
Model Predictive Control for a Multi-Body Slung-Load SystemI

Gaetano Tartaglionea, Egidio D'Amatob, Marco Ariolaa, Pierluigi Salvo Rossic, Tor Arne
Johansend

aDepartment of Engineering, University of Naples Parthenope, Napoli, Italia
bDepartment of Industrial and Information Engineering, Second University of Naples, Aversa, Italy

cDepartment of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
dCenter for Autonomous Marine Operation and Systems, Norwegian University of Science and Technology,

Trondheim, Norway

Abstract

In this paper we present a multi-level and distributed control system, based on a robust Model

Predictive Control (MPC) technique, for a multi-body slung-load system. In particular, we con-

sider a swarm of autonomous multi-copters which are connected by wires to a suspended payload.

The payload reference trajectory is obtained through a constrained optimization, then the refer-

ence trajectory for each UAV is derived on the basis of the known shape of the formation, while

taking into account operational constraints such as collision avoidance and cruise speed. Trajectory

tracking is performed by a multi-level �ight control system based on a MPC technique and a PID

control system. Numerical simulations have been performed in order to test the control system

in realistic scenarios. In particular, the multi-copters are modeled by the six Degrees-of-Freedom

(6DOF) model, the constraint forces on the wires are calculated using the Udwadia-Kalaba equation

and the external disturbances (atmospheric turbulence and gust) are included in the simulation.

Simulation results are encouraging, thus making the proposed system an appealing candidate for

similar applications.
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1. Introduction

Recent developments in drone technology have made slung-load systems practical in both com-

mercial and scienti�c applications [1, 2, 3]. In order to increase the maximum payload weight, a
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slung-load system composed by a swarm of Unmanned Aerial Vehicles (UAVs) connected by wires

to the payload is appealing.5

There are two main challenges in the cooperative load transport problem. First of all, interac-

tions among the UAVs, and between the UAVs and the payload are introduced by the wires. These

interactions can be considered as external disturbances acting on the UAVs [1, 2]; then the control

system must be designed including some requirements of robustness. Moreover, the control system

must guarantee synchronization among the UAVs to obtain cooperation and to avoid collisions.10

So far, to solve the cooperative load transport problem and its challenges, hierarchical con-

trollers, geometrical controllers and nonlinear controllers have been used. We here explore the

bene�ts of using Model Predictive Control (MPC) for designing a multi-level and distributed con-

trol system, computing the UAVs reference trajectories as the solution to a constrained optimization.

The advantage of the proposed solution is the capability of taking into account dynamic operative15

scenarios, obstacle avoidance and performance constraints, control input saturation, requirement of

robustness and sustainable computational cost.

1.1. Related works

Several works have focused on the control problem of cooperative load transport, proposing

di�erent approaches.20

The geometrical controller introduced by T. Lee in [4] and [5] allows to follow a desired trajectory

of both the payload position and attitude. In particular, the Voronoi tessellation technique is

exploited to obtain the formation trajectory planning while taking into account collision-avoidance

constraints. A geometrical controller is then designed using a coordinate-free form of the equations

of motion, derived according to Lagrange mechanics.25

Synchronization and tracking trajectory problems can be treated separately using a hierarchical

controller. In [6] consensus and graph theory is employed for multi-copters synchronization and

distributed control, respectively. In [7] �rst the controller computes the desired forces on the cables

to follow the reference trajectory, then the reference position, speed and thrust of each UAV are

computed to obtain the desired forces.30

Other approaches are based on the use of nonlinear controllers, which enable to take into account

the nonlinearity of the multi-copters dynamic model. In [8] a slung-load system composed of two

quad-copters is modeled. The nonlinear controller is obtained by a partial feedback linearization
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technique, and the collisions are avoided introducing a repulsion force among the UAVs. In [9] a

nonlinear kinematic controller is used to compute the UAVs reference velocity vectors, through the35

feedback of the relative angles between the multi-copters and the load. In [10], the authors vali-

date, by means of numerical simulations, a cooperative control strategy with coordination achieved

through synchronization of the path parametrization, while the control law is computed using the

back-stepping technique.

Experimental results are included in [11, 12], where the authors consider a swarm of indoor40

quad-copters to move the payload, and the control signals are obtained from the feedback of the

UAVs and load positions provided by external cameras.

