
Pressure Fluctuations in Steady State 
Two-Phase Flow in Porous Media

Daniel Lisø

Master of Science in Physics and Mathematics

Supervisor: Alex Hansen, IFY

Department of Physics

Submission date: June 2013

Norwegian University of Science and Technology



 



Pressure Fluctuations in Steady-State Two-Phase
Flow in Porous Media

Daniel Lisø

1



Preface

All the work on this thesis has been done in collaboration with Sjur Peder Hel-
land. I am very grateful to have had his cooperation.

I would like to thank our supervisor, Alex Hansen, both for the interesting
assignment, and for his help along the way.

Another great help has been Santanu Sinha, who wrote the simulation soft-
ware. He has also helped with problems that have appeared while working with
the thesis.

Ken Tore Tallakstad has supplied us with information about flow experi-
ments being performed at the University of Oslo, for which we are grateful.

Finally, I want to thank the rest of the flow group at NTNU – our weekly
meetings have given valuable input and ideas.

Daniel Lisø



Contents

Preface 1

1 Introduction 4

2 Theory 4
2.1 Porous media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Flow and fluid parameters . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Capillary number . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Viscosity ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Wettability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Interface tension . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Navier–Stokes equation . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Darcy’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 Hagen–Poiseuille flow and the Washburn equation . . . . . 8
2.3.4 Young-Laplace equation . . . . . . . . . . . . . . . . . . . . . 9

2.4 Drainage and imbibition . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1 Flow phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Haines jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Power laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Method 16
3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Mixing length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Finding the start of the steady state regime . . . . . . . . . . . . . . 19
3.4 Defining a burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Finding the burst size distribution . . . . . . . . . . . . . . . . . . . 21
3.6 Running the simulation . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Results and discussion 24
4.1 Burst size distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Pressure correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2



4.2.1 Spatial correlation function . . . . . . . . . . . . . . . . . . . 27
4.2.2 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.3 Correlations and system geometry . . . . . . . . . . . . . . . 31

4.3 Spatial pressure variation . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Errors and inaccuracies . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Conclusion 34

A Logarithmic binning 37

B Geometric invasion models 39
B.1 Invasion percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
B.2 Diffusion limited aggregation . . . . . . . . . . . . . . . . . . . . . . 39
B.3 Anti diffusion limited aggregation . . . . . . . . . . . . . . . . . . . 40

3



Abstract

Several aspects of two-phase flow in porous are examined numerically.
The burst size distributions in both the invasion phase and steady state
are computed; above a threshold, the steady state distribution is found to
be distributed according to a power law with exponentα= 2±0.1. Spatial
correlation and autocorrelation is investigated.

1 Introduction

Flow in porous media is an interesting and important subject in fields ranging
from oil recovery to medicine. From a physics standpoint, the complex struc-
tures observed in multiphase flow are especially interesting. Much work, both
experimental and numerical, has been done on invasion systems, where one
fluid is injected into a system filled with another fluid.

This thesis focuses on the flow behavior in the steady state regime, which
sets in after the invasion is finished. The burst size distribution for the steady
state is examined, as is the pressure correlation function.

2 Theory

2.1 Porous media

A porous medium is a solid material that isn’t solid throughout, but contains
within itself many connected pores. An important material property of a porous
medium is its porosity or void fraction, which is defined as

φ= Vvoid

Vtotal
, (1)

where Vtotal and Vvoid are respectively the total volume of the material and the
volume of the pores in the material. There are many natural porous media,
for instance sandstone and limestone. There are also man-made porous me-
dia – one of the most interesting examples being aerogels, which can achieve
φ ≈ 0.99. [19]
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Another important property of a porous medium is its permeability, k. Per-
meability is a measure of how easily a fluid can flow through the material when
a pressure difference is applied. Its role is similar to that of conductance in
electricity. It is defined as

k = v
µ∆x

∆P
, (2)

where v is the bulk flow rate through the medium, µ is the viscosity of the fluid,
∆x is the length of the medium, and ∆P the pressure difference across it.

2.2 Flow and fluid parameters

2.2.1 Capillary number

The flow through a porous medium is characterized by a few parameters. One
of these is the capillary number, which describes the ratio between capillary
and viscous forces, and is defined as

Ca = µeffQtotal

γA
, (3)

where µeff is the effective viscosity, Qtotal is the total flow through the system, γ
is the surface tension between the two fluids, and A is the total cross section of
the inlets.

