soulsby (1997)). However,
the purpose here is not to examinc the details of them, but to demonstrate how such formulas
can be used to find the bottom friction due to seepage flow under linear random waves over a
flat scabed. The approach is based on assuming the waves to be a stationary Gaussian narrow-
band random process, using wave friction factors for regular waves including the effect of
seepage flow by adopting the Nielsen (1997) modified Shields parameter. Thus the only wave
asymmetry effect considered in this study is that contained in the modified Shields parameter.
Examples are also included to demonstrate the applicability of the results for practical

purposes using data typical for field conditions.



2. BOTTOM FRICTION BY REGULAR WAVES
The effect of seepage flow is taken into account by adopting a modified Shields parameter

originally suggested by Nielsen (1997) (and re-presented by Nielsen et al. (2001)):
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where wu., =(r,,/ p)"? is the friction velocity with no seepage, 7,, is the maximum bottom

(D

shear stress with no seepage, p is the density of the fluid, g is the acceleration due to gravity,
v Is the sediment density to fluid density ratio, d, is the median grain size diameter, w is the
vertical seepage velocity taken as positive upwards, x and B are dimensionless coefficients
recommended as («,)=(16,0.4), and K is the hydraulic conductivity of the sand (to be
specified later). Eq. (1) is based on obtaining u’/ui, =1-16w/u., as the best fit to the
Conley (1993) data for —0.05 < w/u,, <0.025, where wu. =(z, /p)'? is the friction velocity
with seepage, and r,, is the maximum bottom shear stress with seepage. Moreover, f#=0.4

was determined using the slope stability experiments of Martin and Aral (1971). This
modified Shields parameter includes two opposing effects. First, the flow into and out of the
bed will make the boundary layer thinner and thicker and thereby the bed shear stress
increases and decreases, respectively. Second, the flow into and out of the bed stabilizes and
destabilizes the sediments, respectively. The numerator in Eq. (1) includes the change in the

bed shear stress, i.e. to increase the shear stress for downward seepage (w<0) and to reduce
it for upward seepage (w>0). The denominator includes the change in the effective weight

due to the seepage, i.e. to stabilize the particles for downward seepage and to destabilize the
particles for upward seepage. It should also be noticed that Eq. (1) is valid for non-breaking

waves over a horizontal bed; see Nielsen et al. (2001) for more details.



The maximum bottom shear stress within a wave-cycle without seepage is taken as
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where U is the orbital velocity amplitude at the seabed, and f, is the wave friction factor

given for laminar (Eq. (3)), smooth turbulent (Eq. (5)) and rough turbulent flow (Egs. (7) —

(10)).
For laminar flow, the wave friction factor is given as that for Stokes’ second problem

(Schlichting, 1979)

f, =2Re™® for  Re<3x10° (3)
where
Re= @
v

is the Reynolds number associated with the wave motion, 4=U /@ is the maximum near-

bed orbital displacement, @ is the wave frequency, and v is the kinematic viscosity of the

fluid.
For smooth turbulent flow, the Myrhaug (1995) smooth bed wave friction factor is
adopted
f,=rRe” for Re>3x10° &)
with the coefficients
(r,5)=(0.0450,0.175) ©)

Alternative coefficients (r,s) for smooth turbulent flow are given in Soulsby (1997).

For rough turbulent flow, the friction factor proposed by Myrhaug et al. (2001) is used

o=y ™
Zy
(c,d)=(18,1) for 20 <A /z,<200 (8)

(c,d)=(1.39,0.52) for 200< A/z, <11000 9)



(c,d)=(0.112,0.25) for 11000< A/ z, (10)
where z, =2.5d, /30 is the bed roughness based on the median grain size diameter d,,. Note

that for rough turbulent flow Eq. (8) is obtained as best fit to irregular wave data, and that
Egs. (9) and (10) are obtained as best fit to regular wave data (see Myrhaug et al. (2001) for

more details). Also note that Eq. (9) corresponds to the coefficients given by Soulsby (1997)
obtained as best fit to regular wave data for 10 < 4/ z, <10°. The advantage of using these

friction factors is that it is possible to derive the stochastic approach analytically. One should

note that all the wave-related quantitics in Eqgs. (1) to (7), i.e, 7,,, U and A are the

quantities associated with the harmonic motion. Thus a stochastic approach based on the

harmonic wave motion is feasible, as will be outlined in the forthcoming.