1.2. Contribution

In this paper, we propose a multi-level and distributed control system for a multi-body slung-

load system. In particular, we consider di�erent control modules to solve the following control45

problems: (i) trajectory planning; (ii) trajectory tracking; (iii) velocity and attitude control.

To obtain synchronization, the UAV reference trajectories are computed from the load trajectory

assuming that the formation shape is known. The load trajectory is expressed as a sequence of way-

points, which are the solution of a sequence of constrained optimization problems. This approach

allows us to solve di�erent coordination and cooperation problems [13], and it allows us to take into50

account operational constraints such as obstacles avoidance and UAV performance constraint. For

this application, at each discrete time instant the new way-point is computed on the basis of the

obstacle positions, the multi-copter cruise speed, the previous way-point and the target point.

The trajectory tracking module is based on a decentralized and robust MPC algorithm [14], in

which at each discrete time instant each multi-copter solves only its own constrained optimization55

problem to obtain the control signals. This algorithm allows us to take into account the presence

of control input saturations, the requirement of robustness and sustainable computational cost for

a real application. The functional cost and the constraint functions are calculated assuming the

knowledge of a reference trajectory and a prediction of the system behavior over a future horizon.

Finally, the control module for the control of UAV velocity and attitude is based on a PID60

control system, that computes the multi-copter motor speed on the basis of the MPC signal inputs.

We validate the designed �ight control system by numerical simulations of a realistic scenario.

In particular, the multi-copters are modeled as a rigid body and the 6DOF model [15] is used for the
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simulation. The payload is modeled as a point mass in the space and the constraint forces on the

wires acting on each drone are calculated using the Udwadia-Kalaba equation [16]. The controller65

robustness is tested by introducing atmospheric turbulence and gust in the simulations.

The paper is organized as follows. In Section 2 we describe the dynamic model of the multi-body

system used for the numerical simulation. Section 3 presents the architecture of the �ight control

system. Section 4 illustrates the optimization problem for computing the load reference trajectory,

while Section 5 illustrates the MPC optimization problem. In Section 6 we describe the scenarios70

which have been simulated and the numerical results; a comparison with some results appeared in

[10] is also included. Finally, in Section 7 we draw some conclusions.

Notation. In the sequel by the symbol ‖ · ‖ we will denote the Euclidean norm, whereas by ‖ · ‖T
we will denote the Euclidean norm weighted by the positive de�nite matrix T . By A � 0 we mean

that each element of the matrix A is greater than 0. The symbol ∧ denotes the cross product75

between two vectors. The symbol × denotes the Cartesian product between two sets. The symbols

⊕ and 	 denote respectively the Minkowski sum and the Pontryagin di�erence [17]. The symbol

(·)+ denotes the Moore-Penrose Pseudo inverse [18]. With C n(a) we denote the set obtained by

[−a; a]1× [−a; a]2× ...[−a; a]n, with In we denote the identity matrix of order n and with 0m×n we

denote the m− by − n matrix of zeros.80

2. Slung-load system dynamic model

We consider a slung-load system composed by M identical multi-copters linked by M wires to a

payload. In the following we describe the non linear dynamic model of each UAV, and the payload

dynamics. Then we characterize the interconnected system by using the Udwadia-Kalaba equation,

which allows us to compute constraint forces on the wires and acting on each UAV.85

2.1. Multi-copter dynamic model

We introduce two reference frames: a body �xed frame B with origin OB located in the Center

of Gravity (CoG) of the UAV, and an inertial earth frame E. The dynamic equations in the inertial

earth frame E are

V̇B = m−1

(
−Ω ∧mVB + τg + τp + τw + τa

)
(1)
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Ω̇ = I−1
B

(
−Ω ∧ IBΩ + νp + νa

)
(2)

where m and IB are respectively the mass and inertial matrix of the multi-copter, VB is the velocity

vector in the body �xed frame and Ω =
[
Ωx Ωy Ωz

]T
is the angular velocity vector . In equations

(1) and (2) external forces and moments need to be speci�ed. More speci�cally, we consider the

contributions of gravity force τg, the propulsive forces τp and moments νp, the aerodynamic drag τa90

and moments νa due to atmospheric turbulence and the constraint forces on the wire τw. Following

the approach in [1] and in [16], we impose that the wires are connected from the CoG of the UAV

to the CoG of the payload; under this assumption the UAVs attitude dynamics are una�ected.

