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Abstract—This paper provides experimental results
for dead reckoning of a fixed-wing UAV using a non-
linear observer (NLO) and a more recent tool called
eXogenous Kalman Filter (XKF), which uses the NLO
itself as a first-stage filter. The sensors used are an
IMU (accelerometers, inclinometers, and rate gyros),
a camera, and an altimeter; the observed states are
position, velocity, and attitude. A machine vision system
provides the body-fixed velocity of the UAV. Although
the calculated velocity results affected by a bias, it
is necessary both for estimating the attitude and for
bounding the rate of divergence of the position during
dead reckoning. Gyro, accelerometer, and optical flow
(OF) velocity biases are estimated, but only as long as
GNSS is available. When dead reckoning begins, they are
frozen at their last calculated value. The experimental
results show that the position error grows at a bounded
rate with the proposed estimators.

I. INTRODUCTION

In the field of navigation, the most popular
methods for estimating position, velocity, and atti-
tude of a vehicle have been the Kalman filter and
its variants [1]–[3]: they are characterized by good
performance at the cost of a relatively challenging
tuning process, heavy computational footprint, and
unclear stability properties in the non-linear case.
More recently, non-linear observers have been
developed to overcome the drawbacks of solutions
based on the Kalman filter, offering computation-
ally light algorithms with well-defined stability
properties, often global, that make them robust
to disturbances and uncertain initialization [4]–
[10]. A recent addition to this set of tools is the
exogenous Kalman filter [11]–[13], a two-stage
filter made of a non-linear observer in cascade

with a linearized time-varying Kalman filter that
combines the advantages of each, while also over-
coming their invididual weaknesses.

When direct information about the current po-
sition of the vehicle is not available, one way to
obtain an estimate of it is through dead reckon-
ing. At its core the method requires to integrate
twice a measured acceleration, usually available
via an IMU, and/or once a measured velocity:
in either case, the method suffers from inaccu-
racies caused by the integration of noisy and
biased measurements and by the approximation of
the calculations themselves, leading to inevitable
drifts in the calculated position. Moreover the IMU
measurements must be rotated from body to Earth-
fixed frame, which requires attitude estimates. For
these reasons it is important to have a good dead
reckoning algorithm, in order to reduce as much as
possible the displacement between two successive
position fixes.

A camera can provide invaluable help in this
context. It allows to obtain an estimate of the
motion of the vehicle, a process known as vi-
sual odometry. There exist many contributions to
such topic, especially in the field of vision-aided
navigation [14]–[17]. Machine vision can be use
to calculate the OF from recorded images and to
integrate it with other sensors to obtain the body-
fixed velocity [9], [18].

The authors have previously proposed a glob-
ally exponentially stable (GES) non-linear ob-
server for vision-aided UAV dead reckoning [19],



demonstrating that the use of a velocity aiding
helps to bound the rate of divergence of the
calculated position.

A. Contribution of this paper

In this paper an NLO and an XKF for dead
reckoning are tested on experimental data and their
results compared. Both estimators use the same
set of sensors, described in Sec. II-A. The NLO is
the GES observer proposed in [19]. Estimators for
accelerometer bias and body-fixed velocity bias,
together with compensation for the rotation of
Earth, are included in the design to increase the
accuracy of the estimates and reduce the position
drift. The XKF is designed using the same NLO
as the first-stage filter. The results help understand
the problems related to each estimator in this
context, and how to possibly overcome them. The
method is experimentally validated by 10 minutes
of dead reckoning of a fixed-wing UAV.

II. NOTATION AND PRELIMINARIES

Vectors and matrices are represented by lower-
case and uppercase letters, respectively. X−1, X+,
and tr(X) denote the inverse, pseudo-inverse, and
trace of a matrix, respectively, and XT and xT the
transpose of a matrix and vector, respectively. An
estimated value of x is represented as x̂ and the
estimation error is defined as x̃ = x− x̂; similarly,
for a matrix, X̃ = X − X̂ . The operator ‖ · ‖
denotes the Euclidean norm for vectors, and In
is the identity matrix of order n. The function
sat(·) performs a component-wise saturation of its
vector or matrix argument to the interval [−1, 1].
The operator S(x) transforms the vector x into the
corresponding skew-symmetric matrix, such that
S(x)y = x × y. The inverse operation is denoted
as vex(·), such that vex(S(x)) = x. For a square
matrix A, its skew-symmetric part is represented
by Pa(A) = 1

2
(A− AT ).

