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Abstract	
	
One	of	the	grand	challenges	in	neuroscience	is	to	comprehend	neural	computation	in	the	association	
cortices,	the	parts	of	the	cortex	that	have	shown	the	largest	expansion	and	differentiation	during	
mammalian	evolution	and	that	are	thought	to	contribute	so	profoundly	to	the	emergence	of	advanced	
cognition	in	humans.	In	this	review,	we	will	use	grid	cells	in	the	medial	entorhinal	cortex	as	a	gateway	to	
understanding	network	computation	at	a	stage	of	cortical	processing	where	firing	patterns	are	shaped	
not	primarily	by	incoming	sensory	signals	but	to	a	large	extent	by	intrinsic	properties	of	the	local	circuit.		
	
	
Introduction	
	
The	nervous	system	has	evolved	to	enable	adaptive	decisions	and	behaviours	in	response	to	changes	in	
the	internal	and	external	environment.	To	permit	such	responses,	nervous	systems	recreate	properties	
of	the	internal	or	external	world	in	activity	patterns	referred	to	as	neural	representations.	
Representations	can	be	thought	of	as	dynamic	clusters	of	cells	whose	activity	patterns	correlate	with	
features	of	the	outside	world.	By	recreating	the	environment	in	a	language	that	is	suitable	for	brain	
computation,	representations	are	thought	to	mediate	the	selection	of	appropriate	action	in	response	to	
stimulus	configurations	in	the	animal’s	environment.	Given	the	importance	of	internal	representations	
in	guiding	behaviour,	understanding	their	mechanisms	has	become	one	of	the	central	goals	of	
contemporary	neuroscience.		
	
Representations	have	been	studied	at	multiple	levels,	from	the	earliest	stages	of	sensory	systems,	where	
sensory	maps	reproduce	the	spatial	organization	of	the	sensory	receptors,	to	the	highest	levels	of	
association	cortex,	where	representations	bear	little	resemblance	to	activation	patterns	in	the	receptor	
population	(Box	1).	The	mechanisms	underlying	the	formation	of	representations	at	the	bottom	of	the	
representational	hierarchy,	near	the	sensory	receptor	populations,	have	been	explored	extensively,	
particularly	in	the	visual	system.	Much	less	is	known	about	how	representations	form	at	higher	levels,	
where	representations	depend	more	strongly	on	intrinsic	cortical	computations.	The	aim	of	the	present	
review	is	to	discuss	mechanisms	of	neural	representation	in	the	medial	entorhinal	cortex	(MEC),	near	
the	apex	of	the	cortical	hierarchy1,	using	well-studied	representations	in	the	primary	visual	cortex	as	a	
reference.	
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Place	cells	and	grid	cells	
	
The	MEC	and	the	hippocampus	are	part	of	the	brain’s	neural	map	of	external	space2-4	(Box	2).	Multiple	
functional	cell	types	contribute	to	this	representation.	The	first	spatial	cell	type	to	be	discovered	was	the	
place	cell5,6.	Place	cells	are	cells	in	the	hippocampus	that	fire	selectively	when	animals	are	at	certain	
locations	in	the	environment.	The	description	of	place	cells	in	the	1970s	was	followed,	more	than	30	
years	later,	by	the	discovery	of	grid	cells	one	synapse	upstream,	in	the	MEC7-9.	Grid	cells	are	place-
selective	cells	that	fire	at	multiple	discrete	and	regularly	spaced	locations7.	These	firing	locations	form	a	
hexagonal	pattern	that	tiles	the	entire	space	available	to	the	animal8	(Fig.	1a).	While	ensembles	of	place	
cells	change	unpredictably	from	one	environment	to	the	next10,11,	the	positional	relationship	between	
grid	cells	is	maintained,	reflecting	the	structure	of	space	independently	of	the	contextual	details	of	
individual	environments12.	The	rigid	structure	of	the	grid	map,	along	with	its	spatial	periodicity,	points	to	
grid	cells	as	part	of	the	brain’s	metric	for	local	space4,12.		
	
Place	cells	and	grid	cells	were	discovered	in	rats	but	similar	cells	have	subsequently	been	reported	in	
mice13-15,	bats16,17,	monkeys18-21,	and	humans22,23,	although	the	bulk	of	work	on	entorhinal-hippocampal	
spatial	representation	is	still	performed	in	rodents.	The	strong	correspondence	in	each	species	between	
entorhinal-hippocampal	firing	patterns	and	a	measurable	property	of	the	external	world		–	the	location	
of	the	animal	–	makes	the	spatial	representation	circuit	a	powerful	experimental	model	system	for	
understanding	neural	computation	at	the	highest	levels	of	the	association	cortices,	many	synapses	away	
from	sensory	receptors	and	motor	outputs.		
		
Grid	cells	and	sensory	inputs	
	
Hexagonal	firing	structure	is	the	defining	feature	of	grid	cells8.	Yet	grid	cells	differ	in	grid	spacing	
(distance	between	grid	fields),	grid	orientation	(rotation	of	grid	axes),	and	grid	phase	(x-y	locations	of	
firing	vertices)8,24	(Fig.	1b).	Grid	cells	exhibit	variable	degrees	of	asymmetry24,25	and	periodicity	may	be	
expressed	more	strongly	along	one	axis	of	the	triangular	grid	than	the	two	others26.	Collectively	the	
variety	of	grid	cells	define	a	map	of	the	animal’s	relative	position	in	the	environment7,12.	Because	grid	
cells	differ	in	spacing,	each	place	in	the	local	environment	is	associated	with	a	unique	combination	of	
active	cells,	allowing	neurons	with	access	to	this	combined	activity	to	faithfully	read	out	the	animal’s	
location.		
	
The	map	of	grid	cells	is	dynamic,	in	the	sense	that	activation	is	driven	by	the	animal’s	movement	in	the	
environment3,8,	For	grid	activity	to	be	updated	in	accordance	with	ongoing	movement,	grid	cells	must	
have	access	to	sensory	signals	that	correspond	to	the	animal’s	change	in	location.	Only	a	few	types	of	
sensory	input	are	sufficiently	continuous	to	enable	smooth	translation	of	the	grid	representation.	Such	
inputs	include	proprioceptive	and	kinesthetic	feedback	as	well	as	vestibular	signals	and	optic	flow.	
Consistent	with	a	primary	role	for	self-motion	inputs	and	a	secondary	role	for	inputs	from	stationary	
cues,	grid	cells	retain	their	hexagonal	firing	pattern	after	removal	of	visual	or	olfactory	landmarks8,12.	
Pairs	of	grid	cells	tend	to	maintain	spatial	firing	relationships	across	environments,	independently	of	
landmark	identities12,	as	expected	if	the	algorithm	were	based	on	self-motion.	
	
A	strong	dependence	on	motion	cues	might	imply	a	role	for	grid	cells	in	representations	based	on	path	
integration,	a	process	whereby	linear	and	angular	motion	is	integrated	over	time	to	yield	spatial	
displacement27-29.		Both	place	cells	and	grid	cells	express	outcomes	of	path	integration,	in	the	sense	that	
firing	fields	can	often	be	related	to	distance	of	movement	from	a	reference	position	rather	than	inputs	
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from	stationary	visual	cues30-34.		Recent	work	has	identified	a	dedicated	cell	population	for	linear	
representation	of	running	speed	within	the	MEC35.	By	integrating	speed	over	time,	these	cells	may	
provide	grid	cells	with	information	about	changes	in	position.	A	role	for	speed	cells	and	grid	cells	in	path	
integration	is	consistent	with	the	observation	that	rats	with	MEC	lesions	fail	to	navigate	back	to	a	refuge	
under	conditions	where	only	self-motion	cues	are	informative36,37.	However,	mechanisms	for	path	
integration	may	exist	in	multiple	brain	circuits,	as	suggested	by	the	fact	that,	in	humans,	unlike	rats,	
simple	self-motion-based	navigation	is	spared	by	lesions	that	include	the	entorhinal	cortex37,38.		
	
Path	integration	can	only	be	used	to	calculate	displacement	from	fixed	reference	positions.	Stationary	
cues	are	required	to	associate	path-integration	coordinates	with	absolute	position.	The	fact	that	grid	
phase	and	grid	orientation	remain	stable	across	test	sessions8,	and	that	grid	fields	rotate	along	with	
external	reference	points	in	cylindrical	environments8,	suggests	that	grid	coordinates	are	anchored	to	the	
external	environment.	Experiments	in	compartmentalized	mazes	suggest	that	grid	maps	anchor	at	many	
locations	and	often	near	salient	environmental	features32.	Frequent	anchoring	may	prevent	drift	due	to	
accumulation	of	path-integration	error39.	The	frequency	at	which	grid	maps	are	updated	is	not	known,	
however.	Grid	maps	may	be	re-anchored	at	regular	intervals,	e.g.	on	individual	cycles	of	the	local	theta	
rhythm,	or	resetting	may	occur	in	response	to	specific	cues	in	the	environment.		
	
Architecture	of	the	grid	map	
	
While	grid	fields	are	modulated	by	sensory	inputs,	such	inputs	are	not	sufficient	to	explain	how	the	grid	
pattern	itself	is	formed.	The	hexagonal	grid	pattern	is	not	reflected	in	any	of	the	polysynaptic	sensory	
inputs	to	the	grid	cells,	suggesting	that	it	arises	intrinsically	in	the	MEC	or	the	wider	parahippocampal	
circuit	of	which	the	MEC	is	a	part.	This	possibility	justifies	a	closer	look	at	the	functional	architecture	of	
the	grid-cell	network.	
	
The	organization	of	grid	cells	is	topographic	and	non-topographic	at	the	same	time8.	Grid	scale	shows	
topographic	organization	in	the	sense	that	grid	cells	with	small	fields	and	small	interfield	distances	
predominate	in	the	dorsal	part	of	the	MEC.	At	more	ventral	levels,	cells	with	larger	grid	scales	take	
over7,24,40.	The	phase	of	the	grid	pattern,	in	contrast,	exhibits	no	discernible	large-scale	topography8.	
Local	ensembles	of	grid	cells	apparently	cover	the	entire	range	of	grid	phases	at	all	MEC	locations.	The	
distribution	of	grid	phases	is	similar	to	the	interspersed	or	‘salt-and-pepper’-like	organization	of	
response	properties	in	several	sensory	cortices,	such	as	odour	representations	in	the	piriform	cortex41,42	

or	orientation	maps	in	the	visual	cortex	of	rodents43-45.	Fine-scale	topography	of	grid	phase	has	not	been	
ruled	out,	however.	Samples	of	simultaneously	recorded	cells	are	generally	small	and	the	resolution	of	
tetrode	recordings	does	not	allow	for	anatomical	mapping	at	a	scale	of	less	than	50-100	micrometers46.	
Thus	estimates	of	functional	microarchitecture	must	await	recording	approaches	with	better	anatomical	
resolution47,48.		
	