The inertial position p is obtained from equations

ṗ = RBE(Θ)VB (3)

ṘBE = S(Ω)RBE (4)

where ṗ =
[
Vx Vy Vz

]T
is the velocity vector in the body inertial earth frame, Θ is the attitude

with respect to the inertial earth frame, RBE(Θ) is the rotation matrix from the body �xed frame95

to the inertial earth frame and S(Ω) is the skew-symmetric matrix operator de�ned as S(Ω) =
0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

.
2.2. Payload dynamic model

The payload is modeled as a point mass ml in the space whose position pl is obtained from

mlp̈l = [0 0 mlg]T + τl (5)

where τl = −
∑M
i=1 τ

[i]
w is the sum of the constraint forces on the wires connected to the UAVs.
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2.3. Multi-body dynamic model100

To �nd the interconnected system constraints we assume that the length dwire of each wire is

constant and the wires are taut. In particular, for the i -th wire we impose

‖L[i]‖2 − d2
wire = 0 (6)

where L[i] = p[i] − pl is the vector between the i -th multi-copter and the payload. The constraint

equation is obtained from the second derivative of equation (6)

2L̈[i]TL[i] + 2L̇[i]T L̇[i] = 0 (7)

which, in order to use the Udwadia-Kalaba equation, may be rewritten in the following equivalent

form:

A
[i]
uk(P, V )V̇ = b

[i]
uk(P, V )

where P = [p[1] . . . p[M ] pl]
T , V = [V

[1]
B . . . V

[M ]
B ṗl]

T , τL = [τ
[1]
w . . . τ

[M ]
w τl]

T .

More speci�cally

A
[i]
uk = L[i]T

[
03×3(i−1) R

[i]
BE 03×3(M−1) −I3

]
b
[i]
uk = −L[i]TS(Ω[i])R

[i]
BEV

[i]
B − L̇

[i]T L̇[i]

and according to [16] the vector τL is computed though the Udwadia-Kalaba equation

τL = M
1
2 (AukM

− 1
2 )+(buk −Aukv̇) (8)

where M , Auk, buk are the concatenations of m[i], A
[i]
uk, b

[i]
uk and v̇ collects the UAVs and payload

unconstrained accelerations. Equation (8) is used to develop the multi-body slung-load simulator.

3. Control system architecture

The control system is made of two main parts as shown in Figure 1: the reference trajectory

layer and the multi-copter �ight control system.105

The reference trajectory layer is implemented in a central unit, e.g. the control ground sta-

tion, and it is characterized by the sampling time ∆t. The multi-copter �ight-control system is
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Figure 1: Slung-Load Control System Architecture
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Figure 2: Shape Formation De�nition

implemented on board and is characterized by two control loops with two di�erent sampling times,

denoted by ∆t and ∆tinner for the outer and inner loops, respectively, with ∆t > ∆tinner. We

assume that the control ground station and the UAVs �ight-control systems are linked through an110

ideal (instantaneous and error-free) communication network.

The inputs of the reference trajectory layer are the �nal payload position zgoal and the position

of the no-�y zones, while the outputs are the reference trajectory of each multi-copter de�ned as a

sequence of way-points. In particular, at the discrete time instant t the reference trajectory layer

computes the UAVs way-points at discrete time instant t + N − 1, where N is the length of the

optimization horizon of the MPC technique. Assuming mission at constant and �xed altitude, the

way-point of the i -th multi-copter z̃
[i]
t+N−1 at the time instant t+N−1 is obtained by the knowledge

of the projection of the payload trajectory in the UAVs horizontal plane, on the basis of the distance

l̃t+N−1 and the angle α[i] (see Figure 2)

z̃
[i]
t+N−1 = z̃

[load]
t+N−1 + l̃t+N−1

cosα[i]

sinα[i]

 (9)

where α[i] is a �xed geometric con�guration parameter of the slung-load system, while the point
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Figure 3: Inner Loop Architecture

z̃
[load]
t+N−1 and the distance l̃t+N−1 are computed at each discrete time instant by the reference tra-

jectory layer as the solution of the constrained optimization problem described in the following

section.115

Considering the �ight control system of the i -th multi-copter, the outer loop implements a

robust MPC algorithm to compute the reference inertial velocities Ṽ
[i]
xt and Ṽ

[i]
yt that are the input

to the inner loop. To de�ne the MPC optimization problem, we need to compute the sequences

of reference states x̃
[i]
{t,...,t+N−1} and input ũ

[i]
{t,...,t+N−1} from the sequence of way-points of the

reference trajectory, and for this reason we introduce in the outer loop the reference state/input120

trajectory layer. The reference velocity is �nally obtained from the MPC control input a
[i]
xt and a

[i]
yt .

