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Abstract

Censoring is a common form for missing data in survival analysis. When
a data set is censored, there is only partial knowledge of the survival time
of some of the study units. To compensate for this, special techniques and
adjusted residuals may be used in analyses. An alternative to this is to obtain
new data sets through pseudo observations from jackknife theory. These
new data sets can then be treated as uncensored data sets, and ordinary
regression methods can be applied. This master’s thesis studies methods
for obtaining pseudo observations based the Kaplan-Meier estimator and
modelling by accelerated failure time models (AFT models). Three methods
are presented, one parametric and two non-parametric. How well the three
methods preform under different levels of censoring and true distributions are
studied, and some recommendations on when they are appropriate to use are
made. Pseudo observations are also studied for Cox-Snell and standardized
residuals for AFT models, and also here we arrive at some recommendations
regarding their use. Both pseudo observations and pseudo residuals are then
used in residual analysis and model checking. Methods are illustrated with
simulated and real data sets.
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Sammendrag

I levetidsanalyse er sensurering en vanlig form for manglende data. Når et
datasett er sensurert, vil man kun ha delvis kjennskap til levetiden til enkelte
studieenheter. For å kompensere for dette, kan spesielle teknikker og justerte
residualer brukes til å analysere dataene. Et alternativ til dette er å lage nye
datasett bestående av pseudo observasjoner fra jackknife teori. Disse nye
datasettene kan behandles som usensurerte datasett, og vanlige regresjons-
metoder kan anvendes. Denne masteroppgaven studerer metoder for å finne
pseudo observasjoner basert på Kaplan-Meier estimatoren og modellering av
”accelerated failure time” modeller (AFT modeller). Tre metoder presen-
teres, en parametrisk og to ikke-parametriske. Hvor godt de tre metodene
presterer under ulike nivåer av sensurering og ulike sanne fordelinger blir
studert, og noen anbefalinger rundt bruken av de blir gjort. Pseudo ob-
servasjoner blir også studert for Cox-Snell og standardiserte residualer for
AFT modeller, og også her er kommer vi med noen anbefalinger angående
anvendelser. Både pseudo observasjoner og pseudo residualer blir så brukt i
residualanalyse og modellsjekking. Metodene er illustrert med simulerte og
reelle datasett.
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Chapter 1

Introduction

In survival analysis the focus is on examining the time until a specific event
or endpoint. Examples are time to Aids for HIV patients, time to a light
bulb stops working or the number laps around a track a person can run.
The variable that we measure, T , is called the survival time, event time or
failure time. In some occasions however, we do not observe the event for all
individuals or items that we study the survival time for. The HIV patient
may drop out of the study, we may not observe the exact time the light
bulb stops working or the time the track is available to the runner may run
out. The real event time will then be unknown and we say that the sur-
vival time is censored. This aspect of survival data makes standard methods
inappropriate, and several methods have been developed to handle censoring.

Without censored observations, the survival data can be analysed with stan-
dard regression models, and standard graphical methods for assessing the
fit of the model can be used. An alternative to the methods developed for
censored observations is therefore to obtain a synthetic data set that behaves
like a uncensored version of the original data set. A method for finding such
data sets can be found in pseudo observations from jackknife theory. The
idea, proposed by Andersen et al. [4], is that pseudo observations of different
functions of T can be found with equation

θ̂i = nθ̂ − (n− 1)θ̂−i,

where θ̂ is an estimator of the function for the whole data set, and θ̂−1 is an
estimator for the data set when we remove observation i. The function can
for instance be the expected value of the survival time, the survival function
or residuals.

This thesis starts with some introduction chapters. In Chapter 2, basic
concepts like survival and hazard functions, mean time to failure and like-
lihood are presented. Chapter 3 introduces the Kaplan-Meier estimator for
the survival time and the logarithm of the survival time. This will be needed
in later chapters when we need an estimator for the expected survival time
or the expected value of a residual. In chapter 4, a parametric model for
survival data is presented. This parametric model is called the accelerated

1



2 CHAPTER 1. INTRODUCTION

failure time model, or AFT for short. On log-linear form it can be expressed
as

Y = log(T ) = µ+ β′X + σε.

where µ and σ are intercept and scale parameter, and ε is the error term.
Different properties for log-linear AFT models are then discussed, in partic-
ular for Weibull and lognormal distributed survival times.

Chapter 5 and chapter 6 are the main chapters in this thesis. In chap-
ter 5 three methods for finding pseudo observations for the survival time is
studied. The two first are non-parametric and based on the Kaplan-Meier
estimator. The second is parametric and based on the specific AFT model
we assume for our data. For the three methods, we look at how the degree
of censoring and the value of sigma affects the pseudo observations. Chapter
6 studies pseudo observations for residuals. Because censored survival times
lead to censored residuals, we can obtain pseudo residuals the same way as
pseudo survival times.

Then chapter 7 is dedicated to the use of pseudo observations and pseudo
residuals in residual analysis and assessing the functional form of a covariate.
Followed by concluding remarks are given in chapter 8.

In appendix A, the distributions used in this thesis is presented. Some of
the data sets we look at is included in appendix B. Figures not included in
chapter 7 can be found in appendix C, and R-codes for creating data sets
and pseudo observations/residuals are in appendix D.

Main sources of information have been Colletts bookModelling Survival Data
in Medical Reaseach [7] and articles Regression Analysis of Restricted Mean
Survival Time Based on Pseudo-Observations [2] by Andersen, P.K., Hansen,
M.G. & Klein, J.P., and Residuals and Functional Form in Accelerated Life
Regression Models [15] by Lindqvist, B.H., Aaserud, S. & Kvaløy, J.T.

Methods are illustrated with simulated and real data sets. Implementations
are made in R.



Chapter 2

Basic Concepts in Survival
Analysis

2.1 Survival time
Survival analysis is a branch of statistical methodology that focuses on ex-
amining data representing the time between a well-defined start point and
the time that we observe a specific event or endpoint. For example how long
time an item in a machine is functioning, time until a child takes its first
steps or the time to recovery after illness. Its applications can be found in
many fields, like medical statistics or reliability theory. In medical statistics
we might want to use survival models to study expected time to recovery
given different treatments or the probability of surviving longer than a given
time. In reliability theory we could be interested in modelling time to failure
for a system or a component, or how the probability of instant failure changes
with time.

The random variable T that we measure is called the failure time, lifetime
or survival time. T does not have to be calendar time like the examples
above, but can also stand for the number of kilometers driven by a car, the
number of times we use a machine, or the number of times a switch have
been switched.

If we let X be a state variable such that

X(t) =

0 Event has not been observed
1 Event has been observed

,

we can define the survival time as

T = min
t
{t|X(t) = 1}.

3
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2.2 Censoring
In many situations we do not observe the event for all individuals included
in a study. The exact survival time will then be unknown and we say that
the observation is censored. Whether an observation i is an event time or a
censoring time can be denoted by the event indicator δi. If we observe an
event we have δi = 1 and if we observe a censoring time we have δi = 0.

2.2.1 Types of censoring
Censoring can be right, left or interval censoring depending on the range
where the survival time is known to lie.

Figure 2.1: Example of survival experiences for ten patients. Right censored
observations are represented by circles and observed events are represented
by dots

Right censoring is the most common type of censoring in survival analysis,
and occurs when the event happens after we stop observing the individual.
The censored time will therefore be smaller than the actual survival time. As
an example of right censoring we can look at a study of divorces. The couples
that are still married when the study ends, or drop out of the study for other
reasons than divorce, will be right censored. The censored observations in
figure 2.1 are right censored.

A survival time is left censored if the event of interest has happened be-
fore we start observing. The true survival time will then be smaller than
the observed time. An example is observations of childhood milestones, such
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as learning to read. If we observe a group of primary school children some
may already have learned to read before starting school and they will be left
censored.

The third type, interval censoring, is typical for events that have to be tested.
If we find that the event has happened we will not know the exact time of the
event, only that it has happened since the last time we tested. An example
of this is going to the dentist. Given that a dentist discovers all cavities, we
will know that a cavity has occurred between the last time the patient went
to the dentist and now, but not the exact time.

An important assumption we will make regarding our survival data is that
censoring times are random and independent from the actual survival times.
This means that none of the variables that has an effect on the survival will
have an effect on the censoring. Assuming this makes the censored times
representative for the individuals still at risk (page 4. in Collett [7]).

2.3 Survival and hazard functions
The cumulative distribution function for the survival time T gives us the
probability that the event has occurred before time t,

F (t) = P (T ≤ t) =
∫ t

0
f(t)dt.

Two other functions of particular interest in survival analysis are the survival
and hazard functions.

The survival function, S(t), is the probability of not experiencing the event
before time t, and will therefore be a right-continuous, non-increasing func-
tion of t, with S(0) = 1.

S(t) = P (T > t) = 1− P (T ≤ t) = 1− F (t). (2.1)

In reliability theory the survival function is also known as the reliability func-
tion (page 17 in Rausand & Høyland [17]).

The hazard function is the instantaneous probability of death at time t given
survival up to time t:

h(t) = lim
∆t→0

P (t < T ≤ t+ ∆t|T > t)
∆t = f(t)

S(t) = −S
′(t)

S(t) . (2.2)

It must be non-negative but can take any shape. Other names for the haz-
ard function is instantaneous death rate, the intensity rate, or the force of
mortality (page 11. in Collett [7]).
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2.4 Mean survival time
Mean survival time or mean time to failure for an item is defined by

MTTF = E[T ] =
∫ ∞

0
tf(t)dt.

Because f(t) = −S ′(t), we have

E[T ] = −
∫ ∞

0
tS ′(t)dt.

Using partial integration we find

E[T ] = −[tS ′(t)]∞0 +
∫ ∞

0
S(t)dt.

It can be shown that if MTTF is finite, then [tS ′(t)]∞0 =0, which gives us

E[T ] =
∫ ∞

0
S(t)dt. (2.3)

In other situations we are interested in the expected survival time up until a
given time τ . This is called the restricted mean and can be found by

E[T ] =
∫ τ

0
S(t)dt. (2.4)

Equations 2.3 and 2.4 assume that T ≥ 0. If survival times are allowed to
be negative, we need to find a more general expression for the mean survival
time. Let Y be a random variable representing survival times that can be
negative. The expected value of Y can be found by:

E(Y ) =
∫ ∞
−∞

yfY (y)dy =
∫ a

−∞
yfY (y)dy +

∫ ∞
a

yfY (y)dy. (2.5)

Each part can then be parted further by partial integration∫ a

−∞
yfY (y)dy =

∣∣∣∣a
−∞

yFY (y)−
∫ a

−∞
F (y)dy. (2.6)∫ ∞

a
yfY (y)dy =

∣∣∣∣∞
a
− ySY (y)−

∫ ∞
a
−SY (y)dy. (2.7)

Setting equation 2.6 and 2.7 into equation 2.5 gives

E(Y ) =
∣∣∣∣a
−∞

yFY (y)−
∫ a

−∞
FY (y)dy −

∣∣∣∣∞
a
ySY (y) +

∫ ∞
a

SY (y)dy,

E(Y ) = aFY (a)+∞FY (−∞)−
∫ a

−∞
FY (y)dy−∞SY (∞)+aSY (a)+

∫ ∞
a

SY (y)dy.

It can be shown that ∞FY (−∞) and ∞SY (∞) equals zero. Using this and
that FY (a) + SY (a) = 1, we find an expression for the expectation.

E(Y ) = a−
∫ a

−∞
FY (y)dy +

∫ ∞
a

SY (y)dy. (2.8)

Integrating to τ will give a corresponding restricted mean,

E(Y ) = a−
∫ a

−∞
FY (y)dy +

∫ τ

a
SY (y)dy. (2.9)
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2.5 Likelihood function for right censored data
The likelihood function can be used to find estimators for coefficients in
parametric models and will for n uncensored data points have its standard
form

L =
n∏
i=1

f(ti).

For censored data sets we need to be more careful. The data sets that we will
study will consist of independent and random right censored survival times.
We will therefore only consider the likelihood function for such data.

Suppose that r out of n observed survival times are uncensored. The contri-
bution of those r survival times to the likelihood function can be expressed
as

r∏
j=1

f(tj).

For the remaining n − r censored survival times we know that the event
time is at least as big as the observed time. Using that the probability for
surviving past time tl is P (T ≥ tl) = S(tl), we find that the contribution to
the likelihood for censored survival times will be

n−r∏
l=1

S(tl).

Using the event indicator δi, we can write the likelihood function as

L =
n∏
i

f(ti)δiS(ti)(1−δi). (2.10)

More detailed information on likelihood can be found in section 3.5 in Klein
and Moeschberger [14] and appendix B in Collett [7].





Chapter 3

Kaplan-Meier Estimator

3.1 Kaplan-Meier estimator of the survival
function for T

The Kaplan-Meier estimator, also called the product limit estimator, is a
much used non-parametric method to estimate the survival function for com-
plete and right censored data sets. It is named after Edward L. Kaplan and
Paul Meier, who introduced the estimator in their joint paper Non-parametric
Estimation from Incomplete Observations [12] in 1958.

Based on the explanation in chapter 2 in Collett [7], we will now describe the
general idea behind the estimator and illustrate the method with a simple
example.

Figure 3.1: Figure illustrating ordering of event times for the Kaplan-Meier
estimator. D indicates observed events and C indicates censored events

Suppose that we have n ordered survival times t1, t2 · · · , tn where some of
them may be right censored, and some may be equal. Among these times
there are r ≤ n distinct event times. We start by arranging the r event times
such that t(1) < t(2) · · · < t(r), denoting the j-th event time as t(j) (see figure
3.1). If there are censored observations at the same time as an event time
we will treat the censored time as if it occurred right after the event time.
Denote the number of individuals at risk just before time t(j) as nj, and let

9
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dj be the number of events at time t(j). The probability of surviving time
interval [t(j), t(j+1)] can then be estimated as (nj − dj)/nj. Assuming that
events occur independently of each other, we find the probability of surviving
intervals 1, 2, · · · , k by ∏k

j=1
nj−dj
nj

. This gives us the Kaplan-Meier estimator
of the survival function,

ŜKM(t) =

1 if t < t1∏k
j=1

nj−dj
nj

if t(k) ≤ t < t(k+1)
.

If the last survival time, tn, is a censored time, the survival function will be
undefined for t > tn. On the other hand, if the largest observed survival time
is uncensored, then tn = t(r), dr = nr, and the survival function will be zero
for t > t(r).

3.1.1 Mean and restricted mean
The Kaplan-Meier estimator can be used to find an estimate of the mean
survival time. Inserting the Kaplan-Meier estimate in equation 2.3 gives us

µ̂ =
∫ ∞

0
ŜKM(t)dt. (3.1)

When the last observed time tn is uncensored, ŜKM(t) will be zero for t > tn,
and the integral will be finite. On the other hand, if tn is uncensored the
integral will be infinite. To make sure that the expected survival time is
finite for both cases, we can use the restricted mean given by equation 2.4,
and set τ = tn to find,

µ̂ =
∫ tn

0
ŜKM(t)dt. (3.2)

3.1.2 Example, Kaplan Meier
In a study of recovery after surgery we get the following observed survival
times: 1, 2, 2+, 3, 5, 5, 6, 8+, 9+, 10, where + indicates right censoring. The
uncensored survival times 1, 2, 3, 5, 5, 6, 10 give us the intervals that we can
estimate the survival function for.

In this case equation 3.1 and 3.2 will give the same estimate, µ̂ = 5.9, be-
cause the last observation is a uncensored time. Plot of the Kaplan-Meier
estimator is shown in figure 3.2. In R we can use the survfit function from
the survival package to find Kaplan-Meier estimates. For instructions, see
[19] or the R-help-guide



3.1. KAPLAN-MEIER ESTIMATOR OF THE SURVIVAL FUNCTION FOR T11

Table 3.1: Kaplan-Meier survival function for survival times in the Kaplan-
Meier example.

j tj nj dj Ŝ(t)
1 0≤t< 1 10 0 1
2 1≤t< 2 10 1 0.9
3 2≤t< 3 9 1 0.8
4 3≤t< 5 7 1 0.686
5 5≤t< 6 6 2 0.457
6 6≤t< 10 4 1 0.343
5 t ≥ 10 1 1 0

Figure 3.2: Plot of Kaplan-Meier estimator and 95% confidence interval for
the survival times in the example. The plot is made using the survfit function
from the survival package in R.
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3.2 Kaplan-Meier estimator of the survival
function for log(T )

In some parts of this thesis we will work with the logarithm of the survival
times. We will therefore need a Kaplan-Meier estimator for Y = log(T ). It
can be proven that this estimator will be equal to the Kaplan-Meier estimator
for T :

SY (y) = P (Y > y) = P (log(T ) > y) = P (T > ey) = ST (ey).

Using the Kaplan-Meier estimator we find that ŜKM,Y (y) = ŜKM,T (ey).
Therefore we have

ŜKM,Y (y) =

1 if y < y(1)∏k
j=1

nj−dj
nj

if y(k) ≤ y < y(k+1)
.