3. BOTTOM FRICTION BY RANDOM WAVES
The present approach is based on the following assumptions: (1) the free surface elevation

¢(t) associated with the harmonic motion is a stationary Gaussian narrow-band random
process with zero expectation described by the single-sided spectral density S, (@), and (2)

the bottom friction for regular waves given in the previous section, are valid for irregular
waves as well.

The second assumption implies that cach wave is treated individually, and
consequently that the bottom friction is taken to be constant for a given wave situation and
that memory effccts are neglected. The accuracy of this assumption has been justified by
Samad (2000) for laminar and smooth turbulent flow, for which the bottom friction is given
by Eq. (2); fuis given in Eq. (3) for laminar flow, and by Eq. (5) using (r,s) = (0.041,0.16) for
smooth turbulent flow. Samad (2000) found good agreement between his measured bed shear
stresses (laminar and smooth turbulent) under irregular waves and simulations and bed shear

stresses based on individual wave formulas. For rough turbulent flow the validity of the



second assumption was confirmed for seabed shear stresses by Holmedal et al. (2003) for
high values of A/zy (at about 30000). Characteristic statistical values of the resulting seabed
shear stress amplitude deviated less than 20% from those obtained by the Monte Carlo
simulation method by Holmedal et al. (2000); that essentially is based on the same two
assumptions upon which the present approach is based. Regarding the second assumption that
each wave is treated individually, Holmedal et al. (2003) concluded for large values of A/zg
that the main reason for the fair agreement obtained between the Monte Carlo simulations and
the (k - £) model predictions is the good description of the wave friction factor for individual
waves. This appears to be much more important than violating the assumption of independent
individual waves. Thus, since the Shields parameter in Eq. (1) is essentially based on using
the friction factors for laminar, smooth turbulent and rough turbulent flow in Egs. (2) to (10),
the assumption of treating each wave individually seems rcasonable.

Based on the present assumptions, the (instantaneous) time-dependent bed orbital
displacement and velocity a(f) and u(¢), respectively, associated with the harmonic motion,
are both stationary Gaussian narrow-band processes with zero expectations and with single-

sided spectral densities

S (w)= M an
“ sinh® kh
S By )
uu (0)) =0 San(a)) - (12)

sinh” kh
Here £ is the wave number determined from @’ = gk tanh kh .
For a narrow-band process the waves are specified as a *harmonic” wave with cyclic
frequency w and with slowly varying amplitude and phase. Then, for the first order, the
near-bed orbital velocity amplitude U is related to the near-bed orbital displacement

amplitude 4 by U = wA, where U is slowly varying with time as well (see e.g. Sveshnikov

(1966)).



Now the orbital displacement amplitude at the seabed, 4, the orbital velocity amplitude
at the seabed, U, and the wave height, H, are Rayleigh-distributed with the cumulative
distribution function (c¢df) given by

P(#)=1-exp(—%%) ; %=x/x, 20 (13)

s

is the rms value of x representing 4, U__or H

rms rms rms *

where x represents, 4, U or H, and x

rms

Now 4,..U,, and H,_ are related to the zeroth moments m,,,, m,, and m,, of the

rms 2 rms ms

amplitude, velocity and free surface elevation spectral densities, respectively, (corresponding

2

to the variances of the amplitudes (c_,), the velocity (o) and the free surface elevation

uu

(0;,)), given by
A, =2my,, =207, =2[ S, (0)do (14)
0
UI‘ZIIIS = 2’710”" = 2o-lil = ZI SH!I (a))da) (] 5)
o
H?, =8m,, =807 =8 S, (w)dw (16)
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From Egs. (15) and (12) it also appears that m,,, =m,, where m,, isthe second moment of

the amplitude spectral density. Thus, the mean zero-crossing frequency for the bed orbital

displacement, @_, is obtained from the spectral moments of a(¢) as

1/2 12 U
. = m2aa = m()uu = s (] 7)
’ rnOaa m(lua Arm.x'

where Eqgs. (14) and (15) have been used. This result is valid for a stationary Gaussian random
process. Note that this zero-crossing frequency will generally be smaller than for surface
elevation due to greater attenuation of high frequencies. However, for a narrow-band process

used by

rms

these two zero-crossing frequencies will be equal. Tt should be noted that U

Soulsby (1997) corresponds to the standard deviation o, used here.



