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Abstract: This paper proposes a linear parameter varying (LPV) model reference-based control for
fixed-wing unmanned aerial vehicles (UAVs), which achieves agile and high performance tracking
objectives in extended flight envelopes, e.g. when near stall or deep stall flight conditions are considered.
Each of the considered control loops (yaw, pitch and airspeed) delivers an error model that can be
reshaped into a quasi-LPV form through an appropriate choice of the scheduling variables. The quasi-
LPV error models are suitable for designing error feedback controllers using linear matrix inequalities
(LMIs), which are derived within the quadratic Lyapunov framework. Simulation results are used to
show the effectiveness of the proposed approach.
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1. INTRODUCTION

In the recent decades, the use of unmanned aerial vehicles
(UAVs) for military and civilian applications has increased
rapidly, since UAVs can be applied in situations where manned
missions would introduce challenges, such as monitoring of
inaccessible locations or hazardous areas. Several control tech-
niques based on linearised models obtained under the assump-
tion of low angle-of-attach (AOA) have been proposed, e.g.
(Espinoza et al., 2014).

The AOA is an important parameter for describing the aero-
dynamics of a UAV. When it increases beyond a certain angle,
the boundary layer of the air flow separates from the airfoil of
the wing and creates a turbulent wake behind the wing, which
causes a reduction in the lift on the wing and an increase of the
drag (Kermode, 2006, Bertin and Cummings, 2014). The AOA
for which this phenomenon occurs, i.e. the AOA for which the
flow separates, is referred to as stall angle.

Usually, near stall or deep stall (AOA higher than the stall
angle) flight conditions are to be avoided. However, there are
some situations where it is desirable that the UAV’s AOA goes
near or beyond the stall angle (deep stall). For example, to
recover a UAV in a small space without a runaway, a recovery
net can be used. In this case, it is desirable to ease the impact
by minimizing the speed at which the UAV meets the landing
target. Deep stall landing lets the UAV decrease its altitude
while at the same time reducing its speed (Mathisen et al.,
2015, 2016). In other situations, severe turbulence or agile

? D. Rotondo acknowledges that this work was carried out during the tenure of
an ERCIM Alain Bensoussan Fellowship Programme. This work was supported
by the Research Council of Norway through the Centers of Excellence funding
scheme, Project number 223254 - Centre for Autonomous Marine Operations
and Systems (NTNU-AMOS), and project 261791.

manoeuvres can cause the airfoils to enter into stall conditions.
In these situations, the aerodynamics are unsteady, nonlinear
and sensitive to small changes in flight conditions, so they
cannot be described by linear models (Shields and Mohseni,
2011). Hence, the need for developing alternative frameworks
for UAV control arises.

During the last decades, the linear parameter varying (LPV)
paradigm (Shamma, 2012) has been applied successfully to
many applications (Rotondo et al., 2013) and validated by sev-
eral experiments and high-fidelity simulations (Natesan et al.,
2006, Hoffmann and Werner, 2015). The main advantage of
this approach is that, by embedding the system’s nonlinearities
in the varying parameters, nonlinear systems can be controlled
using an extension of linear techniques. When trajectory track-
ing is desired, a possible solution relies on the use of a reference
model that generates the desired trajectory (Abdullah and Zribi,
2009, Rotondo et al., 2015a,b).

This paper proposes an LPV model reference-based controller
for fixed-wing UAVs that is able to cope with the highly non-
linear dynamics and achieve tracking objectives also when near
stall or deep stall flight conditions are considered. Simulation
results are used to show the effectiveness of the proposed ap-
proach.

2. DYNAMIC MODEL OF THE FIXED-WING UAV

Let us consider the 6-DOF aircraft nonlinear model (Beard and
McLain, 2012), consisting of three equations for the relative
velocity components (u,v,w), three equations for the attitude
(φ ,θ ,ψ) and three equations for the angular rates (p,q,r) 1 :

1 In the following, the dependence of the variables on time t is omitted to ease
the notation.



u̇ = rv−qw−gsinθ +(Ax +T )/m (1)
v̇ = pw− ru+gcosθ sinφ +Ay/m (2)
ẇ = qu− pv+gcosθ cosφ +Az/m (3)
φ̇ = p+qsinφ tanθ + r cosφ tanθ (4)
θ̇ = qcosφ − r sinφ (5)
ψ̇ = qsinφ secθ + r cosφ secθ (6)
ṗ = Γ1 pq−Γ2qr+Mp (7)

q̇ = Γ5 pr−Γ6
(

p2− r2)+Mq (8)
ṙ = Γ7 pq−Γ1qr+Mr (9)

where g is the gravitational acceleration, m is the vehicle
mass, Ai are aerodynamical forces (lift and drag), T is the
propulsion thrust force, Mi are aerodynamical torques, and Γi
are coefficients obtained as combinations of the main inertia
coefficients Jx, Jy, Jz and Jxz. More specifically:
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where ρ is the air density, Sprop is the area swept out by the
propeller, km is the constant that specifies the efficiency of the
motor, S is the wing surface area, c is the mean aerodynamic
chord, b is the wingspan of the aircraft and:

CX (α) =−CD(α)cosα +CL(α)sinα (17)
CZ(α) =−CD(α)sinα−CL(α)cosα (18)

The inputs entering the system are the thrust command δt ,
the elevator deflection δe and the aileron deflection δa. It is
assumed that no rudder command δr is available. Notice that
this assumption is not restrictive, since the presence of a rudder
command would increase the controllability of the UAV, and
would require only a slight modification of the UAV’s model
and control algorithm.

The non-dimensional coefficients Ci are usually referred to as
stability and control derivatives. Some of them are nonlinear
functions of the angle-of-attack α , defined as:

α = arctan(w/u) (19)

Va and β are the total airspeed and the sideslip angle, respec-
tively, defined as:

Va =
√

u2 + v2 +w2 (20)
β = arcsin(v/Va) (21)

The velocity dynamics, i.e. (1)-(3), is affected by the wind, that
can be expressed as the additional unknown input:(

ν̇u
ν̇v
ν̇w

)
=−R(φ ,θ ,ψ)

(
ν̇N
ν̇E
ν̇D

)
(22)

where the matrix R(φ ,θ ,ψ) represents the rotation from iner-
tial to body frame, and ν̇ =(ν̇N , ν̇E , ν̇D) is the wind acceleration
expressed in the inertial frame (mainly due to turbulence).

It is assumed that the UAV’s state is available for feedback
and scheduling purposes, using sensor readings coming from
an autopilot and Kalman filter-based estimations, see Beard and
McLain (2012).

3. MODEL REFERENCE LPV CONTROL OF THE
FIXED-WING UAV

In order to control the UAV, three different control loops are
considered, following the suggestion provided by Liu et al.
(2015): yaw control loop, pitch control loop and airspeed con-
trol loop. The goal of the reference model (Abdullah and Zribi,
2009) is twofold: (i) to generate the desired trajectory by feed-
ing it with an appropriate reference input (feedforward action)
and (ii) to obtain an error model that is linear with respect to
the error variables and the incremental input (feedback action).

3.1 Yaw control loop

Let us consider the yaw angle subsystem given by Eqs. (6) and
(9), and let us define the following reference model:

ψ̇re f = qsinφ secθ + rre f cosφ secθ (23)
ṙre f = Γ7 pq−Γ1qr+Mr,re f (24)

M r,ref =
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a Sb
2
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2Va
+Crδa

δa,ref

]
(25)

where ψre f is the reference yaw angle, rre f is the reference
angular rate for r, and δa,re f is the reference aileron deflection.

By defining the tracking errors eψ = ψre f −ψ and er = rre f −r,
and the new input ∆δa = δa,re f −δa, the following error model
is obtained:

ėψ = cosφ secθer (26)

ėr =
ρVaSb2Crr

4
er +

ρV 2
a SbCrδa

2
∆δa (27)

which can be reshaped into a quasi-LPV form by introducing
the scheduling variables ϑ

(1)
ψ = cosφ secθ , ϑ

(2)
ψ = Va and

ϑ
(3)
ψ =V 2

a :(
ėψ
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4
ϑ
(2)
ψ

( eψ
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 0
ρSbCrδa

2
ϑ
(3)
ψ

∆δa (28)

The trajectory for the reference yaw angle ψre f is obtained by
fixing ψ̇re f , which through (23) becomes a constraint on rre f :

rre f =
ψ̇re f −qsinφ secθ

cosφ secθ
(29)

For the sake of simplicity, we will consider a piecewise con-
stant trajectory for ψre f , which means ψ̇re f = ψ̈re f = 0 almost
always. By taking the derivative of (29) and replacing appropri-
ately the expressions for φ̇ , θ̇ , q̇ and ṙre f given by (4), (5), (8)
and (24), the following is obtained:

aψ,aδa,re f +aψ,eδe,re f = bψ (30)
with:

aψ,a =−
ρV 2

a Sb
2

(cosφ secθ)2 Crδa



aψ,e =−
ρV 2

a Sc
2Jy

sinφ cosφ sec2
θCmδe

with bψ defined in (31) (see top of the next page).