The reference frames considered in the paper
are the body-fixed frame {B} and the North-East-
Down (NED) frame {N} (Earth-fixed, considered
inertial). The rotation from frame {B} to {N} is
represented by the matrix Rn

b ≡ R ∈ SO(3),
where SO(3) represents the Special Orthogonal
group.

A vector decomposed in {B} and {N} has
superscript b and n respectively. The gravity vector
is defined as gn = [0, 0, g], with g being the local
gravitational acceleration. The position vector de-
composed in {N} is pn = [pnN , p

n
E, p

n
D]T . The greek

letters φ, θ, and ψ represent the roll, pitch, and yaw
angles respectively, defined according to the zyx
convention for principal rotations [20]. Subscript
m indicates a quantity measured by a sensor. The
symbol by identifies the bias on the measurement
y. The Earth’s rotation rate is ωe = 7.292115·10−5

rad/s; decomposed in the NED frame it assumes
a value that depends on the latitude µ, that is
ωne = [cosµ, 0,− sinµ]Tωe.

A. Measurements and Sensors

The sensor system consists of an IMU (ac-
celerometers, inclinometers, and rate gyros), a
camera, an altimeter, and a GNSS receiver, pro-
viding the following information:

• IMU: biased angular velocity ωbm = ωb+bω;
biased specific force f bm = f b + bf , which
includes the effect of gravity; roll φ and
pitch θ angles;

• altimeter: altitude pnD;

• camera: biased body-fixed velocity vbm =
vb + bv (depending on the machine vi-
sion system implemented, additional sen-
sors might be required to be able to calcu-
late vbm without bias);

• GNSS receiver: NED position pn and ve-
locity vn.

Further information on the actual sensors used in
the experiment is presented in Section VI.

B. Problem formulation

The kinematic system to observe is

Ṙ = RS(ωbm − bω −RTωne ) (1a)

ḃω = 0 (1b)
ṗn = vn (1c)

v̇n = R(f bm − bf ) + gn − 2S(ωne )vn (1d)

ḃf = 0 (1e)



with the output map

y1 = pnD (2a)

y2 = RTvn + bv (2b)

y3 = −RTgn+(ωb−bω−RTωne )× vb (2c)
y4 = pn (2d)
y5 = vn (2e)

where y1 is the measurement from the altimeter,
y2 the body-fixed velocity from machine vision,
y3 the specific force from the IMU, y4 the NED
position from the GNSS, and y5 the NED velocity
from the GNSS. Although not explicitly defined
in the equations, all sensors are assumed to be
affected by Gaussian white noise, which is never-
theless considered when designing and tuning the
XKF. The presence of the cross-product term in y3
is justified in [13]. The OF velocity bias bv is not
included as a state, but is obtained as described in
Sec. IV. The GNSS is used in an initial phase to
let the estimators converge, after which the GNSS
is disabled, y4 and y5 are removed from the output
map, all biases are frozen at their last known value
and not estimated any more, and the only available
position fix is on the Down component pnD from
the altimeter, such that dead reckoning becomes
necessary and the North and East components
have to be calculated by direct integration of the
estimated linear velocity.

III. OPTICAL FLOW

The method to obtain the optical flow velocity
from camera images was already presented in [9],
only a summary is reported here.

There exist several methods for computing the
OF. The ones chosen for the experiment pre-
sented in Section VI are SIFT [21] and region
matching [22], for they can jointly provide a
sufficient amount of reliable OF vectors. For the
OF computations to be useful in the estimators, a
transformation to body-fixed velocity is necessary.
The transformation is motivated by [23], and the
pinhole camera model is used [24]. The camera-
fixed coordinate system is related to the body-
fixed coordinate system as illustrated in Fig. 1,
where Ors is the centre of the image plane, and
Ob the origin of the {B}. The optical axis of

xb
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image plane
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r
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Fig. 1. Pinhole camera model. The camera is oriented downwards,
while xb is the direction of flight. Ors and Ob are the origins of
the image plane and body frame, respectively.

the downward-looking camera is aligned with the
body z-axis, and the focal point of the camera is
assumed to coincide with the origin of {B}.