When Ca ≈ 1, a relatively large value, viscous forces are dominant. For
Ca ¿ 1, capillary forces dominate. This ratio determines both quantitative and
qualitative properties of the flow. Its effect is most dramatic during the invasion
phase, but some steady state phenomena, such as the cluster size distribution,
also depend on it. [22]

2.2.2 Viscosity ratio

Viscosity is a measure of a fluid’s resistance to deformation when stress is ap-
plied. In two-phase flow, the ratio of the two fluids’ viscosity is important for
the behavior of the flow. We assume that one of the fluids is perfectly wetting,
while the other is perfectly non-wetting, and define the viscosity ratio as

M = µnw

µw
, (4)
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θ
θ

Figure 1: Wetting (grey) and non-wetting (red) fluid droplets on a surface. θ is the
wetting angle.

where µnw is the viscosity of the non-wetting fluid and µw is the viscosity of
the wetting one. This ratio can be a difficult value to control in experimental
studies, since viscosities can be very temperature dependent. [6]

2.2.3 Wettability

When a fluid is placed on a smooth surface, it will spread out across the surface
because of adhesive forces between the surface and the fluid itself. Opposing
this are cohesive forces within the fluid. A drop of fluid on a surface will re-
semble a truncated sphere. Figure 1 illustrates this. The balance between these
forces determines the contact angle θ the fluid makes with the surface.

Fluids can be categorized according to their wetting angle:

Wetting : 0◦ ≤ θ ≤ 90◦ (5a)

Non-wetting : 90◦ ≤ θ ≤ 180◦ (5b)

The special cases θ = 0◦ and θ = 180◦ are called respectively perfect non-wetting
and perfect wetting.
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2.2.4 Interface tension

The interface tension γ determines the pressure difference across an interface
between two fluids.

2.3 Governing equations

2.3.1 Navier–Stokes equation

On the pore-level, two-phase flow in a porous medium is a two-phase interface
flow of newtonian fluids. The fluids’ motion is determined by the Navier–Stokes
and continuity equations. The Navier–Stokes equation, when ignoring gravity
and body forces, is

ρ
∂u

∂t
+ρu ·∇u =−∇p +µ∇2u, (6)

and the continuity equation is
∇·u = 0 (7)

The quantities involved are ρ, the fluid density; u, the fluid velocity; p, pressure;
and µ, the viscosity.

We also have the following boundary conditions:

• u = 0 at the pore walls.

• Matching velocities on each side of the fluid interfaces.

• The pressure difference caused by the interface must be balanced by the
forces in each fluid.

It is not feasible to solve these equations analytically.

2.3.2 Darcy’s law

Darcy’s law is an experimental relation, originally obtained by studying water
flowing through a cylinder filled with sand. It has nonetheless been found to
apply to many different systems. Ignoring body forces, the law is stated as

Q = AK

µ
∇p. (8)
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A is the cross sectional area of the material normal to the flow direction, K is
the permeability, and ∇p the global pressure gradient. It describes the flow of a
single fluid through a porous medium.

While originally a phenomenological relation, Darcy’s law has since been
derived from the Navier–Stokes equation. [11] That does not necessarily mean
it applies to any flow, but it is assumed to be accurate for low flow rates. [20]

It is possible to extend Darcy’s law to also describe multiphase flow by in-
troducing effective fluid parameters:

Qw =− AK eff
w

µw
∇p (9a)

Qnw =− AK eff
nw

µnw
∇p, (9b)

where Keff is an effective permeability that depends on capillary number, vis-
cosity ratio and wettability, among other parameters.

2.3.3 Hagen–Poiseuille flow and the Washburn equation

By assuming steady, fully-developed and axi-symmetrical flow, with no radial
or swirl components, the Navier–Stokes equation reduces to

1

r

∂

∂r

(
r
∂ux

∂r

)
= 1

µ

∂p

∂x
. (10)

If we further assume that the velocity is zero at the wall, we get

ux =− 1

4µ

∂p

∂x

(
R2 − r 2) , (11)

and taking the average of this over the cross section of the tube leads to

〈ux〉 = 1

2

R2

4µ

(
−∂p

∂x

)
. (12)

Assuming linear pressure drop down the tube, we end up with

∆P = 8µLQ

πr 4 , (13)
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which is known as the Hagen–Poiseuille equation. 〈ux〉 has been multiplied by
the cross sectional area to get Q, the total flow rate. L is the length of the tube.

Washburn [23] obtained the following equation from the Hagen–Poiseuille
equation

∂l

∂t
=

∑
P

8r 2µl

(
r 4 +4εr 3) . (14)

The sum runs over all participating pressures, and ε is called the coefficient of
slip. Assuming that the wetting fluid perfectly wets the walls, in a horizontal
flow network, this can be simplified to

Q =−πr 2k

µ

∑
P

l
. (15)

k = r 2/8 is the permeability of a single tube, and is different from the perme-
ability in Darcy’s law.