Eq. (30) is a linear equation in the variables δa,re f and δe,re f
which, together with a similar equation provided in Section
3.2, allows calculating the values for the reference inputs that
generate the desired trajectory.
Remark 1. Although no roll control loop is considered, it is
worth noticing that the yaw control loop has an effect on the
roll angle due to couplings. In particular, the transient while
the yaw angle is increasing (decreasing) will be associated to
positive (negative) values for the roll angle.

3.2 Pitch control loop

Similarly to the yaw case described in Section 3.1, for the pitch
angle subsystem given by Eqs. (5) and (8), let us define the
following reference model:

θ̇re f = qre f cosφ − r sinφ (32)

q̇re f = Γ5 pr−Γ6
(

p2− r2)+Mq,re f (33)

Mq,ref =
ρV 2

a Sc
2Jy

[
Cm0 +Cmα

α +Cmq

cqre f

2Va
+Cmδe

δe,re f

]
(34)

where θre f is the reference pitch angle, qre f is the reference
angular rate for q, and δe,re f is the reference elevator deflection
(feedforward action). By defining the tracking errors eθ =
θre f −θ and eq = qre f −q, and the new input ∆δe = δe,re f −δe,
the following error model is obtained:

ėθ = cosφeq (35)

ėq =
ρVaSc2Cmq

4Jy
eq +

ρV 2
a ScCmδe

2Jy
∆δe (36)

which can be reshaped into a quasi-LPV form by introducing
the scheduling variables ϑ

(1)
θ

= cosφ , ϑ
(2)
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=Va and ϑ
(3)
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=V 2
a :
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ėθ

ėq
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(1)
θ

0
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ϑ
(2)
θ

( eθ
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)
+

 0
ρScCmδe

2Jy
ϑ
(3)
θ

∆δe (37)

The trajectory for the reference yaw angle θre f is obtained by
fixing θ̇re f , which through (32) becomes a constraint on qre f :

qre f =
θ̇re f + r sinφ

cosφ
(38)

Also in this case, for the purpose of calculating the reference
inputs, we will consider that θ̇re f = θ̈re f = 0 (notice that, as
shown later in Section 5, the UAV will still be able to track time-
varying reference pitch angles). Then, by taking the derivative
of (38) and replacing appropriately the expressions for φ̇ , ṙ and
q̇re f given by (4), (9) and (33), the following is obtained:

aθ ,aδa,re f +aθ ,eδe,re f = bθ (39)
with:

aθ ,a = ρV 2
a Sbsinφ cosφCrδa

aθ ,e =−ρV 2
a Sccos2

φCmδe
/(2Jy)

and bθ defined in (42) (see top of the next page). By solving
simultaneously (30) and (39), under the assumption that cosφ 6=
0, values for δa,re f and δe,re f can be calculated. Then, the
control inputs to be fed to the actuators (aileron and elevator)
would be calculated as δa = δa,re f −∆δa and δe = δe,re f −∆δe

(the computation of ∆δa and ∆δe is further discussed in Section
4).
Remark 2. According to Beard and McLain (2012), the evo-
lution of the altitude h is driven by the following differential
equation:

ḣ = usinθ − vsinφ cosθ −wcosφ cosθ (40)

By taking into account that v ≈ 0 and using a small-angle
approximation for θ , i.e. sinθ ≈ θ and cosθ ≈ 1−θ 2/2, (40)
becomes:

ḣ = uθ −wcosφ

(
1− θ 2

2

)
(41)

Through (41), and using available measurements for u, w and
φ , it is possible to relate the desired altitude rate with an
appropriate trajectory of the reference pitch angle θre f .

3.3 Airspeed control loop

First of all, let us obtain the equation that describes the dynam-
ical behavior of the airspeed Va. Taking into account (1)-(3),
(20), and the wind effect described by (22), the following is
obtained:

V̇a = [(Ax +T )u+Ayv+Azw]/(mVa) (43)
+[−ugsinθ + vgcosθ sinφ +wgcosθ cosφ ]/Va

+[uv̇u + vv̇v +wv̇w]/Va

Let us define the following reference model for the airspeed
control loop:

V̇a,re f =
[(

Ax +Tre f
)

u+Ayv+Azw
]
/(mVa) (44)

+[−ugsinθ + vgcosθ sinφ +wgcosθ cosφ ]/Va

Tre f =
ρSpropCprop

2
[
k2

mδ
2
t,re f −V 2

a,re f
]