All features tracked by the camera are assumed
to be stationary with respect to {N}, hence the
UAV’s linear and angular velocities, vbm and ωbF
(the underscript F is used to distinguish it from
the ωbm measured by the rate gyros), relative to
a feature tracked by the OF algorithm, will be
equal for every tracked feature at a given instant in
time. Furthermore, it is assumed that the terrain is
flat, such that every feature is located at the same
altitude: this assumption can be restrictive for ap-
plications that cover an uneven surface, but it can
be satisfactory for localized flights, depending on
the elevation profile over which the UAV operates;
it does, however, greatly simplify the analysis and
calculations, such that it is worth to keep it and
evaluate the performance in experiments, in Sec.
VI.

The angular and linear velocities can be com-
puted by

[
vbm
ωbF

]
= −M+(l, r1..k, s1..k, φ, θ, c

n
z )



ṙ1

ṡ1
...
ṙk

ṡk

 (3)

where each pair [rj, sj], j = 1...k, represents an



image feature, [ṙj, ṡj] its corresponding OF, l is the
focal length of the camera, cnz is the distance of Ob

from the ground, and M ∈ R2k×6 is a rectangular
matrix. The matrix M is built by stacking k sub-
matrices Mj , j = 1...k [9], where

Mj =
l

zbj


0 1 −

ybj
zbj
−
ybj

2

zbj
− zbj

ybjx
b
j

zbj
xbj

−1 0
xbj
zbj

xbjy
b
j

zbj
−
xbj

2

zbj
− zbj ybj

(4)

whose elements depend on

x
b
j

ybj

zbj

 =



sjc
n
z

sj sin(θ) + cos(θ)(l cos(φ) + rj sin(φ))

− rjc
n
z

sj sin(θ) + cos(θ)(l cos(φ) + rj sin(φ))

− fcnz
sj sin(θ) + cos(θ)(l cos(φ) + rj sin(φ))

(5)

Each point [xbj, y
b
j , z

b
j ]
T is the representation in

body-fixed coordinates of the corresponding point
from the world. The solution to (3) exists only if
MTM has full rank, such that it can be expressed
as M+ = (MTM)−1MT . This can only happen
if the number of flow vectors are greater than or
equal to three. Since rate gyros are part of the
sensor payload and can provide measurements of
ωb more accurately than the OF method, only vbm
will be considered from now on.

This method can calculate the body-fixed veloc-
ity of a vehicle, but presents additional challenges.
The matrix M often results ill-conditioned and its
pseudo-inversion produces computational errors
that will be included in vbm. Moreover, the accuracy
of the computation of OF vectors is strongly
dependent on the frame rate of the camera used:
the higher the frame rate, the more accurate the
results. For the present work, the maximum frame
rate was limited to 10 because of the need to have
good synchronization between all the sensors. This
proved to be not high enough for accurate results
and led to a large bias bv in the measured body-
fixed velocity, which the estimators presented next
must estimate.

IV. NON-LINEAR OBSERVERS

The NLO considered when GNSS is active is
an extension of the one in [9], described by

˙̂
R = R̂S(ωbm−b̂ω−R̂Tωne ) + σKP Ĵ (6a)
˙̂
bω = Proj(b̂ω,−kIvex(Pa(R̂Ts KP Ĵ))) (6b)

˙̂pn = v̂n +Kpp(p
n−p̂n) +Kpv(v

n−v̂n) (7a)
˙̂vn = f̂n+gn+Kvp(p

n−p̂n)+Kvv(v
n−v̂n)

− 2S(ωne )v
n (7b)

ξ̇ = −σKP Ĵ(f
b
m−b̂f ) +Kξp(p

n−p̂n) (7c)

+Kξv(v
n−v̂n) (7d)

f̂n = R̂(f bm−b̂f ) + ξ (7e)
˙̂
bf1 = Kf R̂

T (pn−p̂n) (7f)

b̂f = bf0 + b̂f1 (7g)

where the injection term Ĵ is

Ĵ := ÂnA
T
b − R̂AbATb (8a)

Ab :=

[
f̂ b

‖f̂ b‖
,

f̂ b×v̂b

‖f̂ b×v̂b‖
,

f̂ b×(f̂ b×v̂b)
‖f̂ b×(f̂ b×v̂b)‖

]
(8b)

Ân :=

[
f̂n

‖f̂n‖
,

f̂n×v̂n

‖f̂n×v̂n‖
,

f̂n×(f̂n×v̂n)

