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Abstract

This paper provides a simple analytical tool which can be used to calculate the wave-
induced current beneath long-crested (2D) and short-crested (3D) random waves. The
approach is based on assuming the waves to be a stationary narrow-band random process and
by adopting the Forristall (2000) wave crest height distribution representing both 2D and 3D
Stokes second order random waves. An example is included to illustrate the applicability of
the results for practical purposes using data typical for field conditions; the significant values
of the Stokes drift and transport in deep water and in finite water depth are calculated. The
present analytical results can be used to make assessment of the wave-induced current based

on available wave statistics.
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1. Introduction

The Stokes drift represents an important transport mechanism in the ocean, which
locally are responsible for material tracer evolution (e.g. plankton, larvae, contaminated
ballast water from ships, oil spills). It is also involved in air-sea mixing processes across the
interphase between the atmosphere and the ocean. The Stokes drift is obtained as the mean
Lagrangian velocity giving the water particle drift in the wave propagation direction. This
drift has its maximum at the surface and decreases towards the bottom. The total mean mass
transport is obtained as the integral over the water depth of the Stokes drift; this is also
referred to as the volume Stokes transport by Rascle et al. (2008). More details of the Stokes
drift are given in e.g. Dean and Dalrymple (1984).

The Stokes drift and the volume Stokes transport are commonly defined for regular
waves. However, their characteristic quantities are also defined for random waves in terms of
the sea state parameters significant wave height and characteristic wave periods (e.g Rascle et
al. (2008); Webb and Fox-Kemper (2011). Rascle et al. (2008) described a global data base
for parameters associated with ocean surface mixing and drift, which included the surface
Stokes drift and the volume Stokes transport among other parameters by performing wave
hindcast of the wave parameters. Rascle and Ardhuin (2013) improved the hindcast results of
Rascle et al. (2008) by using new parameterizations of the physical processes involved (more
details are given in the references therein). Webb and Fox-Kemper (2011) considered
relationships between the wave spectral moments and the Stokes drift in deep water at an
arbitrary elevation in the water column, and intercomparisons were made using different
spectral formulations. Myrhaug (2013, in press) presented bivariate distributions of significant

wave neignt wun surrace dtokes arirt and volume Stokes transport. Myrhaug (2013) also



presented bivariate distributions of spectral peak period with these two Stokes drift
parameters together with example of results corresponding to typical field conditions.

The purpose of this study is to provide a simple analytical tool which can be used to
give estimates of the significant value of the wave-induced current, i.e. the Stokes drift as well
as the Stokes transport, within a sea state of long-crested (2D) and short-crested (3D) Stokes
second order random waves. The approach is based on assuming the waves to be a stationary
narrow-band random process and adopting the Forristall (2000) wave crest height distribution
representing both 2D and 3D random waves. The cumulative distribution function of Stokes
drift and Stokes transport for individual random waves are determined, from which the
statistical properties of both quantities can be calculated. Thus this approach is more
mathematically sound than by using characteristic statistical values of the waves in the regular
wave formulas. An example is also included to illustrate the applicability of the results for

practical purposes using data typical for field conditions.

2.  Background for regular waves
Following Dean and Dalrymple (1984) the mean (time-averaged) Lagrangian mass

transport at an elevation z, in the water column in finite water depth 4 is given as

o _ ga’k’ cosh2k(z, + h) )
L ow sinh 2kh

Here, g is the acceleration due to gravity, a is the linear wave amplitude, & is the wave number

corresponding to the cyclic wave frequency @ given by the dispersion relationship
@’ =gktanhkh. Eq. (1) indicates that the water particles drift in the wave propagation
direction; this drift has its maximum at the mean free surface z, =0 and decreases towards

the bottom as z, —> —A . In deep water Eq. (1) reduces to
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The Langrangian mass transport is often referred to as Stokes drift.
The total mean (time- and depth-averaged) mass transport is given as (Dean and

Dalrymple, 1984)
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where p is the density of the fluid. M is often referred to as the Stokes transport. More details

of the Stokes drift and the Stokes transport are given in Dean and Dalrymple (1984).