For a narrow-band process, A=U/® where @ is replaced with @. from Eq. (17).

Then, by substitution in Egs. (2), (3), (4), (5) and (7) (i.e. according to assuming that these
regular wave friction factors are valid for irregular waves), Eq. (1) can be re-arranged to give

the Shields parameter for individual narrow-band random waves as

- £ =1, laminar
U, U¢ W o~
6, = L ” (l -K U ) ; 2 & =2-2s, smooth turbulent (18)
g =1~ g

u, rms

& =2—d, rough turbulent

where U =U /U, and

ul =Re*U: , laminar (19)
ul, = %r Re, U2 , smooth turbulent (20)
Re,, = Yons A 21
v
1 (4,
ul = —c(ﬂ) U? ., rough turbulent (22)
2\ z,

Note that (r,s) and (c,d) are the wave friction factor coefficients for smooth turbulent and
rough turbulent flow, respectively. Moreover, a Shields parameter can be defined where the

wave-related quantities are replaced by their rms-values, i.e.,

2
0, e = —— 15— (23)
g(y —1d,,

Furthermore, by taking @ =, and k=k (i.e. according to the narrow-band assumption),
where & is the mean wave number determined from @ =gk tanhkh, then

U""H = [o.'.‘ Hﬂll\' / (2 Sinh k_h) -
The bottom friction due to the effect of seepage flow that will be considered here 1s (1)
the maximum value during the wave half-cycle beneath the wave crest (w<0); and (2) the

maximum (absolute) value during the wave half-cycle beneath the wave trough (w>0). For

the individual narrow-band random waves this is expressed in terms of the Shields parameters



which are obtained by re-arranging Eq. (18) to (notice that w is taken as positive in the

following)
u*z Ye T-£/2
0.,=—2U(1£bU ") (24)
C:t
where
h=xY (25)
u‘rms
w
C.=g(r=12f-2)dy, [m* /5] (26)

A statistical quantity of interest is the expected (mean) value of the bottom friction caused by

the (1/n)th highest waves, which in terms of the Shields parameter is given as

E[6,.)|U>U,,]=n T 6,.(U) p(U)dU @7
J,

where p(U) is the probability density function (pdf) of U given by p(U)=dP(U)/dU and
P(U) is given in Eq. (13) and U, , is the value which is exceeded by the probability 1/, i.e.,
1-PU,,)=1/n, giving U,, =(Inn)"*. By substituting Eq. (24) in Eq. (27) the integral in

Eq. (27) can be evaluated giving

2
E[0,,10>0,] =%n[m+§,mn)ibr(1+§,1nn)] (28)

Here I'(.,.) is the incomplete gamma function, w.,, is given in Egs. (19) to (22); b in Eq.

A3

(25) where w needs to be specified according to values given in the range

-0.05<w/u.,,, <0.025. Here the integral in Eq. (27) is evaluated analytically by using Eq.

(A4) in the Appendix. Thus, the plus (+) and minus (-) signs represent the values beneath the
wave crest and the wave trough, respectively.
The results without the effect of seepage flow are given by w=0, i.e. the values

beneath the wave crest and wave through are the same given by



2

U, &
= e p(1+—=,Inn) (29)
] g(y—1)dy, 2

E[6,10>0,,
For prediction of the bottom friction beneath irregular waves, a commonly used

procedure is to use the rms values of the wave-related quantities in an otherwise deterministic

approach. In the present case this corresponds to taking U =U,,_, i.c. U=U/U, =1, which

rms?® m

substituted in Eq. (24) gives

6,

wt,detrms

11317"\‘
== (12b) (30)