2.3.4 Young-Laplace equation

The Young-Laplace equation is a relation describing the capillary pressure dif-
ference across the interface between two static fluids. With ∆p denoting the
pressure difference, n̂ the unit normal vector out of the surface, and γ the sur-
face tension, it reads

∆p =−γ∇· n̂ (16)

2.4 Drainage and imbibition

In a displacement process, where the material is initially filled with one fluid
and another one is injected, the fluid being injected is called the invading fluid,
while the one in the material is called the defending fluid. If the invading fluid is
wetting and the defending fluid is non-wetting, the process is called imbibition.
The inverse process, where the invading fluid is non-wetting and the defending
fluid is wetting, is known as drainage.

The fluid movement at the pore level is different for these processes. In
drainage, the invading fluid will get stuck at the constrictions in the pores. In
imbibition, capillary suction will pull it through the constrictions, but it will
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Figure 2: Drainage (left) and imbibition (right).

get stuck at the widest points of the pore. The pore level behavior is shown in
figure 2. Lenormand et al. [12] gives a detailed study of the two processes.

2.4.1 Flow phases

Many studies, both experimental and numerical, have been done on the inva-
sion of one fluid into a medium initially filled with another fluid. These have
usually only considered the behavior up until the invading fluid reaches the
outlet. We call this the invasion phase.

If one keeps injecting fluid into the system even after the invasion front has
reached the outlet, the system eventually enters a steady state.

Transient phase – invasion

Much experimental and numerical work has already been done on the invasion
phase, and the behavior is fairly well understood. Different flow patterns arise
for various combinations of the capillary number and viscosity ratio, and they
can be accurately described by different geometrical models. Outlines of these
models are given in appendix B. Figure 3 shows which flow parameters lead to
which flow pattern.

A small Ca leads to capillary fingering, for which invasion percolation is a
good model. [5, 13, 24] Large Ca and small M gives stable displacement, which
can be modelled as diffusion limited aggregation [14, 18]; large Ca and large M
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Figure 3: Flow regime phase diagram from Lenormand et al. [14]

gives viscous fingering, which can be modelled as anti-diffusion limited aggre-
gation [4, 16, 18, 25]. Figure 4 shows how the different regimes look in experi-
ments.

Steady state

For the steady state flow to be a state in the thermodynamic sense, there has to
be a set of parameters that fully describe it, and it must be history-independent.
Erpelding et al. [7] establishes that the statistical properties of the flow is in-
dependent of variations in the capillary number during the flow, which is evi-
dence that steady state flow is a thermodynamic state.

2.4.2 Haines jumps

Haines [9] studied the behavior of water flowing through soil. He observed so-
called pinning–jumping behavior, also known as Haines jumps, where the non-
wetting fluid goes through a constriction into a larger portion of the pore, ac-
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companied by a sudden drop in pressure. These events are also called bursts.
When one happens, a relatively large area or volume can be invaded rapidly.

Figure 6 is an illustration of a porous medium just before and just after a
burst. The defending, wetting fluid is shown in grey; the invading, non-wetting
fluid in red. During the burst, the non-wetting fluid has invaded a relatively
large are very quickly. The fluid involved in the burst moves an order of magni-
tude faster than the overall flow. [15]

During displacement, the burst size s is defined as the geometric area that is
invaded during a burst. In steady state it is instead defined as the area a bubble
sweeps during the burst.

2.5 Correlation

Correlation is a measure of dependence between quantities. For two random
variables or datasets X and Y , the correlation coefficient is defined as

ρX ,Y = corr(X ,Y ) = cov(X ,Y )

σXσY
= E

[(
X −µX

)(
Y −µY

)]
σXσY

. (17)

cov is the covariance operator, E is the expected value operator, µX and µY

are the expected values of variables X and Y , and σX and σY are the standard
deviations of variable X and Y .

The autocorrelation is the correlation of a signal with an offset copy of itself,
i.e.

acorr(X ,n) = corr(Xi , Xi−n) . (18)

The offset might for instance be in time, i.e. the correlation between a signal
and itself delayed.

2.6 Power laws

A power law is a relation between two quantities f and x of the form

f (x) = axk , (19)

where a and k are parameters.
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One of the most interesting properties of power laws is that they are scale
invariant. This means that f (cx) ∝ f (x):

f (cx) = a(cx)k (20a)

f (cx) = ack xk (20b)

f (cx) = ack f (x) (20c)

A consequence of this scale invariance is that all power laws with the same
exponent k are equivalent up to a scaling factor, which leads to another impor-
tant property, called universality. Power laws with the same exponents show up
in many very different systems. Such systems are said to belong to the same
universality class.
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(a) Capillary fingering.

