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Abstract—This paper describes an unmanned aerial vehicle
(UAV) ice tracking framework for use in sea ice management
applications. The framework is intended to be used in an ice
management scenario where the UAV should detect and track
the movement of icebergs and ice floes in an Arctic environment,
and seeks to enable the UAV to do so autonomously. This is
achieved by using an occupancy grid map algorithm and a
locations of interest generator coupled with a Model Predictive
Control (MPC) UAV path planner. The main contribution of this
paper is interfacing the occupancy grid map algorithm with
a machine vision object detection module in order to enable
the UAV to generate an occupancy grid map of a pre-defined
search area in real-time using on-board processing of UAV
sensor data. Further, the paper presents a locations of interest
generator module which generates locations that the UAV should
investigate based on the generated occupancy grid map. These
locations of interest are then used by an MPC path planner in
order to make the UAV autonomously investigate and track ice
features at said locations. Furthermore, the paper verifies the
use of the developed ice tracking framework for autonomously
detecting and tracking ice features based on thermal images
captured with a UAV, as well as verifying the usefulness and
role of UAVs in ice management scenarios by conducting two
flight experiments.

I. INTRODUCTION

In order to conduct marine operations in ice-infested
regions in a safe manner, accurate information about the envi-
ronment is needed. E.g, when operating offshore installations
such as oil rigs, it is often important to be able to detect
and track icebergs close to these offshore installations with
sufficient confidence and in a timely manner [1]. Further,
using the Northern Sea Route for shipping activities are of
interest due to the possible favourable economic properties,
as it may drastically reduce the travelling distance required
for the shipping [2]. However, when doing so, an ice man-
agement system is needed in order to keep the vessel safe
while travelling through Arctic waters. Ice management is
here defined as the sum of all activities where the objective
is to reduce or avoid actions from any kind of ice features
[3]. This could for instance be the detection, tracking and
forecasting of sea ice, ice ridges and icebergs. Note that in
the two ice management scenarios described above, real-time
processing of sensor data could be useful in order to achieve
timely detection of nearby ice threats to the offshore platform
or shipping vessel is crucial.

In recent years there has been a drastic increase in the
commercial availability of small unmanned aerial vehicles
(UAVs) which demonstrate flexibility in geographical cover-
age, spatial and temporal resolution. These are all abilities
important in sensor platforms which are to be used in ice
management scenarios [4]. The use of aerial sensors and
UAV platforms in ice management has gained a lot of
interest in recent years, and some proposed applications and
solutions already exists. [4] presents a possible structure for a
general ice observer/ice management system. The presented
ice observer system structure is made to be able to collect,
analyse and employ ice intelligence during operations in ice
management, and UAVs are presented as a viable sensor plat-
form for these operations. Moreover, it illustrates how UAVs
can be equipped with sensors that provide information about
the environment, including wind velocity, iceberg and ice floe
distribution and ice velocity. This is also demonstrated in [5]
where a small UAV is equipped with a camera and an ice
monitoring experiment is conducted. Using a simple thresh-
olding technique, images from a UAV flight is segmented
into ice and non-ice regions, effectively demonstrating the
UAV’s usefulness in ice management settings.

[6] presents an algorithm that is able to use stereoscopic
optical imaging from UAVs in order to image sea ice surface
3D structure. The algorithm uses structure from motion [7]
in order to generate a 3D model of the sea ice structure, and
the resulting model can be utilized in the process of finding
a safe passage for a boat through a region with thick ice.
Structure from motion is also used in [8] to generate 3D
models of a glacier by the use of image data capture with
a UAV. Although the structure from motion algorithm is too
computationally expensive to be executed on-board and in
real-time, this work further proves that the UAV is a viable
and useful platform in the area of ice management.

[9] and [10] both presents path planning algorithms for
UAVs in ice management based on optimization techniques.
[9] develops an algorithm to find a path pattern that covers
a predefined region of interest. The region is chosen based
on the location of a boat and an ice flow estimate, yielding a
region where potential icebergs and ice floes headed directly
towards the boat are expected to be found. The region is
divided into a grid of cells and the UAV’s visitation sequence
for the grid cells is found by solving a Mixed Integer Linear



Programming (MILP) problem seeking to minimize the time
required to cover the total grid. [10] assumes that a set of n
icebergs have been detected and located, and that the UAV
is given an estimate of each of the iceberg’s positions. It is
further assumed that the uncertainty of the position estimate
for the location of each iceberg is reset to 0 when the UAV
is in its vicinity and able to observe its position. A MILP
problem is then defined and solved, yielding a visitation
sequence that minimize a weighted cost function of total
distance travelled by the UAV, and the total uncertainty
in the position estimates of the icebergs. Both of these
algorithms present useful applications of UAVs in the area of
ice management, but does not describe the remainder of the
components, such as a detailed description on incorporating
sensor measurements into their solutions, that would be
necessary in order to have a completely autonomous ice
management system for UAVs.