3.2.1 Mean and restricted mean
In order to find an estimator for the expected value of Y = log(T ) we can
use equation 2.8 from chapter 2,

E(Y ) = a−
∫ a

−∞
FY (y)dy +

∫ ∞
a

SY (y)dy.

If we use Kaplan-Meier estimates for SY (y) and FY (y), and choose a =
log(t(1)), we find that

µ̂ = log(t(1)) +
∫ ∞
log(t(1))

ŜKM,Y (y)dy, (3.3)

or
µ̂ = log(t(1)) +

∫ tn

log(t(1))
ŜKM,Y (y)dy. (3.4)

3.2.2 Example, Kaplan-Meier continued
For the same data set as before, we get Kaplan-Meier estimates for log(T )
as shown in figure 3.3. We see that the number of intervals and the height
of each interval is equal to the the number of intervals and heights in figure
3.2, but the length of each interval have changed.
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Figure 3.3: Plot of Kaplan-Meier estimated survival curves for log(T), for the
same survival times as in figure 3.2. Circles indicates event and censoring
times.





Chapter 4

Accelerated Failure Time
Models

4.1 Regression models
The parametric distributions introduced in appendix A and non-parametric
methods like Kaplan-Meier (chapter 3) provide straightforward methods for
modelling survival experiences for homogeneous populations and comparing
two or more groups. However, in many situations when we are modelling sur-
vival data, we are interested in obtaining survival and hazard functions that
accounts for additional information like gender, age and length. This infor-
mation is often refereed to as covariates, explanatory variables or independent
variables. The covariates can be considered as dependent or independent of
time. They can be categorical like treatment and ethnicity or continuous like
blood pressure or height.

Popular choices of regression models to incorporate the covariates are the
proportional hazards model, the additive hazards model, the proportional
odds model and the accelerated failure time model. This thesis will focus on
accelerated failure time models.

Most of the theory in this chapter is from chapter 6 in Collett [7]. Other
books that cover regression models are for example Klein & Moeschberger
[14], Meeker & Escobar [16] and Kalbfleisch & Prentice [11].

4.2 General accelerated failure time models
In accelerated failure time models [AFT] we assume that the effect of the
covariates will be a multiplication of the expected survival time. A gen-
eral formulation for the AFT hazard for an individual i with p covariates
summarized in vector xi is

hi(t) = e−ηih0(t/eηi), (4.1)

15
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where
ηi = α′xi = α1x1i + α2x2i · · ·+ αpxpi.

and h0 is the hazard function for an individual where xi=0. This h0 is also
called the baseline hazard.

Corresponding survival function will be
Si(t) = S0(t/exp(ηi)) (4.2)

where S0 is the baseline survival function.

4.3 Log-linear representation
For AFT models it is common to use the log-linear representation

Y = log(T ) = µ+ β′X + σε. (4.3)
where µ and σ are intercept and scale parameter and ε is the error term. The
β are unknown regression coefficients reflecting the effect that each explana-
tory variable have on the survival time. Positive βj means that if covariate
xji increases, then the expected survival time increases, and if βj is negative,
an increasing xji will lead to a decreasing expected survival time.

Survival function for the log-linear representation can be found by using that
the baseline survival function S0 is the survival function for t = exp(µ+ σε).

Si(t) = P (Ti > t)
= P (Yi > ln(t))
= P (µ+ β′xi + σεi > ln(t))
= P (exp(µ+ σεi) > (t/exp(β′xi)))
= S0(t/exp(β′xi)).

The hazard function can be found by using equation 2.2, resulting in
hi = exp(−β′xi)h0{t/exp(β′xi)}. (4.4)

We see that by setting ηi = β′xi we get hazard and survival functions as in
equation 4.1 and 4.2.

The distribution of the error term in equation 4.3 is assumed to be known,
and determines the distribution of T and vice versa. Taking Sεi(ε) as the
survival function for the error we find that

Si(t) = P
(
µ+ β′xi + σεi ≥ log(t)

)
= P

(
εi ≥

log(t)− µ− β′xi

σ

)
= Sεi

(
log(t)− µ− β′xi

σ

)
.

(4.5)
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4.4 Estimation of log-linear regression mod-
els

Estimation of the unknown parameters in the log-linear regression models
can be done using maximum likelihood. If we know the distribution of the
error we can use it to find the distribution of Y , and hence the likelihood
function for Y . To make the derivation easier we set x0 = 1 and let β0 = µ.

Let fε(ε) be the PDF of the error term, then the PDF of Y can then be
written as

f(y) = σ−1fε(ε).
From equation 2.10 we find

L(β, σ) =
n∏
i=1

[σ−1fε(εi)]δiSε(εi)1−δi , (4.6)

where εi = log(t)−β′X
σ

.

The log-likelihood will be

l(β, σ) =
∑
i,δ=1

log(fε(εi))−
∑
i,δ=1

log(σ) +
∑
i,δ=0

log(Sε(ε)). (4.7)

The partial derivative of the log-likelihood is also called the score statistic
U , and will for AFT models be:

Uj(β, σ) = ∂log(L(β, σ))
∂βj

= σ−1
n∑
i=1

xjiai j = 0, 1, · · · , p

Up+1(β, σ) = ∂log(L(β, σ))
∂σ

= σ−1
n∑
1

(εiai− δi)

where
ai = −

[
δi
dlog(fε(εi))

dεi
+ (1− δi)

dlog(Sε(ε))
dεi

]

If l(β, σ) is twice differentiable with respect to all parameters we can also
find the observed information matrix I, consisting of the negative second
derivatives:

−∂
2log(L(β, σ))
∂βj∂βk

= −σ−2
n∑
i=1

xjixki
dai
dεi

−∂
2log(L(β, σ))
∂βj∂σ

= σ−2
n∑
i=1

xjiεi
dai
dεi

+ σ−1Uj(β, σ)

−∂
2log(L(β, σ))

∂σ2 = σ−2
n∑
i=1

(ε2i
dai
dεi

+ δi) + 2σ−1Up+1(β, σ)
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Now that we have the score and observed information matrix, the maxi-
mum likelihood estimates is found by setting U=0 and I > 0. A method for
solving this numerical is the Newton-Raphson method:

β(m) = β(m−1) + Um−1

Im−1

The theory in this section is mainly from section 3.6 in Kalbfleisch & Pren-
tice [11]. More on estimation of parameters and numerical methods can be
found in appendix A in Klein & Moeschberger [14] and chapter 4 in Dobson
& Barnett [8].

4.4.1 Estimation with R
In R, the survreg function from the survival package fits a log-linear acceler-
ated failure time model using maximum likelihood and the Newton-Raphson
method. Section 5.7 in Therneau’s paper [18] gives a detailed description of
the implementation and the theory behind survreg, while the R-help-guide
give as brief introduction on how to use the survreg function.

With survreg we can fit Weibull (and hence exponential and Rayleigh), loglo-
gistic and lognormal survival data. We will now look at an example where
we try to fit a Weibull distribution to

Y = log(T ) = µ+ β1x1 + β2x2 + σε

The R-code for this will be:

survreg(Surv(times,events)~x_1+x_2,dist="weibull")

and the output gives us

Call:
survreg(formula = Surv(Data$Time, Data$Status) ~ Data$x1 + Data$x2 +

Data$x3, data = Data, dist = "weibull")
Value Std. Error z p

(Intercept) 2.0136 0.190 10.612 2.62e-26
Data$x1 0.0557 0.189 0.295 7.68e-01
Data$x2 -0.3560 0.206 -1.727 8.42e-02
Data$x3 0.2188 0.298 0.735 4.62e-01
Log(scale) -0.6048 0.188 -3.211 1.32e-03

Scale= 0.546

Weibull distribution
Loglik(model)= -46.1 Loglik(intercept only)= -47.5
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Chisq= 2.85 on 3 degrees of freedom, p= 0.41
Number of Newton-Raphson Iterations: 5
n= 20

Another possibility is to use the likelihood or log-likelihood function from
equation 4.6 or 4.7, and use the optim function from the stats package to
maximize and find the estimated parameters. optims default setting is to
minimize the function it’s given as input, so we must multiply the likelihood
with minus one in order to get maximum. The initial guesses should be care-
fully chosen, and the result should be treated with some scepticism because
the result might be a local maximum instead of a global.

4.5 Residuals
Residuals and residual plots are widely used tools when evaluating models.
We will now look at two residuals used for accelerated failure time models, the
standardized and Cox-Snell residual. When working with survival models we
must be aware of the fact that censored survival times will lead to censored
residuals.

4.5.1 Standardized residuals
Standardized residuals come from solving equation 4.3 with respect to ε, and
are therefore defined as

Rs = log(T )− µ− β′X
σ

. (4.8)

When we have estimated parameters µ̂, β̂ and σ̂, we find standardized resid-
uals as

r̂s,i = log(ti)− µ̂− β̂
′
xi

σ̂
. (4.9)

These residual are assumed to have the same distribution, Φε, as ε in equa-
tion 4.3 if the estimated model is appropriate. For example, if T is Weibull
distributed the standardized residuals should be Gumbel distributed.

When the data set is right censored, some log(ti) will be smaller than the
logarithm of the actual survival time and hence, some standardized residuals
will be too small.

4.5.2 Cox-Snell residuals
Cox-Snell residuals are based on the random variable −log(F (T )), which will
be unit exponentially distributed for all Φε (section 3 in [15]). Noting that

F (t|X) = 1− Φε

(
log(t)− µ− β′X

σ

)
,
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implies that

−log(F (t|X)) = −log
(

1− Φε

(
log(t)− µ− β′X

σ

))
.

This lead us to the Cox-Snell residuals

r̂c,i = −log
(

1− Φε

(
log(ti)− µ̂− β̂

′
xi

σ̂

))
, (4.10)

which should behave like a censored sample of unit exponential survival times.
An equivalent expression is

r̂c,i = −log
(
Sε

(
log(ti)− µ̂− β̂

′
xi

σ̂

))
,

and expressed by the standardized residuals we have

r̂c,i = −log(Sε(r̂s,i)).

From this we find that assessing whether the standardized residuals has a
certain distribution will be the same as assessing if the Cox-Snell residuals
have an unit exponential distribution. More on the connection between the
two residuals can be found in appendix A in Lindqvist et al. [15].

4.5.3 Adjusted Cox-Snell residuals

As for the standardized residuals, a censored Cox-Snell residual will be
smaller than the "actual" residual. To compensate for this, one can add
a given value to the censored residuals. Examples of that are the 1- and
log(2)-adjusted Cox-Snell residuals.

The 1-adjusted Cox-Snell residual is found simply by adding 1 to the cen-
sored residuals. This is done because of the "memoryless" property of the
exponential distribution and the fact that the unit exponential distribution
has expectation 1. Using the event indicator this can be written as

radj,i = ri + (1− δi).

The log2-adjusted Cox-Snell residuals are found by adding the median value
of the exponential distribution to the censored residuals, giving us

radj2,i = ri + (1− δi)log(2).
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4.6 Weibull accelerated failure time models
Weibull is one of the most used distributions in survival analysis. It is the
only distribution that can be expressed as both an accelerated failure time
model and a proportional hazard model (see section 6.5 in Collett [7]).

When a survival time, T , is Weibull distributed, we know that ε is Gumbel
distributed. This can be shown using equation 4.5 and the Gumbel survival
function from equation A.3.

Si(t) = Sεi

 log(t)− µ− xi
′β

σ


= exp

− exp
 log(t)− µ− xi

′β

σ


= exp

(
− λit

1
σ

)
,

where λi = exp
(
−µ−xi

′β
σ

)
. We see that this is a Weibull distribution with

scale parameter λi and shape parameter σ−1. Using this and equation A.2
we find that the Weibull AFT hazard function will be

hi(t) = λiσ
−1tσ

−1−1.

4.6.1 Residuals
Because ε is Gumbel distributed we know that the standardized residuals
given in equation 4.8 will behave as a (censored) Gumbel distributed sample
if the model is appropriate.

The Cox-Snell residuals will according to equation 4.10 and A.3 be

r̂c,i = −log
(
Sεi

(
log(ti)− µ̂− xi

′β̂

σ̂

))
= exp

(
log(ti)− µ̂− xi

′β̂

σ̂

)
= exp(r̂s,i)

and they will be unit exponential distributed if the model is appropriate.

4.6.2 The distribution and likelihood of Y
We will now show that a Weibull distributed T leads to a Gumbel distributed
Y, and derive an expression for the likelihood for Y.

From appendix A we know that the probability density function for a Weibull
distributed survival time is

fT (ti) = λiγt
γ−1
i exp(−λtγi ),
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where λi = λ(xi.) depends on the covariates. Using transformation T = eY

we can find the distribution for Y :

FY (yi) = P (Y ≤ yi) = P (log(T ) ≤ yi) = P (T ≤ eyi)

=
∫ eyi

0
f(ti)dt =

∫ eyi

0
λγ−1
i exp(−λtγi dt

.

Substituting with u = λit
γ
i gives us:

FY (yi) =
∫ eyi

ti=0
e−udu =

∣∣∣∣eyi
ti=0
− e−u =

∣∣∣∣eyi
0
− eλit

γ−1
i

= 1− e−λieyiα = 1− e−e
yi+(1/γ)log(λi)

1/γ
.

Letting σ = 1/γ and −(1/γ)log(λi) = β′xi we see that Y is Gumbel dis-
tributed with

FY (yi) = 1− exp
[
− exp

(
yi − xi

′β

σ

)]
.

giving us survival function

SY (yi) = exp

[
− exp

(
yi − xi

′β

σ

)]
,

and density function

fY (yi) = 1
σ
exp

[
yi − xi

′β

σ
− exp

(
yi − xi

′β

σ

)]
.

The likelihood function for Y can then, according to equation 2.10, be written
on the form:

L(β, σ) =
∏
i,δi=1

1
σ
exp

[
yi − xi

′β

σ
−exp

(
yi − xi

′β

σ

)] ∏
i,δi=0

exp

[
−exp

(
yi − xi

′β

σ

)]
,

and log-likelihood:
`(β, σ) = log(L(β, σ)).

`(β, σ) =
∑
i,δi=1

[
yi − xi

′β

σ
−exp

(
yi − xi

′β

σ

)]
−
∑
i,δi=1

log(σ)−
∑
i,δi=0

exp
(
yi − xi

′β

σ

)
.

This result could also be found by equation 4.6 and 4.7.
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4.7 Lognormal accelerated failure time mod-
els

From the definition of a lognormal distribution we know that if T is lognor-
mal, then Y = log(T ) is normal distributed. We will now show that a normal
distributed ε will lead to a lognormal T :

Si(t) = Sεi

 log(t)− µ− β′xi

σ


= 1− Φ

 log(t)− µ− β′xi

σ


,

which we see from equation A.4 is the survival function for a lognormal
distributed survival time with parameters µ+ β′xi and σ.

4.7.1 Residuals
If the model is appropriate, the standardized residuals (see equation 4.8)
should behave as a (censored) sample from a normal distribution.

Cox-Snell residuals will be

r̂c,i = −log(1− Φ(r̂s,i)),

and they will behave as from a (censored) unit exponential distribution if the
model is appropriate.

4.7.2 Likelihood function for Y
The distribution of ε, is as mentioned above, normal. This gives us

fε(ε) = 1
2πe

− 1
2 ε

2

Sε(ε) = 1− Φ(ε)
From equation 4.6 and 4.7 we then get

L(β, σ) =
n∏
i=1

[
σ−1
i

1
2πe

− 1
2 ε

2
i

]δi[
1− Φ(εi)

]1−δi
.

The log-likelihood will be

l(β, σ) =
∑
i,δ=1

log
( 1

2πe
− 1

2 ε
2
i

)
−
∑
i,δ=1

log(σi) +
∑
i,δ=0

log
(

1− Φ(εi)
)
.

Inserting εi = log(ti)−β′Xi

σi
gives us

L(β, σ) =
n∏
i=1

[
σ−1
i

1
2πe

− 1
2

(
log(ti)−β′Xi

σi

)2]δi[
1− Φ

(
log(ti)− β′Xi

σi

)]1−δi
.
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and

l(β, σ) =
∑
i,δ=1

log
( 1

2πe
− 1

2

(
log(t)−β′X

σ

)2)
−
∑
i,δ=1

log(σi)

+
∑
i,δ=0

log
(

1− Φ
(
log(ti)− β′Xi

σi

))
.

4.8 Simulating survival data from accelerated
failure time models

Simulated data sets from AFT models will be used frequently in chapters 5,
6 and 7. We will therefore look at how we can use R to generate survival
data from AFT models.

Unless stated otherwise, data sets in this thesis will be based on the AFT
model

log(T ) = µ+ β1x1 + β2x2 + β3x3 + σε, (4.11)
where x1 is binary with P (x1 = 0) = P (x1 = 1) = 0.5, x2 ∼ unif [−1, 1] and
x3 ∼ N(0, 1). Parameters µ, β1, β2, β3 and σ will be known, and ε depends
on the distribution of T .

Finding covariates for n observations in R can be done using the following
code:
x1 <-round(runif(n,0,1))
x2 <-runif(n,-1,1)
x3 <-rnorm(n)

The n values of ε must also be simulated. If ε is Gumbel distributed, Aaserud
[1] warns us not to use the rgumbel(n) function, but instead implement our
own simulating procedure. This is done by letting u ∼ unif [0, 1] and use
that ε = ln[−ln[u]] will be Gumbel distributed.