(b) Viscous fingering.

(c) Stable displacement.

Figure 4: Different invasion regimes. All figures from Tallakstad [21].
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Figure 5: Close up of steady state flow experiment for Ca ∼ 10−2. [21]

Figure 6: Network before and after a burst.
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3 Method

3.1 Model

The model we use is based on the one described in Aker et al. [1, 2].
The medium is modelled as volumeless nodes connected by tubes, also

called links. The tubes are approximated as cylinders when calculating flow
rates, but as hourglass shaped when calculating capillary pressures. The nodes
are placed on a rotated square grid, and are connected to their nearest neigh-
bours; the geometry is illustrated in figure 6. Each node has a total of four
neighbours. The system is periodic in its width. This necessarily means that
all tubes are of the same length d . Real porous media are very irregular; to
model this irregularity, the radii ri of the tubes are chosen randomly such that
rmin ≤ ri ≤ rmax ≤ d .

The model handles two different fluids, and assumes that one of them is
perfectly wetting, while the other is perfectly non-wetting. The flow inside a
single tube is modelled by the equations given in section 2, so the model as a
whole inherits their assumptions, such as incompressibility. The fluids are also
assumed to be immiscible; thus, where two fluids meet, they form a meniscus,
and flow through the system as bubbles.

The bubbles are modelled as extending along the full width of the tube, so
within a tube the flow is one-dimensional. Across the meniscus between two
fluids, there is a pressure difference. With respect to the capillary pressure dif-
ference across a meniscus, the tubes are assumed to be hourglass shaped. Fur-
thermore, the principal radius of curvature of the menisci is assumed equal to
the radius at the point in the tube where the meniscus is located. Together with
the Young–Laplace equation and wetting properties of the fluids – one perfectly
wetting, one perfectly non-wetting – this gives the following expression for the
pressure difference:

pc = 2γ

r (x)

[
1−cos

(
2πx

d

)]
, (21)

where γ and d are the surface tension and length of the tube, respectively, r (x)
is the radius of the tube, and x is the position within the tube. This relation
makes it possible to account for small displacements of the interface within the
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Figure 7: A single tube in the network, showing the different shapes that are assumed
when calculating capillary pressure (solid lines) and flow (dashed lines).

tube, which are important for the burst dynamics. [8, 17] Figure 7 shows a single
tube with a bubble, and illustrates the shape used to compute pc .

The flow qi , j in a tube between nodes i and j is calculated with the Hagen–
Poiseuille equation and Washburn’s equation. The result is

qi , j =
−σi , j ki , j

µi , j

(
pi −p j −pc

i , j

di , j

)
, (22)

whereσi , j and ki , j stand for the cross section and permeability of the tube con-
necting nodes i and j , and pi and p j are the pressures in nodes i and j . µi , j is
the effective viscosity of all the fluid in the tube, defined as the average viscos-
ity of the fluids weighted by how much there is of each, and pc

i , j is the sum of
capillary pressures caused by the menisci in the tube.

The nodes are volumeless, so at any time, the amount of fluid flowing in
must equal the amount flowing out:∑

j
qi , j = 0 (23)

Combining equations 22 and 23 gives us the equation

∑
j

−σi , j ki , j

µi , j

(
p j −pi −pc

i , j

di , j

)
= 0. (24)
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If we move the pc to the right hand side, we can rewrite this as the matrix equa-
tion

Di , j p j = Bi , (25)

where D is a conductivity matrix and B is a vector of capillary pressures. Given
some boundary conditions, this is a solvable set of equations.

An iteration of the simulation roughly consists of moving the bubbles in the
links according to equation 22, then, with the new positions of the bubbles,
solving equation 25, and then starting over. As bubbles travel through nodes,
new bubbles are created according to ad hoc but sensible rules; these are ex-
plained in more detail later.

The model in Aker et al. [1, 2] is periodic in both directions, and the flow
is driven by applying a pressure between the top and bottom nodes when they
wrap around. This necessitates solving the pressure field several times to keep
the total flow Q constant, as it has to be. We want to examine the behavior
when fluid is injected at the bottom and expelled at the top, with periodicity
only along the width of the system. The fluids are to be injected in a certain
pattern, alternating between wetting and non-wetting from left to right; see
figure 12 for an example of the layout. The boundary conditions are therefore

• The bottom links of the bottom nodes are kept at a constant q .

• The top nodes are kept at at constant p = 0.