[11] presents an ice concentration and flow monitoring
system that is able to create feasible and collision-free paths
for a set of UAVs, where the paths are generated in such
a way as to minimize the uncertainty in the state estimate
of the ice flow. The problem is formulated as an optimal
control problem which use a kinematic model for UAVs
and a finite element discretization of a uniformly drifting
sea ice concentration field. The system’s measurements are
segmented images of the sea ice captured from a camera
on-board the UAVs, which then maps the concentration of
pixels segmented as sea ice onto a tessellated map in world
coordinates. The approach is very useful for ice management,
as it can be used to perform automated mapping of sea ice
and ice flow in a predefined region. However, simulations
show that the algorithm becomes increasingly computation-
ally demanding as the search region increases in size. A
way to deal with the scalability issue would have to be
implemented in order to enable the algorithms developed in
[11] to be applicable in a realistic ice management scenario
for UAVs.

A similar but less computationally demanding approach to
the problem of mapping the ice concentration in a predefined
region is presented in [12]. This algorithm uses an occupancy
grid map method for mapping a predefined search region for
ice features based on images captured from a UAV and image
processing. The occupancy grid map is a collection of grid
cells where each cell is given a probability of being occupied
by ice or an object of interest. The occupancy probability for
each grid cell is then updated by segmenting images into
ice and non-ice regions. Generating an occupancy grid map
is useful in many ice management scenarios, for instance
when a boat is to safely traverse a region with icebergs and
ice floes. However, this would require the UAV to not only
generate an occupancy grid map, but the UAV should also be
able to keep track of the movement of the ice features found
which are in the vicinity of the boat’s planned route.

In this paper, the focus is on the development, implementa-
tion and integration of a UAV iceberg detection and tracking
framework for autonomous sea ice management applications.
The framework is focused on being able to perform real-

time processing of UAV sensor data in order to identify
both entire regions of interest (big icebergs) and a set of
many smaller objects of interest (ice floes). This is achieved
by using the algorithm developed in [12] together with an
object detection module developed in [13] which is based
on machine vision. In this paper, the output from the object
detection module is used as a basis in order to create an
occupancy grid map of an area of interest. Further, this
paper extends the work presented in [12] by bridging the
gap between the occupancy grid map and the UAV autopilot.
This is achieved by developing an algorithm which uses the
occupancy grid map to generate locations of interest. The
resulting locations of interest is interfaced with a UAV path
planner based on Model Predictive Control (MPC) developed
in [14], in order to close the loop and enable the UAV to
autonomously investigate regions of interest further. Enabling
the UAV to operate autonomously is a key aspect of this
paper, as autonomy of sensor agents in ice management
applications reduces the stress on the UAV operator as well
as enabling beyond line of sight operations. This paper also
includes results from initial testing of the framework in an
autonomous sea ice management application, conducted with
a fixed-wing UAV equipped with a gimballed thermal camera
and an on-board computer for real-time processing.

The remainder of the paper is organized as follows. First,
the overall ice tracking framework and its submodules are
described in Section II. Further, the occupancy grid map
algorithm coupled with a measurement update model from
[12] is presented in Section III. Third, a locations of interest
generation module which uses the occupancy grid map as
input is developed in Section IV. Section V covers the details
of two field tests conducted in order to test the overall ice
tracking framework using the occupancy grid map module
and the locations of interest generator module presented
in this paper, while Section VI covers the results of the
conducted flights. Finally, the paper is concluded in Section
VIIL.