(45)

where Va,re f is the reference airspeed and δt,re f is the reference
thrust command (feedforward action). By defining the tracking
error eVa =Va,re f −Va, and the new input ∆δt = δ 2

t,re f −δ 2
t , the

following error model is obtained:

ėVa =
ρSpropCpropu

2mVa

[
k2

m∆δt − eVa

]
− [uv̇u + vv̇v +wv̇w]/Va

(46)

By neglecting the wind-dependent terms, which are not avail-
able for control purposes, and will act as exogenous distur-
bances that will be rejected through the feedback, it is straight-
forward to obtain a quasi-LPV model for (46) by defining the
scheduling variable ϑVa = u/Va:

ėVa =−
ρSpropCprop

2m
ϑVaeVa +

ρSpropCpropk2
m

2m
ϑVa∆δt (47)

In this case, the computation of the reference thrust command
can be performed using (44)-(45) for a given V̇a,re f . Then,
δ 2

t = δ 2
t,re f −∆δt with ∆δt calculated using the error feedback

controller detailed in the next section.

4. ERROR FEEDBACK CONTROLLER DESIGN USING
LPV TECHNIQUES

The error models (28), (37) and (46) all have the following
structure:

ė(t) = A(ϑ(t))e(t)+B(ϑ(t))∆δ (t) (48)



bψ = (cosφ secθ)2
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Γ7 pq−Γ1qr+ρV 2
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[
Γ7 pq−Γ1qr+ρV 2
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β +Crp bp/(2Va)+Crr br/(2Va)−Crδa
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+r cosφ (p+qsinφ tanθ + r cosφ tanθ)}− sin2

φ (p+qsinφ tanθ + r cosφ tanθ)

where e ∈ Rne is the error vector, ∆δ ∈ Rnδ is the input vector,
A(ϑ(t)) and B(ϑ(t)) are matrix functions of the vector of
varying parameters ϑ ∈Θ⊂ Rnϑ .

The aim of this section is to design an error-feedback control
law:

∆δ (t) = K (ϑ(t))e(t) (49)
where K (ϑ(t)) is a matrix function chosen such that the re-
sulting closed-loop error system is stable with poles placed in
some desired region of the complex plane regardless from the
value of the varying parameter ϑ(t). Notice that since the yaw,
pitch and airspeed control loops are completely decoupled, the
stability of each individual loop can be enforced independently.

In this paper, both stability and pole placement are analyzed
within the quadratic Lyapunov framework, where the specifi-
cations are assured by the use of a single quadratic Lyapunov
function. The system (48) with the error-feedback control law
(49) is quadratically stable if there exist Xs � 0 and K (ϑ(t))
such that:

He{A(ϑ)Xs +B(ϑ)K(ϑ)Xs} ≺ 0 (50)
∀ϑ ∈ Θ (Packard and Becker, 1992) where, for a given matrix
M, the shorthand notation He{M} , M +MT is used. On the
other hand, pole clustering is based on the results obtained by
Chilali and Gahinet (1996), where subsets D of the complex
plane, referred to as LMI regions, are defined as:

D = {s ∈ C : fD (s)< 0} (51)
where fD is the characteristic function, given by:

fD (s) = α + sβ + s̄β
T = [αkl +βkls+βlk s̄]k,l∈[1,m] (52)

with α ∈ Sm×m, β ∈ Rm×m and s̄ denoting the complex con-
jugate of s. Hence, the system (48) with the error-feedback
control law (49) is quadratically D-stable (i.e. with poles in D)
if there exist XD � 0 and K (ϑ(t)) such that:

[αklXD +βkl (A(ϑ)+B(ϑ)K(ϑ))XD

+βlkXD (A(ϑ)+B(ϑ)K(ϑ))T
]

k,l∈[1,m]
≺ 0 (53)

The main difficulty with using (50) and (53) is that they impose
an infinite number of constraints. In order to reduce this number
to finite, a polytopic approximation of (48)-(49) is considered,
as follows: (

A(ϑ(t))
K (ϑ(t))

)
=

NA

∑
i=1

γi (ϑ(t))
(

Ai
Ki

)
(54)

B(ϑ(t)) =
NB

∑
j=1

χ j (ϑ(t))B j (55)

with γi(ϑ),β j(ϑ)≥ 0 and ∑
NA
i=1 γi(ϑ) = ∑

NB
j=1 χ j(ϑ) = 1, ∀ϑ ∈

Θ. Then, using a common Lyapunov matrix X = Xs = XD � 0

and through the change of variables Γi , KiX , (50) and (53)
can be brought to a finite number of linear matrix inequalities
(LMIs), as follows:

He
{

AiX +B jΓi
}
≺ 0 (56)[

αklX +βkl (AiX +B jΓi)+βlk (AiX +B jΓi)
T
]

k,l∈[1,m]
≺ 0

(57)
with i = 1, . . . ,NA and j = 1, . . . ,NB. The set of LMIs (56)-(57)
can be solved efficiently using available software, e.g. YALMIP
(Löfberg, 2004)/SeDuMi (Sturm, 1999).