+

Without seepage flow (w=0) the result reduces to Eq. (23),1.e., 8, ., =6,

Alternatively, the expected value of the (1/n)th largest values of the wave-related

quantities can be used in an otherwise deterministic approach, i.e. to substitute
U=E [U,_,":l =nl'(1.5,Inn) in Eq. (24) (by using the results in the Appendix). For n = 3 this

corresponds to the significant value U, (which will be exemplified in Section 4),

corresponding to taking U, =«2U__,i.e. U=U, /U, =2, which substituted in Eq. (24)

s ?

gives

7

wi,dets

u, 2 4
= —tms YL+ hD 31
C. ( ) @an

Without seepage flow it follows from Eq. (18) that the result in this case reduces to

2 /2
u, 2°

0, ge0s = (32)
‘ g(y—-1d,,

4. EXAMPLES OF RESULTS

To the authors’ knowledge no data exist in the open literature for random wave-induced
bottom friction including the effects of seepage flow. Hence three examples of calculating the
bottom friction for rough turbulent, smooth turbulent and laminar flow due the effect of

seepage flow based on the results in Section 3 are provided. Here the purpose is to illustrate



the application of the approach using data typical to field conditions, exemplified by
considering the expected value of the Shields parameter for the one third highest waves, i.e.
for n=3 in Egs. (27), (28) and (29); also referred as the significant value. Similar results can
be obtained for other statistical values of the Shiclds parameter by choosing other values of n.

However, this will not be elaborated further here.

4.1  Rough turbulent
For rough turbulent flow the following flow conditions are given
e Horizontal bed with water depth, 2= 15m
e Significant wave height, H,=5m
e Mean wave period, 7.= 89 s
e Median grain diameter (fine sand according to Soulsby (1997, Fig. 4))

dy, =0.201mm

e y =2.65 (as for quartz sand)

e Kinematic viscosity of water at temperature 10°C and salinity 35 o/oo,
v=1.36-10°m"/s

e Median grain settling velocity (according to Soulsby (1997), Eq. SC(102)),

w, =0.02 m/s

The calculated quantities are given in Table 1, where H_, =H_/ 2 when H is Rayleigh-

rms
distributed. It appears that the flow corresponds to sheet flow conditions, i.c.

0,.=1121>0.8.

wrms

In addition to the Shields parameter, the mode of sand transport is governed by the fall

velocity parameter w,/u.,, i.e. the sand transport will be in the suspension mode if

>6,. and w /u,_ <1 ; otherwise the sand transport will be in the no-suspension

wrms srms

mode. Here @ is the critical value for initiation of suspension from the bed, depending on

srms



the grain Reynolds number u,, d,, /v. According to Sumer and Fredsee (2002, Eq. (7.7))

6. is given by a relationship which is strictly only valid for initiation of suspension from

srms

the bed in the case of steady currents. However, to a first approximation this relationship can
be used for waves (see Sumer and Fredsee (2002) for more details).

By using this it appears for rough turbulent flow that w.,, d,,/v =8.9 and 6, =0.49

rms srms

(Sumer and Fredsee (2002, Eq. (7.7)); thus 6 ___>86

oms > O and w. /u,  =035<1, and
consequently the sediment transport takes place as suspended load.

The vertical seepage velocity (taken as positive upwards) is taken as w=+0.025z,

which is in the validity range of Eq. (1). Moreover, the hydraulic conductivity of the sand is
taken as K =w/0.15 based on Horn et al. (1998), who found that w<0.15K corresponds to
modest seepage rates generated by uprush of swash during a rising tide (see more discussion
in Nielsen et al. (2001)). It should be noted that the values of w and K are taken as
characteristic values for all the individual random waves, which is consistent with the narrow-
band assumption.

From Table 1 4, /z,=90000 and accordingly the friction factor for rough turbulent

flow in Egs. (7) and (10) has been used. However, to ensure that the flow is rough turbulent

the roughness Reynolds number has to be evaluated; which is defined as

Re. = % (33)

Then the turbulent flow regimes are defined as (Schlichting, 1979)
Smooth turbulent

O<Re, <0.17 (34)

Intermediate smooth to rough turbulent

0.17<Re. <2.3 (35)

Rough turbulent



23<Re. (36)
From Table 1 it follows that Re, =u,_, z,/v =0.74, i.e. the flow is intermediate smooth to

rough turbulent. However, due to sheet flow there will be an additional roughness caused by
sediment transport, which according to Nielsen (1992) is given as

—'5 190(8, —0.05)"* d,, (37)

Z, =
Otransport 3

This is valid for irregular waves in field conditions. For 6 =6, this gives

wrms

=6.554d,,. By taking Zzo,.; = Zogmm + Zowansporr = s / 12+6.554d,, =6.64d, , then

ZOImnspaﬂ
Re. =, 2o |V =4.9 , i.€. the flow is rough turbulent.