When we have values for all covariates, parameters and ε, we can find simu-
lated survival times Treal by inserting the values in model 4.11.

Censoring is found by generating n censoring times and letting the observed
survival time be

T = min(Treal, C).
We have used exponential censoring times C, found by setting v ∼ unif [0, 1]
and C = (−1/λ)log(v). By adjusting the value of λ we can decide the level
of censoring.

Code for simulating Weibull and lognormal data sets can be found in ap-
pendix D.



Chapter 5

Pseudo Observations

5.1 Introduction to pseudo observations
Although there are several good methods and tools available to treat censored
data sets, there have been studies of methods that allow us to treat censored
data as if they where complete. One such method is to create a synthetic
data set using pseudo observations known from jackknife theory. This new
synthetic data set can then be treated as an uncensored version of the original
data set, and ordinary regression methods can be used to estimate regression
coefficients. Further more, standard methods for assessing the fit of the
model can be used, including standard residuals and plots.

5.1.1 Jackknife and pseudo observations
Let t = (t1, t2, · · · tn) be a sample of observations of the random variable T,
and θ̂ = θ̂(T ) be an approximately unbiased estimator of θ = E[f(T )]. By
removing one observation at the time we get n jackknife samples

ti = (t1, t2, · · · ti−1, ti+1, · · · tn),
for i= 1,2,· · · n.

Using these jackknife samples we can find n jackknife replications, or "leave-
one-out" estimators, of θ̂(T ),

θ̂−i = θ̂(ti).
These jackknife replications can then be used to find the n independent data
values, θ̂i, that we call pseudo observations of f(T ),

θ̂i = nθ̂ − (n− 1)θ̂−i. (5.1)
This set of pseudo observations is our new synthetic data set, and the average
of the new values is what is called the jackknife estimator of θ.

θ̂J = 1
n

n∑
i=1

θ̂i.

For more theory on jackknife see for example Efron [9] or Garthwaite et al.
[10].

25
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5.1.2 Pseudo observations in survival analysis
In survival analysis censored data sets will consist of some incomplete ob-
servations of the survival times. This will lead to incomplete observations of
any function f(T ) of the survival time. The idea is to replace all observations
of f(T ) with the pseudo observations θ̂i. θ̂i can then be used as an outcome
variable in a generalized linear model or in model assessing by computing
residuals and scatter plots.

Andersen and Perme’s article Pseudo-observations in survival analysis [4],
serves as a good introduction to different aspects of pseudo observations
in survival analysis. It presents a review of recent work on applications of
pseudo observations, including examples of applications in regression models
and numerical and graphical methods for assessing goodness of fit. As ex-
amples of applications in survival analysis, Andersen and Perme look at the
survival function, restricted mean survival time, competing risks cumulative
incidences and the illness-death model. A more detailed article on restricted
mean and pseudo observations is Andersen, Hansen and Klein’s paper Regres-
sion analysis of restricted mean survival time based on pseudo observations
[2]. This chapter of the thesis will start out based on this article, and look
at three methods for finding pseudo observations of survival times in AFT
models. First we will give a short introduction to the methods, and in the
three next sections study them in detail.

To find pseudo observations for the survival time we set f(T ) = T and

θ = E(f(T )) = E(T ) = µ.

As an estimator θ̂, we can use the Kaplan-Meier estimate for restricted mean
with τ = tn as given in equation 3.2:

µ̂ =
∫ tn

0
ŜKM(t)dt,

where tn is the largest observation (censored or uncensored). Pseudo values
can then be found using equation 5.1. This method will be referenced to as
the KM-method.

The pseudo values that we get with the KM-method can then be used as
uncensored observations in estimation of the parameters in AFT model 4.3.
A problem with this method is that we might get negative pseudo observa-
tions, and most of the software made for survival analysis require positive
survival times. A solution to this is to find pseudo observations for log(T )
and then exponentiate them to find pseudo observations for T . In [2], An-
dersen et al. suggest using an integrated Kaplan-Meier for log(T ). This
estimator is derived in section 3.2 resulting in equation 3.4,

̂E(log(T )) = log(t(1)) +
∫ tn

log(t(1))
Ŝlog(T )(v)dv.
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The pseudo observations we get will now be observations of log(T ). Taking
the exponential of this gives us pseudo observations for T , which will be pos-
itive. We will refer to this method as KMlog.

KM and KMlog are both based on non-parametric estimation, and can there-
fore be used on data sets where the distribution and model is unknown. How-
ever, if we assume a certain distribution and model for the survival times T ,
we can use the parametric distribution of the accelerated failure time model
(see equation 4.3) to find pseudo observations. Setting

θ = E(log(T )) = µ+ β1E(x1) + · · ·+ βpE(xp) + σE(εi),

we can find an estimator for θ as

θ̂ = ̂E(log(T )) = µ̂+ β̂1
̂E(x1) + · · ·+ β̂p

̂E(xp) + σ̂Ê(εi).

Covariates for all n observations are assumed to be known, so ̂E(xj) =
1
n

∑n
j=1 xji can be used for j = 1, 2, ..., p. Expected value for ε is known

given the distribution of the survival times, and estimators for the param-
eters can be found using maximum likelihood or other estimation methods.
This method for finding pseudo observations will be referred to as the para-
metric method. Again we find pseudo observations for log(T) by equation
5.1 and exponentiate them to get pseudo observations for T . A drawback
with this method is that for each jackknife replication θ̂−i, we need to find
new estimators for xi, σ, µ and βi, and the method must be adjusted to each
different AFT model.
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5.2 Pseudo observations based on Kaplan-Meier
for T

Pseudo observations based on Kaplan-Meier can be found using the following
procedure:
• Find an estimator, θ̂, for the expected survival time for the full data

set using equation 3.2.

• For each observation i: Remove observation i from the original data set
and find the "leave-one-out" estimator, θ̂−i, for the expected survival
time using equation 3.2.

• Find pseudo observations, θ̂i, using equation 5.1.

5.2.1 Uncensored observations
For uncensored observations with no ties it can be shown that pseudo obser-
vations based on Kaplan-Meier will be equal to the survival times.

Assume that we have a set of n observations sorted in increasing order
t1 < t2 < · · · < tn. Because we assume no tied observations we know that
only one individual will experience the event at each time, so di = 1 for all
intervals i. The number of individuals at risk ni will decrease with one for
each interval because there is no censoring. Hence

Ŝ(tj) =
j∏
i=1

n− j
n− j + 1 = n− j

n− j + 1
n− j + 1
n− j + 2 · · ·

n− 1
n

= n− j
n

Survival for times t < t1 = 1 as usual. An estimate of the mean can be found
by

θ̂ =t1 + (t2 − t1)(n− 1)
n

+ (t3 − t2)(n− 2)
n

+ · · ·+ (tj − tj−1)(n− j)
n

+ (tj − tj+1)(n− (j + 1))
n

+ (tj+1 − tj+2)(n− (j + 2))
n

+ · · ·

+ (tn−1 − tn−2)(n− (n− 1))
n

+ (tn − tn−1) 1
n
.

This gives us

nθ̂ = t1 + t2 + · · ·+ tj−1 + tj + tj+1 + · · ·+ tn−1 + tn.

For the leave-one-out estimators θ̂−i we have n = n−1. For the j-th estimator
we have

θ̂−j =t1 + (t2 − t1)(n− 2)
n− 1 + (t3 − t2)(n− 3)

n− 1 + · · ·+ (tj+1 − tj−1)(n− j)
n− 1

+ (tj+2 − tj+1)(n− (j + 1))
n

+ (tj+3 − tj+2)(n− (j + 2))
n− 1 + · · ·

+ (tn−1 − tn−2)(n− (n− 1))
n− 1 + (tn − tn−1) 1

n− 1 .
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This gives us

(n− 1)θ̂−j = t1 + t2 + · · ·+ tj−1 + tj+1 + · · ·+ tn−1 + tn,

and pseudo observations

θ̂j = nθ̂ − (n− 1)θ̂−j = tj.

This also holds for t = t1 and t = tn, so the conclusion is that pseudo
observations based on uncensored data sets will be identical to the original
data set.

5.2.2 Censored observations
When we use the KM-method we can not utilize any knowledge about co-
variates or the distribution of the survival times to find pseudo observations.
Pseudo observations will therefore rely entirely on the set of observed sur-
vival times and censoring status (ti, δi) for i = 1 · · · , n. In order to be a
good replicate of the real survival times we want pseudo observations for
uncensored observations to be approximately the same as the observed time,
and pseudo observations for censored observations to be higher than the ob-
served time. To obtain an impression of how pseudo observations from the
KM-method works, pseudo observations for six Weibull distributed data sets
are plotted in figure 5.1. They are sorted after increasing observed survival
times because it makes it easier to see how pseudo observations depend on
the observed time. From the figure we see that censored observations almost
always give pseudo observations that are larger than the observed survival
times, which is what we want them to be. For uncensored survival times,
pseudo observations are both larger and smaller than the observed times. In
most cases they are smaller for small observed survival times and larger for
large observed survival times.

Another thing that we notice, is that all uncensored pseudo observations
smaller than the smallest censored observations seem to be equal to the ob-
served survival time. Also, when there are two or more censored observations
between two successive uncensored observations, the censored observations
have the same pseudo observation value.

The R code used to find these pseudo observations are included in appendix
D. One aspect of the code that one should notice is that the restricted mean
is taken to be the largest observed survival time in the data set. This is the
case for each jackknife sample, so the n-th jackknife replication ,θ−n, will be
found by integration to tn−1 instead of tn. This differs from the R code in
the Pseudo-package created by Klein et al. [13], where they always integrate
to tn. Therefore results found by using those R-codes may differ from the
ones found with R-codes from the appendix. In particular, Andersen en al.,
found that all pseudo observations corresponding to uncensored observations
are smaller than the observed time (page 340 in [2]), while figure 5.1 shows
that they can be larger.
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5.2.2.1 A more detailed study of some KM pseudo observation

In the previous paragraph, we made several observations concerning the be-
haviour of pseudo observations found with the KM-method. To study these
observations in detail we now turn our attention to a small data set with 20
observations from a Weibull distribution. This data set will be referenced to
as W1, and covariates and results for this data set can be found in appendix
B. This data have similar properties to the data sets we studied in figure

Figure 5.2: Pseudo observation (*), Real times (blue ◦) and observed times
(red •) for the simulated W1 data set sorted after ascending observed survival
time.

5.1. The first four observations are uncensored and have pseudo observations
equal to the observed times. Then the uncensored observations have smaller
pseudo observations than observed survival time, even one negative, and then
they are larger than the observed times for the last two uncensored observa-
tions. All censored survival times have pseudo observations that are larger
than the observed time. When two censored observations are between two
successive uncensored times, they have the same pseudo observation value.
The reason for this lies in the Kaplan-Meier survival function. Figure 5.3
shows the Kaplan-Meier survival curve for the full data set and some se-
lected jackknife samples.

The equation for finding pseudo observations, (5.1), says

θ̂i = nθ̂ − (n− 1)θ̂−i
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where θ̂ and θ̂−i are estimates of the expected survival times for the full data
set, and the data set where we have removed observation i. For the KM-
method θ̂ is the area under the Kaplan-Meier curve for the full data set, and
θ̂−i is the area under the curve for the reduced data set.

Among the first four observations, observation 2 and 3 are chosen as ex-
amples. The Kaplan-Meier curves for the corresponding jackknife samples
are plot B and C in 5.3, and plot A is the full data set. There is a small
difference between the area under the curve for plot A and B and plot A
and C. First of all, the number of steps in curve A and B is reduced by one
compared to A because we remove an uncensored observation. The height
of the steps are also different because the estimated survival at the inter-
vals change. For the first four observations the difference between nθ̂ and
(n− 1)θ̂−i will be ti. Comparing pseudo observations and observed survival
times in table B.1 in appendix B, we see that for the first four observations,
KM pseudo observations are equal to the observed survival times.

In table 5.1 we find θ̂, θ̂−i and pseudo observation for the same selected
jackknife samples from the W1 data set as shown in figure 5.3.

Table 5.1: Selected estimated expected survival times and pseudo observa-
tions from the W1 data set. Note that the values are rounded off.

Data set Estimated expected survival Pseudo observation
A (full) 1.85
B (2) 1.94 0.07
C (3) 1.93 0.37
D (10) 1.83 2.25
E (11) 1.79 2.87
F (12) 1.79 2.87
G (15) 1.95 -0.09
H (20) 1.56 7.35

Observation 5 is a censored observation, so removing it will not change the
number of steps in the Kaplan-Meier curve. It will, however, change the
height of the steps because removing an observation, censored or uncen-
sored, always changes the estimated survival function. Looking at the plots
in figure 5.3 we see that the height of the levels in plot A are higher than in
plot D. This makes θ̂ larger than θ̂−5 and hence,

nθ̂ − (n− 1)θ̂−5 = θ̂ + (n− 1)(θ̂ − θ̂−5) > θ̂.

This is why almost all pseudo observations for censored times are larger than
the observed survival time.
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Figure 5.3: Figures showing Kaplan-Meier curves for data set W1: A) The
full data set, B) Jackknife replication 2, C) Jackknife replication 3, D) Jack-
knife replication 5, E) Jackknife replication 10, F) Jackknife replication 11,
G) Jackknife replication 15, H) Jackknife replication 20.
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For observation 15, which is a uncensored observation, we see that both
the number of steps, and the height of each step changes. This is because
it counts as an event time. The area under curve G is larger than the area
under curve A. This will lead to small pseudo observations, even negative
when the difference is big enough, which it is for observation 15. By looking
at equation 5.1 we see that in fact all pseudo observations where

n

n− 1 θ̂ < θ̂−i

will lead to negative pseudo observations.

Removing data points with high observed survival time can have a large
impact on the estimated expected survival, especially for the last observa-
tion. From figure 5.3 we see that removing observation 20 changes the length
of the curve. This makes θ̂−20 small and hence, we get a large θ̂20.

From figure 5.2 we also see that observation 10 and 11 and observation 13
and 14 lead to the same pseudo observation values. This will always be the
case when we have two or more censored observations in a row between two
succesive uncensored observations. Removing a censored observation will not
influence the number of steps in the KM curve, and because the censored ob-
servations are in a row, removing either one of them will have the same effect
on the probability of survival. In table 5.1 we see that both observation 10
and observation 11 give θ̂−i= 1.79, and therefore a pseudo observation of
2.87.

5.2.2.2 Changes in observations

Occasionally when collecting data, some of the observations might be wrong.
For example, one could mistake a censoring time for an observed time, the
other way around, or the censoring time that is observed may be too small
or too large for several reasons. A mistake in one value will influence the
value of the pseudo observations for other points, as well as the one that is
mistaken. This is because we use all observations to calculate θ̂, and all but
one to calculate θ̂i.

In figure 5.4 and 5.5 we see plots of the original pseudo observations against
pseudo observations where observation 16 have changed. The first is for when
we think observation 16 is uncensored at the observed time, and the second
is for when observation 16 is treated as censored at time 8. We see that in
both cases some pseudo observations change. The pseudo observation value
that changes the most is observation 16, which is natural since it is the one
we change.



5.2. PSEUDO OBSERVATIONS BASED ON KAPLAN-MEIER FOR T35

Figure 5.4: Pseudo observations from the original W1 data set, where obser-
vation 16 are censored, plotted against pseudo observations if observation 16
was uncensored.

Figure 5.5: Pseudo observations from the original W1 data set, where ob-
servation 16 are censored, plotted against pseudo observations for when we
treat observation 16 as censored at time 8.
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5.2.2.3 Study of a censored data set with 300 observations

Figure 5.6 shows three figures made for a data set with 300 observations,
simulated from a Weibull distributed AFT model as described in section 4.8.
There is 30% censoring, σ=2/3 and β=(0,0.5,0.5,0.1).

The left of the three plots show unsorted observations of real survival time,
observed survival time and KM pseudo observations. From this we see that
it is hard to draw many conclusions when the data is unsorted. Still, we
notice that there are some high observations, but none higher than 8.

The middle plot shows the same observations, but sorted after increasing
observed survival time. Notice that pseudo observations are divided in two
lines. The highest line is pseudo observations corresponding to censored ob-
servations and the lower line corresponds to uncensored observations. This
pattern occurs because pseudo observations for censored observations usually
are higher than the observed times, and pseudo observations for uncensored
survival times remain around the observed time.

In the third plot, pseudo observations, real and observed survival times are
sorted individually in ascending order, and plotted. If we view the three
types of observations as individual data sets we see that the set consisting of
pseudo observations are closer to the real survival times than the observed
times. This indicates that the set of pseudo observations have the same dis-
tribution as the real survival times, which is a desirable property. Because
KM is non-parametric any knowledge of covariates will be unused. High
pseudo observations does not always correspond to high real survival times.
So unfortunately, this does not necessarily guarantee a good estimated AFT
model. However, estimation of mean and variance might improve.