3. Present analytical calculation of wave-induced drift in random waves

At a fixed point in a sea state with stationary narrow-band random waves consistent

with Stokes second order regular waves in finite water depth, the non-dimensional nonlinear

crest height, w. =7_/qa, _is

ms

w,=a+0(k,a,,) 4

P trms
Here a=a/a,, is the non-dimensional linear wave amplitude, where the linear wave

amplitude a is made dimensionless with the root-mean-square (rm1s) value a_ . Moreover,

rnis
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) denotes the second order (nonlinear) terms, which are proportional to the

characteristic wave steepness of the sea state, k,a,,., where k is the wave number

corresponding to ), (=peak frequency of the wave spectrum) given by the dispersion
relationship for linear waves (which is also valid for the Stokes second order waves)
2 _
w, = gk, tanhk h (5)

Now Eq. (4) can be inveried (o give a=w —-O(k,u,,.). By substituting this in Eq. (1), the

non-dimensional Stokes drift for individual random waves, u =u, /u,,_, is given as



u=w (6)

where
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lle“ = g rms " p : p( ] ) (7)
w, sinh 2k h
In deep water Eq. (7) reduces to
at kX, . ,
qums = g ;;“ . eul'-l > a); = gkp (8)
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Similarly, the non-dimensional Stokes transport for individual random waves, m = M/ M, ,
is given as
m=w? ©
where
_pga.k, (10)
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It should be noted that strictly speaking, the non-dimensional Stokes drift (and the

non-dimensional Stokes transport) is related to both wave crest height and wave number. For
example, in deep water, @®° =gk and wj =gk, , and consequently the non-dimensional

Stokes transport is given by

nm= M/M —_— pgazk l)gafm‘kp - aZ k =W 2 m{f_
rms 20) 20)," afm ‘ kp v kp .

However, under the assumption of narrow-band wave spectrum (i.e. k kp), the relations

suggested in this paper are acceptable approximations.

Now the Forristall (2000) parametric crest height distribution based on simulations using
second order theory is adopted. The simulations were based on the Sharma and Dean (1981)
theory; this model includes both sum-frequency and difference-frequency effects. The
simulations were made both for 2D and 3D random waves. A two-parameter Weibull

distribution with the cumulative distribution function (cdf) of the form
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was fitted to the simulated wave data. The Weibull parameters a and B were estimated from
the fit to the simulated wave data, and are based on the wave steepness S, and the Ursell

parameter U, defined by

5, = 27H. (12)
g1’
and
H
v, -t (13)
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Here H, is the significant wave height, 7, is the spectral mean wave period and %, is the
wave number corresponding to 7,. The wave steepness and the Ursell number characterize the
degree of nonlinearity of the waves in finite water depth. At zero steepness and zero Ursell
number fits were forced to match the Rayleigh distribution, i.e. a=1/8~0.3536 and
B =2. Note that this is the case for both 2D and 3D linear waves. The resulting parameters
for the 2D-model are

a,, =0.3536+0.2892S, +0.1060U,,

(14)
Bop =2-2.15978, +0.0968U>
and for the 3D-model
@, =0.3536+0.2568S, +0.0800U, (15)

Pip =2-1.79125, -0.5302U, +0.284U,
Forristall (2000) demonstrated that the wave set-down effects were smaller for short-
crested than for long-crested waves, which is due to that the second-order negative difference-
" Tfrequency terms are smaller for 3D waves than for 2D waves. Consequently the wave crest

heights are larger for 3D waves than for 2D waves.



The sum-frequency and difference frequency effects arise from adding together all the
frequency components which give second order terms with frequencies equal to the sum of
two pair frequencies (sum-frequencies), and second order terms with frequencies equal to the
difference of two pair frequencies (difference-frequencies). The terms with the sum-
frequencies represent the short period second wave order components, while those with the
difference-frequencies represent the long period second order wave components. The second
order effects increase with decreasing water depth. The difference frequency terms have
almost no effect in deep water (for a narrow-band process it is zero). But as the water depth
decreases, these terms become more significant, and are almost of the same magnitude as the
sum-frequency terms. The sum-frequency terms are positive giving a wave set-up, while the
difference-frequency terms are negative giving a reduction of the second order component
leading to a wave set-down. More discussion of the differences between 2D and 3D second
order waves will be given in Sections 4.1 and 4.2 for deep water and finite water depth,

respectively.