II. FRAMEWORK OVERVIEW

The overall proposed ice tracking framework is illustrated
in Figure 1. The path controller is an MPC as described in
[14], which seeks to find an optimal turning rate or waypoint
for the UAV, as well as the optimal gimbal attitude given by
the pan and tilt angles. The control outputs found by the MPC
algorithm are given to the UAV’s flight controller (autopilot),
which in turn has its own controllers to control the low-level
dynamics of the UAV. In this work, the UAV flight control
system is assumed to be already implemented to stabilize the
UAV’s dynamics. The output of the MPC is optimal in the
sense that it tries to optimize the path of the UAV and the
gimbal attitude with respect to camera time. Camera time is
here defined as the time a location of interest is in the field
of view of the camera. That is, the MPC is responsible for
sending the control inputs (UAV position and gimbal attitude)
to the UAV’s autopilot which maximize location of interest’s
camera time. Note that although not ideal, in this paper,
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Fig. 1. Overall ice tracking system description. A path planner module (MPC) is combined with a machine vision ice detection and occupancy grid map

module and a locations of interest generator in order to detect and track ice features of interest. The UAV’s flight controller is assumed already implemented

in the present work.

the MPC module was implemented in the ground station,
communicating control inputs to the UAV via a wireless link.

The machine vision ice detection and occupancy grid map
module, also included in Figure 1, is primarily a machine
vision (MV) module running on-board the UAV supplying the
locations of interest generator with an occupancy grid map.
The occupancy grid map can be calculated using different
methods. The most autonomous method, which is imple-
mented in this paper, is to have an on-board computer analyse
the images coming from the on-board camera, automatically
detecting objects of interest (icebergs and ice floes) over a
series of images, and generating the occupancy grid map
by combining the visual data with the on-board telemetry
data as described in the following section. An example of
a machine vision algorithm which can be used in order to
detect icebergs and ice floes from the UAV’s camera images
can be found in [13]. Note that this approach to generating the
occupancy grid map is applied without any prior knowledge
of the location and number of icebergs and ice floes, but the
user will typically input to the MV module some features
of the ice features that are of interest (e.g size, anticipated
temperature and shape). Another scenario is the case where
one already knows the location of the ice features that one
want to track, using for instance synthetic aperture radar
(SAR) images gathered from a satellite pre-flight. In this
scenario it might be useful to do some verification and/or
surveillance of the ice features of interest. In this case, the
machine vision module is initialized with an occupancy grid
map based on the SAR data, and the locations of interest
generator and path planner (MPC module) will then make

sure that locations of interest will be observed by the UAV.
This approach can be combined with the previous mentioned
autonomous approach, making the machine vision module
continuously update the occupancy grid map in-flight based
on the UAV’s sensor data. It is also possible with semi-
autonomous operations where object detection or recognition
is, if needed, assisted by a UAV data analyst. This could in
many cases increase the accuracy of the MV module and
yield an overall better ice feature detection and tracking
performance.

The locations of interest generator module is the module
that is responsible for generating and prioritizing which
location(s) that should be tracked at any given time. The inner
workings of this module may vary depending on the nature
of the ice features that are being tracked, but the resulting
behaviour is based on the in-flight generated occupancy
grid map. Often discrete optimization such as graph search
(Travelling Salesman Problem [15]) and MILP [16] can be
used as an alternative to find an optimal prioritization of the
visiting sequence of locations of interest by some predefined
criteria (e.g shortest total flight distance). However, a simple
approach where the UAV is made to investigate the location
of interest closest to the current position of the UAV can also
be effective in many applications. The main concept of this
system is that after the MPC algorithm has given the location
received by the locations of interest generator a set amount of
camera time, the locations of interest generator module will
decide the next location(s) that the UAV should prioritize for
tracking. An example of a locations of interest generator is
developed in Section IV.



III. OccuPANCY GRID MAP

Occupancy grid maps are world fixed grid maps that tries
to estimate the probability of whether the grid locations in
the map are occupied or free. This is a powerful approach to
mapping objects or regions of interest in a predefined search
area, especially in scenarios such as ice management where
there often are too many objects to track the position and
movement of each object of interest individually. A brief
overview of an occupancy grid map algorithm developed in
[17] and expanded to include the possibility of a dynamic
map in [12] is given in this section.