5.2.2.4 Performance under different levels of censoring

Censoring status is one of the properties the KM-method use to find pseudo
observations. If there are fewer observed events, there will be fewer accurate
observations to build the pseudo observations on. In figure 5.7 we see figures
from another simulated data set with 20 observations. The same data set is
used for all figured, but with different levels of censoring. This data set is also
on the form discussed in section 4.8, with β0 = 0, β1 = 0.8, β2 = 0.6, β3 = 0.2
and σ = 2/3.

From the figures we see that for high levels of censoring, pseudo observa-
tions tend to flatten out. This is reasonable since the observed times for high
levels of censoring are small, and several censored observations in a row leads
to equal pseudo observations. A consequence of this is that the difference
between pseudo observations and simulated real survival times gets bigger,
as we see from the lower row of plots in figure 5.7.
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Figure 5.6: Three plots of the same data set with 300 observations. Pseudo
observations (*), observed survival times (red •) and real survival times (blue
◦). Figures show: left: A plot where the observed times are unsorted. Mid-
dle: A figure where survival times are sorted in ascending order. Right: A
figure where pseudo observations observed and real survival times are sorted
individually in ascending order
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5.2.2.5 Performance for different values of σ

In figure 5.8 we see plots of the probability density function for different
values of σ, but with the same scale parameter. All the data sets that we
have looked at so far have been Weibull distributed with σ = 2/3, which
corresponds to a shape parameter γ = 1/σ = 1.5.

Figure 5.8: Weibull probability density functions for different shape param-
eters (1/σ), all with scale=1.

The distribution of the real survival times may influence how well our pseudo
observations fit the real survival times. Figure 5.9 shows plots for data sets
with the same covariates and level of censoring, but for different values σ,
plotted against the real simulated survival times. From this we see that
pseudo observations for small values of σ are closer to the observed times
than pseudo observations for large values of σ. We also see that pseudo ob-
servations corresponding to large real survival times tend to be too small.
Looking at figure 5.8 we see that for large values of σ there should be some
large survival times. When we have censoring, these high values may be
censored, and KM may not be able to give high enough values to match the
true distribution.

It does not show very well in the figure, but we also get more and more
negative pseudo observations the higher the value of σ.
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5.3 Pseudo observations based on Kaplan-Meier
for log(T)

KM can, as we have seen, give negative pseudo observations. Depending on
what we want to use the pseudo observations for, this can be a problem. An
alternative non-parametric method is to find pseudo observations for log(T )
using Kaplan-Meier, and then exponentiate them to find positive pseudo
observations for T . The method for finding pseudo observations based on
log(T ) with Kaplan-Meier will be referred to as KMlog in the following. The
procedure for KMlog is:

• Find an estimator, θ̂log, for the expected value of log(T ) for the full
data set using equation 3.4.

• For all observations i: Remove the observation i from the original data
set and find the "leave-one-out" estimate θ̂log,−i by equation 3.4.

• Find pseudo observations, θ̂log,i, for log(T ) by equation 5.1.

• Exponentiate θ̂log,i to find pseudo observations, θ̂i, for the survival time
T .

Because KMlog is very similar to KM, we will not look as detailed into this
method, but focus at the differences between them.

5.3.1 Uncensored observations
In section 5.2.1 we proved that the Kaplan-Meier estimated survival function
for log(T ) is similar to the one for T . Therefore, by following the same
derivation as for KM, we can prove that pseudo observations from KMlog for
uncensored data sets with no ties, also will be identical to the survival times
in the original data set.

5.3.2 Censored observations
Figure 5.10 shows plots of KM pseudo observations, KMlog pseudo observa-
tions and observed and real survival times for the same data sets we looked
at in i figure 5.7. Pseudo observations for KM and KMlog are very simi-
lar, which is natural since the procedures are very similar. Still there are
some differences. For small survival times we see that KM pseudo obser-
vations tend to be further away from the observed times than KMlog, and
conversely for larger observed times. To see why this may be we will study
plot D more closely.
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KMlog pseudo observations are first found for log(T ) and then exponen-
tiated. In figure 5.11, pseudo observations and observed survival times in
plot D, are plotted for log(T ) and T .

Figure 5.11: Figure showing real survival (red •) and pseudo observations
from KMlog (+), for log(T ) and T . The data set are the same as in plot D
in figure 5.10.

From this plot we see that there is a difference in how the differences between
pseudo observations and observed times of log(T ) transfers to differences in
T . Large differences in log(T ) will be small differences in T if the survival
time is small, and for large survival times a small difference in log(T ) can be
big for T . This may be an explanation to why the largest KMlog observations
are so big compared to KM and observed survival time.
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Plots for KMlog corresponding to figure 5.6, 5.7 and 5.9 are found on the
next pages. Be aware that very high pseudo observations are outside the
range of some of the plots in order to have the same scale as the figures for
KM.

Figure 5.12: For the same data set with 300 observations as in figure 5.6, three
figures are plotted with pseudo observations (+), real survival times (blue ◦)
and observed survival times (red •). From the left: Unsorted data. Middle:
Sorted after increasing observed survival time. Right: sorted individually, no
link between pseudo, real and observed observations.

Figure 5.12 shows that there are several high observations. In line with our
previous observations we see that the highest pseudo observations originate
from the highest observed survival times. The right figure shows observed
survival times, real survival times and pseudo observations sorted individ-
ually in increasing order. From this we see that the data set consisting of
KMlog pseudo observations gives a good approximation to the real data set
for small survival times, but the large KMlog values at the end makes it not
as good as observations from the KM-method (see figure 5.1).

Figures 5.13 and 5.14 shows us the same trends as we had for KM. The
difference is that there are more high pseudo observation values for KMlog.
In some situations this can be a good thing, but most of the time it makes
the difference between pseudo observations and real survival time larger than
it is for KM.
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5.4 Parametric pseudo observations
When we know the distribution of our survival times, we can use the mea-
sured covariates to find parametric pseudo observations. The procedure for
finding such pseudo observations is:

• Express an AFT model for the data set.

• Find estimates for parameters βj, µ and σ, possibly using surveg. In
addition, find an estimate for the expected value of the covariates xj
(using 1

n

∑n
j=1 xij), and the expected value of the error term ε. The

later will be -0.5722 for Weibull, 0 for lognormal.

• Use this to find the estimated expected log-survival time, θ̂, by setting
θ̂ = µ̂+ β̂1

̂E(x1) + · · ·+ β̂p
̂E(xp) + σ̂E(ε).

Then for each observation i:

• Remove observation i from the original data set and find "leave-one-out"
estimates for covariates and parameters

• Find "leave-one-out" estimate for the expected log survival time using
θ̂−i = µ̂−i + β̂−i,1

̂E(x−i,1) + · · ·+ β̂−i,p
̂E(x−i,p) + σ̂−iE(ε).

• Then find pseudo observations for log(T ) using equation 5.1, and find
pseudo observations for the survival time, T , by exponentiating the
pseudo observations found for log(T ).

5.4.1 Uncensored data sets
For KM and KMlog we found that uncensored observations without ties result
in pseudo observations that were equal to the observed survival times. This
will not necessarily be the case for parametric pseudo observations. In figure
5.15 we see plots of parametric pseudo observation and observed survival
times for an uncensored data set. Most of the pseudo observations stay very
close to the observed times, but some of them are slightly above or below the
observed survival times.

5.4.2 Censored data sets
In figure 5.16 we see plots for the same six censored data sets that we studied
for KM and KMlog. Parametric pseudo observations for these data sets are
sometimes better than those based on KM and KMlog, and sometimes worse.
They also tend to be too big for the largest observations, for the same reason
as KMlog, but seem to be smaller than KMlog.
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Figure 5.15: Plots for a simulated uncensored data set from a Weibull AFT
model with β=(0,0.5,1,0.3) and 30% censoring. Observed and event time
(blue and red •), Parametric pseudo observation (4).
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5.4.2.1 The data set with 300 observations

For the large data set with 300 observations (figure 5.17), we don’t see the
same clear groups of pseudo observations as we did for KM and KMlog (the
middle figure in 5.6 and 5.12). When we sort the parametric pseudo obser-
vations, observed survival times and real survival times in increasing order
we get the figure on the right side in 5.17. From this we see that the data set
consisting of parametric pseudo observations also serves as a good approxi-
mation to the real data set, but not as good as the KM pseudo observations
because some of the highest pseudo observations are too high.

Figure 5.17: Pseudo observations (4), real survival times (blue ◦) and ob-
served survival times (red •) for the same data set as in figure 5.6 and 5.12.
Left: Unsorted. Middle: Sorted observations in increasing time. Right:
sorted individually, no link between pseudo, real and observed observations.

If we plot censored observations and uncensored observations separately we
get figure 5.18. Pseudo observations corresponding to uncensored observa-
tions stays in the area around the observed time, but have a tendency to be
bigger for larger observed times. The same goes for uncensored observations,
but they are all somewhat larger than the observed times.
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Figure 5.18: Pseudo observations (4), real survival times (blue ◦) and ob-
served survival times (red •) for censored and uncensored observations. The
data set is the same as in figure 5.17.

The trend, with too high pseudo observations for larger observed times, can
be explained the same way as for KMlog. Parametric pseudo observations
are also first found for log(T ) and then exponentiated. This makes big differ-
ences in values for small survival times for log(T ) small for T , and conversely
for small differences for log(T ) for large survival times.
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5.4.2.2 A more detailed study of parametric pseudo observations

Data set W1 in appendix B is simulated from a Weibull distributed AFT
model as described in section 4.8. The model is

log(T ) = β0 + β1X1 + β2X2 + β3X3 + σε,

where β0=0, β1=0.6, β2=0.5, β3=0.2 and σ=2/3. x1 is binary, x2 is uniform[-
1,1], x3 is normal(0,1) and ε is Gumbel distributed. Expected value for covari-
ates should therefore be around 0.5, 0 and 0, for x1, x2 and x3 respectively,
and E[ε]=-0.5772.

In figure 5.19, parametric pseudo observations for this data set are plotted
with observed times and real survival times. For each pseudo observation we
need to estimate σ and βj, and find x̄j for j = 1, 2, 3. For the full data set,
and some selected reduced data set, these values are printed in table 5.2 along
with estimated pseudo observations of log(T ) (θ̂i) and pseudo observations of
T . We notice that the estimated covariates are close to the theoretical value,
but also that x̄2 is negative. Some of the estimated β̂j values varies quite a
lot from the true values, but at least they have the right sign compared to
x̄j. When we only have 20 observations we can’t expect the estimated values
to be equal to the theoretical values, and hence we can’t expect that pseudo
observations based on those results are very accurate either.

Table 5.2: Estimates of parameters and expected value of covariates, for the
full and some reduced data sets from the W1 data set. Along with pseudo
observations for log(T ) (θ̂i), and pseudo observations for T .

Data set Full Without 5 Without 10 Without 15 Without 20
µ̂ 0.0035 -0.0556 0.0171 -0.0432 0.0960
β̂1 0.8361 0.9101 0.8003 0.9751 0.4398
β̂2 -0.0814 -0.1123 -0.0251 -0.2195 0.1535
β̂3 0.3821 0.3515 0.3761 0.3729 0.4064
σ̂ 0.6968 0.7047 0.7081 0.7056 0.6414
x̄1 0.5 0.5263 0.4737 0.4737 0.4737
x̄2 -0.1237 -0.1338 -0.0930 -0.1094 -0.1245
x̄3 0.0766 0.0246 0.0311 0.0839 0.0746
θ̂ 0.0622
θ̂−i 0.0439 0.0050 0.0702 -0.0515
θ̂i 0.4105 1.1493 -0.0904 2.2225

Pseudo T 1.5076 3.1561 0.913 9.2307

By looking at the estimated parameters and covariates it’s difficult to see
which observations will result in good pseudo observations or not. The fact
that estimates deviate from the theoretical values makes it even harder. Some
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Figure 5.19: Pseudo observations (4), Observed survival times (red •) and
real survival times (blue ◦) for the W1 data set.

observations, like observation 5, are very close to the real simulated survival
time. Others, like observation 10 and 20 are too big, but it’s difficult to see
why by looking at the table.

In section 5.2.2.1 we saw that pseudo observations based on KM gives the
same value for two censored observations in a row. Because we use individual
estimates for covariates and parameters for each observation, this is unlikely
to happen for the parametric pseudo observation.

5.4.2.3 Changing one observation

If we change censoring status or the observed time for one observation, esti-
mators used to find pseudo observations may change for all other observations
as well. Figure 5.20 shows original pseudo observations from the W1 data
set, plotted against pseudo observations for two data sets where observation
16 are changed. In both cases we see that the change in pseudo observation
value is largest for pseudo observations where the original value was high.
This indicates that small observed times are more robust to changes in other
observations.
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Figure 5.20: Original pseudo observations from the W1 data set plotted
against pseudo observations when we changed observation 16.

5.4.2.4 Performance under different levels of censoring

How well parametric pseudo observations fit the real survival times will de-
pend on the level of censoring. In figure 5.21 we see figures showing pseudo
observations for different levels of censoring. The data set is the same as the
one used for KM and KMlog. We see that the more censoring, the bigger
the difference between pseudo observations and real survival times. After
further studies of pseudo observations for KM, KMlog and the parametric
method, we found that KM and the parametric model are less sensitive to
censoring than KMlog. KM seems to be slightly better than the parametric
method, but keeping in mind that KM and KMlog gives pseudo observations
with little variance under high levels of censoring, the parametric method
may still preform better for some data sets.
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5.4.2.5 Performance for different values of σ

For parametric pseudo observations, σ is estimated for the full data set and
for each pseudo observation. The value of σ will therefore influence the
pseudo observations. In figure 5.22 we see parametric pseudo observations
plotted against real event times for different values of σ. From this figure we
see that the difference between pseudo and real times gets bigger for larger
values of σ. If we compare these plots to figure 5.9 and 5.14, we see that
pseudo observations based on the parametric distribution are closer to the
real survival times than KM and KMlog when σ is small. When σ is around
0.6 we see that the difference between KM and parametric observations are
insignificant, and as σ gets larger, KM seem to be a slightly better choice.
Because σ is the constant in front of the error term in equation 4.3, a large
σ will influence the error in the model. This can make it more difficult to
estimate parameters, and hence pseudo observations may be further from the
real event times when σ is high.

5.4.2.6 What if we guess the wrong distribution

The method for finding pseudo observations with KM and KMlog will be
the same for all distributions we may assume for T . The parametric method
on the other hand, use the assumed distribution and model to find pseudo
observations. Therefore the code for finding parametric pseudo observations
must be changed to fit the distribution and the number of covariates we as-
sume the model to have.

In figure 5.23 we see probability density functions for some values of σ. The
shape of a lognormal distribution can in many cases be similar to the shape of
a Weibull distribution. Because of this similarity one can mistake a Weibull
distributed data set for a lognormal one, and conversely. We will now look
at this in an example.

In figure 5.24 we see parametric pseudo observations for both lognormal
and Weibull distribution plotted against the real Weibull distributed sur-
vival times. From the figure we see that guessing a lognormal distribution
will give pseudo observations that are close to the ones we get with Weibull.
This result is not unexpected. The AFT model will be the same for both,
only with different σ values. Guessing the wrong AFT model and not only
the distribution, may on the other hand give very different results.
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Figure 5.23: PDF for lognormal distributions with different values of σ.

Figure 5.24: Plot of parametric pseudo observations for Lognormal and
Weibull distribution against real Weibull survival times. β = (0, 0.7, 0.6, 0.2),
σ = 0.2 and there is 30% censoring.
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5.5 Estimation with pseudo observations
Once we have obtained a set of pseudo observations, we may want to use
them in model regression. It is therefore of interest to study how well esti-
mation of parameters can be done with the different methods. With R we
have simulated a Weibull data set consisting of 10 000 observations from an
AFT model with a single standard normal distributed covariate. For the
same data set, we adjust the censoring level so that we get 0%, 25%, 50%
and 75% censoring.

For all levels of censoring, we then apply the three methods to find pseudo
observations. With survreg, we can estimate parameters from the different
sets of pseudo observations. In addition we estimate parameters with survreg
on the original data set. All estimated values are in table 5.3.

Table 5.3: Estimated parameters from the original simulated data set with
10 000 observations and three pseudo observation data sets for four levels of
censoring.

0 % censoring True KM KMlog Parametric Survreg on original
µ 0 0.00258 0.00258 0.0129 0.00258
β1 1 0.99897 0.99897 1.0007 0.99897
σ 0.5 0.502 0.502 0.515 0.502

25 % censoring True KM KMlog Parametric Survreg on original
µ 0 -0.0591 0.0991 0.0421 -0.00105
β1 1 0.9719 1.2167 1.0498 0.99660
σ 0.5 0.859 0.948 0.617 0.501

50 % censoring True KM KMlog Parametric Survreg on original
µ 0 · 1.152 * 0.4148 0.279
β1 1 · 1.465 * 1.3316 1.171
σ 0.5 · 1.48 * 1.06 0.576

75 % censoring True KM KMlog Parametric Survreg on original
µ 0 · 0.849 0.418 -0.00863
β1 1 · 1.635 1.003 0.99288
σ 0.5 · 4.72 2.33 0.496

NOTES:
· For data sets where KM gives negative values we will not get any estimates
from survreg.
* For some sets of observations survreg does not converge. We then set initial
values to (0,1) to get the results in the table.