‖f̂n×(f̂n×v̂n)‖

]
(8c)

with the vectors f̂ b = f bm − b̂f and v̂b = vbm − b̂v.
KP is a symmetric positive definite gain matrix,
R̂s = sat(R̂), σ ≥ 1 is a scaling factor tuned to
achieve stability, kI > 0 is a scalar gain, Proj(·, ·)
represents a parameter projection that ensures that
‖b̂ω‖ not exceed a design constant Lb̂ > Lb (see
Appendix). The estimator for the accelerometer
bias b̂f is (7f)–(7g) and is taken from [25]: bf0
is a static value for the bias obtained by reading
the measurements of the accelerometers at rest,
and ˙̂

bf1 represents how the bias varies around this
value. The OF velocity bias b̂v is obtained by
calculating vn − R̂vbm and filtering it with a low-
pass filter. It could also be added to the NLO as a
state and estimated, but it is not considered in the
present work.

When the GNSS is disabled and dead reckoning
begins, some parts of the observer change slightly



and become
˙̂pn = v̂n +K ′

pp(p
n
D−p̂nD) (9a)

˙̂vn = f̂n+gn+K ′
vp(p

n
D−p̂nD)+K ′

vv(R̂(v
b
m−b̂v)−v̂n)

− 2S(ωne )v̂
n (9b)

ξ̇ = −σKP Ĵ(f
b
m−b̂f ) +K ′

ξpR(p
n
D−p̂nD) (9c)

+K ′
ξv(R̂(v

b
m−b̂v)−v̂n) (9d)

f̂n = R̂(f bm−b̂f ) + ξ (9e)

The three biases are not estimated any more,
since the reduced set of measurements is not
sufficient to make them observable. Consequently,
the values used during dead reckoning are constant
and correspond to the last values estimated when
GNSS was available. Only the forward and lateral
components of vbm are used in (9), since the
vertical component is typically significantly less
accurate than the other two. This also explains why
(9a) has no velocity correction term.

A. Assumptions

Three conditions are sufficient to ensure a cor-
rect functioning of both versions of the NLO.

Assumption 1: the machine vision system is
able to provide vbm.

Assumption 2: the gyro biases bω, bf , and bv are
constant.

Assumption 3: there exists a constant cobs > 0
such that, ∀t ≥ 0, ‖f b × vb‖ ≥ cobs.

Assumption 1 can be satisfied by implementing
one of the many methods to obtain body-fixed ve-
locity from camera images, for example [9]. This
assumption is also necessary. Assumption 2 can be
relaxed to slowly time-varying, in particular when
GNSS is available. Assumption 3 is a condition
of non-collinearity for the vectors vb and f b, i.e.
the angle between them is non-zero and none of
them can be identically zero (see, e.g., [26], [5]).
For a fixed-wing UAV this means that the observer
cannot work while the vehicle stands still on the
ground, but presents no problems during flight.

As the focus of this paper is the experimental
application of the proposed estimators, proofs of
stability are not presented here. The NLOs, how-
ever, are built from [9], [19] by adding the biases

Fig. 2. Block diagram showing the cascade interconnection
between an NLO and an LKF, compactly called XKF [12].

and the compensation for the rotation of Earth,
about which a few arguments can be advanced.
The accelerometer bias is estimated in a way that
was already proved to be GES [20], [25], so it
certainly improves the NLO. The velocity bias de-
pends on R̂: the NLO with uncorrected body-fixed
velocity could be let converge to avoid possible
instabilites caused by uncertain initialization of R̂,
and only afterwards include the bias for improved
performance. The same can be said about the
compensation for Earth’s rotation, which depends
on v̂n and R̂. Both NLOs are therefore guaranteed
to converge (clearly with the exception of pnN and
pnE in dead reckoning).