From Table 1 it appears that the significant values of the Shields parameter including
the effect of seepage flow are 2.64 under the wave crest, 1.59 under the wave trough; without
seepage the result under both the wave crest and the wave trough is 2.13. Thus it appears that
the Shields parameter exceeds 0.8 (i.e. the threshold for sheet flow) under both the wave crest

and the wave through. This is also the case without seepage effects.

4.2  Smooth turbulent
For smooth turbulent flow the given flow conditions are the same as for rough turbulent flow
in Section 4.1 except for

e H =4m

e d,,=0.06mm (very fine sand according to Soulsby (1997, Fig. 4))

o w,=0.0022m/s (according to Soulsby (1997), Eq. SC(102))

The calculated quantities are given in Table 2. It appears that the flow corresponds to sheet

flow conditions, i.e. 8, =1.57>0.8. Moreover, for smooth turbulent flow wu, d. /v -

wrms

1.7 and 6, = 0.65 (Sumer and Fredsee (2002, Eq. (7.7)); thus 6, . >86 and

wrms smms

w, /u,, =0.056<1, and consequently the sediment transport takes place as suspended load.



It also appecars that Re, =7.5-10° >5-10%, i.e. smooth turbulent flow. However, to ensure

rms

that this is the case it is also required that the roughness Reynolds number

Re. =u,,, 2z, /v <0.17 according to Eq. (34). It appears that Re, =0.14. If u.,, is calculated

assuming rough turbulent flow (i.e from Eq. (22) for 4, /z,=2.4-10°) then Re, =0.16, i.c.

the flow is smooth turbulent. However, if an additional roughness due to sediment transport

Il

is taken into account by using Eq. (37) for 6, =6 this  gives

Zoonat = Ao 112+7.808d,, =7.89d,,. Thus Re. =, Zpy/ V=11, ie. the flow is

transitional smooth to rough turbulent.

From Table 2 it appears that the significant values of the Shields parameter including
the effect of seepage are 3.54 under the wave crest, 2.07 under the wave trough; without
seepage it is 2.85 under both the wave crest and the wave trough. It appears that the flows are

in the sheet flow regime both with and without seepage effects.

4.3 Laminar
For laminar flow the given flow conditions are the same as for smooth turbulent flow in
Section 4.2 except for
e H =Im
The calculated quantities are given in Table 2. It appears that the threshold of sediment

motion at the seabed is exceeded, ie. 6, =021>0.05. Moreover, for laminar flow

u., dy, /v =063and 6, =070 (Sumer and Fredsoe (2002, Eq. (7.7)); thus 6, <6

srms VIS srms

and w,/u,, =0.15<1, and consequently the sediment transport is in the no-suspension

mode; however, bedload transport takes place since 6, >0.05. It also appears that

Re,, =4.6-10° <5-10°, i.e. laminar flow.

From Table 2 (based on a flat bed approach) it appears that the significant values of

the Shields parameter including the effect of seepage are 0.39 under the wave crest, 0.20



under the wave trough; without seepage it is 0.30. All these values exceed the threshold of

inception of motion suggesting that ripples may exist.

4.4  Example of finite bandwidth effects
The Rayleigh cdf in Eq. (13) is valid for a stationary Gaussian narrow-band process. Longuet-
Higgins (1980) has shown that the wave heights are Rayleigh-distributed if Hyy, is replaced
with 0.925Hm , which includes finite bandwidth effects of the wave process. This modified
Rayleigh distribution is used to exemplify the effects of finite bandwidth on the bottom
friction (Shields parameter). For the significant Shields parameter the results are:
1. For rough turbulent flow the stochastic method gives 2.29 for downward secpage (+);
1.38 for upward seepage (-); 1.86 without seepage.
2. For smooth turbulent flow the stochastic method gives 3.12 for downward seepage;
1.82 for upward seepage; 2.51 without seepage.
3. For laminar flow the stochastic method gives 0.36 for downward seepage; 0.19 for
upward seepage; 0.28 without seepage.
Thus the effect of finite bandwidth is to reduce the Shields parameters compared with
the values obtained by using the narrow-band approximation. In this example the reduction is

13% for rough turbulent flow; 12% for smooth turbulent flow; 5-8 % for laminar flow.