The inner loop computes the multi-copter motors speed by means of two PID control systems

to obtain pitch θ̃ and roll φ̃ references angles (Figure 3):

θ̃(t) = Kpex(t) +Ki

∫ t

0

ex(τ)dτ +Kd
dex(t)

dt

φ̃(t) = Kpey(t) +Ki

∫ t

0

ey(τ)dτ +Kd
dey(t)

dt

where ex(t) = Ṽx − Vx, ey(t) = Ṽy − Vy are the di�erence between the UAV inertial velocities and

the reference velocities and Kp,Ki,Kd are the control gains. Finally, for the attitude and altitude
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control, we use the classical approach described in [19].

4. Reference Trajectory Generation125

At each discrete time instant t, the reference trajectory layer sends to each �ight-control system

the corresponding UAV reference trajectory over a future horizon of length N using a receding

horizon strategy, where only the new way-point at time t+N − 1 is calculated.

Basing on equation (9), the UAV reference trajectories are computed from the load position

z̃
[load]
t+N−1 and distance l̃t+N−1. To obtain feasible trajectories, operational constraints about the

multi-copter positions are taken into account. In particular, the points z̃
[i]
t+N−1 for i = 1, . . . ,M

can be obtained from the optimization parameters as

z̃
[i]
t+N−1 =

1 0 cosα[i]

0 1 sinα[i]

z̃[load]
t+N−1

l̃t+N

 (10)

Then, the reference trajectory layer at each discrete time instant computes the solution of the

following constrained optimization problem

min
z̃
[load]
t+N−1,l̃t+N−1

β
(
γ
∥∥∥z̃[load]
t+N−1 − z̃

[load]
t+N−2

∥∥∥2

+
∥∥∥z̃[load]
t+N−1 − z

goal
∥∥∥2

T

)
+
(
1− β

) ∥∥∥l̃t+N−1 − l
∥∥∥2

(11)

subject to obstacle avoidance constraints and

z̃
[load]
t+N−1 ∈ Bt+N−1 (12a)

z̃
[i]
t+N−1 ∈ Z i = 1, ...,M (12b)

l̃t+N−1 ∈
[
l; l] (12c)

The quadratic cost function (11) is the linear combination of two terms: the former related to

the distance from the target and the latter related to the formation shape. More speci�cally, the130

�rst term allows us to minimize the payload distance from the target, while the second one allows

us to maximize the plan distance between the payload and the multi-copters, and consequently

the distances between the multi-copters. The cost function is calculated from the trajectory point

z̃
[load]
t+N−2, the �nal trajectory point z̃goal and the reference load-UAV distance l. The weights T , γ

and β are tuning knobs satisfying T � γI2 � 0 and 0 < β < 1. In particular, when β → 0 the135
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Figure 4: Set Bt+N−1

distances between the UAVs are constant, while with β → 1 we relax the constraint on the distances

between the UAVs, and in this case the payload reference trajectory will be closer to the obstacles.

The constraint (12a) allows us to control the norm of the payload inertial velocity. In particular,

the set Bt+N−1 is a circular set of center z̃
[load]
t+N−2 and radius dcruise = ∆tVcruise (see Figure 4),

where Vcruise is the reference for the norm of the payload inertial speed.140

The constraint (12b) guarantees that the reference states x̃
[i]
{t,...,t+N−1} computed from the se-

quence of way-points of the reference trajectory, to de�ne the MPC problem, are feasible. The set Z

depends on the algorithm applied in the outer control loop. For this reason, the set Z is computed

after de�ning MPC optimization problem using the algorithm in [13].

The constraint (12c) avoids collisions among the UAVs and guarantees distances shorter than

wires length. Then, l and l are �xed satisfying

l >
dUAV + δ

sin π
M

(13a)

l < dwire (13b)

145

Obstacle avoidance constraints are formulated by ensuring coordination between multi-copters.