Lack	of	grid-phase	topography	does	not	rule	out	discrete	cell	assemblies	with	unique	functions.	Recent	
recordings	from	up	to	almost	200	grid	cells	per	animal	has	suggested,	in	agreement	with	a	small	sample	of	
data	from	an	earlier	study25,	that	grid	cells	cluster	into	modules	of	cells	with	similar	grid	scale,	grid	
orientation	and	grid	asymmetry	but	different	grid	phase	(Fig.	1c)24.	Modules	with	short	grid	wavelength	
(spacing)	predominate	at	the	dorsal	end	of	MEC.	Larger-scale	modules	are	added	successively	towards	the	
ventral	MEC,	without	discarding	the	shorter	wavelengths.	The	increase	in	grid	scale	is	discontinuous.	If	grid	
modules	are	sorted	by	wavelength,	from	short	to	long,	the	average	wavelength	increases	from	one	module	
to	the	next	by	a	factor	of	1.4,	as	in	a	geometric	progression	(Fig.	1d).	At	the	same	time,	the	number	of	cells	
per	module	decreases.	Theoretical	analyses	suggest	that	such	an	organization	may	be	optimal	for	obtaining	
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maximal	spatial	resolution	from	a	minimal	number	of	grid	cells49,50.	The	emergence	of	an	architecture	that	
maximizes	information	from	a	limited	pool	of	neurons	is	reminiscent	of	the	balance	between	the	number	of	
ON	and	OFF	cells	in	the	retina,	which	has	been	shown	to	match	the	statistical	structure	of	common	visual	
scenes51.		
	
The	functional	coherence	of	grid	cells	within	modules,	and	their	separation	from	grid	cells	in	other	
modules,	raises	the	possibility	that	grid	networks	consist	of	anatomically	overlapping	sub-networks	with	
strong	intrinsic	coupling	and	weaker	coupling	between	the	networks.	A	key	question	for	the	future	will	
be	to	determine	which	cells	wire	together	in	such	networks,	at	which	developmental	stage	this	wiring	
takes	place,	and	how	cells	of	the	same	network	find	each	other.	For	functional	maps	in	the	visual	cortex	
there	is	much	more	information	on	this	question:	it	is	now	reasonably	well	established	that	activity-
dependent	mechanisms	are	involved	in	forming	the	map	or,	in	the	special	case	of	rodents,	connecting	
cells	with	particular	response	properties52-54.	The	basic	organization	of	connections	in	the	visual	pathway	
is	established	prior	to	visual	experience	as	a	result	of	spontaneous	correlated	activity	(retinal	and	
cortical	waves)55-58	or	by	means	of	gap-junction	coupling	of	clonally	related	neurons	at	prenatal	
developmental	stages59,60.	It	remains	unknown	whether	the	developmental	processes	underlying	the	
modular	architecture	of	grid	cell	ensembles	rely	on	similar	mechanisms.	
	
The	entangled	nature	of	grid	modules	differs	from	the	organization	of	representations	for	continuous	
variables	in	some	other	cortical	systems.	For	example,	in	the	visual	cortex	of	cats	and	monkeys,	
orientation-selective	cells	are	organized	into	continuous	pinwheel-like	structures	that	map	orientations	
successively	through	the	180-degree	orientation	cycle61.	Orientation	maps	in	these	species	are	smooth	
except	at	the	very	centre	of	the	pinwheel62,63	and	at	the	border	between	direction-sensitive	domains43.	
Because	orientation	is	circular,	a	pinwheel-like	arrangement	may	be	required	for	optimal	continuity.	
Other	parameters	such	as	ocular	dominance,	disparity,	spatial	frequency,	and,	of	course,	position	in	
space	are	mapped	continuously	across	the	entire	cortical	surface64-70.	A	notable	exception	is	the	salt-
and-pepper-like	organization	of	the	rodent	visual	cortex43-45.	Plausible	explanations	for	this	exception	lie	
in	the	relative	scale	of	the	cortical	area,	the	magnification	factor,	and	the	receptive	field	scatter,	which	
make	an	interspersed	organization	a	necessity	–	if	all	stimulus	parameters	are	to	be	represented	in	each	
region	of	visual	space.	If	a	mouse	had	functional	columns	of	the	size	of	those	in	cats,	and	not	a	salt-and-
pepper	organization,	it	would	only	see	one	stimulus	feature,	e.g.	one	orientation,	in	any	portion	of	the	
visual	field.	We	can	only	speculate	whether	a	similar	explanation	may	hold	true	for	the	salt-and-pepper-
like	representation	of	grid	phase	in	MEC,	whether	grid	phase	would	be	represented	topographically	in	
mammals	with	larger	MECs,	and	whether	topographic	representation	matters	for	the	way	animals	
perceive	space.	
	
Finally,	MEC	networks	do	not	only	consist	of	grid	cells.	Grid	cells	intermingle	with	head	direction	cells	–	
cells	that	fire	only	if	the	rat’s	head	is	pointing	in	a	certain	direction	relative	to	external	cues.	These	cells	
were	first	found	in	the	adjacent	presubiculum71,72	but	were	subsequently	recorded	also	the	MEC9.	Grid	
cells	and	head	direction	cells	further	intermingle	with	border	cells		–	cells	that	fire	exclusively	when	the	
rat	is	close	to	a	salient	border	of	the	environment,	such	as	the	wall	of	a	recording	enclosure	or	the	edge	
of	a	platform73,74	–	as	well	as	neurons	whose	firing	rates	increase	monotonically	with	running	speed,	
independently	of	the	rat’s	location	or	head	direction35.	Cells	with	border-determined	firing	properties	
exist	also	in	the	subiculum75,76.	Grid	cells,	head	direction	cells,	border	cells	and	speed	cells	are	
functionally	discrete	populations	but	coexist	with	cells	with	conjunctive	properties9,35,74.	The	mixture	of	
functional	cell	types	in	MEC	has	an	interesting	analogy	in	the	visual	system	in	visual	area	V2	–	and	to	a	
lesser	extent	V1	–	where,	at	least	in	primates,	cells	coding	for	color,	disparity,	orientation,	motion,	
spatial	frequency	and	other	properties	coexist,	albeit	to	a	certain	extent	in	different	compartments77.	In	
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the	visual	cortex,	as	in	the	MEC,	functional	properties	are	distributed	onto	discrete	but	intermingled	cell	
types.		
	
Attractor	networks	and	mechanisms	of	the	grid	pattern	
	
Several	properties	of	grid	cells	point	to	local	circuit	computation	as	the	source	of	the	grid	pattern.	Within	
modules	of	grid	cells,	cell	assemblies	respond	with	coherent	changes	in	grid	phase,	grid	orientation	and	
grid	scale	when	the	animal	is	brought	to	a	different	environment12,24	or	following	interventions	that	
change	the	scale	of	the	grid,	such	as	exposure	to	an	unfamiliar	environment25,78,79or	compression	of	the	
recording	enclosure24,25.	In	each	case,	the	relationship	between	firing	fields	of	cell	pairs	is	conserved	
despite	major	changes	in	the	properties	of	individual	cells	and	without	any	obvious	relationship	to	
sensory	inputs78.	These	observations	are	consistent	with	the	idea	that	grid	cells	operate	as	ensembles	of	
interconnected	neurons	whose	activity	patterns	move	across	continua	of	attractor	states	(Fig.	2	and	Box	
3).	Attractor	models	provide	powerful	working	hypotheses	for	grid	cells,	although	alternative	
mechanisms,	such	as	interference	between	theta-frequency	membrane	potential	oscillations80-82,	have	
also	been	explored4,83.		Oscillatory	interference	models	of	grid	cells	have	guided	some	of	the	most	
important	experimental	studies	on	grid	cells	but	mounting	experimental	evidence	speaks	against	simple	
versions	of	these	models	(Box	4).	The	focus	of	the	present	article	will	therefore	be	on	attractor	network-
based	mechanisms.	
	
The	idea	of	an	attractor	network	is	one	of	the	most	influential	concepts	in	theoretical	systems	
neuroscience84-87.	Attractor	networks	can	be	traced	back	to	Donald	Hebb88	who	argued	that	co-firing	
neurons	should	be	more	strongly	connected	to	each	other	than	to	the	rest	of	the	network,	thus	forming	
so-called	Hebbian	cell	assemblies.	Activating	a	subset	of	the	neurons	in	such	an	assembly	will	lead	to	
activation	of	the	rest.	The	activation	may	self-sustain	by	reverberation	of	activity	through	the	strong	
connections	that	link	neurons	within	the	Hebbian	assembly.		
	
In	a	seminal	theoretical	study	that	paved	the	way	for	the	continuous	attractor	concept,	Amari89	showed	
that	stable	localized	activity	patterns	can	be	maintained	in	networks	where	neurons	are	arranged	on	a	
ring	such	that	the	excitatory	connections	of	each	neuron	decrease	progressively	with	distance	on	the	
ring	whereas	inhibitory	connections	increase	(Mexican	hat	connectivity).	Since	this	study,	continuous	
attractors	have	been	used	to	model	a	variety	of	sensory	and	non-sensory	processes	ranging	from	motor-
cortex	representations	of	movement	trajectories90,	orientation	selectivity	in	V191,92,	eye	position93,	
directional	tuning	of	head	direction	cells94,95,	and	the	position	of	an	animal	in	space,	as	represented	by	
the	firing	of	hippocampal	place	cells87,96-99.			
	
The	fact	that	grid	cells	maintain	their	activity	pattern	after	removal	of	light	or	other	sensory	stimuli	points	
to	a	self-sustaining	mechanism8.	Not	surprisingly	then, soon	after	the	discovery	of	grid	cells,	several	
continuous	attractor	models	were	introduced	to	explain	the	formation	of	spatially	periodic	firing3,100,101	(Fig.	
2).	All	of	these	models	have	two	stages.	First,	cells	are	arranged	on	a	matrix	according	to	grid	phase.	
Localized	activity	(a	‘bump’)	is	formed	when	the	network	has	Mexican-hat	connectivity,	i.e.	cells	with	
similar	grid	phases	are	connected	through	excitatory	connections,	or	with	less	inhibition	than	those	with	
larger	phase	differences,	which	always	inhibit	each	other	(Fig.	2ab).	Bumps	can	be	formed	at	multiple	
network	locations,	with	competitive	interactions	leading	to	the	formation	of	a	hexagonal	bump	pattern	on	
the	network	array100,101,	or	the	bump	can	be	generated	at	a	single	location,	with	periodic	firing	emerging	
when	the	activity	bump	returns	to	the	same	location	in	a	toroidal	matrix3,102.	In	either	case,	once	local	
activity	is	generated,	the	bump	is	moved	by	path	integration	in	response	to	asymmetric	speed	and	direction	
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inputs	to	the	grid	cells,	mirroring	a	mechanism	originally	proposed	for	head-direction	cells95.	When	the	
bump	follows	the	animal’s	movement,	activity	is	expressed	as	a	grid	pattern	in	each	individual	cell.		
	