Based on this simulation, it seems like the parametric method is the best
choice of method to obtain pseudo observations when there are censoring
and we want to estimate parameters. KM will be useless in survreg when the
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pseudo observations are negative, and KMlog gives parameter values that are
too high compared to the true values. The parametric method gives values
that are large compared to survreg on the original data set, but are still close
to the real values compared to the other pseudo methods. Because we know
the distribution of the data it is reasonable that the parametric method can
generate parameter values similar to the true values, but as we see, not nec-
essarily that well for high levels of censoring.

This is only one simulation, and more research should be conducted before
drawing any clear conclusions.

5.6 Prostatic cancer example
In this section we will apply the three methods for finding pseudo observation
on the survival times of prostatic cancer patients in a clinical trial. The data
set can be found in appendix B, and are obtained from table 1.4 in Collett
[7]. The trial consisted of 38 patients who received either DES treatment or
placebo treatment. In table B.3 in the appendix, DES treatment is repre-
sented with 1 and placebo with 0. Individuals who died from other causes
than prostatic cancer, or for other reasons where lost during the follow up
period, are regarded as censored. Censoring times will be right censored, and
in this data set there are 32 censored observations.

Figure 5.25: Histogram of survival times for prostatic cancer trial.

For all patients, age, Serum haemoglobin level, tumour size and Gleason
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index was measured. Histogram of the observed survival times are in figure
5.25. Figures showing survival times plotted against covariates are given in
figure 5.26 and 5.27. From figure 5.26 it looks like tumour size and Gleason
index has the most effect on the survival times, and then age. Figure 5.27
shows survival times for both treatments, and it does not look like the treat-
ment have any significant effect on the survival time.

Figure 5.26: Plot of survival times versus covariates for the prostatic cancer
data set.

Collett fits both a Cox-proportional hazards model (examples 3.6 and 3.10
in [7]) and an accelerated failure time model (example 6.4 in [7]) to this data
set. For both models Collett found that tumour size and Gleason index where
the significant covariates. Treatment was still added, giving AFT model,

log(Ti) = µ+ βSizeXSize,i + βIndexXIndex,i + βTreatXTreat,i + σεi. (5.2)
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Figure 5.27: Plot of survival times for both treatments in the prostatic cancer
data set.

5.6.1 Nonparametric methods
Pseudo observations for this data set found with KM and KMlog will not de-
pend on any of the covariates or any assumed distributions. Plots of pseudo
observations and the observed survival times are found in figure 5.28. Red
indicates observed survival times and black indicates pseudo observations,
circles are for censored observations and dots for uncensored.
Because almost all observations are censored we get a lot of pseudo obser-
vations with similar survival times for both KM and KMlog. Table B.3 in
appendix B shows the value for each pseudo observations, and we see that
KM and KMlog are very close for all observations.

KM and KMlog can now be treated as two new data sets. Since they are
so similar we will only look at the KM pseudo observations. A histogram
showing KM pseudo observations is in figure 5.29, and plots of covariates vs.
KM pseudo observations can be found in figure 5.30 and 5.31.



5.6. PROSTATIC CANCER EXAMPLE 63

Figure 5.28: KM/KMlog pseudo observations (black) and observed survival
times (red). Observed times (•) and censored times (◦) for the prostatic
cancer data set

Figure 5.29: Histogram for KM pseudo observations for the prostetic cancer
data set
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Figure 5.30: Plot of KM pseudo observations against covariates for the pro-
static cancer data set.

Figure 5.31: Plot of survival times for both treatments in the prostatic cancer
data set.
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Again we see that the survival time might depend on Gleason index and
tumour size. Collett assumes that the survival times are loglogistic, but our
main focus is on Weibull and lognormal distributions. Therefore we fit model
5.2 to the KM pseudo observations for Weibull and lognormal survival times.
That gives us the following output in R:

Call:
survreg(formula = Surv(PCData$KMPseudo) ~ PCData$TumorSize +

PCData$Treatment + PCData$GleasonIndex, data = PCData,
dist = "weibull")

Value Std. Error z p
(Intercept) 4.42610 0.17803 24.862 1.91e-136
PCData$TumorSize -0.00417 0.00271 -1.538 1.24e-01
PCData$Treatment 0.04103 0.04563 0.899 3.69e-01
PCData$GleasonIndex -0.02014 0.01886 -1.068 2.86e-01
Log(scale) -1.97857 0.15385 -12.861 7.50e-38

Scale= 0.138

Weibull distribution
Loglik(model)= -149.1 Loglik(intercept only)= -151.4
Chisq= 4.66 on 3 degrees of freedom, p= 0.2
Number of Newton-Raphson Iterations: 21
n= 38

Call:
survreg(formula = Surv(PCData$KMPseudo) ~ PCData$TumorSize +

PCData$Treatment + PCData$GleasonIndex, data = PCData,
dist = "lognormal")

Value Std. Error z p
(Intercept) 4.8753 0.38330 12.72 4.63e-37
PCData$TumorSize -0.0127 0.00662 -1.92 5.48e-02
PCData$Treatment 0.1741 0.10582 1.65 1.00e-01
PCData$GleasonIndex -0.0792 0.04300 -1.84 6.55e-02
Log(scale) -1.1474 0.11471 -10.00 1.48e-23

Scale= 0.317

Log Normal distribution
Loglik(model)= -166.5 Loglik(intercept only)= -173.8
Chisq= 14.59 on 3 degrees of freedom, p= 0.0022
Number of Newton-Raphson Iterations: 4
n= 38

We see that none of the covariates are significant if we use the KM pseudo
observations to estimate. This is not surprising since so many observations
have similar survival times, although their covariates are different.
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5.6.2 Parametric pseudo observations
To have some survival times to compare the parametric pseudo observations
to we use survreg to fit a Weibull and lognormal model to the original data
set:

Call:
survreg(formula = Surv(PCData$Survivaltime, PCData$Status) ~

PCData$TumorSize + PCData$Treatment + PCData$GleasonIndex,
data = PCData, dist = "weibull")

Value Std. Error z p
(Intercept) 7.731 1.4545 5.315 1.06e-07
PCData$TumorSize -0.037 0.0174 -2.126 3.35e-02
PCData$Treatment 0.434 0.4633 0.937 3.49e-01
PCData$GleasonIndex -0.269 0.1162 -2.317 2.05e-02
Log(scale) -0.990 0.3489 -2.837 4.55e-03

Scale= 0.372

Weibull distribution
Loglik(model)= -31.4 Loglik(intercept only)= -39.3
Chisq= 15.64 on 3 degrees of freedom, p= 0.0013
Number of Newton-Raphson Iterations: 7
n= 38

and:

Call:
survreg(formula = Surv(PCData$Survivaltime, PCData$Status) ~

PCData$TumorSize + PCData$Treatment + PCData$GleasonIndex,
data = PCData, dist = "lognormal")

Value Std. Error z p
(Intercept) 7.927 1.7234 4.60 4.24e-06
PCData$TumorSize -0.026 0.0199 -1.30 1.92e-01
PCData$Treatment 0.775 0.4758 1.63 1.03e-01
PCData$GleasonIndex -0.329 0.1651 -1.99 4.63e-02
Log(scale) -0.442 0.3079 -1.43 1.51e-01

Scale= 0.643

Log Normal distribution
Loglik(model)= -31.9 Loglik(intercept only)= -39.2
Chisq= 14.64 on 3 degrees of freedom, p= 0.0021
Number of Newton-Raphson Iterations: 6
n= 38
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Plot of survival times estimated with these parameters are presented in fig-
ure 5.32. The red are the observed times and the black are the estimated
survival times. Circles represents censored survival times and dots represent
uncensored survival times. We see that these observations are much higher
than the KM and KMlog pseudo observations in figure 5.28.

Figure 5.32: For the prostatic cancer data set: Plot of survival times esti-
mated with survreg (black) and observed (red) for Weibull and lognormal
distribution. Uncensored survival times (•) and censored survival times (◦).

Parametric pseudo observations can take advantage of the assumed distribu-
tion and measured covariates. They may therefore be a better choice when
there are large levels of censoring and we are sure that we have the right
distribution. Comparing the estimated survival times in figure 5.32 to the
parametric pseudo observations in figure 5.33, we see that the parametric
pseudo observations are similar to the ones made just with survreg. To see
the difference we look at table B.3 in appendix B. From the table we see that
there are some very high observations for the parametric pseudo observations.
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Figure 5.33: Parametric pseudo observations (black) and observed survival
times (red) for Weibull and lognormal distribution. Censored survival times
are (◦) and uncensored survival times are (•). Obs: high pseudo observations
are not included. The data set is the Prostatic cancer data set.

Estimated parameters from the parametric pseudo observations are:

Call:
survreg(formula = Surv(PCData$ParamPseudoweibull)

~ PCData$TumorSize + PCData$Treatment + PCData$GleasonIndex,
data = PCData, dist = "weibull")

Value Std. Error z p
(Intercept) 5.2559 4.9114 1.070 2.85e-01
PCData$TumorSize -0.0236 0.0875 -0.270 7.87e-01
PCData$Treatment -0.1848 1.4876 -0.124 9.01e-01
PCData$GleasonIndex 0.0622 0.5179 0.120 9.04e-01
Log(scale) 1.4614 0.1510 9.680 3.67e-22

Scale= 4.31

and:
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Call:
survreg(formula = Surv(PCData$ParamPseudolognormal)

~ PCData$TumorSize + PCData$Treatment + PCData$GleasonIndex,
data = PCData, dist = "lognormal")

Value Std. Error z p
(Intercept) 22.754 13.124 1.73 8.30e-02
PCData$TumorSize -0.229 0.227 -1.01 3.13e-01
PCData$Treatment -3.622 3.623 -1.00 3.17e-01
PCData$GleasonIndex -1.645 1.472 -1.12 2.64e-01
Log(scale) 2.386 0.115 20.80 4.31e-96

Scale= 10.9

Log Normal distribution
Loglik(model)= -275 Loglik(intercept only)= -276.9
Chisq= 3.93 on 3 degrees of freedom, p= 0.27
Number of Newton-Raphson Iterations: 3
n= 38

None of the parameters estimated for model 5.2 are significant for either
Weibull or lognormal distribution. Looking at the scale we see that both
distributions lead to very wide probability density functions. This may be
a result of the high level of censoring, which we have seen can lead to very
high parametric pseudo observations.

A conclusion from this example will be that with very high level of censoring,
neither of the three pseudo observation methods are any good for estimating
parameters. The high level of censoring makes most observed survival times
smaller than they should be. Not knowing enough about the actual survival
times makes KM and KMlog stay close to the observed times, and we get a
short spread of pseudo survival times. The parametric pseudo method on the
other hand, may give too much variation. Because we assume a distribution
for the data the parametric method try to fit a model with that distribution.
When there are high levels of censoring the information we have may not be
enough to fit this model right.





Chapter 6

Pseudo Residuals

6.1 Introduction to Pseudo Residuals
We have now seen examples of methods for creating pseudo observations that
can be treated as uncensored data sets. With these new uncensored data sets
we can find uncensored residuals and use them in model checking. Another
option is to find pseudo residuals without calculating pseudo observations
first. In this chapter we look at this for standardized and Cox-Snell residuals.

The expected value of data from a unit exponential distribution can be found
using

θ̂ =
∑n
i=1 ui
n

, (6.1)

and if the data set is censored we can use

θ̂ =
∑n
i=1 ui∑n
i=1 δi

. (6.2)

where δi is the event indicator introduced in section 2.2.

This can be used to estimate pseudo observations for the exponentially dis-
tributed data set. In figure 6.1 we see pseudo observations for an uncensored
and a censored data set with unit exponential survival times. Censoring
times are found with exponential censoring. From the figure we see that un-
censored observations gives pseudo observations equal to the observed time.
This can easily be found by setting equation 6.2 into equation 5.1. Pseudo
observations for the censored data set behaves similar to pseudo observations
created with the KM method, and can be negative.

We know that if the estimated model is close to the real model, Cox-Snell
residuals will behave like a sample from a unit exponential distribution.
When we have found a set of possibly censored Cox-Snell residuals, we can
therefore use 6.3 to find an uncensored set of Cox-Snell residuals.

θ̂i = n
U

∆ − (n− 1)U − ui∆− δi
. (6.3)

71
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Figure 6.1: Pseudo observations for unit exponentially distributed survival
times.

where ui is Cox-Snell residual i, U = ∑n
i=1 ui and ∆ = ∑n

i=1 δi. This is an
alternative to the adjusted Cox-Snell residuals, and we will call them pseudo
residuals.

6.1.1 Pseudo residuals for data set W1
For data set W1 we can find estimates for the parameters using survreg. That
gives us the following output in R:

Call:
survreg(formula = Surv(Data$Time, Data$Status) ~ Data$x1 + Data$x2

+ Data$x3, data = Data, dist = "weibull")
Value Std. Error z p

(Intercept) 0.00355 0.338 0.0105 0.9916
Data$x1 0.83609 0.490 1.7051 0.0882
Data$x2 -0.08139 0.526 -0.1547 0.8771
Data$x3 0.38207 0.220 1.7398 0.0819
Log(scale) -0.36127 0.221 -1.6353 0.1020

Scale= 0.697

Weibull distribution
Loglik(model)= -18.1 Loglik(intercept only)= -22.5
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Chisq= 8.77 on 3 degrees of freedom, p= 0.033
Number of Newton-Raphson Iterations: 6
n= 20

Figure 6.2: Cox-Snell residuals and Pseudo Cox-Snell residuals for W1 data
set. Red ◦ indicate censored observations, and black ◦ indicate uncensored
observations.

Using the estimated parameters, Cox-Snell and pseudo residuals can be
found. In figure 6.2 both types of residuals are plotted. The red circles are
the residuals that originate from censored observations and the black circles
are from uncensored observations. The figure shows us that pseudo resid-
uals are different from the standard Cox-Snell residuals, and that censored
observations are more different than the uncensored, which is what we want.
In figure 6.3 the difference between pseudo residuals and Cox-Snell residuals
are plotted against the value of the Cox-Snell residuals. The black horizontal
line indicates where the points would be if there were no difference, and the
red horizontal line indicates where censored observations would lie if pseudo
residuals were equal to 1-adjusted Cox-Snell residuals. Notice that the points
lie on neither of these lines. Instead they lie on two other increasing lines,
one for censored observations and one for uncensored observations. To see
why we get this we rewrite equation 6.3 to

θ̂i =
(
n

∆ −
n− 1
∆− δi

)
U +

(
n− 1
∆− δi

)
ui.
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Since figure 6.2 shows the difference between the Cox-Snell residual and the
pseudo residual we have

θ̂i − ui =
(
n

∆ −
n− 1
∆− δi

)
U +

(
n− 1
∆− δi

− 1
)
ui.

This is on the form f(ui) = aδi + bδiui, explaining why we get one line for
δi = 0 and another for δi = 1, with different intercept and slope. Unlike
adjusted residuals ,which adds the same value to all censorded observations,
these pseudo residuals add (or subtract) a value to all Cox-Snell residuals,
depending on the value of the residual, if the observation is censored or not
and the total level of censoring.

Figure 6.3: Pseudo residuals and Cox-Snell residuals for the W1 data set
plotted against the value of the Cox-Snell residual.

When we use residuals in model checking and analysis, we often benefit from
looking at log(u) in stead of u. Unfortunately we can get negative pseudo
residuals, and negative u will lead to a undefined log(u). A solution may be
to remove the negative pseudo residuals before continuing with the analysis.
Because the negative residuals always come from uncensored observations
an alternative solution may be to only replace the censored residuals with
pseudo residuals and keep the uncensored ones. In [2], Andersen et al. points
out that all observations must be replaced by pseudo observations. Therefore
we will look at another option. That option is to treat residuals as survival
times and use methods described in chapter 5 to find pseudo residuals.
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6.2 KM, KMlog and parametric Cox-Snell pseudo
residuals

KM and KMlog can be used on pseudo residuals the same way we use them
on survival times. KM can, as residuals based on equation 6.3, give nega-
tive pseudo residuals. However, in some cases where 6.3 are negative, KM
can give positive residuals. If KM also gives negative Cox-Snell residuals,
we should use KMlog or the parametric method, because Cox-Snell residuals
should be positive.

To make parametric pseudo residuals more robust we will use the fact that
the exponential distribution is a special case of the Weibull distribution. We
can therefore use a Weibull AFT model without covariates to find parametric
Cox-Snell pseudo residuals. This gives us

ln(ui) = µ+ σεi (6.4)

where εi is Gumbel distributed. Treating residuals this way makes pseudo
residuals more robust since it allows them to have any Weibull distribution,
and not be restricted to the exponential distribution. However, if the model
is appropriate we will have γ = 1

σ
=1, λ = exp

[
−µ
σ

]
= 1 ⇒σ = 1, µ = 0.