These changes are rolled into the B vector.
The bubbles are subject to the following rules:

• A limit is placed on how many bubbles of non-wetting fluid are allowed
per tube. If there are more, the closest two are merged.

• The volume of each fluid flowing into a node is stored and used to create
new bubbles in the tubes carrying fluids out of the node.

• If bubbles are closer than some threshold, they are merged.

18



3.2 Mixing length

Both wetting and non-wetting fluid is injected into the system. Because of this,
close to the inlets, the two different fluids are mostly separated from each other.
This is illustrated in figure 8. The distance between the inlet area and the first
row where the fluids are properly mixed, is the mixing length lmix.

Figure 8: Bubble distribution close to (left) and further away from (right) the injection
sites. Close to the injection sites, the fluids are not well mixed.

We want to do our measurements after the fluids are mixed. However, it is
not clear how to determine lmix, so to err on the side of caution, we set it at half
the height of the system.

3.3 Finding the start of the steady state regime

Figure 9 shows the pressure signal for a selection of nodes throughout a system.
The steady state starts when the pressure stabilizes, and as seen on the figure,
this happens the same time for all nodes. For analysis purposes, we want to
determine this automatically. Our algorithm for doing this is as follows:

• Compute the average pressure p ′ of the last 10 % of the pressure signal
for each node.
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Figure 9: Pressure signal at various nodes. Steady state is reached when the pressure
stabilizes, which happens simultaneously across the lattice.

• Find the time when at least 90 % of all nodes have reached their p ′.

We use 90 % instead of 100 % to prevent outliers from destroying the results.

3.4 Defining a burst

Bursts were introduced in section 2.4.2. It is difficult to measure their geomet-
rical size s. To get around this, we use the valley size

χ=∑
i
∆pi (26)

where the ∆pi are the pressure drops within the burst, as a proxy, since it has
been shown to be proportional to s.

A burst starts whenever the pressure drops, and lasts until it reaches the
value it had when it started. We differentiate between inclusive and exclusive
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Ca

1.6 ·10−3

3.2 ·10−3

4.8 ·10−3

6.0 ·10−3

9.6 ·10−3

11.2 ·10−3

12.8 ·10−3

14.4 ·10−3

Table 1: Capillary numbers.

burst; the former can start inside another burst, while the other can’t. The two
cases are illustrated in figure 11.

3.5 Finding the burst size distribution

The burst size distribution is constructed by making a histogram of the detected
burst sizes χ. Because there are relatively few big bursts, and very many small
ones, the histogram is constructed with logarithmic bin sizes.

3.6 Running the simulation

Simulations have been performed for all combinations of the capillary num-
bers in table 1 and M = 0.1,1,10, for a total of 24 simulations.

Other parameters were kept constant. All simulations were run with a sys-
tem of 50 by 100 nodes, with 10 injection points for each fluid. 40 % of the
injected fluid was non-wetting. All tubes were 1 mm long. The radii of the
tubes were drawn randomly from a uniform distribution between 0.1 mm and
0.4 mm. A maximum of 3 bubbles were allowed per tube. The simulations were
run for 200 000 time steps, and data was logged every 100 time steps. The sys-
tem was initially completely filled with the wetting fluid.
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Figure 10: A burst in the pressure signal. It starts at t and lasts until t ′.
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Figure 11: The difference between inclusive bursts (left), where bursts can start inside
other bursts, and exclusive bursts (right), where they cannot.

Figure 12: The bottom of the system at the start of a simulation. The wetting fluid is
grey, the non-wetting fluid is red.
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4 Results and discussion

4.1 Burst size distributions

The burst size distributions have been computed for all M and Ca in both the
transient and steady state regimes. Figures 13, 14 and 15 show the distributions
in the steady state regime grouped by M ; figure 16 shows all the steady state
distributions at once. Each set of symbols corresponds to a capillary number.

Above some threshold, the datapoints fall along a straight line. A straight
line in a log-log plot is indicative of a power law distribution with exponent α
equal to the line’s slope. There are many more small than large bursts, so to
get useful statistics, the burst size histograms are made with logarithmic bins.
Because of this, the slope of the line actually equals α+1. This is explained in
more detail in appendix A.

To determine the power law exponent for a distribution, a straight line fit is
performed on its tail. The results are summarized in table 2. As an uncertainty
measure, we have used the sample standard deviation of the obtained slopes
for the set of results used.

As seen in the figures and table 2, the exponent equals -2 with reasonable
accuracy, regardless of viscosity ratio and capillary number. The figures show
that the power law is valid across two orders of magnitude. This is the same ex-
ponent that has previously been determined for the exclusive distribution dur-
ing drainage [3] and the exclusive distribution in steady state flow on a torus.