Continuous	attractor	models	with	Mexican-hat	connectivity	were	able	to	produce	grid	patterns	but	it	
soon	turned	out	that	these	models	relied	on	connectivity	matrices	different	from	those	of	key	circuits	of	
the	MEC.	The	prime	challenge	is	the	almost	complete	lack	of	excitatory	connections	between	layer	II	
stellate	cells,	the	cell	type	containing	the	largest	number	of	grid	cells	and	the	most	regular	grid	
patterns9,26,103-105.	Paired	recordings	have	shown	that	excitatory	connections	are	nearly	absent	among	
stellate	cells	in	adult	animals	and	that	stellate	cells	are	instead	strongly	connected	via	fast-spiking	
inhibitory	interneurons106-108.	The	inhibition	between	pairs	of	stellate	cells	seems	to	be	consistent	in	
magnitude,	i.e.	all-or-none107.	
	
In	response	to	the	lack	of	excitatory	connections	between	stellate	cells,	it	was	shown	that	attractor	
models	can	function	with	only	inhibitory	interconnections107-109	(Fig.	2c-f).	In	the	presence	of	external	
excitatory	drive,	neural	activity	in	an	inhibitory	network	self-organized	into	a	stable	hexagonal	pattern.	
Competitive	inhibitory	interactions	drove	activity	to	maximally	spaced	positions.	As	in	the	earlier	
excitatory	models,	a	path	integration	mechanism	could	be	used	to	move	the	activity	bumps	across	the	
neuronal	lattice	in	accordance	with	the	animal’s	movement.	The	emergence	of	grid	patterns	in	purely	
inhibitory	networks	is	also	shown	in	a	previous	study	with	Mexican-hat	connectivity	where	inhibition	
decreases	progressively	as	grid	phases	get	more	similar101.	The	dependence	on	tonic	external	excitatory	
drive	predicted	by	these	models	has	been	verified	in	a	study	where	hippocampal	projections	to	the	MEC	
were	silenced	by	infusion	of	a	GABAergic	agonist	in	the	hippocampus109.	Infusions	led	to	substantial	
drops	in	the	firing	rates	of	grid	cells,	accompanied	by	a	progressive	loss	of	grid	structure	and	appearance	
of	directional	tuning,	as	expected	when	residual	external	inputs	take	over	as	determinants	of	grid-cell	
firing.	Similar	disruptions	of	grid	firing	have	been	observed	under	other	conditions	that	reduce	
excitatory	input	to	grid	cells110,111.		
	
The	relationship	between	external	excitatory	input	and	grid	structure	verifies	one	prediction	of	the	
inhibitory	models	but	far	from	proves	any	of	them.	These	models	demonstrate	that	inhibitory	
connections,	such	as	those	that	connect	layer	II	stellate	cells,	are	sufficient	for	activity	to	self-organize	into	
a	hexagonal	pattern.	However,	whether	this	actually	is	the	mechanism	of	grid	cell	formation	remains	to	
be	determined.		Per	today,	in	the	absence	of	further	theoretical	development	and	new	experimental	data,	
the	high	demands	that	attractor	models	put	on	network	connectivity	disallow	them	to	be	adopted	as	
straightforward	explanations	of	grid	cells	(Box	3).	
	
Assumptions	about	recurrent	connectivity	
	
Attractor	models	of	grid	cells	require	neurons	to	be	connected	to	each	other,	directly	or	indirectly,	by	
way	of	synaptic	weights	that	depend	on	the	phase	difference	between	neurons3,100,101,107.	Whether	
developmental	processes	allow	for	the	complexity	of	such	a	wiring	scheme	is	an	open	question.		The	
salt-and-pepper-like	organization	of	the	grid	network8	implies	that	preferential	coupling	between	phase-
matched	cells	cannot	be	obtained	merely	by	letting	cells	connect	to	their	nearest	neighbours.			
	
One	possibility	is	that	grid	cells	overcome	the	lack	of	topography	by	connecting,	directly	or	indirectly,	to	
cells	with	similar	grid	phases	irrespective	of	distance.	There	is	some	precedence	for	connectional	
specificity	between	distributed	but	functionally	similar	neurons	in	V1	of	the	visual	cortex,	where	cells	
that	code	for	specific	orientations	are	frequently	connected	whereas	cells	with	different	orientation	
preferences	are	connected	more	rarely112-115.	If	cells	with	similar	grid	properties	wire	together	similarly	
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in	the	MEC,	how	could	they	find	each	other?	A	study	by	Li	et	al.59	used	in	utero	electroporation	to	label	
cells	from	one	developmental	clone	in	V1.	At	adult	age,	sister	neurons	from	this	clone	were	not	only	
more	strongly	connected	but	also	more	similarly	tuned	for	orientation	and	direction	than	randomly	
selected	neighbouring	neuron	pairs.	Initial	connections	were	by	gap	junctions,	which	later	gave	way	to	
chemical	synapses.	We	do	not	know	whether	connectional	topography	between	phase-matched	cells	
within	modules	in	the	MEC	has	a	similar	developmental	origin.			
	
The	development	of	lateral	connectivity	becomes	simpler	if	the	connectivity	problem	is	reduced	from	
two	dimensions	to	one.		This	has	been	suggested	in	a	two-step	model	by	Grossberg	and	colleagues116,117.	
In	the	first	step,	a	set	of	ring	attractors	are	formed	upstream	of	the	grid	cells.	Each	ring	attractor	
encodes	a	selected	direction	of	movement	in	external	space,	and	a	bump	on	the	ring	attractor	will	path	
integrate	the	movement	of	the	animal	along	that	direction	based	on	velocity	input.	The	cells	in	each	ring	
thus	respond	as	bands	that	cover	the	space	in	a	direction	orthogonal	to	the	preferred	direction	of	the	
ring	attractor.	In	the	second	step,	the	ring	attractors	contact	grid	cells	with	projections	that	are	subject	
to	competitive	learning.		The	competitive	learning	is	shown	to	select	ring	attractors	with	60-degree	
separation	of	preferred	orientations,	leading	to	hexagonal	grid	firing.		
	
One-dimensional	attractor	networks	are	appealing	because	they	put	considerably	less	demand	on	the	
specificity	of	wiring	between	grid	cells.	Coupling	with	phase-matched	cells	would	only	be	required	in	one	
direction.	On	the	other	hand,	the	current	model	does	not	explain	how	the	connectivity	of	the	ring	
attractors	is	formed	and	analytical	proofs	for	the	self-organizing	mechanism	are	yet	to	be	developed.	
Also,	the	location	of	the	proposed	ring	attractors	remains	elusive.	Some	grid	cells	in	the	deeper	MEC	
layers	show	somewhat	different	degrees	of	periodic	firing	along	the	three	grid	axes9,26,	raising	the	
possibility	that	such	cells	respond	to	cells	with	band-like	activity26,	but	‘band	cells’	have	not	been	
observed	in	or	near	MEC	to	date.		
	
Several	studies	have	recently	tried	to	determine	whether	grid	cells	with	similar	grid	phases	are	
preferentially	coupled,	as	required	by	the	two-dimensional	attractor	models.		A	recent	study	expressed	
channelrhodopsin-2	selectively	in	parvalbumin-expressing	MEC	interneurons118.	Cross-correlation	
analyses	showed	that	rate	maps	of	pairs	of	grid	cells	that	projected	to	the	same	parvalbumin-expressing	
interneuron	were	no	more	similar	than	randomly	chosen	cells.	At	first	glance,	this	speaks	against	attractor	
models	based	on	inhibitory	coupling	of	grid	cells	with	similar	grid	phase.	On	the	other	hand,	cross-
correlated	activity	may	reflect	common	but	time-shifted	inputs	rather	than	synaptic	connections119.	The	
proportion	of	such	false	negatives	in	the	data	is	not	known.	Furthermore,	inhibitory	postsynaptic	
potentials	are	often	elicited	only	after	strong	and	coincident	stimulation	of	multiple	input	cells107,	
suggesting	that	while	the	interneurons	may	receive	input	from	grid	cells	with	a	broad	spectrum	of	grid	
phases,	their	output	may	depend	on	restricted	subsets.		
	
An	alternative	way	to	determine	functional	connections	between	grid	cells	is	to	analyze	the	entire	
pattern	of	co-activity	in	large	samples	of	simultaneously	recorded	neurons.	Mathis	et	al.120		analyzed	
data	from	grid	cells	on	a	one-dimensional	track	showing	that	noise	correlation	amongst	these	cells	
decays	as	the	phase	difference	increases.	In	another	study121,	a	kinetic	Ising	model122	was	used	to	infer	
effective	connections	in	a	population	of	27	grid	cells	recorded	simultaneously	in	an	open	field.	Inferred	
connections	between	pairs	of	grid	cells	decayed	with	increasing	phase	difference,	starting	as	positive	for	
neurons	with	nearly	identical	phases	and	turning	to	negative	at	larger	phase	differences.	In	a	third	study,	
noise	correlations	between	pairs	of	simultaneously	recorded	neurons	were	used	as	a	proxy	to	the	
functional	connections	between	pairs	of	grid	cells123.	Again	noise	correlations	were	found	to	decay	
steeply	with	phase	differences,	as	predicted	if	grid	cells	with	similar	phases	were	preferentially	coupled.		
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Thus,	there	is	some	evidence	in	favour	of	specific	functional	connectivity	between	cells	with	similar	grid	
phases	but	the	implementation	of	the	attractor	mechanism,	if	it	exists,	is	not	well	understood.	We	do	
not	know	whether	the	effective	connections	are	excitatory	or	inhibitory,	how	connections	vary	between	
and	within	layers	and	modules,	or	how	they	change	through	learning	and	development.		
	