When using an occupancy grid map, the purpose is to
estimate the posterior probability density over all possible
maps given past measurements and states, i.e

p(mt|21:t,$1:t) (D

where m, is the map representation, z;., are all measure-

ments/observations of the state of the occupancy grid map

(described in more detail in Section III-A) and x,.; are the

UAV’s position and attitude for all time steps from 1 to ¢.
Now, representing the map as a 2D grid map

my = {mi,t} 2

where m;, are grid elements with an associated (binary)
occupancy value, we are interested in knowing the probability
of p(m;; = occupied) and p(m; ; = not occupied) for each
grid cell m; ;. The term ’occupied’ will in our case mean
that at least one iceberg or ice floe occupies grid cell 7. An
assumption made in [17] in order to calculate Equation (1)
is that the grid cell densities are independent to each other.
That is,

p(my|z1:e, 1) = Hp(mi,t 214, T1:1) 3

7
In some cases this could be an inaccurate assumption as
the probability of locating icebergs or ice floes in one grid
could indicate a higher probability of finding icebergs or ice
floes in neighbouring grid cells. However, incorporating this
conditional probability would greatly increase the complexity
of the problem, while not necessarily significantly increase
the occupancy grid map’s accuracy [17].
Furthermore, assuming that m; ; and z; are Markov, i.e

p(mi,t|zlzt—1; xl:t—l) = p(mi,t mi,t—l) 4

combined with the fact that estimating the state of an
individual grid cell is a binary estimation problem (occupied
or not occupied), it is possible to estimate the entire grid state
by using a binary Bayes filter to estimate the state of each
grid cell individually [17].

The reader is referred to [12] for a detailed description
of the development of the binary Bayes filter, but the main
concept is to exploit that the probability of grid cell m; ; not
being occupied, p(—m, ;), can be given as

p(—m; ;) =1—p(m;,) (5)

and defining the following odds ratio

p(mi,t Z1:t79€1:t)

p(=my ¢|21.¢, T1:¢)
[12] then develops an additive update equation for each grid
cell m; ; by taking the logarithm of Equation (6). This yields
the following additive update equation

(6)

p(mi t miqt—l) p(mz‘ t Zuxt)
l;+ =lo : : +lo :
ot 8107 —p(my|m; 1) 810 7 — p(my 4|2, @)
P(mi t)
—lo _ At
glO 1 *p(mi,t)

)

where the first term will be [; ,_; if the map is static. Using
for instance the system developed in [18], an estimate of
ice drift can be found by analysing SAR images from a
satellite. This estimate could be supplied to the UAV ice
management system and incorporated in the derivation of
this update equation, introducing map dynamics (ice drift)
into Equation (7). p(1m; 4|2, x¢) is referred to as the inverse
measurement model and is covered in the next subsection,
while the last term can be interpreted as the value returned
by the inverse measurement model when no information is
supplied by a measurement.

Note that in order to get the actual grid map probabilities
we have to calculate

exp(l;t)

p(mi,t|21:t75€1:t) = HT}?(Z-t) (®)

A. Measurement Update

Looking at the additive logarithmic update equation devel-
oped in the previous section, i.e (7), it is readily seen that
the inverse measurement model has to be decided in order to
calculate [; ;. That is, the term

p(mi,t‘zhxt) )

has to be defined. This term is the probability of the map
grid cell 7 being occupied given an image z; and a UAV
position and attitude x;. There are many possible choices for
this probability function, with the only requirement being that
p(mi,t|zt, l‘t) — [O, 1]

Ideally this probability function should be found in a
systematic way using empirical data, such as images of the
objects or regions of interest captured by a UAV. However,
since such a data set was not available, a simple probability
function assuming that an image has been segmented into
foreground (objects or regions of interest) and background
(non-interesting regions) was used for demonstration pur-
poses. More specifically, assuming that each pixel s;; of
the image z; is segmented into foreground and background,
[12] propose using

Py
A logyq 1—pP;
k.t — 1 P,
0810 1—p,

si,+ = Object of Interest (10)
5k,+ = Non-interesting Region

where ny ¢ is a partial measurement model. Note that Py
should be a parameter reflecting the object detection algo-
rithm’s robustness against false positives. That is, if the object



detection algorithm has a low percentage of false positives,
P; could be set close to 1 because in such cases a pixel
segmented into the “object of interest” category means that
this pixel is very likely to originate from an actual object
of interest. If the object detection algorithm has a high
percentage of false positives, P; should reflect this by being
set to a lower, non-zero value. Similarly, P, reflects the
object detection module’s percentage of false negatives. lL.e,
if the object detection module rarely fails to detect objects of
interest if they are actually present, P» could be set to 0 since
a pixel segmented into the non-interesting region is in such
cases very likely to actually be a non-interesting region. On
the other hand, if the object detection module regularly fails
to detect objects of interest when they are present, P, should
be set higher than O to reflect that a pixel segmented into
the non-interesting region not necessarily originated from a
non-interesting region but in fact an object of interest.