It should be noted that based on the narrow-band assumption H_ = \/EHW = Zﬁam“
and 7, =T;.

Based on the Forristall distribution the cdf of u (and m) is obtained by transformation

of random variables, i.e. by using Eqs. (6) and (9) it follows that the cdf of u (and m) is given

by the two-parameter Weibull cdf of the form

Y.
P(x)=1-—exp{—(7) } : x>0 (16)
(24

where x represents « and m, and the Weibull parameters are given as

G-WBa) ; /9=§ (17)



It should be noted that Forristall (2000) presented the results in a wide parameter range;

0<S§,<0.15 and 0<U, <1. The values of S, and U, typical of the real sea state conditions

given in the example of applications in Section 5, are in these ranges.

The results for linear waves referred to here are given by the cdf in Egs. (16) and (17)
for a=1/+/8, P =2 giving a = 1,,3 =1, i.e. corresponding to the exponential cdf. For the
other values of @ and f the results are referred to as nonlinear, i.e. corresponding to the

results based on a Weibull cdf.

A statistical quantity of interest is the expected value of the (1/n)th largest values of

the wave-induced current, i.e.

E[Jc|x>xI ,,]zn]xp(x)dx (18)

where p(x)=dP(x)/dx with P(x) as given in Eq. (16) is the probability density function

(pdlf) of x, and x,, is the value of x which is exceeded by the probability 1/n, i.e. determined

from 1-P(x,,)=1/n as x,, =a(Inn)"” . By using this, the result of Eq. (18) is
E[x|x>x ”]:ndl“(l+%,lnn) (19)

where I'(s,¢) is the incomplete gamma function (see e.g. Abramowitz and Stegun (1972, Ch.
6.5, Eq. (6.5.3))).

For linear waves (¢ =1,4=1), Eq. (19) reduces to

E[x|x>x, ”]—-nl"(2,lnn) (20)

4. Results and discussion
A feature of interest is to compare the nonlinear results with the corresponding linear

results for both 2D and 3D waves (i.e. for @ =1,8=1). Here this will be illustrated by



considering the significant value (i.e. n = 3). However the most appropriate statistical value to
use will depend on the problem considered. The nonlinear — to — linear ratio of the significant
value of the Stokes drift (and the Stokes transport) based on Eqs. (19) and (20) is obtained as

naT(1+ -L,lnn) 8a’T(1+ 2 ,Inn)
B _ B

R - - @1
nT'(2,Inn) '2,Inn)

Another interesting feature is to compare the 3D and 2D results. The ratio of the significant
value (n=3) of the Stokes drift (and Stokes transport), for 3D waves to the significant value
(n=3) of the Stokes drift (and Stokes transport) for 2D waves based on Eq. (19) is obtained

as

5’9 (22)
rd+—"—,Inn)
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It should be noted that R, and R, depend on S, and U, via the Weibull parameters & and S

(Egs. (14) and (15)).

4.1  Deep water

Here the results for deep water are considered. Now U, =0 and thus the results only
depend on §,. As referred to in Section 3. the second order negative difference-frequency

effects disappear in deep water; only the second order sum-frequency effects are present, and
consequently there are no wave set-down effects in deep water. Moreover, the sum-frequency
effects are larger for 2D waves than for 3D waves in deep water, yielding higher wave crests
for 2D waves than for 3D waves. Thus this yields larger wave-induced velocities beneath the
wave crests for 2D waves than for 3D waves. The consequences of these features for the

Stokes drift (and the Stokes trénsport) in deep water are demonstrated in Figs. 1 and 2.