Grid	cells	in	feedforward	networks	
		
The	recurrent	inhibitory	network	of	MEC	layer	II	is	not	functional	until	rats	are	almost	four	weeks	old124.	
Rudimentary	grid	cells	can	be	observed	before	this	age,	although	the	grid	fields	are	noisier,	less	periodic,	
and	less	stable124,125.	This	split	raises	the	question	of	whether	grid	cells	can	be	formed	in	the	absence	of	
recurrent	networks.	Kropff	and	Treves126	have	developed	a	model	in	which	entorhinal	neurons	receive	
spatial	information	through	plastic	feedforward	connections.	These	entorhinal	neurons	are	subject	to	
neuronal	fatigue	or	adaptation.	In	combination	with	fixed	sparsity	in	the	network	activity,	presumably	
enforced	by	inhibitory	processes,	adaptation	leads	to	changes	in	the	strength	of	the	feedforward	
connections	such	that	the	firing	pattern	of	individual	neurons	becomes	hexagonal.	Initially,	feedforward	
weights	are	random	and	neurons	fire	at	random	places,	depending	on	fluctuations	in	the	inputs	they	
receive.	After	a	brief	period	of	above-average	activity,	neurons	tend	to	be	suppressed,	as	a	result	of	
adaptation.	When	a	neuron	is	firing,	its	active	feedforward	connections	are	enhanced	through	plasticity,	
whereas	the	inactive	ones	are	suppressed.	When	the	firing	is	suppressed,	no	synaptic	modification	
occurs.	Slowly,	upon	extensive	averaging	over	many	trajectories,	the	synaptic	modification	among	active	
neurons	causes,	in	each	cell,	a	regular	pattern	of	firing	fields	embedded	in	a	matrix	of	non-firing	regions,	
as	the	rat	navigates	in	space.	Unlike	the	attractor	models,	the	adaptation	model	does	not	require	
preferential	connections	between	grid	cells	with	similar	phases	and	activity	is	not	translated	across	the	
network	in	a	speed	and	direction-dependent	manner.	Thus,	there	is	no	path	integration	in	this	model,	
although	some	of	the	spatial	information	expressed	in	the	feedforward	inputs	may	be	based	on	path	
integration,	computed	elsewhere.			
	
In	the	simplest	version	of	this	adaptation	model,	the	orientation	of	the	emerging	grid	cells	is	random.	
This	contrasts	with	the	non-uniform	distribution	of	grid	orientation	in	experimental	data8,24,127.	The	
problem	could	be	alleviated	by	including	excitatory	recurrent	collaterals	to	align	the	grid	cells126,128.	
However,	the	formation	of	collaterals	would	be	a	time-consuming	process	that	is	hard	to	reconcile	with	
the	rapid	stabilization	of	grid	cells	in	novel	environments8.	A	solution	might	be	that	recurrent	collaterals	
form	during	development,	without	a	need	for	learning	through	adaption	in	every	new	environment.	
	
Adaptation	and	attractor	mechanisms	are	not	mutually	exclusive	possibilities.	It	is	conceivable	that	grid	
cells	form	through	a	hybrid	mechanism	where	spatially	periodic	firing	emerges	early	in	development	
based	on	adaptation	and	feedforward	plasticity,	and	that	recurrent	connections	develop	subsequently,	
by	activity-dependent	mechanisms.	These	recurrent	connections	may	then	enable	translation	of	activity	
in	accordance	with	the	animal’s	movements	in	external	space	in	a	continuous	attractor	network.	An	
analogy	to	this	sequence	has	recently	been	observed	in	the	visual	cortex,	where	selectivity	for	visual	
stimuli	has	been	shown	to	appear	in	a	feedforward	network	around	the	age	of	eye	opening,	before	the	
development	of	connections	between	cells	with	similar	response	signals54.	Precise	local	connectivity	
may	not	be	critical	for	feature	selectivity	in	individual	cells,	at	least	in	a	rudimentary	form,	but	it	may	be	
necessary	for	the	network	to	acquire	attractor	and	path	integration	properties.		
	
An	important	feature	of	the	adaptation	model	is	that	it	relates	the	geometry	of	the	environment	to	the	
spatial	firing	pattern	of	the	grid	cells.	For	animals	raised	in	conventional	two-dimensional	environments,	
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the	model	predicts	hexagonal	grids.	However,	if	the	animal	is	raised	in	a	sphere,	the	model	predicts	the	
appearance	of	regular	patterns	ranging	from	one	activity	peak	to	pentagonal	patterns,	depending	on	the	
radius	of	the	sphere	and	the	parameters	of	the	adaptation129.	The	model	also	makes	predictions	about	
the	form	of	the	spatial	selectivity	in	3	dimensions130.	This	is	particularly	relevant	for	animals	that	
navigate	in	three-	dimensional	space,	such	as	bats.		Since	all	existing	models	predict	hexagonal	patterns	
on	flat	surfaces,	experiments	with	animal	raised	in	different	geometries131	will	be	important	for	
distinguishing	between	models.		
	
Uniqueness	of	the	entorhinal	grid	network	
	
If	grid	patterns	emerge	from	interactions	between	large	numbers	of	neurons,	grid	cells	might	exist	also	
beyond	MEC,	in	circuits	with	similar	network	architectures.	However,	in	tetrode	recordings,	grid	cells	
have	so	far	only	been	observed	in	MEC	and	adjacent	pre-	and	parasubiculum7,103.	A	recent	study	in	
human	epileptic	patients	reported	grid-like	activity	in	what	was	referred	to	as	the	cingulum23	but	in	the	
absence	of	images	of	electrode	location	in	this	report	and	assuming	the	most	commonly	used	
implantation	trajectory	in	such	patients,	it	is	likely	that	the	spikes	originate	from	the	nearby	pre-	or	
parasubiculum,	which	in	rodents	contains	a	large	number	of	grid	cells103.	As	of	today,	there	is	no	
published	evidence	for	grid-like	activity	in	circuits	outside	a	continuous	parahippocampal	region	
consisting	of	MEC	and	pre-	and	parasubiculum.		
	
But	would	grid	cells	be	found	if	we	searched	specifically	in	regions	that	share	the	recurrent	connection	
patterns	of	the	MEC?	Recurrent	excitatory	connectivity	is	part	of	the	normal	architecture	of	the	
neocortex,	within	and	between	layers132.	The	connectivity	can	be	extensive,	such	as	between	spiny	
stellate	cells	in	layer	IV	of	the	barrel	cortex,	where	the	estimate	is	24%	as	measured	by	in	vitro	
multipatch	recordings133,	and	between	pyramidal	cells	of	the	visual	cortex,	where	the	connectivity	may	
be	even	higher134,135.	Similarly	dense	connectivity	has	been	observed	in	several	allocortical	and	
allocortical-neocortical	transition	areas,	such	as	the	olfactory	cortex136,	the	CA3	of	the	hippocampus137-
139,	the	subiculum140,	and	layers	III-VI	of	the	MEC106.	In	contrast,	there	are	very	few	networks	with	
exclusive	inhibitory	connectivity	similar	to	that	of	MEC	layer	II.	Such	networks	may	exist	in	the	pre-	and	
parasubiculum,	where	whole-cell	recordings	following	locally	applied	stimulation	suggest	that	excitatory	
connections	in	layers	II	and	III	are	sparse141.	These	data	need	to	be	confirmed	by	direct	recordings	from	
cell	pairs	but	the	possibility	of	exclusive	inhibitory	connectivity	in	just	those	areas	that	exhibit	grid	
patterns	is	intriguing.		
	
However,	there	are	two	regions	outside	the	allocortical	parahippocampal	cortex	where	inhibitory	
interconnections	are	as	predominant	as	in	MEC	layer	II.	One	is	the	olfactory	bulb,	where	a	major	class	of	
excitatory	neurons	–	mitral	cells	–	is	almost	exclusively	connected	through	inhibitory	granule	cells142.	The	
second	area	is	the	dentate	gyrus.	Mossy	fibers	from	dentate	granule	cells	collateralize	extensively	in	the	
hilus	where	they	preferentially	target	interneurons	that	project	back	to	the	granule	cells143,144.	No	direct	
excitatory	connections	have	been	reported	between	granule	cells143,144.	Thus,	the	olfactory	bulb	and	the	
dentate	gyrus	contain	several	key	elements	of	MEC	architecture;	yet	grid	cells	have	not	been	reported	in	
these	areas.	The	olfactory	bulb	is	clearly	outside	the	spatial	system	of	the	brain.	Dentate	granule	cells	
have	multiple	discrete	firing	fields145	but	they	lack	spatial	periodicity146.	The	lack	of	grid	pattern	in	
granule	cells	may	reflect	several	differences	between	the	MEC	and	dentate	gyrus	circuitry,	e.g.	the	
possible	absence	of	direct	inputs	to	the	dentate	gyrus	from	speed	and	head	direction	cells,	or	the	
strongly	hyperpolarized	membrane	potential	of	the	granule	cells147.	In	the	MEC,	the	hexagonal	structure	
of	grid-cell	activity	is	lost	after	removal	of	excitatory	input	and,	by	implication,	hyperpolarization	of	the	
cell	membrane109.		
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If	MEC	layer	II	has	unique	properties,	which	cell	types	in	this	layer	produce	grid	cells?	Layer	II	grid	cells	
could	be	either	stellate	cells	or	pyramidal	cells.	.	Because	two-thirds	of	the	excitatory	layer	II	cells	are	
stellate	cells148	and	at	least	one-half	have	grid	properties9,103,	a	considerable	fraction	of	the	grid	cells	may	
be	stellate	cells.	This	is	consistent	with	studies	in	which	grid	cells	were	recorded	intracellularly	from	head-
fixed	mice	in	virtual	environments104,105.	In	these	studies,	the	majority	of	layer	II	grid	cells	had	stellate-
specific	morphological	and	electrophysiological	properties.	The	suggestion	that	many	grid	cells	are	stellate	
cells	is	consistent	with	the	fact	that	(i)	stellate	cells	are	the	main	origin	of	the	layer	II	projections	to	
dentate	gyrus	and	CA3149,150,	and	(ii)	grid	cells	are	abundant	among	hippocampus-projecting	MEC	
neurons146,151.	Yet	these	observations	do	not	rule	out	that	some	grid	cells	are	pyramidal	cells.	Grid	cells	
are	present	also	in	deeper	MEC	layers9,	which	have	no	stellate	cells152,153.	The	pyramidal	cells	may	use	a	
mechanism	different	from	the	inhibitory	mechanism	in	layer	II	and	more	like	the	Mexican-hat	excitatory-
inhibitory	architecture	originally	proposed	for	grid	cells3,100,101,	or	alternatively	the	grid	pattern	could	
merely	be	propagated	via	connections	from	stellate	cells.	Conclusive	statements	about	the	cellular	
identity	of	grid	cells	must	await	larger	numbers	of	intracellularly	recorded	and	stained	cells	in	behaving	
animals.		It	is	important	to	solve	this	question,	considering	the	central	role	that	the	stellate-cell	network	
plays	in	some	attractor	models	for	grid	cells.		
	
Grid	cells	and	the	formation	of	place	fields	
	
The	entorhinal	representation	of	space	is	complemented	by	a	map	of	place	cells	in	the	hippocampus2,5,6.	
A	striking	difference	between	grid	cells	and	place	cells	is	that	place	cells,	unlike	grid	cells,	often	remap	
completely	between	environments	and	even	between	experiences	in	the	same	environment10,11,154,155.	
Whereas	ensembles	of	grid	cells	exhibit	spatially	coherent	firing	patterns	across	tasks12,	the	active	
subset	of	place	fields	may	be	almost	completely	replaced	and	among	cells	that	are	still	active,	the	
combination	of	firing	locations	is	usually	different.		Thus	the	entorhinal-hippocampal	circuit	has	two	
maps	of	space	–	one	expressing	the	metrics	of	the	environment	independently	of	its	specific	
configuration	of	landmarks	(grid	cells),	and	one	consisting	of	semi-orthogonal	representations	unique	to	
individual	environments	(place	cells),	i.e.	a	map	of	space	in	general	and	a	large	number	of	maps	for	
particular	spaces.		
	