The parametric and KMlog method will always give positive pseudo residuals,
but can be very big compared to the Cox-Snell residuals. We will therefore
recommend using KM to find pseudo residuals first, and then proceed with
KMlog or the parametric method if necessary. Figure 6.4 shows pseudo resid-
uals made with the three methods for dataset W1, plotted against Cox-Snell
residuals. Lines show where points would be if the difference were 0 or 1.

6.3 Pseudo standardized residuals
Pseudo residuals for standardized residuals should be found with KM. This
is first of all because standardized residuals can be negative, and KMlog and
parametric pseudo observations give strictly positive pseudo residuals. Fig-
ure 6.5 shows standardized residuals and pseudo standardized residuals for
dataset W1.

A conclusion for pseudo residuals is that when we know the distribution
of the error term, pseudo standardized residuals will be preferred because we
can use the KM method. If we don’t know the distribution, Cox-Snell resid-
uals may be easier to use because we know they should be unit exponentially
distributed. For Cox-Snell residuals we recommend using KMlog. That way,
the residuals are not restricted to be any distribution, and we will not have
any negative pseudo residuals.
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Figure 6.4: Pseudo residuals for W1 plotted against Cox-Snell residual. KM
(*), KMlog (+) and Parametric (4). Censored observations are red, and
uncensored observations are black. Lines show where the points would be if
the difference were one (red) or zero (black).

Figure 6.5: Standardized residuals (circle) and pseudo standardized residual
for W1 dataset. Red observations are censored and black observations are
uncensored.



Chapter 7

Model Checking and Functional
Form

7.1 Analysis of residuals
After a model is fitted for our data, and parameters are estimated, residuals
are common tools for analysing the fit. As mentioned, censored observations
will lead to censored residuals. To compensate for this, several adjustments
and smoothing methods have been applied to the residuals. Examples are the
1- and log(2)-adjusted residuals introduced in section 4.5.3. Pseudo residu-
als introduced in the previous chapter is an alternative to these adjustments.
Yet another alternative, that we are going to look at, is to find residuals for
the pseudo observations presented in chapter 5. Because pseudo observations
are an uncensored version of the original data set, residuals calculated from
them should not be censored.

When we have obtained residuals, several plots can be used to see if there
are any reasons to suspect that the model is inappropriate. In Collett [7],
a cumulative hazard or log-hazard plot of Cox-Snell residuals is suggested.
This should give a straight line with unit slope and intercept in zero if the
model is appropriate for the data. Dobson and Barnett [8] suggest a sequence
plot where residuals are ordered after survival time and plotted in order to
identify outliers and dependencies. Plots of survival times against explana-
tory variables can also be used to identify patterns and detect systems that
indicates that the model is not correct. Yet another alternative is to plot
an exponential probability plot of Cox-Snell residuals and check if they fit a
unit exponential distribution.

7.1.1 Example, Nelson’s superalloy data
In this example we will study Nelson’s superalloy data. The data consists of
26 observations where the survival time is the number of cycles (measured in
thousands) and the only explanatory variable is pseudostress measured in ksi.
The data set is included in appendix B, and plot of the data can be found in
figure 7.1. This data set have also been studied in Meeker and Escobar [16],

77
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Aaserud [1] and Lindqvist et al. [15]. They studied the relationship between
the logarithm of the pseudostress and the number of cycles, and assumed the
following model,

log(T ) = µ+ β1X + β2X
2 + σε, (7.1)

where ε is Gumbel, and hence T is Weibull.

Figure 7.1: Nelsons superally data set. Number of cycles (in thousands)
plotted against the logarithm of the pseudostress (measured in ksi). Censored
observations are ◦, uncensored are •.

With survreg we can fit this model and find standard Cox-Snell residuals
(figure 7.2). These residuals are censored. To compensate for this we will
study two options, finding pseudo observations and their Cox-Snell residuals,
or pseudo residuals from the ordinary Cox-Snell residuals.

The KM-method can be used to find pseudo observations for this data set.
They are shown in figure 7.3. There are no negative pseudo observations so
we do not have to use KMlog or the parametric method. From the figure,
we see that the four pseudo observations corresponding to censored survival
times are larger than the observed times. Among the uncensored observations
we see that the biggest uncensored observations also have pseudo observa-
tion values larger than the observed time, but some of the middle size pseudo
observations are smaller than the observed times.
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Figure 7.2: Logarithm of Cox-Snell residuals for the original superalloy data
set. Censored observations are circles, uncensored are dots

Figure 7.3: KM pseudo observations of th number of cycles in Nelson’s su-
peralloy data, plotted against log(pseudostress). Censored observations are
circles, uncensored are dots
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The new data set can now be used to find Cox-Snell residuals, which again
can be used in model checking. Figure 7.4 shows the logarithm of the Cox-
Snell residuals plotted against the covariate and an exponential probability
plot. Most observations fluctuate around zero, but some values for log(rc,i)

Figure 7.4: Left: Logarithm of Cox-Snell residuals for pseudo observations vs.
logarithm of pseudostress. Residuals from censored observations are circles,
and uncensored are dots. Right: Exponential probability plot for Cox-Snell
residuals from pseudo observations.

are very negative compared to the rest. This may indicate that there is some
dependency on the pseudostress, but if we remove the smallest residual, this
plot is not so bad. On the other hand, the probability plot does not show a
straight line, which also indicates that the model might be inappropriate.

Pseudo Cox-Snell residuals are obtained with the KM-method on the original
Cox-Snell residuals. Plots similar to the ones in figure 7.4 for pseudo resid-
uals are found in figure 7.5. From the left plot we see that pseudo Cox-Snell
residuals for lower values of log(rc,i) also are negative, and even more so than
for Cox-Snell residuals from pseudo observations. It therefore looks like there
is a dependency between pseudostress and the number of cycles that are not
accounted for in the model. The exponential probability plot at the right
looks linear, but might be slightly convex.
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Figure 7.5: Left: Logarithm of pseudo Cox-Snell residuals vs. logarithm of
pseudostress. Residuals from censored observations are circles, and uncen-
sored are dots. Right: Exponential probability plot for pseudo Cox-Snell
residuals.

7.2 Functional form for covariates
In chapter 4 we stated that AFT models can be written on the form

log(T ) = β0 + β1X1 + · · ·+ βpXp + σε.

Alternatively, we can write

log(T ) = f(X) + σε,

where
f(X) = µ+ β1X1 + · · ·+ βpXp,

or
log(T ) = µ+ f1(Xi) + · · ·+ fp(Xp) + σε,

where fj(·), j = 1, ..., p is called covariate functions, which tell us something
about how each covariate j influences the survival.

If residual plots or other diagnostic tools make us suspect that the model
we use is inappropriate, changing the functional form of one or more co-
variate might be a solution. Two procedures are suggested in section 5 of
[15]. The first is to start out with a model without any covariates and then,
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for each covariate Xj, find the best covariate function fj(Xj) for when Xj

is the only covariate. The other is to change covariate functions iteratively
one by one until we obtain a satisfactory model. We will now continue to
follow Lindqvist et al. and see how the second approach can be done using
a misspecified model and residual plots.

Assume first that all covariate functions are known except for one. The
correct model can then be stated as

log(T ) = µ+ β′Z + f(X) + σε, (7.2)

where X is the single component we want to find the covariate function for,
and Z is the remaining components. To find f(X), we then start by fitting
a linear model

log(T ) = µ+ β′Z + γX + σε, (7.3)
giving us estimated model

log(T ) = µ̂+ β̂
′
Z + γ̂X + σ̂ε, (7.4)

where µ̂, β̂, γ̂ and σ̂ are maximum likelihood estimates, possibly found using
survreg.

Lindqvist et al. [15] (and Aaserud [1]) then refer to White [20], when they
say that there, under certain conditions, exsist theoretical parameter values
µ∗, β∗, γ∗ and σ∗ that minimize the Kullback-Leiber distance between model
7.2 and model 7.3. For simulated data, the actual values of µ∗, β∗, γ∗ and
σ∗ can be found by simulating a large number of observations from model
7.2, and finding maximum likelihood estimates.

When we know µ∗, β∗, γ∗ and σ∗, we can find theoretical standardized resid-
uals using equation 4.8,

R∗s = log(T )− µ∗ − β∗′Z− γ∗X
σ∗

.

Inserting equation 7.3 for log(T ) we get

R∗s = σ

σ∗
ε+ (µ− µ∗) + (β − β∗)′Z + f(X)− γ∗X

σ∗
, (7.5)

and solving for f(X) gives us

f(X) = σ∗R∗s − σε− (µ− µ∗)− (β − β∗)Z + γ∗X.

Further, we use that f(x) = E(f(X)|X = x), giving us a new expression,

f(x) = σ∗E[R∗s|X = x]− σE[ε]− (µ− µ∗)− (β − β∗)′E[Z|X = x] + γ∗x.

Because we assume independent covariates, we have E[Z|X = x] = E[Z].
All parts of this equation that does not depend on X will be treated as a
constant in the expression for f(x), resulting in

f(x) = σ∗E[R∗s|X = x] + γ∗x+ constant. (7.6)
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Normally one will not know µ∗, β∗, γ∗ and σ∗, but have to use estimated
values. Ignoring the constant term in equation 7.6, we will have an expression
for the estimated f(x):

f̂(x) = γ̂x+ σ̂Ĥ(x), (7.7)

where Ĥ(x) is an estimate for H(x) = E(R∗s|X = x). Or alternatively, using
equation 4.10, H(x) = E[Φ−1

ε (1− exp(−R∗c))|X = x]

Derivation of an estimator for H(x) for uncensored and adjusted residuals
can be found in Lindqvist et al. [15]. We will, in this thesis, use the R
function lowess as an estimator for H(x). lowess is a smoother that uses
weighted least square regression to smooth the points (xi,r̂s,i). Information
on lowess can be found in Cleveland [6], and in the R documentation.

7.2.1 Simulated Weibull example
We will now look at a simulated data set consisting of 200 Weibull distributed
observations from the following model

log(T ) = µ+ β1Z1 + β2Z2 + log(X) + σε, (7.8)

where Z1 is binary with p=0.5, Z2 ∼ N(0, 1), X ∼ unif [0, 1] and ε is Gumbel.
The true parameters are set to µ = 0, β1 = 0.8, β2 = 0.3 and σ = 0.5. We
will look at four levels of censoring, 0%, 25%, 50% and 75%. For all levels of
censoring we try to fit the misspecified model

log(T ) = µ+ β1Z1 + β2Z2 + γX + σε. (7.9)

In addition to the data set with 200 observations we also simulate a data set
with 1,000,000 observations. With this set of observations we can find the
theoretical estimates for model 7.9. They can be found in table 7.1. From
the table we see that the theoretical values for β∗1 and β∗2 are close to the real
values for all levels of censoring. This is not the case for µ∗,γ∗ and σ∗, but
that is expected because we have a misspecified model with unknown f(X).

Table 7.1: Theoretical parameter values minimizing the Kullback-Leiber dis-
tance between model 7.8 and 7.9 for four levels of censoring.

Censoring 0% 25% 50% 75%
µ∗ -0.838 -0.940 -1.093 -1.377
β∗1 0.799 0.812 0.831 0.845
β∗2 0.300 0.305 0.312 0.322
γ∗ 0.645 0.704 0.808 1.073
σ∗ 0.603 0.617 0.639 0.681
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Because we normally don’t know the theoretical values, we have to use the
parameters estimated from the data set with 200 observations in our model
cheeking. We will now, as we did with Nelson’s superalloy data, first examine
the functional form with residuals based on pseudo observations, and then
with pseudo residuals based on standard residuals.

Pseudo observations

When finding pseudo observations for misspecified models, we recommend
using one of the non-parametric models. The parametric model uses the
misspecified model to find pseudo observations, and hence residuals based
on parametric pseudo observations may not be appropriate when we check
the functional form of a covariate. In this case pseudo observations based on
KM gives too many negative pseudo observations for the censored data sets.
We will therefore use KMlog to find pseudo observations. In figure 7.6 we
see pseudo observations for all levels of censoring plotted with the observed
times. For 0 % censoring, the observed times and pseudo observations will
be the same.

Using the obtained pseudo observations to find estimates for the parame-
ters gives values shown in table 7.2.

Table 7.2: Parameters in model 7.9 estimated from pseudo observations

Censoring 0% 25% 50% 75%
µ̂ -0.475 -0.715 -0.7763 -1.092
β̂1 0.773 0.993 0.9718 1.279
β̂2 0.264 0.300 0.3005 0.328
γ̂ 0.486 0.550 0.6214 0.760
σ̂ 0.568 0.727 1.02 1.75

In this case we see that the estimated values of the parameters change quite
a lot with the degree of censoring, even for β1 and β2.

With the estimated parameters and pseudo observations, we then find stan-
dardized residuals. In the left figure of 7.7 we see standardized residuals
plotted against covariate X for 0% censoring. Because we have a Weibull
distributed data set Rs = log(Rc), and hence Rs should fluctuate around
zero. This is not the case in figure 7.7 so we may suspect that the functional
form of X is wrong. The line in the left figure is what we find with lowess.
Using that line as an estimator for H(x) in equation 7.7 we can find esti-
mated values for f(x). They are plotted against x in the right figure of 7.7.
The line in this figure is the lowess smoother of (x, f(x)).
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Figure 7.7: Left: Standardized residuals from pseudo observations. Right:
Estimated covariate function for X

Comparing this to figure 7.8 we see that f(x) may have a form like log(x).

Figure 7.8: Log(x) for values of x in the simulated data set
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Figures for 25%, 50% and 75% censoring, corresponding to figure 7.7, are
in figure 7.9,7.10 and 7.11.

Figure 7.9: Left: Standardized residuals from pseudo observations. Right:
Estimated covariate function for X

From this we see that finding the functional form with pseudo residuals are
more difficult the higher the level of censoring. This is as expected, since
pseudo observations and estimation of parameters from pseudo residuals are
expected to be less and less accurate the higher the level of censoring.
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Figure 7.10: Left: Standardized residuals from pseudo observations. Right:
Estimated covariate function for X

Figure 7.11: Left: Standardized residuals from pseudo observations. Right:
Estimated covariate function for X
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Pseudo residuals

The other option that we study is to find residuals with survreg from the
censored data set and use any method to find pseudo residuals. Again stan-
dardized residuals are a good choice of residuals since they should fluctuate
around zero when the survival times are Weibull distributed. Standardized
residuals can be negative, so the KM-method will not cause any problems
when we asses the model. We will therefore use the KM-method to find
pseudo residuals even though other methods will be applicable. If the distri-
bution was unknown, using Cox-Snell residuals may be a better choice, but
then pseudo residuals have to be positive.

The parameters estimated for our data sets are found with survreg and can
be found in table 7.3.

Table 7.3: Parameters in model 7.9 estimated from with survreg.

Censoring 0% 25% 50% 75%
µ̂ -0.475 -0.540 -0.604 -1.121
β̂1 0.773 0.816 0.743 0.920
β̂2 0.264 0.246 0.274 0.307
γ̂ 0.486 0.504 0.551 0.888
σ̂ 0.568 0.607 0.63 0.714

With the observed times and these parameters we find standardized resid-
uals, and with the KM method, pseudo residuals. The left figure in 7.12
shows pseudo residuals for 0% censoring plotted against covariate X. Again
we find the estimated Ĥ(x) as the line generated with lowess, and f(x) plot-
ted against x in the right figure.

These two figures are identical to the results we got for 0% for residuals
based on pseudo observations. This comes from the fact that KMlog pseudo
observations are identical to the observed times when there are 0% censor-
ing. Standardized residuals for pseudo observations will therefore be equal
to standardized residuals for the observed times. The same goes for pseudo
residuals based on KM. Because KM also returns the observed times when
there are no censoring, pseudo residuals found with KM will be equal to the
standardized residuals. For other levels of censoring we will not get the same
residuals with the two methods. Figures 7.13, 7.14 and 7.15 show the same
plots for 25%, 50% and 75% censoring. From these we find the same results
as we did with residuals found for pseudo observations.

Corresponding figures for standardized and 1-adjusted Cox-Snell residauls
for the same data sets and level of censoring are included in appendix C.
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Figure 7.12: Left: Pseudo standardized residuals. Right: Estimated covari-
ate function for X

Figure 7.13: Left: Pseudo standardized residuals. Right: Estimated covari-
ate function for X
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Figure 7.14: Left: Pseudo standardized residuals. Right: Estimated covari-
ate function for X

Figure 7.15: Left: Pseudo standardized residuals. Right: Estimated covari-
ate function for X
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Based on this example we see that finding the functional form for covariates
with pseudo observations lead to good results for both pseudo observations
and pseudo residuals. The level of censoring will affect how well we can
detect that we have the wrong functional form. The more censoring, the
more difficult it is to detect that the functional form is inappropriate. To say
something about which method works best is difficult based on this example
alone. It does however seem like the method where we find pseudo residuals
gives a larger spread in the residuals which might make it easier to detect
errors. Compared to the standardized residuals and the 1-adjusted Cox-Snell
residuals in appendix C, we see that we get better results from the pseudo
methods than the standard methods, though not so significantly compared
to the 1-adjusted as for the standardized residuals.