Figure 1 shows the nonlinear — to — linear ratio R, for 2D and 3D waves in deep water
versus the wave steepness S, . For both 2D and 3D waves it appears that R, increases as S,

increases, which is physically sound. These features are also demonstrated in Fig. 2, which

shows the ratio R, of the 3D - to - 2D results versus S, . It appears that the significant value

of the Stokes drift (and the Stokes transport) is always smaller for 3D waves than for 2D

waves; it is in the range 94 to 95 per cent for S, =0.15. This behavior is caused by the smaller

sum-frequency effect for 3D waves than for 2D waves in deep water.

4.2  Finite water depth

Now the results for finite water depths are considered. As referred to in Section 3, both
second order sum-frequency and second order difference-frequency effects are present in
finite water depths. The second order negative difference-frequency effects are smaller for 3D
waves than for 2D waves, leading to smaller wave set-down effects for 3D waves than for 2D
waves. This is the dominating effect for finite water depths, yielding higher wave crests for
3D waves than for 2D waves, i.e. contrary to the deep water case. Thus this yields larger
wave-induced velocities beneath the wave-crests for 3D waves than for 2D waves. The
consequences of these features for the Stokes drift (and the Stokes transport) in a finite water
depth are demonstrated in Figs. 3, 4 and 5.

Figures 3 and 4 show the isocurves for the nonlinear — to — linear ratio R, for 2D and
3D waves, respectively, versus the wave steepness S, and the Ursell number U » - Overall,

Figs. 3 and 4 exhibit the same features; for both 2D and 3D waves it appears that, for a given

value of Uy, i.e. at a given water depth, R, increases as S, increases and, for a given value of
S,. R, increases as U, increases (i.e. as the water depth decreases). These features are

physically sound. For the significant value of the wave-induced current, R, ranges up to about



2.2 for 2D waves (Fig. 3) and up to about 2.4 for 3D waves (Fig. 4). Thus it appears that R, is
slightly larger for 3D waves than for 2D waves except for smaller values of U z- These
features are demonstrated in Fig. 5 which shows isocurves for the ratio R, of the 3D - to - 2D
results versus S, and U, . Except for the smaller values of U, (i.e. for U, smaller than about

0.2), it appears that the significant value of the wave-induced current is always slightly larger

for 3D waves than for 2D waves. Overall, R, increases as U, increases (i.e. as the water
depth becomes shallower). This behaviour is caused by the smaller wave set-down effects for
short-crested waves than for long-crested waves in finite water depths. However, for a given
value of U, <0.4, i.e. corresponding to relative deep water, it appears that R, decreases as
S, increases. This is due to the smaller negative wave set-down effects for both 2D and 3D
waves, while the positive wave setup effect is larger for 2D than for 3D waves. Consequently
the wave-induced current is larger for 2D than for 3D waves. For a given value of U r >0.7,
i.e. corresponding to relative shallow water, it appears that R, increases as S, increases. This
is due to the smaller wave set-down effect for 3D than for 2D waves, and consequently the
wave-induced current is larger for 3D than for 2D waves. However, the difference in the
results for 2D and 3D waves are small, i.e. R, is in the range 0.95 to 1.06. The reason for the
shape of the R,-isocurves of 1.05 and 1.06 is not known; it might arise from the

parameterization upon which the Forristall (2000) distribution is based. It should be noted that

the results for U, =0 in Figs. 3, 4 and 5 are the same as those presented in Figs. 1 and 2.

S. Example of results

To the authors” knowledge no data on Stokes drift due to nonlinear random waves are

available in the open literature. Hence two examples are included to illustrate the applicability



of the results for practical purposes using data typical for field conditions, corresponding to
deep water and finite water depth flow conditions, respectively.

Table 1 gives the flow conditions and the results in terms of the significant drift
corresponding to the results in Figs. 1 to 5. For the Stokes drift the results are exemplified by

calculating the surface Stokes drift, i.e. by taking &, =wu, _ where u,, 1s evaluated at

—0- 2 g2 2
5= 0 > Uppe = arm.\'kp /a)p and kp - (Up /g .

In deep water it appears that the significant value of the surface wave-induced current
(#,) for linear waves, 2D and 3D waves are 0.0881 m/s, 0.0950 m/s and 0.0940 m/s,
respectively. The corresponding values of the Stokes transport (M / p) are 0.491 m?s,
0.529 m%*s and 0.524 mz/s, respectively.