To have a complete measurement model, the UAV’s po-
sition and attitude xj; has to be used in order to map a
pixel coordinate in the image frame to a grid cell in the
map frame. The occupancy grid map can be represented by
a N x M matrix, and each cell in the grid map can be rep-
resented with homogeneous coordinates p™ = [z, y™, 1].
2™ € {0,...,N — 1} denotes the index of the cell in the
horizontal direction, and y™ € {0,..., M — 1} denotes the
index of the cell in the vertical direction. Defining the grid
map to be in the positive quadrant of the x — y plane in the
map frame, the center of a grid cell in the map frame can be
found by

D, 0 0f [=z™
q7n — O Dy O ym — Mpm
0 0 1 1
where q" is the center of grid cell p™ given in map
frame coordinates, and D, and D, are metric scaling factors
describing the size of a grid cell in the x and y direction.
Now, the center of a given grid cell p”* can found in a local
North-East-Down (NED) coordinate frame with the following
equation

qned — R%edem _ Rxledcned,m

= REM+[0 0 —RNCpeqm])p™ :=Preip™
(12)

Y

m

where R"? is the rotation matrix from the map frame to the
NED frame and C,¢q,n, is the position of the origin of the
NED frame given in the map frame. The reader is referred
to [12] for a more detailed development of this equation.
Having found the location of a grid cell’s center in the NED
frame, the location of a grid cell’s center in the image frame,
p'™9, can be calculated. That is
wspimg _ A(RcamP’Zfdpm _

cam
ned Ccam,ned)

ned
= ARIPI+ [0 0 —RiUTCoamned] )"
= Hi;ngpm
(13)

where R747 is the rotation matrix from the NED frame to
the camera frame and C gy, neq 1S the position of the camera

given in the NED frame. wy is a scaling factor describing the
scaling ambiguity in camera images, and A is the intrinsic
parameter matrix for the on-board camera. This matrix can
be estimated through a process called camera calibration,
and an example method of doing this with thermal cameras
is described in [19]. H”™ will then be the perspective
transformation between the map frame and the image frame.
This means that a segmented pixel p*™9 in image z; can be
mapped to a grid cell coordinate in the map frame, p™*, by
the following equation

1 =m img\—1l=im, mo =im
—p" = (H,9)"'p" = H, b (14)
Using this equation with the partial measurement model in
(10) and the additive update rule in (7), the occupancy grid
map can be updated to reflect the observations made by the
object detection algorithm for every segmented image.

IV. GENERATING LOCATIONS OF INTEREST

An initial occupancy grid map for a given region can
made be by having a UAV search through a pre-defined
search region in a systematically manner using the occupancy
grid map method with the proposed measurement update
described in the previous section. However, the initial oc-
cupancy grid map could also be generated from other types
of data, such as for instance data from a SAR satellite. An
example of an initial occupancy grid map resulting from such
methods is shown in Figure 2. The map shows a total of 6
regions of interest where the occupancy grid map has cells
with a probability of being occupied larger than 0. In order
to make this occupancy grid map useful for the ice tracking
framework described in Section II, a method to generate
locations for the MPC to track has to be established. There
are many possible algorithms for generating these locations,
however, in this paper the focus is on an approach which is
directly compatible for the overall ice tracking framework.

The general approach to incorporate the occupancy grid
map into the system is to use the map to generate loca-
tions which the MPC should investigate further. For illustra-
tion purposes a synthetically generated occupancy grid map
(shown in Figure 2a) will be used as an example. The first
step in the process of generating these locations is to perform
a thresholding technique on the occupancy grid map using
a certain threshold 7; € [0, 1]. The reason for doing this is
that when automatic image processing is used in order to
perform the measurement update step of the occupancy grid
map, false positives could cause the occupancy grid map to
have (small) regions (a small number of cells) which has
non-zero probability, while still not being occupied by any
objects of interest. Since the false positives usually are not as
consistent as the true positive detections made by the machine
vision algorithm, the idea is that regions with a non-zero
probability caused by false positives will still have a smaller
probability than regions with a non-zero probability caused
by true positives. Thresholding the occupancy grid map will
yield a binary map where each cell is either a 1 or a 0.
This binary map can optionally be filtered to remove blobs
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Fig. 2. A synthetically generated example occupancy grid map (a). The
occupancy grid map can be manipulated to make generating locations of
interest based on the map easier. This is done by by treating the map as
an image and performing thresholding (b) before dilating the result of the
thresholding (c). This will remove some non-interesting regions of the map
while simultaniously emphasizing and expanding actual regions of interest.