Figure 18 shows the distribution of exclusive bursts in the transient phase
for all viscosity ratios and capillary numbers. Its shape is similar to that of the
steady-state inclusive distributions, but only somewhat. The data is too spread

M α

0.1 −1.971±0.07
1.0 −2.005±0.14

10.0 −2.124±0.12
All −2.034±0.13

Table 2: Critical exponents α of the burst size distribution for each value of M .
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Figure 13: Steady state inclusive burst size distribution for M = 0.1 and all C a, and
straight line fit.

out for a good fit, and we end up with α=−2.324±0.69.
There are some difficulties with gathering enough data for this case. For

one thing, there are at best as many exclusive bursts as there are inclusive ones,
and usually fewer. This isn’t too big a problem here, though, as the pressure is
increasing overall. Since we’re looking at the transient phase, however, we are
necessarily limited by its duration. The transient phase lasts until the injected
fluid reaches the outlets, so its duration depends on the overall injection rate
Q. Injection rate is determined via the capillary number – Ca ∝Q – so we have
also investigated the distribution for only the low Ca, but the results weren’t
much better; see figure 17.

The large uncertainty allows for α to be in the range ~1.63–3.01. It is there-
fore possible that α= 2 for exclusive bursts in the transient regime. This would
place it in the same universality class as steady-state flow on a torus, injection
of one liquid into a system filled with another, and of course the steady-state
regime in the current system.
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Figure 14: Steady state inclusive burst size distribution for M = 1 and all C a, and
straight line fit.

Hemmer and Hansen [10] investigated the failure size distribution in the
fibre bunch model in a similar way to how we look at burst size distributions.
Their results were that the exclusive distribution is a power law with exponent
ξ = 2.5. Our result does not preclude α = 2.5, so it possible that the exclusive
burst dynamics in the transient are in the same class as exclusive fibre failures.

However, while our results don’t preclude either of these possibilities, they
don’t clearly point to any of them either; the uncertainty is too large to draw any
conclusions.

4.2 Pressure correlations

We have examined the correlation function ρ between nodes in the steady-state
regime.
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Figure 15: Steady state inclusive burst size distribution for M = 10 and all C a, and
straight line fit.

4.2.1 Spatial correlation function

Figure 22 shows typical spatial correlation plots. Figure 22a is the correlation
between a single node and the rest of the nodes in the system. In figure 22b,
each node is colored according to the mean of its correlation with the other
nodes in the system; it’s a plot of the quantity

ρ̄i = 1

Nnodes

∑
j
ρi , j , (27)

where i and j represent nodes.
As seen in figure 22a, the correlation drops off with distance. Figure 23a

illustrates this relationship in more detail. The plotted quantity is

ρ̄ (d) = mean
([
ρi , j for all nodes where |∆ri , j | = d

])
. (28)

The difference between figure 23a and 23b is that the first counts all node pairs
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Figure 16: Steady state inclusive burst size distribution for all M and all C a, and
straight line fit.

where the nodes are d lattice units apart, while the second only counts pairs
that are on either the same row or column.

For every combination of Ca and M, the average correlation as a function of
distance between nodes nicely fits a curve of the form

f (r ) = 1

(ar +1)1/2
, (29)

where a is a fitting parameter. The obtained fitting parameters are shown in
figure 20. They seem to depend primarily on Ca, and not very much on M. It
also looks like they plateau around Ca = 0.010.

The larger a is, the faster the correlation drops off as a function of distance.
Since Ca ∝ Q, this means that a faster overall flow gives a less coherent pres-
sure development.

The system is 100 lattice units both wide and tall, but periodicity in the x-
direction means that no nodes can be separated in the x-direction by more than
50 lattice units – thus the graph counting only same-row-pairs stops at 50.
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Figure 17: Exclusive burst size distribution in the transient phase for small values of
Ca.

The graphs for same-row- and same-column-pairs never overlap perfectly,
and eventually diverge significantly. This divergence is not unexpected, since
one set of data is collected from node pairs laying along the overall flow direc-
tion, while the other is from pairs that lay across it.

Figure 24 shows the row averaged average correlation, i.e. the row average of
the data shown in figure 22b. It peaks relatively close to the injection sites and
subsequently drops to zero. The short climb at the start means that the nodes
on the first few rows are more independent than the ones a little further away.
This seems reasonable, since it’s close to the injection points and the system
has not had time to settle in.
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Figure 18: Exclusive burst size distribution in the transient phase for all values of M
and Ca.

4.2.2 Autocorrelation

A typical autocorrelation plot of the pressure signal at a node is shown in fig-
ure 21. The autocorrelation at other nodes and for other M and Ca are similar.