V. EXOGENOUS KALMAN FILTER

The XKF is a novel tool that combines the
advantages of non-linear observers and Kalman
filters while overcoming their individual short-
comings [12]. The first-stage filter of the XKF
is either of the NLOs described in Section IV,
depending on whether GNSS is available or not,
whereas the second-stage filter is a linear time-
varying Kalman filter (LKF) based on a linear
approximation of the state and output equations
about the trajectory generated by the NLO. In
order to reduce the number of states, the kinematic
system considered for this second-stage filter is
represented differently from (1), as

Θ̇ = T (Θ)(ωbm − bω + nω) (10a)
ṗn = vn (10b)

v̇n = R(f bm − bf + nf ) + gn

− 2S(ωne )vn (10c)



The attitude is now represented by the vector of
Euler angles Θ = [φ, θ, ψ]T with its dynamic equa-
tion, where T (Θ) ∈ R3×3 is the state-dependent
transformation matrix [20]. nω and nf are noise
on rate gyros and accelerometers, respectively. The
output map is the same as (2), with Gaussian white
noise added to all measurements. A block diagram
of a generic XKF is represented in Fig. 2. The
steps necessary to obtain the XKF equations are
omitted, as they were already presented in [12],
[13].

The following assumptions are standard condi-
tions that ensure that the XKF inherits the GES
property of the NLO [27], [28].

Assumption 4: The LKF tunable parameters
(process noise covariance matrix, measurement
noise covariance matrix, and initial estimation
error covariance matrix) are positive definite and
symmetric.

Assumption 5: The system (10), (2) linearized
about the trajectory generated by the NLO is
uniformly completely observable and controllable.

Assumption 4 can be satisfied by design. The
requirements of Assumption 5 are hard to verify
analytically a priori. However, it is possible to
monitor the LKF covariance matrix, and since it is
always bounded it can be inferred that Assumption
5 is satisfied.

VI. EXPERIMENTAL SETUP

The UAV employed is a UAV Factory Penguin-
B, equipped with a custom payload that includes
all the necessary sensors. The IMU is a Sen-
sonor STIM300, a low-weight, tactical grade,
high-performance sensor that includes gyroscopes,
accelerometers, and inclinometers, all recorded at
a frequency of 300 Hz. The chosen GPS receiver
is a uBlox LEA-6T, which gives measurements at
5 Hz. The video camera is an IDS GigE uEye
5250CP provided with an 8mm lens. The camera
is configured for a hardware-triggered capture at
10 Hz: the uBlox sends a digital pulse-per-second
signal whose rising edge is accurately synchro-
nized with the time of validity of the recorded GPS
position, which guarantees that the image capture

is synchronized with the position measurements.
The experiment was carried out on 6 February
2015 at the Eggemoen Aviation and Technology
Park, Norway, in a sunny day with good visibility,
very little wind, an air temperature of about -8◦C.
The terrain is covered with snow and flat enough
to let all features be considered as lying at zero
altitude relative to altitude measurements.

The NLOs are implemented using forward Eu-
ler discretization with a time-varying step de-
pending on the interval of data acquisition of
the fastest sensor, namely the STIM300, and it
is typically around 0.003 seconds. The various
parameters and gains are chosen as Lbb = 2◦/s,
Lb̂b = 2.1◦/s, σ = 1, KP = diag[0.08, 0.04, 0.06],
kI = 0.02, Kpp = 30I3, Kpv = 2I3, Kvp = 0.01I3,
Kvv = 20I3, Kξp = I3, and Kξv = 50I3.
During dead reckoning some gains are different,
namely K ′pp = diag(0, 0, 300), K ′vp = (0, 0, 200)T ,
K ′vv = diag(30, 30, 0), K ′ξp = (0, 0, 200)T , and
K ′ξv = diag(100, 100, 0). The gains for the NLO
with GNSS are obtained by running the observer
several times and correcting the gains until a
satisfactory performance was achieved. For dead
reckoning, the gain relative to the altimeter is
high because it is a very accurate sensor. The OF
velocity is less accurate than the GNSS velocity
for the reasons explained in Sec. III, so it would
be reasonable to use lower gains for it, but the
presence of some residual bias requires to use a
higher gain instead. This provides some additional
filtering of the OF velocity, at the cost of worse
noise rejection in the estimated position and ve-
locity. The covariance matrices for the XKF are
first tuned based on previous experience with the
same sensors and system model, and then more
finely tuned with trial and error. For both the NLO
and XKF, the gyro bias and accelerometer bias
estimates are initialized with the standstill values,
the other states with zero.

The reference provided for the position, ve-
locity, and attitude is the output of the EKF
of the autopilot mounted on the Penguin-B; the
autopilot uses a different set of sensors than
the one presented here. References for the gyro
bias and accelerometer bias are not available, but
approximations of the real values are calculated
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Fig. 3. Euler angles estimation error of the two methods with
respect to the autopilot EKF.

by averaging the measurements of the rate gyros
and accelerometers at standstill before and after
the flight. It is not possible to obtain even an
approximation of a reference for the OF velocity
bias, hence the relative results show the actual
estimates, not the estimation error.