which are larger or smaller than a certain size, depending on
what kind of regions of interest the system is looking for. An
example of a binary map made by thresholding and filtering
the blobs based on their size from the original occupancy
grid map shown in Figure 2a is illustrated in Figure 2b. Note
that one region has been removed because its size was too
small (far left), and one region has been removed since non
of the grid cells in this region had a value higher than the
threshold value T;.

Furthermore, in some ice management applications, it
could be beneficial if regions which are estimated to be
occupied by objects of interest which are close to each other
are viewed as one connected region. This is especially useful
for the scenario of ice management, where it is useful to
look at several icebergs and ice floes simultaneously when
trying to estimate their general velocity and movement. In
order to make regions of interest close to each other appear
as one connected region, the binary map generated in the
previous step can undergo a process called dilation. This is
a process which probes and expands the shapes contained
in an input image (in this case a thresholded occupancy
grid map) using a predefined geometric form (for instance a
circle). The result of dilating the binary map in Figure 2b is
shown in Figure 2c. Note how the previously disconnected
regions on the right side of the map now is connected. It
should also be noted that since that by dilating an image and
expanding the shapes contained in it, the dilated thresholded
occupancy grid map will set grid cells which are not likely
to contain any ice features as occupied cells, care should
be taken when the UAV is sent to investigate these regions.
That is, the dilated thresholded occupancy grid map can be
used in order to decide where the UAV should go and in
which order each region should be visited, but ultimately
the tracking process (e.g the control of the gimbal) should
be based on the originally thresholded occupancy grid map
shown in Figure 2b.

Having generated a binary occupancy grid map of an area
of interest, the locations for the MPC to track is simply
generated by finding the centroid of each of these regions.
Feeding the Object Handler and the MPC with these points
will work as a replacement for an estimate of the position
of rigid objects, as the object detection, recognition and
tracking module from the previous chapter was implemented
to supply to the remainder of the system. Using the centroid

Fig. 3. Launch of the X8 UAV at Ny-Aalesund. Picture courtesy of Kjell
Sture Johansen.

of the regions found to be occupied by objects of interest is
effective as long as the regions of interest can be completely
captured within one image frame. However, if this is not the
case, a more complex algorithm generating several locations
per occupied region might be necessary. An example of an
algorithm which could be used to generate several loitering
points that will completely cover such regions can be found
in [20].

V. UAV FIELD TEST

In order to test the performance of the object tracking
framework described in the previous sections, several field
tests were conducted. The system was implemented on the
X8 Skywalker [21]. It is a small, light-weight fixed-wing
UAV made out of styrofoam with the focus of supplying a
cheap expendable aircraft for short-duration (< 1 hour) UAV
flights. The X8 was equipped with a payload similar to the
one described in [19]. This payload consists of the open-
source ArduPilot [22] autopilot, a pan-tilt gimbal, a thermal
camera and an on-board single board computer capable of
performing real-time image processing. The single board
computer used in the flight tests conducted in this work is
an ODROID U3 [23], which has an ARM-based 1.7 GHz
quad core CPU and 2 GB RAM. The thermal camera used
is a FLIR Tau2 640 [24]. It has a sampling frequency of
9 frames per second (upsampled to 30 frames per second
for analog output) and is sensitive to the long-wave infrared
spectral band (7.5 — 13.5um) with a sensitivity of < 50mK.
It has a resolution of 640 x 480 pixels and a field of view
of 32° x 26°. The camera is placed inside a retractable R-
BTCS88 [25] gimbal. The gimbal can be controlled either
automatically by the on-board single board computer, or from
a manual controller located in the ground station.

An initial field test of the occupancy grid map and the
locations of interest generator integrated with the overall ice
tracking system as described in Section II was tested with the
X8 UAV payload at Ny-Aalesund, Svalbard in the spring of
2016. Figure 3 shows how the X8 UAV platform is launched
at the airport of Ny-Aalesund using a catapult.