Since	the	discovery	of	the	grid	cells,	it	has	been	asked	whether	place	cells	originate	by	transformation	of	
input	from	grid	cells	one	synapse	upstream,	in	layers	II	and	III	of	the	MEC.	In	the	same	way	that	
orientation-selective	cells	were	suggested	to	originate	by	linear	summation	from	concentric	circular	
fields	in	the	visual	cortex156,	place	cells	have	been	proposed	to	emerge	by	linear	summation	of	output	
from	grid	cells	with	overlapping	grid	phase	but	different	grid	scale3,100,157,158.	At	the	same	time,	however,	
other	models	suggested	that	place	fields	can	be	generated	from	any	weak	spatial	input	–	periodic	or	
non-periodic	–	so	long	as	the	local	hippocampal	circuit	contains	mechanisms	for	local	signal	
amplification	through	recurrent	networks	or	Hebbian	plasticity159-162.	The	relationship	between	grid	cells	
and	place	cells	was	further	complicated	by	experimental	data	suggesting	that	not	only	grid	cells	but	also	
other	functional	cell	types	project	from	the	MEC	to	the	hippocampus151.	The	input	from	entorhinal	
border	cells	is	of	particular	interest	because	early	computational	models	pointed	to	such	cells	as	a	
potential	origin	of	place-selective	activity163,164.	These	models	suggested	that	place	cells	receive	input	
from	hypothesized	‘boundary	vector	cells’	in	the	cortex	outside	the	hippocampus	–	cells	whose	firing	
rates	reflect	distance	and	direction	to	specific	boundaries	of	the	local	environment.	Border	cells	in	MEC	
represent	a	specific	subset	of	such	cells	but	they	fire	only	at	the	borders.	Responses	with	peaks	at	
increasing	distance	from	the	borders	have	been	observed	in	the	subiculum75,76	but	not	among	
hippocampus-projecting	cells	in	the	MEC73,74,151.	The	larger	number	of	hippocampal	place	fields	near	
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corners	and	walls	of	recording	environments	compared	to	central	areas165-167	is	consistent	with	a	
contribution	by	entorhinal	border	cells	in	place	field	formation.	Considering	that	border	cells	have	adult-
like	characteristics	from	the	first	day	of	outbound	exploration	in	rat	pups168,	inputs	from	such	cells	may	
explain	the	conundrum	that	place	cells	mature	earlier	than	grid	cells124,125,	contrary	to	the	predictions	of	
the	linear	summation	model	for	grid-to-place	cell	transformation.		The	findings	raise	the	possibility	that	
border	cells	play	a	role	in	driving	place	cells	in	young	animals	and	that	grid	inputs	take	an	increasingly	
important	role	as	the	animals	get	older,	possibly	with	a	stronger	contribution	to	the	metrics	of	the	place	
representation.	Whether	this	development	is	accompanied	by	an	increasing	ability	of	place	cells	to	map	
environments	based	on	path	integration,	remains	to	be	determined.		
	
Although	the	hippocampus	seems	to	receive	inputs	from	a	variety	of	entorhinal	cell	types,	it	is	not	yet	
clear	whether	the	input	to	an	individual	hippocampal	place	cell	is	functionally	diverse	or	dominated	by	
input	from	one	particular	functional	class	of	neurons,	e.g.	grid	cells.	If	the	input	is	mixed,	an	obvious	
question	is	how	inputs	are	selected	and	transformed	into	stable	and	spatially	confined	firing	fields.	Some	
clues	can	be	obtained	from	studies	of	synaptic	input	to	orientation-selective	neurons	in	area	V1	of	the	
visual	cortex.	In	one	study,	synaptic	inputs	were	mapped	in	response	to	drifting	gratings	by	imaging	of	
calcium	responses	across	spines	of	individual	neurons	in	layer	II	or	III	of	area	V1169.	The	study	showed	
heterogeneity	in	orientation	preferences	across	dendritic	spines,	although	some	cells	(e.g.	in	Figure	3c	of	
ref.	169)	displayed	quite	homogeneous	dendritic	responses.	A	subsequent	study	using	a	more	sensitive	
calcium	indicator	and	a	considerably	larger	cell	sample	confirmed	that	synaptic	inputs	are	
heterogenerous	but	also	showed	that	the	output	of	the	cell	could	be	predicted	from	the	average	tuning	
of	the	synaptic	inputs170.	Similar	heterogeneity	may	be	present	in	the	entorhinal	inputs	to	individual	
place	cells.	If	so,	the	properties	of	the	place	field	may	be	determined	not	only	by	the	relative	numbers	of	
different	functional	inputs	but	also	by	variations	in	synaptic	strength,	dendritic	mechanisms	within	the	
target	cell,	and	local	circuit	mechanisms.			
	
The	availability	of	a	broad	spectrum	of	entorhinal	inputs	has	potential	advantages	for	the	information	
encoded	in	a	hippocampal	place	cell.	Connectivity	with	multiple	cell	types	allows	for	dynamics	in	the	
functional	coupling	of	entorhinal	and	hippocampal	cell	assemblies.	Gamma	oscillations	provide	a	
mechanism	for	dynamic	coupling	of	selected	cell	assemblies171,172.	Place	cells	in	CA1	use	fast	gamma	
oscillations	to	couple	to	spatially	modulated	cell	assemblies	in	MEC173	whereas	low-frequency	beta-
gamma	oscillations	enable	coupling	with	odour-coding	neurons	in	the	lateral	part	of	entorhinal	cortex174.	
Because	beta	and	gamma	epochs	are	both	short-lasting	and	regionally	specific173,174,	place	cells	may	
interact	dynamically	with	a	range	of	entorhinal	cell	assemblies	each	carrying	a	distinct	type	of	
information.	The	efficiency	of	individual	functional	inputs	depends	on	behaviour,	such	as	running	
speed175,	and	evolves	in	parallel	with	behavioural	learning174,	suggesting	that	the	balance	between	
inputs	to	a	place	cell	is	experience-dependent.		
	
Finally,	connections	between	spatial	cells	in	MEC	and	hippocampus	are	bidirectional.	While	grid	cells	or	
border	cells	may	be	essential	for	the	formation	of	place	cells,	place	cells	are	also	likely	to	influence	
spatial	maps	in	MEC,	via	direct	or	indirect	connections	(Box	2).	When	the	hippocampus	is	inactivated,	
the	hexagonal	firing	pattern	of	the	grid	cells	is	lost	and	the	cells	become	responsive	instead	to	other	
influences	such	as	head	direction	signals109.	The	elimination	of	grid	structure	correlates	strongly	with	the	
induced	drop	in	firing	rates	of	the	grid	cells	and	is	consistent	with	the	need	for	external	excitatory	input	
proposed	by	inhibitory	network	models	of	grid	cells101,107,108.	The	dependence	on	external	excitation,	
from	the	hippocampus	or	elsewhere,	does	not	rule	out	a	role	for	hippocampal	backprojections	in	other	
functions	of	grid	cells,	such	as	in	updating	position	coordinates	based	on	environment-specific	maps	
stored	in	the	hippocampus.			
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Evolution	of	grid	cells	and	a	wider	perspective	
	
Grid	cells	are	not	unique	to	rodents.	A	recent	study	reported	grid	cells	in	Egyptian	fruit	bats17.	Bats	
belong	to	the	order	Chiroptera,	which	branched	off	at	an	early	stage	of	mammalian	evolution,	before,	
for	example,	the	separation	of	rodents	and	primates176.	The	presence	of	grid	cells	in	different	orders	
suggests	that	grid	cells	appeared	early	in	evolution	and	so	may	be	present	across	a	wide	span	of	
mammalian	species.	It	is	even	possible	that	grid	cells	exist	in	reptiles,	such	as	lizards,	or	in	bony	fish,	
which	have	brain	circuits	similar	to	those	of	the	mammalian	hippocampus	and	which	navigate	space	in	
ways	not	too	different	from	rodents	and	bats,	respectively177.	This	possibility	is	reinforced	by	the	fact	
that	navigation	in	turtles	and	goldfish	depends	on	homologues	of	the	mammalian	hippocampus178,179.	
The	fact	that	all	spatially	tuned	cells	described	so	far	are	found	in	phylogenetically	old	cortical	areas	is	
consistent	with	the	idea	of	a	common	set	of	circuit	mechanisms	for	space	in	widely	separated	species.		
	
Cells	with	grid-like	properties	have	recently	been	reported	in	primates.	In	these	studies	the	subjects	did	
not	move	around	as	in	the	rodent	and	bat	studies.	In	the	first	study21,	monkeys	viewed	a	sequence	of	
images	in	quick	succession.	Grid	patterns	were	reported	to	emerge	when	spikes	were	plotted	onto	a	
map	of	the	monkey’s	eye	positions,	independently	of	the	content	of	the	visual	images,	suggesting	that	
the	grid	cells	are	part	of	a	system	that	uses	eye	movement	to	determine	firing	and	that	firing	location	is	
determined	by	an	ocular	path	integration	mechanism.	In	the	second	study,	grid	cells	were	reported	
when	human	subjects	with	drug-resistant	epilepsy	navigated	between	predetermined	locations	in	a	
virtual	environment23.	In	both	experiments,	grid	patterns	were	substantially	noisier	than	during	
locomotion	in	rodents	but	the	periodicity	was	stronger	than	expected	by	chance.	The	increased	noise	
may	reflect	that	monkeys	occasionally	reset	the	ocular	path	integrator	between	images,	and	that	human	
subjects	alternated	between	virtual	and	real-world	reference	frames.	Rodent	studies	have	shown	that	
changes	in	reference	frames	can	occur	frequently	in	grid	cells	during	testing	in	environments	with	
complex	structure32.	Such	alternations	would	by	necessity	reduce	periodicity	in	time-averaged	rate	
maps.	The	less	accurate	electrode	placement	of	the	human	studies	and	the	averaging	of	activity	in	
multiple	layers	and	subfields	are	also	likely	to	add	noise	to	the	grid	pattern.	The	existence	of	visually	
driven	grid	cells	is	reminiscent	of	spatial	view	cells	in	hippocampal	and	parahippocampal	regions	of	
monkeys19,20.	View	cells	are	cells	that	respond	to	the	position	at	which	the	monkey	is	looking	rather	than	
the	animal’s	position	in	space.	Visually	driven	grid	cells	may	provide	an	important	input	to	view	cells.		
	