4.5 Comments to examples

In these examples it is the effect of bed shear stress which dominates, i.c. the

numerator in Eq. (1) contains the parenthesis (1+0.4), while the denominator contains the
parenthesis (1.65+0.06) after the substitution of the values of the physical parameters in Eq.

(1). Thus the effect of increased and reduced bed shear stress for flow into and out of the bed,

respectively, dominates the stabilizing and destabilizing effect of the sediments, respectively.



From Tables 1 and 2 it appears for all three flow regimes that the bottom friction based
on the deterministic method by substituting the significant values of the wave-induced
quantities in the otherwise regular wave formulas gives values which agree very well with
those obtained by the stochastic method based on the narrow-band assumption. This is the
case for the Shields parameters under the wave crest and under the wave trough both with and
without the effects of seepage. It appears that the stochastic to deterministic method ratios are
in the range 1.00 to 1.05. For laminar flow without seepage effects it should be noted that the
stochastic and deterministic methods coincide.

As demonstrated in Section 4.4 there is an uncertainty associated with the narrow-
band approximation. By using the Longuet-Higgins (1980) modified Rayleigh distribution of
wave heights, the effects of finite bandwidth are to reduce the bottom shear stress (Shields
parameter) compared with the values obtained based on the narrow-band assumption. The

reduction is in the range 5-13% percent depending on the flow regime.

4 GENERAL COMMENTS
It should be noted that the present theory is valid for linear waves only, suggesting that it
should be applied outside the surf zone where the non-linearities become less important. The
implications of including non-linearities (e.g. Stokes wave asymmetry with higher wave
crests and shallower wave troughs) arc expected to enhance the seepage effect under the wave
crest leading to larger bottom friction under the wave crest than for linear waves, and to
reduce the seepage effects under thc wave trough leading to smaller bottom friction under the
wave trough than for linear waves.

The importance of the secpage effect on the bottom friction depends on the flow
conditions in a non-trivial way. Here it is inherent in the modified Shields parameter in Eq.

(1), i.e. how the secpage effect changes the bed shear stress in the numerator and the cffective



weight in the denominator. More discussion of the seepage effect on e.g. sediment transport is
given in Nielsen (1997).

Generally, it is recommended to use a stochastic approach rather than using the rms-
values or other characteristic quantities in an otherwise deterministic approach since this will
provide global stochastic features associated with the random waves. Although it appears in
these examples that the deterministic method agrees very well with the stochastic method if
the significant value is used, this is not necessarily the case if other characteristic statistical
values are used in the regular wave formulas. The most appropriate statistical value to use will
depend on the problem considered and the flow conditions, and can only be determined by
performing an analysis spanning out a wide parameter range. All this information is contained
in a stochastic method, and hence this should be used to make assessment of seepage effects
on bottom friction under random waves based on available wave statistics. However,
comparison with data are required before a conclusion regarding the validity of this approach

can be given.

5 SUMMARY

The bottom friction beneath random waves is predicted taking into account the effect of
seepage flow. The method is based on assuming thc waves to be a stationary Gaussian
narrow-band random process, using wave friction factors for rough turbulent, smooth
turbulent and laminar flow for regular waves including seepage flow effects by adopting the
Nielsen (1997) modified Shiclds parameter. Examples are also included to demonstrate the
applicability of the results for practical purposes using data typical to field conditions. In this
example the effect of increased and reduced bed shear stress for flow into (under the wave
crest) and out of (under the wave trough) the bed, respectively, dominates the stabilizing and
destabilizing effect of the sediments, respectively. The present analytical results should be

used to provide more details of the inherent stochastic features, and to make assessment of



seepage effects on the bottom friction under random waves based on available wave statistics.
Generally, it is recommended to use a stochastic approach rather than using characteristic
statistical values of the wave-related quantities in an otherwise deterministic approach.
Although simple, the present method should be useful as a first approximation to
represent the stochastic properties of the bottom friction due to seepage flow under random
waves. However, comparisons with data are required before a conclusion regarding the
validity of this approach can be given. In the meantime, the method should be useful as an
engineering tool for the assessment of seepage effects on the bottom friction by random

waves.