The time on the x-axes of the figures is the
time elapsed since the computer onboard the UAV
was turned on. For all tests, the GNSS is used by
the estimators until t = 1300 s, after which it is
dropped and the estimators run in dead reckoning,
with all biases frozen at their last estimated value.

A. Results

The results are presented in Fig. 3–9. The yaw
angle estimated by the XKF is more stable than the
one from the NLO; the pitch angle from the XKF
seems less accurate, but the difference between
NLO and XKF is between 0◦−2◦, so it is legit
to wonder whether the reference value is really
the closest to the real value or not. The gyro, ac-
celerometer, and OF velocity biases are in Fig. 4–
6. The plots end at t = 1300 s because at that point
dead reckoning begins and the biases are frozen
at their last estimated values. The XKF provides
slightly better filtering for the OF velocity bias, but
it is evident that there are inconsistencies between
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m.

1180 1200 1220 1240 1260 1280 1300

Time (s)

0

2

4

x 
(m

/s
2
)

10-3

1180 1200 1220 1240 1260 1280 1300

Time (s)

-4

-2

0

2

y 
(m

/s
2
)

10-3

1180 1200 1220 1240 1260 1280 1300

Time (s)

-10

-5

0

5

z 
(m

/s
2
)

10-3

Fig. 5. Accelerometer bias estimation error with respect to the
value measured at standstill. The estimates are used to pre-condition
the measured specific force fb

m.

the outputs of the two estimators for the gyro
and accelerometer biases. This is most probably
owing to inaccurate tuning, and a better tuning
is expected to lead to better bias estimates that
would reflect in even better position and velocity
estimates. In Fig. 7 the position errors are rep-
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resented. The NLO error shows an improvement
with respect to the results in [19] from the same
authors, although the oscillations are still present:
these are caused by the bias in the body-fixed
velocity combined with the circular motion of the
UAV, such that when the error increases in one
direction, it decreases in the opposite direction.
Since the estimated bias is kept constant during
dead reckoning, a residual bias will still be present
and affect the results, but evidently to a lesser
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Fig. 8. Trajectories on the North-East plane estimated by the NLO
and XKF compared with the one from the autopilot EKF.

Fig. 9. Velocities on the North-East plane estimated by the NLO
and XKF compared with the one from the autopilot EKF.

degree than in [19]. The XKF position error, on
the other hand, presents significantly smaller vari-
ations and is perhaps more suitable than the NLO
in a dead reckoning scenario: if the UAV flew in a
straight line instead of following circular pattern,
the position error of the NLO would be expected



to increase faster than the one of the XKF. The
differences in position error are reflected in the
differences in velocity error of Fig. 9: the velocity
estimated by the NLO is more erratic, more noisy
than the one from the XKF, which in turn seems
to manifest just a sistematic error that explains the
lack of oscillations in the position error.

VII. CONCLUSIONS

In this paper an NLO and an XKF for dead
reckoning have been tested on experimental data
obtained with a UAV equipped with an custom
payload of sensors. A machine vision system has
been employed to calculate the body-fixed linear
velocity of the UAV using optical flow. This
velocity has been used both as a vector for the
injection term of the NLO, and as a correction
term, combined with the estimated attitude, for
the estimated NED velocity. In comparison to
previous work, estimators for accelerometer bias
and body-fixed velocity bias have been proposed,
together with a term that compensates for the
rotation of Earth. The horizontal position was not
estimated, but calculated via direct integration of
the estimated velocity. The results show that the
inclusion of compensation for the additional biases
and for the rotation of Earth help reduce the
position error of the NLO, and that the XKF can
reduce the error even further by providing a better
estimate of the velocity that is less dependent than
the NLO on the optical flow velocity bias.
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APPENDIX

The parameter projection Proj(·, ·) is defined as:

Proj(b̂b, τ)=

{(
I− c(b̂b)

‖b̂b‖2
b̂bb̂bT

)
τ, ‖b̂b‖≥Lb, b̂bT τ>0

τ, otherwise

where c(b̂b) = min{1, (‖b̂b‖2 − L2
b)/(L

2
b̂
− L2

b)}.
This operator is a special case of that from Ap-
pendix E of [29].