The	existence	of	grid	patterns	during	visual	scanning	and	virtual	locomotion	suggests	that	evolution	has	
expanded	the	range	of	velocity	inputs	that	may	drive	the	path	integrator	thought	to	update	the	grid	
map	as	the	animal	moves	through	space.	It	will	be	interesting	to	see	whether	the	same	cells	that	
respond	to	visual	movement	in	monkeys	also	respond	to	locomotion,	or	if	there	is	a	separate	system	of	
grid	cells	responsive	to	locomotion.	Regardless	of	the	answer,	the	primate	data	raise	the	possibility	that	
grid	cells	can	be	used	as	an	internal	metric	for	a	variety	of	spatial	operations.		
	
Conclusion	
	
The	outside	world	is	represented	at	multiple	levels	of	the	cortical	hierarchy,	from	early	stages	of	the	
primary	sensory	cortices	to	the	highest	levels	of	the	association	cortices.	At	the	peak	of	abstraction	is	
the	representation	of	external	space	in	the	MEC	and	the	hippocampus,	reviewed	in	this	paper.	A	key	cell	
type	of	the	MEC	representation	is	the	grid	cell.	The	hexagonal	firing	pattern	of	this	cell	type	provides	
one	of	the	most	striking	examples	of	a	neural	recreation	of	the	outside	world	that	cannot	be	traced	back	
in	any	straightforward	way	to	particular	activation	patterns	of	sets	of	sensory	receptors.	Unlike	for	most	
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cell	types	in	the	primary	sensory	cortices,	the	most	salient	features	of	grid-like	receptive	fields	are	likely	
to	arise	within	the	entorhinal	circuit	itself.	Grid	cells	thus	provide	us	with	a	unique	window	into	high-
level	computation	in	the	cortex.	
	
The	internal	origin	of	the	grid	pattern	is	one	of	the	features	that	makes	it	such	a	powerful	system	for	the	
study	of	cortical	computation.		In	one	sense,	the	inability	to	trace	signals	back	to	the	periphery	is	a	
disadvantage,	as	one	cannot	manipulate	the	animal’s	sensory	environment	and	easily	interpret	the	
resulting	changes	in	receptive	fields.		In	another	sense,	however,	the	relative	lack	of	sensory	
determinism	enables	one	to	study	how	the	cortex	creates	complex	receptive	fields	purely	out	of	local	
neural	interactions.		Of	course,	the	same	is	likely	true	for	other	higher	level	association	cortices	but	
while	the	relevant	input	parameters	to	the	spatial	receptive	fields	of	entorhinal-hippocampal	neurons	
may	indeed	be	obscure,	the	representation	of	environmental	space	is	somewhat	unique	in	that	it	
provides	an	easily	interpretable	metric	of	the	output	of	the	computation.			
	
With	the	recent	development	of	a	wide	repertoire	of	circuit	tools	(Box	5),	we	are	now	in	a	position	to	
address	in	detail	the	mechanisms	by	which	multiple	functionally	discrete	cell	types	interact	to	form	a	
representation	that	is	used	for	a	variety	of	functions,	spanning	from	navigation	and	action	guidance	to	
storage	of	high-capacity	declarative	memory.		The	detachment	from	sensory	inputs	and	the	quantitative	
relationships	revealed	in	the	organization	of	the	grid-cell	circuit	provide	potential	means	for	deciphering	
mechanisms	of	pattern	formation	and	pattern	transformation	that	may	apply	widely	across	the	cortex,	
including	the	lower	levels	of	the	representational	hierarchy,	where	the	components	of	the	
computational	machinery	are	often	more	accessible	to	experimental	testing.		By	opening	doors	to	
pattern	formation	processes,	grid	cells	may	offer	an	opportunity	to	get	a	better	understanding	of	one	of	
the	fundamental	tasks	of	the	neocortex	–	to	optimize	representation	and	processing	of	information	
about	the	outside	world.	
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BOX	1:	Hierarchy	of	cortical	representation	
	
Mechanisms	of	neuronal	representation	have	been	explored	at	several	levels.	The	simplest	representations	are	
found	at	early	stages	of	sensory	systems,	where	the	outside	world	is	reproduced	in	the	form	of	orderly	maps	
reflecting	the	spatial	organization	of	the	sensory	receptors.	The	retinotopic	maps	of	the	optic	tectum180	and	the	
visual	cortex64,66	,	the	body-surface	representations	of	the	somatosensory	cortex181,182,	and	the	tonotopic	maps	
of	the	auditory	cortex183,184	are	examples	of	such	representations	where	a	distorted	but	neighborhood-
preserving	projection	is	formed	between	the	sensory	organ	and	the	brain.	Panel	a	of	the	figure	illustrates	
retinotopic	organization	in	a	study	of	macaque	visual	cortex66.	The	visual	stimulus	used	in	this	experiment	is	
illustrated	to	the	left.	To	the	right	is	a	tangential	autoradiograph	of	V1	layer	4C	after	presentation	of	the	visual	
stimulus	centrally	on	the	fovea.	Fovea	is	represented	to	the	left,	periphery	to	the	right	(VS	and	VI,	vertical	
superior	and	inferior	rays	of	the	stimulus;	OS	and	OI,	oblique	superior	and	inferior	rays;	H,	horizontal	meridian;	
numbers	indicate	first,	second	and	third	ring	of	the	stimulus).	Note	that	the	stimulus	(or	the	spatial	organization	
of	the	sensory	receptors)	is	reproduced	as	an	orderly	map	on	the	cortical	surface.	
		
The	orientation	maps	in	the	visual	systems	of	many	higher	mammals	are	examples	of	a	more	complex	level	
of	cortical	representation43,61-63,185,186,	where	orientation-selective	simple	cells	are	thought	to	be	built	by	
combining	information	from	ganglion	cells	whose	receptive	fields	are	slightly	offset	along	one	axis	in	visual	
space156,187.	Panel	b	of	the	figure	shows	an	orientation	preference	map	(surface	view)	of	tree	shrew	V1,	with	
orientation	of	a	square-wave	grating	stimulus	colour-coded,	as	indicated	at	the	bottom114.	Orientation	maps	
require	a	wiring	scheme	where	strict	neighbourhood	relationships	in	the	projection	between	sensory	organ	
and	target	neurons	are	lost.	Building	and	maintaining	this	connectivity	is	a	formidable	task	but	an	orderly	
representation	of	parameters	that	are	important	for	further	cortical	processing	seems	advantageous	for	the	
brain.		Higher	levels	of	the	visual	system	feature	cells	responding	to	sophisticated	combinations	of	size,	
shape,	colour,	orientation	and	direction188-190	and	even	to	ethologically	important	objects,	including	hands	
and	individual	faces189,191-197.			
		
At	a	third	level	of	complexity,	maps	are	no	longer	generated	by	simple	geometrical	transformations	between	
the	receptor	surface	and	the	target	brain	structure.	An	example	is	the	‘computational	map’	of	auditory	space	
in	the	inferior	colliculus	of	the	barn	owl,	where	time	and	amplitude	differences	between	signals	from	the	two	
ears	are	used	to	compute	the	location	of	a	sound	source198,199.		The	left	part	of	figure	panel	c	illustrates	
coordinates	of	auditory	space	around	the	owl	(grey	globe)198.	Receptive	field	locations	are	projected	onto	the	
globe	for	14	neurons	(coloured	rectangles;	different	electrode	penetrations	in	the	midbrain	auditory	area	
have	different	colours).	The	top	right	part	of	the	figure	shows	the	location	of	the	barn	owl	midbrain	auditory	
area	and	the	bottom	right	shows	a	schematic	section	through	this	area	with	isoazimuth	and	isoelevation	
contours	based	on	receptive	field	centers	as	shown	in	the	left	part.	Receptive	field	locations	are	colour-
coded.	Note	topographic	mapping	of	auditory	space	in	two	dimensions.		
	
At	the	very	peak	of	the	hierarchy,	the	structure	of	the	representation	is	thought	to	depend	strongly	on	
intrinsic	circuit	mechanisms.	The	most	extensively	studied	example	of	such	non-topographic	representation	
is	the	map	of	external	space	in	the	hippocampus	and	the	medial	entorhinal	cortex	(MEC),	with	place	cells5	
and	grid	cells8,	respectively,	as	principal	functional	cell	types.	Firing-rate	maps	of	a	place	cell	(top)	and	a	grid	
cell	(bottom)	are	shown	in	panel	d	of	the	figure.	These	firing	patterns	are	unique	in	that	they	do	not	anymore	
reflect	stimulus	configurations	in	the	external	world	but	largely	represent	pattern	formation	processes	within	
entorhinal-hippocampal	local	circuits.		
	
Part	a	is	modified	from	ref.	66,	part	b	is	modifed	from	ref.	114,	and	c	is	modified	from	198	(courtesy	of	
Eric	Knudsen).	
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BOX	2:	Anatomy	of	the	hippocampal	formation	(HF)	and	the	parahippocampal	region	(PHR)	
	
One	of	the	principal	features	of	the	cortex	is	its	layered	organization.	Cortex	has	essentially	two	forms,	
the	neo-	or	isocortex,	generally	thought	to	comprise	five	or	six	layers,	and	the	allocortex,	characterized	
by	three	layers.	In	between	these	two	types,	a	number	of	transition	areas	have	been	recognized,	where	
the	number	of	layers	increases	from	three	to	six.	The	entorhinal	cortex,	together	with	the	pre-and	
parasubiculum,	are	part	of	this	transition	domain.	
	
Part	a	shows	the	right	hemisphere	of	a	rat	brain	with	a	focus	on	hippocampal	formation	(HF)	and	the	
parahippocampal	region	(PHR).	The	left	part	is	a	horizontal	section	through	the	hemisphere;	the	right	
part	shows	a	midsagittal	view	of	the	hemisphere,	based	on	the	rat	waxholm	space200.	The	dorsoventral	
position	of	the	section	is	indicated	by	the	black	line	through	the	hemisphere.		Together,	the	images	
illustrate	the	positions	of	key	hippocampal	and	parahippocampal	areas,	namely	the	dentate	gyrus	(DG),	
CA1–CA3,	the	subiculum	(Sub),	the	medial	entorhinal	cortex	(MEC),	the	lateral	entorhinal	cortex	
(LEC),	the	presubiculum	(PrS)	and	the	parasubiculum	(PaS).	The	borders	and	the	extent	of	individual	
subregions	are	colour-coded.	The	black	arrow	in	the	left	figure	indicates	the	hippocampal	fissure,	
indicated	by	the	white	arrow	in	the	right	figure.	
	