Then, the new way-points allow all multi-copters to avoid the no-�y zone without breaking up the

formation. Referring to the i -th multi-copter and the h-th obstacle, if the obstacle is circular with
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Figure 5: Linear approximation for obstacle avoidance constraints

center in z
[h]
obs and radius R

[h]
obs, the obstacle avoidance constraint can be formulated as

∥∥∥z̃[i]
t+N−1 − z

[h]
obs

∥∥∥ ≥ d[hi] (14)

where d[hi] = R
[h]
obs + dUAV + δ, dUAV is the radius of the circle surrounding the multi-copters and

the distance δ is a safety distance which takes into account the maximum uncertainty about the

UAV positions. This distance is estimated using the algorithm in [13]. Moreover, to avoid collision

between wires and obstacles, we impose d[hi] > l/2. If the h-th obstacle is not circular, we introduce

a circular no-�y zone that surrounds the obstacle so to follow the same approach described above. In

order to deal with the nonlinearity and the non-convexity of the constraint in (14), we apply a linear

approximation as described in [13]. We build a polytope P
[hi]
obs with r

[hi]
obs edges that circumscribes

the no-�y zone centered in z
[h]
obs with radius d[hi] and we introduce the linear operator ρ[hi](k) which

computes the distance between the trajectory point of i -th multi-copter and the k -th edge of the

polytope P
[hi]
obs (as shown in Figure 5)

ρ[hi](k) =
1√

a
[hi]
k

2
+ b

[hi]
k

2

[
a

[hi]
k b

[hi]
k 1

]z̃[i]
t+N−1

1

 (15)

where a
[hi]
k and b

[hi]
k are the coe�cients that de�ne the equation of the k -th edge of the polytope

P
[hi]
obs . It is worth noting that this linearization of the constraint (14) is conservative only because

the circular no-�y zone is approximated by means of a polytope.
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5. Model Predictive Control Algorithm

The control inputs to track the reference trajectory are calculated by implementing a distributed150

and robust MPC algorithm. Each UAV computes its own control inputs independently from the

other multi-copters using the same algorithm. Indeed the interaction between the aircrafts has

already been taken into account by the reference trajectory layer.

To implement the robust MPC algorithm, the outer control loop solves a constrained optimiza-

tion problem at each discrete time instant. The cost and constraint functions are evaluated by155

using the reference trajectory and a prediction of the UAV behavior. For this application, to pre-

dict the multi-copter behavior we use the dynamic model of a material point in the plane. The

sequences of reference states and inputs are calculated from the geometrical reference trajectory by

the input/state layer (see Figure 1).

5.1. De�nition of the nominal model160

The dynamic model of a material point in the plane can be de�ned in terms of position in the

inertial earth frame
[
xE yE

]
, course angle Ψ and linear speed V :



ẋE = V cos Ψ

ẏE = V sin Ψ

Ψ̇ = ω

V̇ = a

(16)

where the input of system are the angular velocity ω and the linear acceleration a.

We obtain a linear model of a material point (16) following the procedure described in [20].

Letting η1 = xE , η2 = ẋE , η3 = yE , η4 = ẏE and introducing the linear accelerations ax and ay, we

obtain a set of two decoupled double integrators



η̇1 = η2

η̇2 = a cos Ψ− V ω sin Ψ ≡ ax

η̇3 = η4

η̇4 = a sin Ψ + V ω cos Ψ ≡ ay

(17)
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We compute a discretization of equation (17) with sampling time ∆t by means of the following

Euler discretization:

xt+1 = Axt +But + wt (18a)

zt+1 = Cxt+1 (18b)

where

xt =
[
η1t

η2t
η3t

η4t

]T
, ut =

axt

ayt

 , zt =

xEt

yEt

 ,

A =


1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1

 , B =


∆t2

2 0

τ 0

0 ∆t2

2

0 τ

 , C =

1 0 0 0

0 0 1 0

 .

The disturbance wt has been introduced to model uncertainties and approximation errors of the

UAV model and external disturbances due to the atmospheric turbulence and the constraint forces

on wires, which are included in the simulator using the Udwadia-Kalaba equation (8) but considered

unknown in the control design. We assume that wt ∈W, where W is a known bounded uncertainty165

set. We denote the set of feasible states by xt ∈ X, where X is a convex set. It can be readily

veri�ed that the triple (A,B,C) is reachable, observable, and does not have invariant zeros on the

unit circle.