The autocorrelation drops off linearly with the offset. This suggests an un-
derlying autoregressive process, which is a process of the form

xt = c + ∑
j<t

αt− j xt− j +εt , (30)

where the α are parameters and the ε are random numbers. The random walk
is an example of an autoregressive model.
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Figure 19: Pressure in steady state flow.

The autocorrelation in pressure changes has also been examined. At one
lag, it is significantly negatively correlated. For more than one lag, it is almost
zero.

4.2.3 Correlations and system geometry

Figure 22b shows the average correlation between the pressure signal in a given
node and every other node in the system. Figure 24 better illustrates the large-
scale behaviour seen in figure 22b; it shows the average of each row against
the distance from the injection sites. It’s fairly stable at the bottom half of the
system, then falls off as the outlet is approached.

There is also some finer structure visible at places; specifically, patches of
lower average correlation than the neighbouring area. The relatively low corre-
lation suggests that these patches are insulated from the rest of the system in
some way. To examine this, we have saved the radii of the links in the system
and made maps like figure 22b showing the minimum, mean and maximum ra-
dius of the links connected to a given node; see figures 25a, 25b and 25c. There
are, however, not any obvious correspondence between the correlation map
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Figure 20: Parameter value of the correlation fit.

and radius maps.

4.3 Spatial pressure variation

Figure 19a shows a snapshot of the pressure in each node of the lattice for
M = 1 and Ca = 11.2 · 10−3. Other values of M and Ca are similar. It appears
to drop off approximately linearly with distance from the injection points, con-
sistent with Darcy’s law. Figure 19b shows the same data with the linear com-
ponent subtracted.

Figure 26 show the row-averaged relative deviation from the Darcy pressure
for different timesteps. It is fairly low up until the last 20 or so rows.
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Figure 21: Autocorrelation plots.

4.4 Errors and inaccuracies

Model assumptions

The model has been compared with experimental results, and it reproduces
much of the real behavior very well. Nonetheless, it is based on certain as-
sumptions that potentially limit its applicability. For instance, it assumes that
bubbles extend to the full width of the tubes. This assumption means that the
model does not account for film flow, where one fluid flows past the other in
a thin layer along the tube walls. Film flow effects have been observed at low
capillary numbers by Tallakstad [21].

The model also assumes the fluids to be incompressible, and that one of
them is perfectly wetting while the other is perfectly non-wetting. In many ex-
periments, the defending fluid has been air, which is actually quite compress-
ible. Lastly, the model does not account for viscosities varying with e.g. temper-
ature.

Burst size

When computing the burst size distributions, we define the burst size χ as the
sum of pressure drops (and only drops – the sum of all pressure changes would
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Figure 22: Correlation maps.

be rather uninteresting) within the burst. This quantity is used as a proxy for
the thing we actually want to know about, which is the geometric burst size s.
Furuberg et al. [8] established that χ ∝ s, albeit only for slow drainage in an
invasion experiment. We have assumed the relation to be valid for our system
as well, but we have not made efforts to verify this.

5 Conclusion

We have performed simulations of two-phase flow in a porous medium for a
range of capillary numbers and viscosity ratios, and investigated some inter-
esting quantities.

We have computed inclusive burst size distributions for the steady state,
and exclusive distributions for the transient phase. The inclusive steady state
distributions are found to be independent of both capillary number and viscos-
ity ratio. This is shown in figures 13, 14, 15 and 16. Past some threshold value,
the distributions are power laws. By fitting a straight line to this region, we de-
termine the exponent α of the power law. When considering the distributions
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Figure 23: Average correlation as function of distance for different counting schemes.

for all Ca and M, we find that α= 2.0±0.1. As the figures show, this power law
is valid for more than two orders of magnitude. This places our system in the
same universality class as the steady state flow on a torus and invasion.

Exclusive burst size distributions in the transient phase were also computed.
The distributions are roughly similar to the inclusive steady state ones. How-
ever, the limited duration of the transient phase, together with the fact that
there are fewer exclusive than inclusive bursts, limits the amount of data we
can gather in this phase. Trying to fit a power law to the data, we found that
α=−2.324±0.69. This is too large an uncertainty to draw any conclusions.

The large scale spatial pressure variations were found to be consistent with
Darcy’s law, except close to the system edges.

Various properties of the pressure signal correlation function ρ in steady
state have been examined. The two-point correlation in pressure between nodes
decreases as a function of the distance between the nodes. When looking only
at nodes that are directly downstream from each other, the correlation eventu-
ally drops to zero. For nodes that are on the same row, the correlation drops off
initially, then plateaus.