In	today’s	standard	connectivity	model	of	the	hippocampal	formation	and	parahippocampal	region	(see	
the	figure,	part	b),	the	MEC	provides	input	to	the	HF,	with	layer	II	projecting	to	DG,	CA3	and	CA2	and	
layer	III	projecting	to	CA1	and	Sub.	CA1	and	Sub	provide	output	to	EC	layer	V.	All	entorhinal	layers	
appear	reciprocally	connected	(indicated	by	the	white	double-head	arrows).	This	connectional	route,	in	
green,	is	paralleled	by	a	similarly	organized	route	starting	and	ending	in	LEC,	indicated	in	grey.	The	two	
pathways	converge	onto	single	neurons	in	DG,	CA3	and	CA2,	but	target	different	neurons	in	CA1	and	
Sub.	Projections	from	and	to	MEC	link	to	neurons	in	CA1	close	to	CA2	(prox)	and	neurons	in	the	
subiculum	close	to	PrS	(dist),	and	the	opposite	pattern	holds	for	projections	from	and	to	LEC.	Inputs	
selective	for	MEC	originate	from	PrS	and	PaS.	
	
A:	anterior;	D:	dorsal;	P:	posterior;	V:	ventral.	
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BOX	3:	The	problem	of	drift	in	attractor	networks	
	
One	major	challenge	faced	by	all	continuous	attractor	models	comes	from	the	requirement	of	
translational	invariance:	this	means	that if	a	pair	of	neurons	with	distance	d	is	connected	with	a	
connection	of	strength	W,	the	connection	between	every	other	pair	of	neurons	with	distance	d	should	
have	the	same	strength	W.	In	such	a	network,	if	a	bump	of	activity	centered	at	one	point	is	stable,	every	
translation	of	it	on	the	network	is	also	stable.	The	bump	can	be	moved	smoothly	across	the	network	
with	a	little	push	by	an	external	input	and	will	stay	still	when	the	input	is	gone.		
	
Real	networks	do	not	share	this	idealized	connectivity	pattern.	The	existence	of	inhomogeneity	in	the	
connectivity,	or	other	sources	of	noise,	breaks	the	translational	invariance,	leading	to	a	fragmentation	of	
the	continuum	of	attractors95,96,201,202.	Not	all	positions	will	then	be	stable	positions	of	the	bump,	but	
only	a	small	number	of	them.	As	a	result,	a	bump	of	activity,	initialized	at	a	given	position,	instead	of	
staying	there	until	an	external	input	moves	it,	will	spontaneously	drift	away	towards	one	of	the	few	
stable	positions.	This	fragmentation	of	the	continuum	would	interfere	with	path	integration.		
	
In	the	case	of	working	memory,	when	the	position	of	a	bump	of	activity	represents	the	position	of	an	
object	in	the	external	environment,	different	solutions	to	the	drift	problem	have	been	proposed,	
including	short-time	homeostatic	synaptic	plasticity201,	gain	modulation202	and	synaptic	facilitation203.	In	
the	case	of	synaptic	facilitation,	synaptic	weights	are	temporarily	increased	between	neurons	in	the	
bump,	making	these	neurons	more	bound	together	and	more	active,	and	making	the	bump	more	
resistant	movement	by	noise.	Irrespective	of	implementation,	such	changes	should	be	short-lasting;	
otherwise	the	bump	would	remain	in	place	when	a	move	is	needed,	for	example	to	represent	a	new	
position.		
	
Although	short-term	plasticity	might	alleviate	drift	in	working	memory	models,	such	mechanisms	have	
not	been	tested	for	networks	in	which	the	bump	should	continuously	track	an	external	input,	such	as	
attractor	networks	of	grid	cells	or	place	cells.	Furthermore,	these	mechanisms	have	a	potential	
drawback:	changes	in	synaptic	weight	or	single	neuron	gain	may	negatively	interfere	with	retrieval	of	
information	already	stored	in	the	distribution	of	synaptic	efficacies202.		A	complete	answer	to	the	
problem	of	drift	caused	by	inhomogeneity	in	attractor	models	of	grid	cells	is	lacking.	
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BOX	4:	Oscillatory	interference	models	of	grid	cells	
	
A	number	of	models	have	been	developed	to	explain	the	formation	of	grid	patterns	in	MEC	cells.	Historically,	
the	majority	of	the	models	have	fallen	in	one	of	two	classes	–	attractor	network	models	and	oscillatory-
interference	(OI)	models.	Network	models	are	subject	to	extensive	ongoing	research	and	have	been	
described	in	the	main	text.	In	this	Box,	we	briefly	review	the	key	features	of	the	OI	models.		
	
The	core	idea	of	the	OI	models	is	that	spatially	periodic	firing	arises	as	a	consequence	of	interference	
between	a	relatively	constant	global	theta	oscillation	and	a	velocity-controlled	cell-specific	theta	oscillation80-

82.	The	frequency	of	the	latter	is	determined	by	the	projection	of	the	animal’s	velocity	in	a	certain	running	
direction.	Interference	between	the	global	oscillator	and	the	velocity-controlled	oscillator	gives	rise	to	spatial	
bands	of	activity	along	the	preferred	orientation	of	the	latter.	Different	velocity-controlled	oscillators	have	
preferred	directions	that	are	separated	by	60	degrees,	such	that	their	combined	input,	together	with	the	
global	theta	oscillation,	results	in	a	hexagonal	firing	pattern	in	a	target	cell	that	receives	all	these	inputs.	In	
the	first	generation	of	models,	a	triplet	of	oscillators	was	put	into	the	same	neuron.	Later	models	recognized	
that	multiple	oscillators	in	the	same	neuron	would	phase-lock	at	behavioural	time	scales204	and	the	velocity-
controlled	oscillators	were	put	into	separate	groups	of	afferent	neurons205,206.		
	
OI	models	have	successfully	explained	some	properties	of	temporal	organization	in	grid	cells,	such	as	theta	
phase	precession105,207,	an	aspect	that	has	not	been	addressed	in	attractor	models,	except	in	one	
dimension208.	However,	OI	models	have	faced	serious	challenges	as	an	explanation	of	the	spatial	periodicity	
of	the	grid	cells.	Experimental	testing	has	failed	to	verify	two	of	the	key	assumptions	of	the	OI	models.	First,	
while	grid	formation	in	these	models	requires	theta	oscillations,	grid	cells	have	been	observed	in	the	absence	
of	theta	activity	in	fruit	bats17	as	well	as	macaque	monkeys21.	In	these	species,	theta	oscillations	are	
intermittent	and	grid	patterns	were	indifferent	as	to	whether	theta	activity	was	present	or	not.	Theta	
resonance	was	not	present	in	stellate	cells	from	bats209.	A	similar	dissociation	was	noted	after	knockout	of	
HCN1	channels,	which	almost	completely	abolishes	theta	resonance210	but	leaves	grid	patterns	intact,	
despite	some	expansion	in	the	scale	of	the	grid211.		A	second	challenge	is	the	failure	to	verify	the	proposed	
coincidence	between	grid	fields	and	theta	interference	waves	in	the	membrane	potential	of	grid	cells.	
Whole-cell	recordings	from	head-fixed	mice	running	in	virtual	environments	showed	minimal	links	between	
grid	periodicity	and	amplitude	of	the	theta	oscillation104,105,	contrary	to	the	predictions	from	the	OI	models.	
OI	models	were	only	able	to	account	for	the	data	if	attractor	dynamics	were	introduced	in	addition105,212.	
Taken	together,	these	experimental	observations	provide	strong	experimental	evidence	against	the	simplest	
forms	of	theta-based	OI	models	for	grid	formation,	although	interference	can	in	principle	happen	at	lower	or	
higher	frequencies213,	if	MEC	cells	resonate	at	those	frequencies.		
	
From	a	theoretical	perspective,	the	OI	model	has	from	the	beginning	had	the	weakness	that	the	60	
degree	periodicity	must	be	put	into	the	model	by	hand;	that	is,	the	emergence	of	60	degree	periodicity	
was	explained	by	a	similar	regularity	in	the	input	to	the	cells.	In	the	OI	models,	cells	receive	input	from	
one-dimensional	oscillators	separated	by	60	degrees.	It	is	this	separation	that	has	remained	
unexplained.	In	2010,	Mhatre	et	al.	proposed	a	model	in	which,	instead	of	using	interference	of	theta	
and	a	velocity-dependent	oscillation,	they	used	ring	attractors	to	generate	stripe-like	responses116.	They	
showed,	through	computer	simulations,	that	when	the	stripes	do	not	share	the	same	phase	or	
orientation,	grid	cells	can	be	generated	by	choosing	stripes	separated	from	each	other	by	60	degrees	
through	a	self-organizing	process.	Since	the	self-organization	map	does	not	depend	on	how	the	stripes	
are	generated,	at	least	not	when	they	are	perfect	stripes,	the	mechanism	proposed	by	Mhatre	et	al.	can	
be	used	in	OI	models	to	solve	the	60	degree	separation.	However,	the	two	models	(Mhatre	et	al.	and	OI)	
will	most	likely	respond	differently	to	noise	during	self-organization.	In	particular,	the	Mhatre	et	al.	



18	
	

model	may	take	advantage	of	synaptic	and	gain	modulation	mechanism	that	can	be	used	for	removing	
drift	(Box	2).	A	related	explanation	has	been	provided	more	recently	by	Hasselmo	and	Brandon214	who	
proposed	a	model	in	which	the	grid	pattern	emerges	via	attractor	dynamics	based	on	an	effective	
connectivity	similar	to	that	of	Fuhs	and	Touretzky100	but	mediated	by	oscillatory	cells	with	head	
directional	selectivity	and	reciprocally	connections	to	grid	cells.		
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BOX	5:	Exploiting	new	technologies	
		
Looking	forward,	one	of	the	most	exciting	avenues	of	research	on	grid	cells	is	the	application	of	
molecular	genetic	techniques.		The	excitement	is	about	the	opportunities	these	tools	offer	to	learn	
about	how	complex	internal	representations	of	external	space	are	generated,	and	how	they	impinge	
upon	downstream	neurons.		There	are	a	variety	of	transgenic	driver	lines	that	can	be	used	to	express	
transgenes	in	different	populations	of	both	excitatory	and	inhibitory	neurons	in	the	MEC.		The	
modularity	of	these	driver	lines	is	a	key	advantage:	depending	upon	the	“payload”	transgene	(delivered	
either	via	another	transgenic	line	or	a	complemented	virus),	one	can	perform	distinct	operations	on	the	
same	genetically-identified	sets	of	cells.		The	precise	cellular	identity	of	grid	cells	is	not	yet	clear.		They	
may	not	have	precise	molecular	determinants,	so	it	may	be	impossible	to	make	a	“grid-cell	specific”	
driver	line.		Nevertheless,	pairing	recordings	from	the	MEC	of	behaving	mice	with	manipulations	of	
specific	cell	types	can	be	extremely	fruitful.		Moreover,	there	already	exists	a	driver	line	which	is	almost	
exclusively	expressed	in	layer	II	of	MEC215,	where	grid	cells	are	most	abundant.	First,	the	identity	of	grid	
cells	can	be	determined	by	optogenetically	stimulating	different	molecularly	identified	classes	of	
neurons	during	recordings	to	see	which	driver	lines	are	enriched	in	neurons	with	what	receptive	fields	
(for	example,	grid	cells).		The	activity	of	defined	sets	of	neurons	can	be	manipulated	either	
optogenetically216	or	pharmacogenetically217	concomitant	with	unit	recordings,	and	the	effects	upon	the	
receptive	fields	of	these	neurons	and	other	neurons,	even	far	downstream,	can	be	monitored.			
	