5. SIMULATION RESULTS

The LPV model reference control for fixed-wing UAVs de-
scribed in Section 3 and 4 has been applied to the nonlinear
model of a small UAV, namely the Aerosonde UAV, which is
described in detail in Beard and McLain (2012).

Polytopic representation for the error models (28), (37) and (46)
(neglecting the term due to the wind acceleration, which will
act as an exogenous disturbance) have been obtained by apply-
ing a bounding box approach (Sun and Postlethwaite, 1998),
considering φ ,θ ∈ [−π/3,π/3] and Va ∈ [10m/s,30m/s]. The
feedback controllers:

∆δa(t) = Ka
(
ϑψ(t)

)[ eψ(t)
er(t)

]
(58)

∆δe(t) = Ke (ϑθ (t))
[

eθ (t)
eq(t)

]
(59)

∆δt = Kt (u/Va)eVa (60)
have been designed using the approach described in Section 4,
requiring stability and regional pole placement, obtaining the
closed-loop pole configuration shown in Fig. 1.
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Fig. 1. Closed-loop poles.



The results shown in this paper refer to a simulation which lasts
100s, where the UAV is required to follow a desired trajectory
for yaw angle, pitch angle and airspeed. as depicted in red solid
line in Figs. 2-4. Notice that the reference for the pitch angle
has been calculated to achieve some desired altitude rate, as
described in Section 3.2. The sequence of wind gusts velocities
simulated in this paper has been obtained using the widely
accepted Dryden wind turbulence model (U. S. Department of
Defense, 1980), by considering an altitude of 150m, an aircraft
speed of 20m/s and a low-altitude intensity defined by a wind
speed of 5m/s, and is shown in Fig. 5. Moreover, in order to test
the robustness of the proposed approach against sensor noise,
it is assumed that the measured state variables are affected by
uniform noise with magnitude ±10% of the measured values.
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The simulation results in Figs. 2-4 (blue solid lines) show
that the yaw angle, the pitch angle and the total airspeed, re-
spectively, achieve good tracking performance despite several
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Fig. 5. Gust components of the wind vu, vv, vw.

effects, such as wind, noise and changes in the dynamics due
to the nonlinearities. Fig. 6 shows some relevant angular ve-
locities, such as the roll angle φ , the AOA α and the sideslip
angle β . In particular, it can be seen that after 70s, the UAV
is working with an AOA beyond the stall angle, which for
the considered UAV is between 23◦ and 24◦. Throughout the
simulation, the UAV experiences strong variations of the lift
and drag coefficients (see Fig. 7). However, the LPV paradigm
is able to take into account these variations and provide guar-
antees of tracking performance. Finally, the control inputs are
illustrated in Fig. 8, showing that for most of the simulation
the actuators are working far from their saturations (the linear
ranges are [−1,1] for the aileron and elevator commands, and
[0,1] for the thrust command), and the altitude response is
shown in Fig. 9.
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6. CONCLUSIONS

In this paper, the problem of controlling the yaw, pitch and
total airspeed of a UAV has been solved using an LPV model
reference approach. The proposed solution is able to cope with
the nonlinearities that arise, e.g. due to near stall or deep stall
flight conditions, and relies on the use of a reference model that
describes the desired trajectory. The nonlinear error dynamics
are brought into a quasi-LPV form that is used for designing
an LPV error-feedback controller using LMI-based techniques.
The results obtained in simulation have demonstrated the effec-
tiveness of the proposed technique in achieving good tracking
performance in spite of changes in the flight conditions.

Future research will aim at increasing the robustness of the
proposed approach against additional effects that could hinder
the practical implementation on a real set-up, such as model
uncertainties and inaccessibility of some of the state variables
for feedback and/or scheduling. Also, the design of outer con-
trol loops for the tracking of a desired altitude and course angle
within the proposed LPV model reference paradigm is an open
problem that deserves further investigation.
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