5.2. Reference state/input trajectory

In order to calculate the cost function of the optimization problem, the sequence of references170

states x̃
[i]
{t,...,t+N−1} and inputs ũ

[i]
{t,...,t+N−1} of the nominal model must be computed from the

sequence of N geometrical points z̃
[i]
{t,...,t+N−1} .

To solve this problem, we implement in the state/input trajectory layer the following dynamic

system x̃[i]
t+1

ẽ
[i]
t+1

 =

 A 0

−C I2

x̃[i]
t

ẽ
[i]
t

+

B
0

 ũ[i]
t +

 0

I2

 z̃[i]
t+1 (19)

where the new state variable ẽ
[i]
t+1 is the integral of the tracking error z̃

[i]
t+1 − Cx̃

[i]
t . Given the

reachability of the pair (A,B) and the absence of invariant zeros in z = 1 of the model (18a), it is
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possible to compute the control law

ũ
[i]
t = K̃xx̃

[i]
t + K̃eẽ

[i]
t (20)

where the gain K̃ =
[
K̃x K̃e

]
can be designed with any stabilizing algorithm, such as LQ or pole

placement control.

5.3. De�nition of the MPC optimization problem175

At each discrete time instant the i -th �ight control system solves the following constrained

optimization problem in order to implement the robust MPC algorithm discussed in [14]

min
x̂
[i]
t ,û

[i]

{t,...,t+N−1}

N−1∑
j=0

∥∥∥x̂[i]
t+j − x̃

[i]
t+j

∥∥∥2

Q
+
∥∥∥û[i]

t+j − ũ
[i]
t+j

∥∥∥2

R
+
∥∥∥x̂[i]

t+N − x̃
[i]
t+N

∥∥∥2

P
(21)

subject to

x̂
[i]
t+1 = Ax̂

[i]
t +Bû

[i]
t (22a)

x̂
[i]
t+j ∈ X̂[i], ∀j = 1, ..., N − 2 (22b)

x
[i]
t − x̂

[i]
t ∈ ε[i] (22c)

C(x̂
[i]
t+j − x̃

[i]
t+j) ∈ ∆[i]

z ,∀j = 1, ..., N − 2 (22d)

x
[i]
t+N−1 − x̂

[i]
t+N−1 ∈ κ

[i]ε[i] (22e)

The set ε[i] in (22c) is de�ned as the robust positively invariant (RPI) set

ε[i] =

∞⊕
j=0

(A+BK)jW[i] (23)

where the gain K must be de�ned so as to obtain (A+BK) to be Schur stable. In particular, we

compute ε[i] as an outer approximation of the minimum RPI using the method discussed in [21].

The set X̂[i] in (22b) is computed as

X̂[i] = X[i] 	 ε[i] (24)

The set ∆
[i]
z ⊆ R2 in (22d) is characterized by a trade-o�: a small size of this set permits
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(a) Snapshots of payload trajectory at di�erent times. (b) Payload speed.

Figure 6: Scenario simulated to test the performance of the trajectory tracking and speed and attitude control
modules. This scenario is taken from[10]

only small deviations of the nominal state trajectory with respect to the reference, but it can have

the e�ect of limiting the robustness of the control scheme. Finally, κ[i] > 0 in (22e) is a tuning

parameter.

In the functional cost, the symmetric weighting matrices Q ≥ 0 and R > 0 are free design

parameters, while P is assumed to satisfy the Lyapunov equation

(A+BK)TP (A+BK)− P = −(Q+KTRK) (25)

From the solution of the optimization problem we obtain û
[i]
t|t and x̂

[i]
t , and the control inputs

for the i -th multi-copter are calculated as

u
[i]
t = û

[i]
t|t +K(x

[i]
t − x̂

[i]
t ) (26)

6. Numerical Simulations180

The proposed �ight control system was tested using Simulink. We developed a simulator of a

multi-body slung-load system composed by M = 4 micro quad-copters with m = 1.4kg, dUAV =

0.3m and α[i] = iπ/2 for i = 1, .., 4, the payload was assumed to have mass ml = 0.4kg.