Chapter 8

Concluding Remarks

The aim of this master’s thesis has been to study pseudo observation meth-
ods for accelerated failure time models in survival analysis, and apply them
in estimation and residual analysis.

Accelerated failure time models were discussed in chapter 4. On log-linear
form they can be expressed as

Y = log(T ) = µ+ β′X + σε.

where T is the observed survival time, µ and σ are constants, β are regression
parameters, X are the covariate vector and ε the error term.

Pseudo observations are known from jackknife theory as a method for re-
sampling data sets. If t = (t1, t2, · · · tn) is a sample of observations of the
random variable T , and θ̂ = θ̂(t) is an approximately unbiased estimator of
θ = E[f(T )], we can a find pseudo observations of f(T ) by

θ̂i = nθ̂ − (n− 1)θ̂−i.

Here θ̂ is found for the whole data set and θ̂−i for the data set without ob-
servation ti. When this is done for i= 1,2,· · · n, we have a new data set
consisting of pseudo observations.

In this report we study pseudo observations for the survival time T , and
for corresponding Cox-Snell and standardized residuals. Pseudo observa-
tions for the survival time are found with three methods, KM, KMlog and
the parametric method. KM and KMlog are non-parametric methods based
on the Kaplan-Meier estimate of the survival function. These two methods
can therefore be used when we don’t know the distribution and model of
our data. The parametric method is based on the specific AFT model, and
will therefore not be recommended when the model is unknown. In some
situations however, we can get good results even if we assume the wrong
distribution, but one of the other methods should be used when in doubt.

The KM method uses f(T ) = T . Pseudo observations obtained with this
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model can be negative. For pseudo observations of the survival time this is
not a good trait. Some computational methods, like survreg, require positive
survival times. Other methods for estimating parameters should therefore
be applied if one still wants to use the KM pseudo observations. Negative
survival times will also be a problem when we look at standardized or Cox-
Snell residuals for the pseudo observations. Both of these residuals require
log(T ), and the logarithm of a non-positive T is undefined. A solution may
be to do some type of translation before taking the logarithm or treat log(T )
as a missing value if T is non-positive.

KMlog and the parametric method obtain pseudo observations for log(T ),
and these observations have to be exponentiated to get pseudo observations
for T . Because of this KMlog and the parametric method always gives posi-
tive pseudo observations. Unfortunately, this also makes pseudo observations
for some of the large observed survival times too high. Based on our simula-
tions, it seems like KMlog gives higher pseudo observations at the end than
the parametric method, unless the level of censoring is so high that thde
KMlog pseudo observations flatten out.

The goal with pseudo observations is to create new data sets that can be
treated as uncensored versions of the original data sets. When the original
data set is uncensored, KM and KMlog return pseudo observations equal to
the original data set, and the parametric method returns observations close
to the original ones. When there is censoring, the level of censoring affects
how good approximations the pseudo observations are to the real event times.
The higher the level of censoring, the bigger the difference it was between
the simulated real survival times and the estimated pseudo observations. It
seems like censoring had most effect on KMlog, and that KM give more neg-
ative pseudo observations for higher levels of censoring. The prostatic cancer
example show that for large censoring, none of the methods are very good.
An advantage of the parametric approach, however, is that it seems to pro-
vide better estimated parameters than any of the other methods. Also, when
there were high levels of censoring the KM and KMlog pseudo observations
tend to be very even and with many equal values. That will not be a problem
with the parametric method.

The effect of σ on the performance of the pseudo observation methods was
studied for a Weibull distributed data set. For Weibull distributed data sets,
σ is the constant in front of the error, but also the inverse of the shape pa-
rameter. Because of this, data sets with small σ values will have a smaller
variance and the probability of observing data sets that are representative
for the real event times are higher. KM and KMlog will therefore be more
accurate for such data sets, and parameters used in the parametric model will
be closer to the true parameters. Based on our simulations we found that the
parametric method performed best for σ ≤ 0.6, and that KM were slightly
better for σ > 0.6. KMlog gave again the least good pseudo observations.
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Our conclusion is that the KM method is the best method to use in sit-
uations where σ is around 0.6 and up, and the level of censoring is low. If
we know the distribution of the data and σ is small the parametric method
will be appropriate to use. If KM gives negative observations and we are not
sure that our model is correct, KMlog is the best alternative. Some times
KMlog will be preferred even though we know the distribution and model
because the parametric method must be adopted to each distribution and
model, while KMlog can be used without alterations.

When the model assumed for the data is appropriate, Cox-Snell residuals
should behave as from an exponential distribution and standardized residu-
als should have approximately the same distribution as ε. Censored observa-
tions lead to censored residuals. Therefore one has introduced the adjusted
residuals, which add a given value to residuals corresponding to censored
observations. In section 4.5, the 1- and log(2)-adjusted Cox-Snell residuals
was given as an example. As an alternative to these adjusted residuals, we
want to use pseudo observation methods to find pseudo residuals. For Cox-
Snell residuals all methods can be used, but we recommend using KMlog
or the parametric method because Cox-Snell residuals should be positive.
The parametric method assumes that the residuals are Weibull distributed
and will therefore not be appropriate in every situation, so KMlog may be
the safest choice. Standardized residuals can be both positive and negative.
Therefore we recommend using pseudo residuals from equation (6,3) or KM,
and among them KM seems to be the best.

The final chapter is dedicated to the use of pseudo observations and pseudo
residuals in residual analysis. Here two approaches were used. The first
was to find pseudo observations for the survival times, and then find residu-
als from them. Here, only KM and KMlog should be used. The parametric
model assumes a distribution and model, and can therefore influence the out-
come of the residual analysis. The other was to find residuals for the original
data set and then apply pseudo observation methods to obtain pseudo resid-
uals. Residual analysis of Nelson’s superally data showed that residual plots
based on the two methods are different, but the conclusion is the same. A
simulated data set was then used to study the use of residuals to infer the
functional form of covariates. From this we found that both of our suggested
approaches preforms well, and serves as a satisfactory alternative to standard
and adjusted residuals for AFT models.-.

In their paper [4], Andersen et al. state that ” Regardless of the applica-
tion, the pseudo observations θ̂i will always be used for all n subjects and
not only for those where f(Ti) is unobserved ”. We have therefore replaced all
observations with pseudo observations in this thesis. In figures 5.6, 5.12 and
5.17 we saw that the set of pseudo observations were close to the set of real
event times. Therefore this argument makes sense, and estimation of mean
and variance will be satisfactory with the new data set. Unfortunately it
was not necessarily pseudo observations for the highest real event times that
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became the highest pseudo observations. Estimating parameters can there-
fore give bad results, even though the two sets of observations are similar.
An idea to further investigation of pseudo observations can therefore be to
study what happens if only censored observations are replaced with pseudo
observations. Perhaps that may lead to a better performance of the set of
pseudo observations, although it violates the original logic of the jackknifing.

In their papers Andersen et al. uses a slightly different code than us for
obtaining pseudo observations. Their method, which is the one implemented
in the Pseudo-package in R, integrates the Kaplan-Meier estimator to the
same value, tn, for all jackknife samples. This makes the last pseudo obser-
vation potentially smaller than our method, which is to integrate to tn−1 for
the n-th jackknife sample. This can give slightly different results, and may
improve estimation and hence some of the residual plots might change. Other
ways of ending the tail of the Kaplan-Meier curve may also be interesting to
study. For example, when the last observation is censored, one could make
the survival function be a line that goes to zero instead of being constant.

This thesis has mostly be concerned of construction of pseudo observations
and pseudo residuals, and not so much on their use in practice. We have
only just touched upon some applications, so there is a wealth of interesting
possibilities and questions that can be investigated further.
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Appendix A

Distributions

We will now look at the probability distributions that are used in this thesis.

Exponential distribution
The exponential distribution is one of the most used distributions in survival
analysis, much because its properties makes it easy to work with. It has
probability density function

f(t) = λe−λt for t ≥ 0, λ > 0,

with expectation and variance

E(T ) = 1
λ
,

V ar(T ) = 1
λ2 .

Using equation 2.1 and 2.2 we get

S(t) =
∫ ∞
t

λe−λudu = e−λt,

h(t) = f(t)
S(t) = λ,

A consequence of the constant hazard is the "memoryless" property. It can
be stated as P(T > t+∆ t | T > t)=P(T>∆ t) and says that the probability
of surviving a additional period of time ∆t, given survival up to time t, is
independent of t.

Weibull distribution
Although the exponential function is easy to work with, it is not very realistic
to have a constant hazard. An alternative is another popular distribution in
survival analysis called the Weibull distribution. It is related to the exponen-
tial distribution but allows more flexibility because the hazard function does
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not have to be constant. Probability density function, survival and hazard
function for Weibull distributed survival times are

f(t) = λγtγ−1exp(−λtγ) for t ≥ 0, λ > 0, γ > 0, (A.1)

S(t) = e−λt
γ

,

h(t) = λγtγ−1, (A.2)

where γ is called the shape parameter and λ the scale parameter. The hazard
will still be either increasing (γ > 1) or decreasing (γ < 1) and if γ = 1 we
will have an exponential distribution.

The expected value and variance for Weibull distributed lifetimes are

E(T ) = 1
λ

Γ( 1
γ

+ 1),

V ar(T ) = 1
λ2

(
Γ( 2
γ

+ 1)− Γ2( 1
γ

+ 1)
)
,

where Γ is the gamma function.

Gumbel distribution of smallest extreme
The cumulative distribution function for the Gumbel distribution of smallest
extreme is

F (t) = 1− exp
[
− exp

(
t− ν
α

)]
, for −∞ < t <∞

By setting Y = T−ν
α

, we get standardized Gumbel with CDF,

F (y) = 1− exp[−exp(y)], for −∞ < y <∞

This gives us density, mean, variance and survival function

f(y) = exp(y)exp[−exp(y)],

E[Y ] = −φ,

V ar[T ] = π2

6 ,

and
S(y) = exp[−exp(y)]. (A.3)

where φ = 0.5772 is Euler constant.

More on extreme value distributions can be found on page 54 in Rausand &
Høyland [17].
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Normal distribution
The Gaussian normal distribution is the most used distribution in statistics.
With mean µ and variance σ2 we can write the probability density function
as

f(t) = 1√
2πσ

exp

[
−(t− µ)2

2σ2

]
, for −∞ < y <∞

When µ = 0 and σ = 1 we have what is called the standard normal distri-
bution, with cumulative distribution function denoted by

Φ(t) = 1√
2π

∫ t

−∞
exp

[
−x2

2

]
dx.

Using the CDF of the standard normal distribution we can find a general
expression for the distribution function as

F (t) = Φ
(
t− µ
σ

)
.

Lognormal distribution
The lognormal distribution is closely related to the normal distribution. If a
random variable T is lognormally distributed with parameters µ and σ then
Y = log(T ) is normal distributed with mean µ and variance σ2. The density
and survival function for lognormal lifetimes are

f(t) = 1√
2πσt

exp

[
−(log(t)− µ)2

2σ2

]
,

S(t) = Φ
(
µ− log(t)

σ

)
. (A.4)

Uniform distribution
For a variable T that is uniformly distributed, all observations of equal length
have the same probability. That is, if T can take any value t ε [a,b], then the
probability density function for T will be

f(x) =


1
b−a , if tε[a, b]
0, otherwise

.

The cumulative distribution function will therefore

F (x) =


0, t < a
x−a
b−a , if a ≤ t < b

1, t ≥ b

.
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Appendix B

Data sets

W1
Data set W1, used for detailed studies of KM and parametric pseudo obser-
vations. Survival times and covariates are simulated from model

log(T ) = µ+ β1X1 + β2X2 + β3X3 + σε

where µ = 0, β1=0.6, β2=0.5, β3=0.2 and σ = 2/3. ε is gumbel distributed,
X1 binary with p0 = p1 = 0.5, X2 ∼ unif [−1, 1] and X3 ∼ N(0, 1). Status=1
indicates uncensored observation. Table for this data set is in table B.1.

Prostatic cancer data
Data from a study of prostetic cancer patients. The measured survival
time and covariates are in table B.2 and the results in table B.3. SH is
serumhaemaglobin, T.S is Tumor size and G.I is gleason index.

Nelson’s superalloy Data
Low-cycle fatigue life of nickel-base superalloy specimens. Survival times
are measured in thousand cycles. Censored observations are indicated with
status=0, and uncensored with status=1. This data set is in table B.4.

105



106 APPENDIX B. DATA SETS

Ta
bl
e
B.
1:

T
he

W
1
da

ta
se
t.

O
bs
:

x
1

x
2

x
3

ε
T

St
at
us

T
R
ea
l

C
T
P
a
r
a
m

T
K
M

T
K
M
lo
g

1
0.
00

-0
.7
2

0.
65

-4
.2
9

0.
05

1.
00

0.
05

2.
88

0.
05

0.
05

0.
05

2
0.
00

-0
.5
8

-0
.2
9

-3
.4
5

0.
07

1.
00

0.
07

4.
91

0.
07

0.
07

0.
07

3
1.
00

0.
46

-1
.8
1

-2
.2
0

0.
37

1.
00

0.
37

13
.5
1

0.
58

0.
37

0.
37

4
1.
00

0.
11

0.
60

-2
.5
1

0.
41

1.
00

0.
41

2.
61

0.
37

0.
41

0.
41

5
0.
00

0.
07

1.
06

0.
31

0.
58

0.
00

1.
57

0.
58

1.
51

2.
25

1.
73

6
0.
00

-0
.0
4

-1
.3
7

-0
.3
4

0.
60

1.
00

0.
60

10
.6
9

0.
58

0.
48

0.
55

7
0.
00

-0
.2
4

-0
.5
9

-0
.3
6

0.
62

1.
00

0.
62

4.
11

0.
55

0.
51

0.
58

8
0.
00

-0
.7
2

-2
.0
3

0.
51

0.
65

1.
00

0.
65

6.
24

0.
70

0.
54

0.
61

9
0.
00

-0
.2
7

-0
.2
3

-0
.0
4

0.
81

1.
00

0.
81

2.
36

0.
72

0.
71

0.
77

10
1.
00

-0
.7
1

0.
94

-0
.4
9

0.
87

0.
00

1.
12

0.
87

3.
16

2.
87

2.
52

11
0.
00

-0
.4
8

0.
06

0.
93

0.
92

0.
00

1.
49

0.
92

2.
11

2.
87

2.
52

12
0.
00

-0
.0
1

-0
.6
9

0.
17

0.
97

1.
00

0.
97

4.
76

1.
00

0.
39

0.
73

13
0.
00

-0
.4
2

1.
42

1.
16

1.
10

0.
00

2.
34

1.
10

2.
99

3.
18

2.
94

14
1.
00

0.
91

-0
.6
9

0.
13

1.
28

0.
00

2.
74

1.
28

0.
85

3.
18

2.
94

15
1.
00

-0
.3
9

-0
.0
6

-0
.1
7

1.
32

1.
00

1.
32

10
.9
5

0.
91

-0
.0
9

0.
74

16
1.
00

-0
.7
4

1.
23

2.
00

1.
38

0.
00

6.
11

1.
38

4.
24

3.
84

3.
87

17
1.
00

0.
27

0.
48

-0
.1
7

2.
05

1.
00

2.
05

10
.2
3

1.
78

0.
43

1.
28

18
1.
00

0.
85

1.
68

-0
.7
3

2.
39

1.
00

2.
39

6.
10

1.
85

1.
29

1.
88

19
1.
00

0.
29

1.
04

0.
79

4.
39

1.
00

4.
39

4.
48

5.
51

6.
28

8.
58

20
1.
00

-0
.1
1

0.
11

1.
50

4.
82

1.
00

4.
82

23
.8
2

9.
23

7.
35

10
.8
3



107

Table B.2: The prostetic cancer data set.
Treatment Time Status Age SH T.S G.I

1 0.00 65.00 0.00 67.00 13.40 34.00 8.00
2 1.00 61.00 0.00 60.00 14.60 4.00 10.00
3 1.00 60.00 0.00 77.00 15.60 3.00 8.00
4 0.00 58.00 0.00 64.00 16.20 6.00 9.00
5 1.00 51.00 0.00 65.00 14.10 21.00 9.00
6 0.00 51.00 0.00 61.00 13.50 8.00 8.00
7 0.00 14.00 1.00 73.00 12.40 18.00 11.00
8 0.00 43.00 0.00 60.00 13.60 7.00 9.00
9 1.00 16.00 0.00 73.00 13.80 8.00 9.00
10 0.00 52.00 0.00 73.00 11.70 5.00 9.00
11 0.00 59.00 0.00 77.00 12.00 7.00 10.00
12 1.00 55.00 0.00 74.00 14.30 7.00 10.00
13 1.00 68.00 0.00 71.00 14.50 19.00 9.00
14 1.00 51.00 0.00 65.00 14.40 10.00 9.00
15 0.00 2.00 0.00 76.00 10.70 8.00 9.00
16 0.00 67.00 0.00 70.00 14.70 7.00 9.00
17 1.00 66.00 0.00 70.00 16.00 8.00 9.00
18 1.00 66.00 0.00 70.00 14.50 15.00 11.00
19 1.00 28.00 0.00 75.00 13.70 19.00 10.00
20 1.00 50.00 1.00 68.00 12.00 20.00 11.00
21 0.00 69.00 1.00 60.00 16.10 26.00 9.00
22 0.00 67.00 0.00 71.00 15.60 8.00 8.00
23 1.00 65.00 0.00 51.00 11.80 2.00 6.00
24 0.00 24.00 0.00 71.00 13.70 10.00 9.00
25 1.00 45.00 0.00 72.00 11.00 4.00 8.00
26 1.00 64.00 0.00 74.00 14.20 4.00 6.00
27 0.00 61.00 0.00 75.00 13.70 10.00 12.00
28 0.00 26.00 1.00 72.00 15.30 37.00 11.00
29 0.00 42.00 1.00 57.00 13.90 24.00 12.00
30 1.00 57.00 0.00 72.00 14.60 8.00 10.00
31 1.00 70.00 0.00 72.00 13.80 3.00 9.00
32 1.00 5.00 0.00 74.00 15.10 3.00 9.00
33 1.00 54.00 0.00 51.00 15.80 7.00 8.00
34 0.00 36.00 1.00 72.00 16.40 4.00 9.00
35 1.00 70.00 0.00 71.00 13.60 2.00 10.00
36 1.00 67.00 0.00 73.00 13.80 7.00 8.00
37 0.00 23.00 0.00 68.00 12.50 2.00 8.00
38 0.00 62.00 0.00 63.00 13.20 3.00 8.00
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Table B.3: Data and pseudo observations for the prostetic cancer data set.
Obs T TKM TKMlog Tparam,wei Tparam,lognorm