ACKNOWLEDGEMENT
This work was carried out as part of the project “Air-Sea Interaction and Transport
Mechanisms in the Ocean” funded by the Norwegian Research Council. This support is

gratefully acknowledged.

APPENDIX

Let x be Rayleigh distributed with the pdf
p(x)=2xexp(-x’) ; x=0 (A1)

The expected value of the (1/ 1) the largest values of x is given as

E[x,1=n [ xp(x)dx (A2)

Ny

where x,, is the value of x which is exceeded by the probability 1/n.

Moreover, from Abramowitz and Stegun (1972, Ch. 6.5, Eq. (6.5.3)) it is given that

[(a,x)= j et dt (A3)

By utilizing this, the following result is obtained



Ix'"p(x)dx = Ix”’ 2x exp(—x*)dx = I‘(l +%,x,2] (A4)

Y ]

by using Eq. (A1), and where T'(.,.) is the incomplete gamma function: I'(x,0) =T"(x) where

2

I' is the gamma function. The result in Eq. (A4) is obtained by substituting ¢=x" in the

second integral in Eq. (A4) and using Eq. (A3).
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Example of results for seepage flow effects on the bottom friction for rough

turbulent flow by random waves.

H,,.(m)
k,(rad/m)
U, (m/s)
4,,,(m)

ms

A, !z,
c,d

u,,,,.(nv/s) (Eq. (22))

6, (Eq. (23))

w=10.025u,,,, (m/s)

K =w/0.15(m/s)

b(Eq.(25))

C,(m’/s*) (Eq.(26))

C (m’/s*) (Eq. (26))

Stochastic with seepage flow

6.. (Eq.(28))

0.  (Eq.(28))

Without seepage flow

6, (Eq.(29))

Deterministic with seepage flow

using significant values

6., (Eq.(31))

6, (Eq.(31)

Without seepage flow using

significant values

6, (Eq.(32)

3.54
0.0667
1.06
1.50
90 000

0.112,0.25
0.0603

1.121
+0.00151

0.0101
0.4
0.003355

0.003120

2.64
1.59

2.13

2.57
1.51

2.05




Table 2.

Example of results for seepage flow effects on the bottom friction for smooth
turbulent and laminar flow by random waves.
Smooth turbulent Laminar
H,.(m) 2.83 0.71
k,(rad/m) 0.0667 0.0667
U, (/s) 0.85 0.21
A, (m) 1.20 0.30
Re,,. 7.5-10° 4.6-10°
r,s 0.045,0.175 2,05
h (0S) {Eq. (20), s1n(?oth turbulent 0,039 00143
Eq. (19),laminar
6,ms (EQ. (23)) 1.57 0.21
w=10.025u, . (m/s) +0.000975 +0.000358
K=w/0.15 (m/s) 0.0065 0.0024
b (Eq. (25)) 04 0.4
C, (m’/s*) (Eq. (26)) 1.01-10° 1.01-10°
C (m?*/s) (Eq. (26)) 0.94-107 0.94-10™
Stochastic with seepage flow
6., (Eq.(28)) 3.54 0.39
6, (Eq. (28)) 2.07 0.20
Without seepage flow
6, (Eq.(29)) 2.85 0.30
Deterministic with seepage flow using
significant values
6,, (Eq.(31)) 3.47 0.38
6, (Eq.(31)) 2.01 0.20
Without  seepage flow  using
significant values
6, (Eq.(32)) 2.77 0.30




*Highlights (for review)

L)

Highlights
e A simple analytical tool for cstimating scepage effects on bottom friction by random
waves
e The results are valid for laminar, smooth turbulent and rough turbulent flow
e Example of results corresponding to typical field conditions

e Relevant for making assessment of seepage effects on bottom friction based on

available wave statistics