Advances	in	imaging	and	fluorescent	indicator	transgenes170,218-223	now	confer	the	ability	to	observe	the	
firing	of	large	numbers	of	genetically-defined	neurons	at	once.		This	enables	a	shift	from	the	analysis	of	
single	or	small	ensembles	of	neurons	to	the	analysis	of	substantial	parts	of	entire	neural	networks	of	a	
brain	region.	Importantly,	this	has	recently	been	combined	with	virtual	reality	approaches33,34,224,,	which	
allow	for	manipulations	of	space	that	are	hard	or	impossible	to	achieve	in	the	real	world	(for	instance	
‘teleportation’	of	an	animal	to	a	different	place	in	the	virtual	environment155).	The	ability	to	record	the	
activity	of	hundreds	of	neurons,	together	with	their	cellular	identity	and	location	in	the	cortical	sheet	
combined	with	a	virtual	environment	that	can	be	manipulated	at	will,	provides	an	extremely	rich	
repertoire	of	experimental	possibilities	that	was	unthinkable	only	few	years	ago.	
	
The	application	of	these	methods	could	provide	empirical	tests	of	models	of	grid	and	place	cell	
formation.		For	instance,	the	role	of	inhibitory	neurons	in	grid	firing	postulated	here	and	elsewhere	can	
be	tested	by	using	the	various	interneuron-specific	Cre	lines225	available	to	pharmacogenetically	
stimulate	and/or	inhibit	particular	classes	of	inhibitory	neurons	during	grid	cell	recordings.		Similarly,	the	
role	of	oscillations	in	grid	cell	firing	could	be	investigated	by	using	local	field	potential	recordings	as	a	
trigger226		to	drive	optogenetic	manipulation	relative	to	the	phase	of	local	oscillations.		The	role	of	
plasticity	in	the	development	of	the	receptive	fields	of	MEC	layer	II	neurons	could	be	investigated	by	
knocking	out	NMDA	receptors	in	a	subpopulation	of	them,	and	activity-dependence	could	be	assayed	by	
pharmacogenetically	depolarizing	and/or	hyperpolarizing	them	during	development.		The	identity	of	the	
manipulated	neurons	can	subsequently	be	determined	by	optogenetic	stimulation	with	bicistronic	
transgene	cassettes.					Finally,	the	anatomical	connectivity	of	specific	genetically-identified	neurons	can	
be	determined	using	appropriate	driver	lines	to	target	viral	tracing	tools	such	as	the	G-deleted	
recombinant	rabies	system227,228,	which	can	deliver	transgene	payloads	specifically	to	monosynaptic	
inputs.		One	can	then	determine	the	functional	nature	of	inputs	to	MEC	neurons	and	establish	which	
receptive	fields	must	combine	to	make	a	grid-like	receptive	field.		All	in	all,	these	tools	make	something	
that	just	years	ago	was	simply	unimaginable	–	the	mechanistic	dissection	of	so	complex	and	cognitive	a	
receptive	field	as	the	grid	cell	–	entirely	plausible.						
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Figure	1	
Basic	properties	of	grid	cells.	a|	Spatial	firing	pattern	of	a	grid	cell	from	layer	II	of	the	rat	MEC.	The	grey	
trace	shows	the	trajectory	of	a	foraging	rat	in	a	2.2	m	wide	square	enclosure.	The	locations	at	which	the	
grid	cell	spikes	are	superimposed	on	the	trajectory	in	black.	Each	black	dot	corresponds	to	one	spike.	
Note	the	periodic	hexagonal	pattern	of	the	firing	fields	of	the	grid	cell.		b|	Cartoons	of	firing	patterns	for	
pairs	of	grid	cells	(shown	in	blue	and	green),	illustrating	differences	in	grid	scale	(top),	grid	orientation	
(middle)	and	grid	phase	(bottom).	Lines	in	top	and	middle	panels	indicate	two	axes	of	the	grid	pattern	
(which	define	grid	orientation);	crosses	in	the	bottom	panel	indicate	grid	phase	(xy	location	of	grid	
fields).	c|	Modular	organization	of	grid	scale.	Grid	spacing	is	shown	as	a	function	of	position	along	the	
recording	track	in	MEC,	with	cells	(dots)	rank-ordered	from	dorsal	to	ventral	and	one	panel	per	tetrode	
(TT).	On	each	tetrode,	grid	spacing	increases	in	discrete	steps.	 d|	Schematic	showing	that	the	increase	
of	grid	scale	across	modules	follows	a	geometric	progression	rule.	From	one	module	to	the	next,	average	
grid	scale	increases	by	a	constant	factor	(1.4	in	this	case).	Cell	in	a	is	reproduced	from	ref.	229,	cartoons	
in	b	and	d	made	by	Tor	Stensola;	c	is	adapted	from	ref.	24.	
	
	
	
Figure	2		
Excitatory	and	inhibitory	attractor	models	for	grid	cells.	A	variety	of	connectivity	patterns	have	been	
used	in	attractor	models	of	grid	cells	to	generate	hexagonal	firing	patterns.	These	include	the	Mexican	
hat	connectivity	used	by	Fuhs	and	Touretzky101	(a),	the	Mexican	hat-like	connectivity	of	Burak	and	
Fiete101	(b),	and	the	step-like	inhibitory	connectivity	used	by	Couey	et	al.107	(c).	The	connectivity	patterns	
differ	in	the	complexity	of	the	phase	dependence	of	the	synaptic	weights.	In	models	with	Mexican	hat	
connectivity	(a),	cells	have	progressively	decreasing	excitatory	connections,	combined	with	increasing	
inhibitory	connections,	whereas	the	Mexican	hat-like	connectivity	model	(b)	and	the	step-like	
connectivity	model	(c)	use	purely	inhibitory	connections,	although	the	inhibitory	fields	have	different	
shapes.	All	three	connectivity	patterns	produce	a	hexagonal	grid	pattern.		d|	The	step-like	connectivity	
model	leads	to	the	spontaneous	formation	of	a	hexagonal	grid	pattern.	Successive	sheets	illustrate	the	
network	at	different	developmental	stages	(0	to	500	ms),	with	individual	pixels	corresponding	to	
individual	neurons	and	neurons	arranged	according	to	grid	phase	in	each	sheet.	Activity	of	neurons	is	
colour-coded,	as	indicated	by	the	scale	bar.		Connection	radii	R	of	two	example	neurons	are	shown	as	
white	and	green	circles	(diameter	2R).	e|	Single	neuron	activity	(red	dots)	in	a	circular	arena	in	the	
simulation	in	d.	W0	is	the	strength	of	the	inhibitory	connectivity.	It	can	be	seen	that	W0	and	R	control	the	
size	of	the	grid	fields	and	their	spacing.	f|	External	excitatory	drive	is	necessary	for	grid	formation.	Spike	
distribution	plots	(as	in	e)	and	directional	tuning	curves	(firing	rate	as	a	function	of	direction)	with	strong	
excitatory	output	(top)	and	weak	excitatory	output	(bottom).	When	the	external	input	drops	below	a	
critical	amount,	the	activity	on	the	neuronal	sheet	is	vulnerable	to	distortions,	and	hexagonal	structure	
is	not	detectable	in	time-averaged	plots.	At	the	same	time,	head-direction	input	becomes	the	dominant	
source	of	input	and	cells	become	directional.	Parts	d	and	e	are	modified	from	ref.	107,	and	part	f	is	
modified	from	ref.	109.	
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Side	text	
	
“Idealists	argue	that	the	hexagonal	rooms	are	the	necessary	shape	of	absolute	space,	or	at	least	of	our	
perception	of	space”	–	Library	of	Babylon,	by	Jorge	Luis	Borges.		
	
	
	
	
Glossary	
	
Entorhinal	cortex		
Transition	between	three-layered	hippocampal	cortex	and	six-layered	neocortex.	It	provides	the	main	
cortical	input	to	the	dentate	gyrus.	
	
Place	cell	
Hippocampal	neurons	that	typically	have	a	single,	environmentally-specific	spatial	receptive	field.	There	
is	no	discernible	relationship	between	environments.			
	
Grid	cell	
Parahippocampal	neurons	with	regularly	repeating	hexagonally	spaced	receptive	fields.	Coactivity	
patterns	remain	largely	the	same	across	different	environments.			
	
Path	integration	
A	process	whereby	animals	keep	track	of	position	by	integrating	linear	and	angular	running	speed	over	
time	to	yield	spatial	displacement	relative	to	a	reference	position	(e.g.	the	starting	position	of	a	path).		
	
Head-direction	cell	
Neurons	found	throughout	parahippocampal	areas	and	in	other	brain	regions	(e.g.	anterior	thalamus)	
for	which	the	primary	feature	of	the	receptive	field	is	the	direction	in	which	the	animals	head	is	pointing.	
	
Theta	rhythm	
6-10	Hz	oscillatory	activity	in	the	local	field	potential	of	the	hippocampus,	produced	by	large	and	
widespread	ensembles	of	hippocampal	neurons	that	oscillate	in	synchrony.	
	
Salt	and	pepper	arrangement	
Cortical	architecture	where	single	cells	are	well-tuned	for	the	orientation	of	a	stimulus	but	show	no	
particular	order	in	their	arrangement.	This	arrangement	is	seen	for	orientation-tuned	cells	in	rodent	
visual	cortex.	
	
Attractor	network	
Network	with	one	or	more	stable	firing	rate	patterns	stored	in	the	structure	of	the	synaptic	connectivity.		
	
Continuous	attractor	
Attractor	network	where	the	collection	of	attracting	points	forms	not	a	discrete	set	but	a	continuum	(a	
ring	or	a	sheet).		
	
Mexican	hat	connectivity	
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Connectivity	of	networks	where	neurons	are	arranged	on	a	ring	or	sheet	such	that	the	excitatory	
connections	of	each	neuron	decrease	progressively	with	distance	whereas,	in	parallel,	inhibitory	
connections	increase	in	strength.	
	
Recurrent	network	
A	neural	network	where	each	neuronal	element	provides	an	input	onto	many	of	the	other	neurons	in	
the	network.	
	
Adaptation		
Adaptation,	as	used	in	this	article,	refers	to	the	decrease	in	firing	frequency	that	neurons	exhibit	
following	a	period	of	repeated	discharge.		
 
Stellate	cell	 
Morphologically	defined	as	a	cell	with	a	round	soma	and	dendrites	radiating	from	it	in	all	directions.	In	
the	MEC,	stellate	cells	are	the	main	origin	of	the	projection	to	the	dentate	gyrus	and	CA3. 
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