As a �rst example, we have considered the scenario simulated in [10], where the authors use a

nonlinear controller based on back-stepping technique. In this case, the trajectory is assigned, both185

in terms of position and velocity, and hence we test only our modules for trajectory tracking and

velocity and attitude control. In particular, the payload is moved along a circular path of radius
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R = 10m, accelerating to a maximum speed of 3m/s, and then slowed down to zero. Figures 6

show the performance obtained with our MPC, which are comparable with those presented in [10].

Then we have considered an example to test all the features of our control system. To this aim

we have considered a scenario in which the payload has to be moved from the point
[
5.0 5.0

]
m

to the point
[
100.0 100.0

]
m in a region characterized by four circular obstacles with:

z
[1]
obs =

[
40.0 45.5

]
m, R

[1]
obs = 5.0m

z
[2]
obs =

[
40.0 24.5

]
m, R

[2]
obs = 5.0m

z
[3]
obs =

[
70.0 57.0

]
m, R

[3]
obs = 5.0m

z
[4]
obs =

[
70.0 70.0

]
m, R

[4]
obs = 5.0m

In order to allow a real-time implementation we have chosen ∆t = 0.5s and ∆tinner = 0.01s.190

The free-tuning parameters of the �ight control system has been �xed through a trial and er-

ror procedure to obtain satisfying performance in the absence of atmospheric disturbances. In

particular, the MPC optimization problem (22) has been de�ned by setting the following param-

eters. Considering the mission goal and the UAV performance we have set X[i] =
[
0.0 110.0

]
×[

−5.0 5.0
]
×
[
0.0 110.0

]
×
[
−5.0 5.0

]
for i = 1, . . . , 4 (dimension in m and m/s, respectively).195

For each i = 1, . . . , 4, we have set W[i] = C 4(0.01), ∆
[i]
z = C 2(0.001) and κ[i] = 105. The cost func-

tion has been de�ned by the length of the prediction horizon N = 10 and the weighting matrices

Q = I4 and R = 180I2. Finally, the matrix K is the gain of the LQ regulator with the weighting

matrices Q and R. The matrix K̃ used to compute the reference control law (20) is the gain of

the LQ regulator with the weighting matrices Q̃ = I6 and R̃ = 2000I2. To compute the reference200

trajectory, the optimization problem (12) has been de�ned setting γ = 1, T = 10I2, l = 3 and l = 5.

The coe�cient β has been �xed by analyzing the di�erent reference trajectories, i.e. in Figure 7 we

show the two trajectories obtained setting respectively β = 10−3 and β = 10−5. In particular, we

have chosen β = 10−3 to relax the constraint on the distances between the UAVs and the payload,

and in this way the payload reference trajectory passes through the obstacles #1 and #2 avoiding205

quick changes of direction.

The �ight control system robustness has been tested by simulating the above scenario with

di�erent atmospheric disturbances. We have considered the Von Karman wind turbulence model
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Figure 7: Payload trajectories at di�erent β values

and the discrete wind gust model by using the Simulink Aerospace Blockset, according to the

references [22, 23]. We have de�ned twenty �ve realistic atmospheric conditions by setting �ve

amplitude values for gust model and �ve wind speed values for turbulence model and we have

analyzed the performance decay, the growing of the constraints forces and the ful�llment of collision

avoidance constraints. The performance of the slung-load control system have been evaluated

through the tracking trajectory error

E(i) =
∥∥∥z[l]
t0+i∆t − z̃

[l]
t0+i∆t

∥∥∥ (27)

More speci�cally, we have considered the mean of the tracking trajectory error

Emean =
1

Ntot

Ntot∑
i=0

E(i) (28)

and the maximum of the tracking trajectory error

Emax = max{E(1), E(2), ..., E(Ntot)} (29)
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(a) Payload trajectory in inertial frame. (b) Actual trajectories.

(c) Payload tracking error.

Figure 8: Trajectory tracking performance

as performance indexes.

As an example of the results obtained, in the following we show the results for the simulation

characterized by amplitude gust Vgust =
[
2 2 0

]T
m/s and turbulence wind speed Vturb = 5m/s.

Figures 8a and 8b show a comparison between the payload reference trajectory and the actual210

trajectory. The tracking error is shown in Figure 8c and the performance indexes are Emean = 0.53m

and Emax = 1.38m.