1 65.00 70.57 70.96 2827.01 1642.96
2 61.00 70.57 70.96 233.63 305.25
3 60.00 70.57 70.96 319.52 413.04
4 58.00 70.57 70.96 187.10 314.19
5 51.00 70.57 70.96 170.83 233.25
6 51.00 70.57 70.96 181.29 217.42
7 14.00 11.13 12.86 19623.18 4915790.09
8 43.00 69.59 69.80 138.68 156.43
9 16.00 65.72 64.47 187.33 252.96

10 52.00 70.57 70.96 166.71 225.87
11 59.00 70.57 70.96 208.44 500.77
12 55.00 70.57 70.96 201.11 260.51
13 68.00 70.57 70.96 341.20 398.05
14 51.00 70.57 70.96 203.42 266.36
15 2.00 64.20 61.64 121.43 116.52
16 67.00 70.57 70.96 256.36 598.05
17 66.00 70.57 70.96 261.78 337.75
18 66.00 70.57 70.96 1088.10 907.80
19 28.00 67.20 66.69 97.24 138.22
20 50.00 45.10 46.18 0.00 0.00
21 69.00 60.21 61.13 0.14 0.40
22 67.00 70.57 70.96 237.92 399.06
23 65.00 70.57 70.96 538.11 794.36
24 24.00 65.72 64.47 110.99 107.58
25 45.00 69.59 69.80 293.55 392.51
26 64.00 70.57 70.96 501.40 754.37
27 61.00 70.57 70.96 8629.55 2934.37
28 26.00 19.76 22.56 15.11 0.73
29 42.00 37.32 38.63 0.40 0.50
30 57.00 70.57 70.96 208.77 275.82
31 70.00 75.76 76.45 293.03 367.91
32 5.00 64.20 61.64 225.58 288.07
33 54.00 70.57 70.96 275.20 370.82
34 36.00 30.12 32.11 0.20 0.00
35 70.00 75.76 76.45 285.55 395.81
36 67.00 70.57 70.96 300.36 393.34
37 23.00 65.72 64.47 198.33 188.95
38 62.00 70.57 70.96 231.79 301.55
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Table B.4: Nelson’s superalloy data set.
Pseudostress k-Cycles Status

1 80.3 211.629 1
2 80.6 200.027 1
3 80.8 57.923 0
4 84.3 155.000 1
5 85.2 13.949 1
6 85.6 112.968 0
7 85.8 152.680 1
8 86.4 156.725 1
9 86.7 138.114 0
10 87.2 56.723 1
11 87.3 121.075 1
12 89.7 122.372 0
13 91.3 112.002 1
14 99.8 43.331 1
15 100.1 12.076 1
16 100.5 13.181 1
17 113.0 18.067 1
18 114.8 21.300 1
19 116.4 15.616 1
20 118.0 13.030 1
21 118.4 8.489 1
22 118.6 12.434 1
23 120.4 9.750 1
24 142.5 11.865 1
25 144.5 6.705 1
26 145.9 5.733 1
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Appendix C

Figures

Figures used to assess the functional form of covariate X in section 7.2.1.
Figures are made for standardized and 1-adjusted Cox-Snell residuals, for
0%, 25%, 50% and 75% censoring.

Standardized residuals

Figure C.1: Left: Standardized residuals plotted against X. Right: Estimated
covariate function for X, 0% censoring
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Figure C.2: Left: Standardized residuals plotted against X. Right: Estimated
covariate function for X, 25% censoring

Figure C.3: Left:Standardized residuals plotted against X. Right: Estimated
covariate function for X, 50% censoring
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Figure C.4: Left: Standardized residuals plotted against X. Right: Estimated
covariate function for X, 75% censoring

1-Adjusted Cox-Snell residuals

Figure C.5: Left: 1-adjusted Cox-Snell residuals. Right: Estimated covariate
function for X, 0% censoring
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Figure C.6: Left: 1-adjusted Cox-Snell residuals. Right: Estimated covariate
function for X, 25% censoring

Figure C.7: Left: 1-adjusted Cox-Snell residuals. Right: Estimated covariate
function for X, 50% censoring
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Figure C.8: Left: 1-adjusted Cox-Snell residuals. Right: Estimated covariate
function for X, 75% censoring
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Appendix D

R codes

.

Simulating data sets
This is an example of the code used to simulate data set. This particular
code is for the AFT model discussed in 4.8.

# Setting the number of observations:
n=20

# Function for finding n Gumbel distributed values:
Gumbel <- function(n)
{

u<-runif (n,0,1)
w<-log(-log(u))

}

# Simulating covariates:
w<-Gumbel(n) # Error term if the data is Weibull
# w<-rnorm(n) # Error term if the data is log-normal
x1 <-round(runif(n,0,1)) # Either 0 or 1, with p=0.5
x2 <-runif(n,-1,1) # Uniformlly distributed between -1 and 1.
x3 <-rnorm(n) # Standard normal distributed

# True coefficients:
b0=0
b1=0.8
b2=0.6
b3=0.2
sigma=(2/3)

117



118 APPENDIX D. R CODES

# Finding real survival times and censoring times:
realtimes<-exp(b0+b1*x1+b2*x2+b3*x3+sigma*w)
v<-runif (n,0,1)
censtimes<-(-1/0.7155)*log(v)

# Finding the observed survival time:
Time <-pmin(realtimes, censtimes)
max(Time)

# Finding the status
Status <-as.numeric(censtimes > realtimes)

# Creating the data set and order in increasing survival time:
Data<-data.frame(x1=x1,x2=x2,x3=x3,w=w,Time=Time,Status=Status,
realtimes=realtimes,censtimes=censtimes)
Data<-Data[order(Data$Time),]

# To find the percentage of censored observations:
sum<-sum(Data$Status)
censorening<-1-sum/n

# Adding a column in the data frame for observation number:
Data["Obs"]<-NA
Data$Obs<-1:n

Pseudo observations

KM
Code for finding pseudo observations using the method based on Kaplan-
Meier.

# Fitting a Kaplan-Meier survival function for the observed times:
km<-survfit(Surv(Data$Time,Data$Status==1)~1)

# Finding the restricted mean of the KM-survival times:
rmean_full<-summary(km, rmean=TRUE)$table[5]

# Finding pseudo observations:
rmean<-NULL
pseudo<-NULL
n<-length(Data$Time)
for(i in 1:n){

minus_i<-Data[-i,]
km_minus<-survfit(Surv(minus_i$Time,minus_i$Status==1)~1)
summary(km_minus,rmean=TRUE)
rmean[i]<-summary(km_minus, rmean=TRUE)$table[5]
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pseudo[i]<-n*rmean_full-(n-1)*rmean[i]
}

#Adding pseudo observations to the data set:
Data["KMPseudo"]<-NA
Data$KMPseudo<-pseudo

KMlog
Code for finding pseudo observations based on Kaplan-Meier for log(T).

# Fitting a Kaplan-Meier survival function to the observed times:
km<-survfit(Surv(Data$Time,Data$Status==1)~1)

# Extracting information needed later:
kmsurv<-km$surv
kmtime<-km$time
kmlogtime<-log(kmtime)

# Function for finding restricted mean for log(T):
Rmean.log<-function(kmlogtime,kmsurv){

k<-length(kmsurv)
R.mean<-kmlogtime[1]
for (i in 2:k){

l<-(kmlogtime[i]-kmlogtime[i-1])
R.mean<-R.mean+l*kmsurv[i-1]

}
return(R.mean)

}

# Using the function to find restricted mean for full model
rmean.full<-Rmean.log(kmlogtime,kmsurv)

# Finding pseudo observations:
rmean<-NULL
pseudo<-NULL
for(i in 1:n){

minus_i<-Data[-i,]
km.pseudo<-survfit(Surv(minus_i$Time,minus_i$Status==1)~1)
pseudo.i.time<-km.pseudo$time
pseudo.i.surv<-km.pseudo$surv
pseudo.i.logtime<-log(pseudo.i.time)
rmean[i]<-Rmean.log(pseudo.i.logtime,pseudo.i.surv)
pseudo[i]<-n*rmean.full-(n-1)*rmean[i]

}
Pseudo<-exp(pseudo)
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# Adding pseudo observations to the data set:
Data["KMlogPseudo"]<-NA
Data$KMlogPseudo<-Pseudo

Parameteric
The code for parameteric pseudo observations must be adjusted to the distri-
bution and model of the data. This example is for Weibull distributed data
with model

log(T ) = µ+ β1X1 + β2X2 + β3X3 + σε (D.1)

# Expected value for a gumbel distributed random variable
Ew =-0.5722

# Fitting a model for the full data set:
model<-survreg(Surv(Data$Time,Data$Status)~Data$x1+Data$x2+Data$x3,
data=Data, dist="weibull")
summary<-summary(model)
summary

# Extracting coefficients:
coef<-as.numeric(summary$coefficients)
b0_hat<-coef[1]
b1_hat<-coef[2]
b2_hat<-coef[3]
b3_hat<-coef[4]
sigma_hat<-summary$scale

# Finding an estimate for the expected value for the full model:
x1_bar<-sum(Data$x1)/n
x2_bar<-sum(Data$x2)/n
x3_bar=sum(Data$x3)/n
Theta_hat_full = b0_hat+b1_hat*x1_bar+b2_hat*x2_bar
+b3_hat*x3_bar+sigma_hat*Ew

# Finding the pseudo observations :
Theta_hat<-NULL
Theta_hat_min<-NULL
for(i in 1:n){

minus_i <-Data[-i,]
model_min<-survreg(Surv(minus_i$Time,minus_i$Status)
~minus_i$x1+minus_i$x2+minus_i$x3, data=minus_i, dist="weibull")

summary_min<-summary(model__min)
coef_min<-as.numeric(summary_min$coefficients)
b0_hat_min<-coef_min[1]
b1_hat_min<-coef_min[2]
b2_hat_min<-coef_min[3]
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b3_hat_min<-coef_min[4]
sigma_hat_min<-summary_min$scale
x1_bar_min<-(sum(Data$x1)-Data$x1[i])/(n-1)
x2_bar_min<-(sum(Data$x2)-Data$x2[i])/(n-1)
x3_bar_min<-(sum(Data$x3)-Data$x3[i])/(n-1)
Theta_hat_min[i]<-b0_hat_min+b1_hat_min*x1_bar_min
+b2_hat_min*x2_bar_min+b3_hat_min*x3_bar_min+sigma_min*Ew

Theta_hat[i]<-n*Theta_hat_full-(n-1)*Theta_hat_min[i]
}
pseudo<-exp(Theta_hat)

# Adding pseudo observations to the data set
Data["ParamPseudo"]<-NA
Data$ParamPseudo<-pseudo

For log-normal data sets, change to Ew=0 and dist=’lognormal’.

Residuals
# Extracting coefficients
model<-survreg(Surv(Data$Time,Data$Status)~Data$x1+Data$x2+Data$x3

,data=Data,dist="weibull")
summary<-summary(model)
coef<-as.numeric(summary$coefficients)
b0_hat<-coef[1]
b1_hat<-coef[2]
b2_hat<-coef[3]
b3_hat<-coef[4]
sigma_hat<-summary$scale

#Standardized residuals
rs<-(log(Data$Time)-b0_hat-b1_hat*Data$x1-b2_hat*Data$x2

-b3_hat*Data$x3)/sigma_hat

#Cox-Snell residuals
rc<-exp((log(Data$Time)-b0_hat-b1_hat*Data$x1-b2_hat*Data$x2

-b3_hat*Data$x3)/sigma_hat)

Pseudo residuals
Code for pseudo residuals based on KM and KMlog is equal to the code
for pseudo observations, but Time must be exchanged with the residual in
question. Here r can be either standardized or Cox-Snell residuals.

Introductory pseudo residuals
# Calculating expected residual value for full model
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Clevel<-sum(Data$Status) # The number of uncensored observations
Usum<-sum(Data$xr) # The sum of all residuals
Theta_full<-Usum/Clevel

pseudores<-NA
# Pseudo residuals:
for(i in 1:n){

res_minus_i<-Data[-i,]
Clevel_minus_i<-sum(res_minus_i$Status)
Usum_minus_i<-sum(res_minus_i$Coxres)
Theta<-(Usum_minus_i/Clevel_minus_i)
pseudores[i]<-n*Theta_full-(n-1)*Theta

}

Data["Pseudores"]<-NA
Data$Pseudores<-pseudores

KM pseudo residuals
km<-survfit(Surv(Data$r,Data$Status==1)~1)
km.summary<-summary(km)
rmean_full<-summary(km, rmean=TRUE)$table[5]
rmean<-NULL
pseudo<-NULL
n<-length(Data$Time)
for(i in 1:n){

res_minus_i<-Data[-i,]
km_minus<-survfit(Surv(res_minus_i$r,res_minus_i$Status==1)~1)
#plot(km_minus,main= ’Plot D’)
summary(km_minus,rmean=TRUE)
rmean[i]<-summary(km_minus, rmean=TRUE)$table[5]
pseudo[i]<-n*rmean_full-(n-1)*rmean[i]

}

Data["KMPseudores"]<-NA
Data$KMPseudores<-pseudo

KMlog pseudo residuals
km<-survfit(Surv(Data$r,Data$Status==1)~1)
kmsurv<-km$surv
kmtime<-km$time
kmlogtime<-log(kmtime)

## Restricted mean for log(T)
Rmean.log<-function(kmlogtime,kmsurv){

k<-length(kmsurv)
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R.mean<-kmlogtime[1]
for (i in 2:k){

l<-(kmlogtime[i]-kmlogtime[i-1])
R.mean<-R.mean+l*kmsurv[i-1]

}
return(R.mean)

}
Rmean.log(kmlogtime,kmsurv)
rmean.full<-Rmean.log(kmlogtime,kmsurv)
rmean<-NULL
pseudo<-NULL
n<-length(Data$Time)

for(i in 1:n){
res_minus_i<-Data[-i,]
km.pseudo<-survfit(Surv(re_minus_i$r,res_minus_i$Status==1)~1)
pseudo.i.time<-km.pseudo$time
pseudo.i.surv<-km.pseudo$surv
pseudo.i.logtime<-log(pseudo.i.time)
rmean[i]<-Rmean.log(pseudo.i.logtime,pseudo.i.surv)
pseudo[i]<-n*rmean.full-(n-1)*rmean[i]

}

Data["KMlogPseudores"]<-NA
Data$KMlogPseudores<-pseudo

Weibull parametric pseudo residuals
model<-survreg(Surv(Data$r,Data$Status)~1, data=Data, dist="weibull")
summary<-summary(model)

#Extracting the coefficients
coef<-as.numeric(summary$coefficients)
b0_hat<-coef[1]
sigma_hat<-summary$scale

x_bar<-sum(Data$x)/n
Theta_hat_full = b0_hat+sigma_hat*Ew
Theta_hat<-NULL
Theta_hat_min<-NULL

for(i in 1:n){
res_minus_i<-Data[-i,]
model_theta_min<-survreg(Surv(res_minus_i$r,res_minus_i$Status)~1
,data=res_minus_i, dist="weibull")
summary_theta_min<-summary(model_theta_min)
coef_theta_min<-as.numeric(summary_theta_min$coefficients)
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b0_hat_theta_min<-coef_theta_min[1]
sigma_hat_min<-summary_theta_min$scale
Theta_hat_min[i]<-b0_hat_theta_min+sigma_hat_min*Ew
Theta_hat[i]<-n*Theta_hat_full-(n-1)*Theta_hat_min[i]

}

Data["ParamPseudores"]<-NA
Data$ParamPseudores<-exp(Theta_hat)