The average correlation as a function of node separation is qualitatively
the same for all capillary numbers and viscosity ratios. How fast it drops off
depends to some degree on the capillary number. To quantify this, we have
performed curve fits on it with a one-parameter function, specifically f (r ) =

35



0 20 40 60 80 100
Distance (lattice units)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
ve

ra
ge

co
rr

el
at

io
n

Figure 24: Row averaged average correlation coefficient as a function of distance from
the inlet. The nodes closer to the inlet are more correlated to the system than the nodes
far from the inlet

1/(ar +1)0.5. This parameter, a, can then tell us the drop-off speed. It initially
increases with Ca, then seems to plateau.

The autocorrelation of the pressure signal looks the same for all nodes in a
system and all system parameters. It falls off linearly as the lag increases. This
shape is typical of autoregressive processes.

The autocorrelation of pressure changes in steady state was also computed.
At one lag, it is significantly negatively correlated. Since, in the steady state, the
pressure generally fluctuates around a certain level, this is expected behavior.
For more than one lag, however, the autocorrelation is very small.
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Figure 25: Mean, minimum and maximum radius of the tubes connected to each node.
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Figure 26: Relative deviation from Darcy pressure.

A Logarithmic binning

Given a random variable X with some probability density function fX (x) the
probability that a sample of X lies on the interval x < X < x +d x is defined as

Pr(x < X < x +d x) = fX (x)d x (31)

If the probability density function is unknown it can be found by sampling
the random variable multiple times and constructing a histogram of the results.
The histogram consists of a set of bins, where each sample of the random vari-
able is added to the bin corresponding to the value of the sample. It is evident
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that the number of samples in each bin, ni , is proportional to the probability
density function of the random variable and the width of the bin, wi .

ni ∝ wi fX (x) (32)

If the PDF of the random variable is a exponential function, fX (x) ∝ x−α,
the exponent α is found by regressing log(n) versus log(x)

log(ni ) ∝ log(wi fX (x)) (33a)

log(ni ) ∝ log(wi xα) (33b)

If the bin width is some constant, wi = b, then equation 33b results in

log(ni ) ∝ log(b)+α log(x) (34)

This regression would result in the correct value α. However as the PDF is
an exponential function it may be several orders of magnitude larger for the
smallest sample than the largest sample. This difference will directly carry over
to the histogram with some bins containing several orders of magnitude more
samples than others, and it is probable that some bins contain 0 samples. This
reduces the accuracy of the regression and to avoid it logarithmic binning is
used.

Logarithmic binning means that the logarithm of the lower edge of bin i
and the logarithm of the lower edge of bin i +1 is separated by a distance b

log(xi+1) = l og (xi )+b (35)

Exponentiating both sides results in

xi+1 = xi eb , (36)

giving a bin width wi

wi = xi

(
eb −1

)
. (37)

Inserting equation 37 into equation 33b and assuming fX (x) ∝ xα results
in
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log(ni ) ∝ log(xi xαi ) (38a)

log(ni ) ∝ (α+1)log(xi ) (38b)

This means that the exponent differs by one between logarithmic binning
and constant binning.

B Geometric invasion models

B.1 Invasion percolation

Invasion percolation is a geometrical process that accurately models capillary
fingering.

1. Each site on a Lx ×Ly lattice is assigned a random threshold on the unit
interval.

2. Each site on the bottom row is set to one, all other sites set to zero.

3. The zero-value-site adjacent to a one-value-site with the lowest threshold
is set to one.

4. (Optional) If a region of zero-value-sites is completely surrounded by one-
value-sites then these sites are assigned threshold 1, making invasion im-
possible.

5. Repeat step 3 and 4 until a site at the top row has been set to one.

B.2 Diffusion limited aggregation

Diffusion limited aggregation is a geometric process that accurately models vis-
cous fingering. The algorithm is as follows:

1. A single site on the bottom row on a Lx ×Ly lattice is set to one, all other
sites are set to zero.
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2. A random-walker is introduced at the top row. When the walker reaches
a site adjacent to a one-value-site it stops and this site is set to one. The
walker can only move to adjacent sites of its current position , it can never
leave the lattice.

3. Repeat step 2 until a site at the top row is set to one.

B.3 Anti diffusion limited aggregation

Anti diffusion limited aggregation is a geometric process that accurately models
stable displacement. The algorithm is as follows:

1. Set all sites on a Lx ×Ly lattice to one.

2. Release a random walker at the bottom row. When the walker reaches
a one-value-site it stops and the site is set to zero. The walker can only
move to adjacent sites of its current position , it can never leave the lat-
tice.

3. Repeat step 3 until a site at the top row is set to zero.
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