In finite water depth (4 =15m) the corresponding values of u, are 0.108 m/s, 0.121 m/s,
0.119 m/s, and the corresponding values of M / p are 0.546 mz/s, 0.609 mz/s, 0.597 m%s.

It should be noted that for these values of S, and U,, the wave-induced current for 3D
waves is slightly smaller than that for 2D waves, which is consistent with the results in F ig. 5.

A frequently asked question is: What is the ratio between the wave-induced current and
the mean wind speed at the 10 m elevation above the sea surface Un?

This issue is considered here by choosing a Phillips spectrum as the deep water wave

spectrum (see e.g. Tucker and Pitt (2001)).

9

S(m)za-g—; y, W2Z@, =
w

=L (23)
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where a =0.0081 is the Phillips constant. By using the definition of the zeroth spectral

moment
my = [S(@)dw (24)
0

it follows that
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Moreover,

Tp = 2_7[ = 2_ﬂ'ljm (26)
g

(l)p

According to this it follows that the given values of H_=2m and T, =6.7s corresponds to

U,, =10.4m/s.

Based on the results in Table 1 it appears that the ratio between the significant value of
the surface Stokes drift in deep water and the mean wind speed at the 10 m elevation

(i1, /U,y) is about 0.9%. This is consistent with the results obtained by Rascle et al. (2008),

who described a global data base for parameters associated with ocean surface mixing and

drift including the surface Stokes drift in deep water. For a wind speed of U,, =10.4m/s they
obtained surface Stokes drift values in the range 0.8% to 1.6% of U, in the open ocean; (see

Rascle et al. (2008, Fig. 8)).

For directional seas the reduction compared with the 2D results are about 20% (Rascle
and Ardhuin (2013)). It should be noted that a very similar reduction in the surface Stokes
drift was also suggested in Webb and Fox-Kemper (201 1; Appendix 4). Moreover, the effects
of directional spreading and multidirectional waves have been further explored by Webb
(2013; Ch. 2), suggesting that more interesting effects occur when swell and wind waves
coexist with different directional properties. Both in the present example and in Fig. 2 it
appears that the reduction of the 3D results compared with the 2D results are smaller than the
20% reduction obtained by Rascle and Ardhuin (2013). This smaller reduction of about 6%
(Fig. 2) is mainly due to the inherent properties of the Forristall (2000) wave crest height

distribution containing the relatively weak Stokes second order nonlinear effects.



Based on the results in Table 1 it also appears that the surface Stokes drift in a finite

water depth is about 1.2% of U,,. Moreover, it appears that the Stokes transport (M / p) is

about 5% and 6% of U, in deep and finite water depth, respectively.

It should be noted that a commonly used procedure of estimating the significant values

of the Stokes drift for random waves would be to use Eqs. (1) to (3) and substitute for H, and

Ty, i.e. to substitute a=H,/2=12q

rms >

k=ky and @=w, =2x/T,. By referring to this as the
deterministic method, the results are that #,,, =2u,,, where wu,,. is given in Eqs. (7) and

(8) for finite and deep water, respectively; and M, =2M,  where M__ is given in Eq. (10).

These values are also given in Table 1 for finite and deep water. Thus, for linear waves in this

example, it appears that the ratio between the stochastic and the deterministic method is 1.05

both for &, and M. Moreover, the surface Stokes drift is about 0.8% of U;q=10.4 m/s, which

is in the range of 0.8% -1.6% as reported by Rascle et al. (2008). However, it should be noted
that the effects of wave nonlinearity due to 2D and 3D Stokes second order waves are not
possible to estimate by using the deterministic method. Hence this stochastic approach is
more mathematically sound than by using the significant wave height and the spectral peak
period in an otherwise deterministic method. Moreover, it also provides results which arises
from 2D and 3D Stokes second order wave nonlinearities inherent in the Forristall (2000)
parametric wave crest height distribution. However, comparison with data are required before
a conclusion regarding the validity of the approach can be given. In the meantime the
approach should be of practical interest for estimating Stokes drift based on available wave

statistics.