In spite of the tracking error, the collision and obstacle avoidance constraints are satis�ed.

Figures 9 show that the no-�y zones are not violated and the minimum safety distances between

UAV 1 and others are satis�ed.215

To evaluate the feasibility of the slung-load control system, we have checked the constraint
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(a) Distances from no-�y zone 1. (b) Distances from no-�y zone 2.

(c) Distances from no-�y zone 3. (d) Distances from no-�y zone 4.

(e) Distances from UAV #1.

Figure 9: Collision and obstacles constraints time evolution
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(a) Constraint forces. (b) UAV 1 attitude.

Figure 10: Constraint and attitude plot

force magnitudes to avoid wires breaking, and we have checked the quad-copters attitude to avoid

unrealistic maneuvers. Figure 10a shows that the greatest forces are obtained during the initial ac-

celeration and maneuvers to change the planar distance between payload and quad-copters. Figure

10b shows the attitude of quad-copter #1 during the �ight mission: it can be seen that the �ight220

control system has required realistic maneuvers.

The performance of the �ight control system when the atmospheric conditions vary, are synthe-

sized in Table 1. In particular, as expected, the performance worsen when increasing the distur-

bances, but the mission goal is completed and the collisions are avoided with realistic maneuvers

and constraint forces in all cases except the most severe conditions.225

With the most severe atmospheric conditions, the slung-load control system is not able to

complete the �ight mission. To complete the mission in this condition, we needed to change the

set of parameters of the �ight control system. In particular, we have increased the uncertainty

set, i.e. �xing W[i] = C 4(0.02) for each i = 1, ..., 4, to consider the external disturbances due to

atmospheric conditions. In this way, the slung-load control system is able to complete the mission230

with the performance indexes shown in Table 2.

7. Conclusions

In this paper, a multi-level and distributed control system for a multi-body slung-load system

based on MPC has been proposed. The control system is composed by di�erent control modules
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Vgust =

1
1
0

 Vgust =

1.5
1.5
0

 Vgust =

2
2
0

 Vgust =

2.5
2.5
0

 Vgust =

3
3
0


Vturb = 0

Emean = 0.35 Emean = 0.36 Emean = 0.37 Emean = 0.39 Emean = 0.38
Emax = 1.12 Emax = 1.12 Emax = 1.12 Emax = 1.12 Emax = 1.24

Vturb = 2.5
Emean = 0.40 Emean = 0.43 Emean = 0.46 Emean = 0.50 Emean = 0.52
Emax = 1.12 Emax = 1.12 Emax = 1.15 Emax = 1.31 Emax = 1.38

Vturb = 5
Emean = 0.45 Emean = 0.48 Emean = 0.53 Emean = 0.60 Emean = 0.67
Emax = 1.17 Emax = 1.26 Emax = 1.38 Emax = 1.56 Emax = 2.15

Vturb = 7.5
Emean = 0.49 Emean = 0.57 Emean = 0.67 Emean = 0.72 mission
Emax = 1.29 Emax = 1.60 Emax = 1.92 Emax = 2.15 not completed

Vturb = 10
Emean = 0.60 Emean = 0.69 Emean = 0.73 mission mission
Emax = 1.89 Emax = 1.99 Emax = 2.04 not completed not completed

Table 1: Performance indexes in di�erent atmospheric conditions

Vgust =

2.5
2.5
0

 Vgust =

3
3
0


Vturb = 7.5

· Emean = 1.47
· Emax = 4.80

Vturb = 10
Emean = 1.37 Emean = 1.72
Emax = 5.72 Emax = 6.86

Table 2: Performance indexes in the worst atmospheric conditions

to solve trajectory planning, trajectory tracking and velocity and attitude control, while taking235

into account multi-copter performance constraints, obstacle avoidance constraints, the presence of

input saturations, robustness requirements and computational cost. The �rst step of the algorithm

consists of the calculation of the reference trajectory of each UAV as solution of a constrained

optimization problem, then optimal guidance laws are calculated based on a MPC algorithm, �nally

PID control systems allow to control of the UAV speed and attitude. A simulator has been developed240

and di�erent atmospheric disturbances has been considered to test the proposed control system and

its robustness. The numerical results show the e�ectiveness of the proposed approach. Further work

will consist in implementing the control algorithm in a real-time application to carry out �ight tests.
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