6. Summary and conclusions



A simple analytical tool which can be used to give estimates of statistical values of the
wave-induced current beneath long-crested (2D) and short-crested (3D) nonlinear random
waves is provided. The statistical values of the wave-induced current considered here are the
significant values of the Stokes drift and the Stokes transport. The present analytical results
can be used to make assessment of the wave-induced current based on available wave
statistics.

The main conclusions can be summarized as follows:
1) In deep water, for both 2D and 3D nonlinear waves, the wave-induced current is larger

than for linear waves, and the difference increases as the wave steepness S, increases.

The wave-induced current is always smaller for 3D waves than for 2D waves, which is
caused by the smaller sum-frequency effect for 3D waves than for 2D waves.

2) In a finite water depth, for both 2D and 3D nonlinear waves, the wave-induced current
is larger than for linear waves, and the difference increases as the water depth
decreases and as the characteristic wave steepness increases.

3) Overall, in a finite water depth, the wave-induced current for 3D waves is larger than

for 2D waves for higher values of the Ursell number U, , i.e. corresponding to relative

shallow water. This is due to the smaller wave set-down effects for 3D waves than for
2D waves for higher U, . However, for smaller values of U,, i.e. cotresponding to
relative deep water, the wave-induced current for 2D waves is slightly larger than for
3D waves. This is due to the smaller wave set-down effect for both 2D and 3D waves,
while the wave setup effect is larger for 2D waves than for 3D waves for relative deep
water.

4) An example of results using data typical for field conditions demonstrate that the

significant value of the surface Stokes drift in deep water is about 0.9% of U,,, which

is within the range 0.8% to 1.6% of U,, reported by Rascle et al. (2008).
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Table 1. Example of results for deep water and finite water depth. The statistical

quantities of the wave-induced currents u, and M/ p are the significant values,

i.e. the expected values caused by the (1/3)rd largest wave crests.

Deep water Finite water depth A=15 m

H (m) 2 3
T,(s) 6.7 6.7
k,,(rad/m) 0.0896 0.0993
S, 0.029 0.029
Uy, 0 0.060

&, By (Egs. (14) and (17))

1.0484, 0.9687

1.0857, 0.9686

&> B, (Egs. (15) and (17))

1.0426, 0.9741

1.0705, 0.9746

u,,.(z, =0)(m/s) (Eq. (7)) 0.0420 0.0517
#,,,(z, =0) (m/s) (Egs. (7) and (20)) 0.0881 0.108
Uy oni2p (2, = 0) (M/s) (Egs. (7) and (19)) 0.0950 0.121
i,,umsn (2, = 0) (M/s) (Egs. (7) and (19)) 0.0940 0.119
M, / p(m?s) (Eq. (10)) 0.234 0.260
M, | p (m%s) (Eqgs. (10) and (20)) 0.491 0.546
M, .op | p(m*/s) (Egs. (10) and (19)) 0.529 0.609
M,,..s»/ p (m/s) (Egs. (10) and (19)) 0.524 0.597
7, (z =0) (ms) 0.0840 0.103

0.468 0.520

M,/ p (m’s)
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Fig. 2

Fig. 3

Fig. 4

Fig. 5

The nonlinear-to-linear ratio R, of the significant value of the wave-induced

current according to Eq. (21) for n = 3 for 2D and 3D waves in deep water

versus the wave steepness S, .

The ratio R, of the significant value of the wave-induced current for 3D waves

to that for 2D waves in deep water according to Eq. (22) for n = 3 versus the

wave steepness S, .

Isocurves for the nonlinear-to-linear ratio R, of the significant value of the

wave-induced current according to Eq. (21) for n = 3 for 2D waves versus wave

steepness S, and Ursell number U,,.

Isocurves for the nonlinear-to-linear ratio R, of the significant value of the

wave-induced current according to Eq. (21) for #n = 3 for 3D waves versus wave

steepness S, and Ursell number U, .

Isocurves for the ratio R, of the significant value of the wave-induced current

for 3D waves to that of 2D waves according to Eq. (22) for n = 3 versus the

wave steepness S, and Ursell number U, .
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