Fig. 4. The flight plan for the initial search phase for iceberg detection and
tracking.

Two field tests were conducted, both at approximately 100
meter altitude. The purpose of the first field test was to
gather example thermal video footage of icebergs and ice
floes floating in the fjord just outside Ny-Aalesund. This
was necessary in order to see if the segmentation algorithm
developed in [13] could be used to segment an image into
ice and non-ice regions required for the measurement update
step described in Section III-A. More specifically, this means
that both the thresholding value for the algorithm in [13]
and the size of the icebergs and ice floes that were to be
detected had to be tuned according to the thermal video
data gathered during the first flight test. Note that this is
a process which could, and ideally should, be automated, or
alternatively implemented so that the parameters could be
tuned on-board and in real-time. This would be cruicial in
order to increase the autonomy of the system, as weather
conditions and environment temperatures will continously
change. However, with limited thermal data containing sea
ice available, the possibility of performing the parameter
tuning autonomously was not investigated further at this time.

After having tuned the ice detection machine vision al-
gorithm according to the thermal video data gathered, the
second flight test could be conducted. The purpose of this
flight test was to illustrate how the overall ice tracking
system can be used as a UAV ice management platform.
Unfortunately, at the day of the testing there was only one
iceberg within the reach of the X8 UAV platform, hence a
full scale test of the system for ice management has to be
tested at a later time.

In order for the occupancy grid map to be established and
contain the iceberg located within the reach of the X8, the
flight plan illustrated in Figure 4 was utilized. The iceberg
was estimated (by human observation) to be somewhere
inside the red square marked on the map. As seen from Figure
4, using the shown flight plan to find an occupancy grid
map will not yield a complete occupancy grid map over the

Fig. 5. The iceberg detection process using machine vision. On the left is
the original thermal image of an ice floe. In the middle is the processed
image, where a varation of an edge detector is used to identify objects of
interest. The image to the right show the result of thresholding the resulting
image from the edge detector in order to extract the region of the image
where the ice floe is located.

fjord outside Ny-Aalesund. However, since there only was
one iceberg within the reach of the UAV and the flight time
of the X8 is somewhat limited, it was decided that finding
an occupancy grid map for the search pattern illustrated was
sufficient.

The following is the results of the conducted flight tests,
which is a fully autonomous test of the ice tracking frame-
work in the sense that the machine vision algorithm directly
communicates its on-board, real-time generated occupancy
grid map to the locations of interest generator, which in turn
communicates a location of interest to the path planner (MPC
module). Note however that once the MPC was activated with
a generated location of interest for the detected iceberg, the
occupancy grid map was not further updated based on new
detections of the tracked iceberg.

VI. RESULTS

Using the object detection algorithm developed in [13] on
the thermal video data gathered during the first flight test
proved to be very successful at segmenting the thermal im-
ages into iceberg/ice floe regions and non-interesting regions.
An example of such a segmentation is shown in Figure 5.
This figure is an example on how, when choosing appropriate
values for a tunable threshold parameter, T}, and the size of
blobs that should be filtered, an iceberg is segmented into
foreground while the rest of the ocean surface is segmented
into background. Ty = 230 was found to be a threshold
value that yielded a robust iceberg and ice floe detector.
Furthermore, filtering out all blobs that consisted of less than
100 pixels was found to remove small blobs which could
occur from time to time because of waves and ripples in the
ocean surface.

Having tuned the iceberg and ice floe segmentation al-
gorithm, the second flight test could then be conducted
and the occupancy grid map algorithm and the locations of
interest generator could be tested with the overall system.
The occupancy grid map was initialized as a 600 x 1200 m?
map where each cell was 10 x 10 m? in size. The initial
logarithmic probability, I; o was set to 0, which means that
each grid cell was assumed to have an equal probability of
being occupied or not. P; was set to 0.8 and P, was set
to 0.2. Flying 1 round of the flight path shown in Figure 4
while updating the occupancy grid map based on the captured
segmented thermal images yielded the development of the
occupancy grid map that is shown in Figure 6. Note that for



Fig. 6. The state of the occupancy grid map at different points in time during
the second flight test conducted at Ny-Aalesund. The top left occupancy grid
map is the grid map state at the beginning of the search, while the bottom
right occupancy grid map is the state of the grid map towards the final stages
of the initial search.

simplification purposes, the gimbal on-board the X8 UAV
platform was set to point directly downwards in the UAV
body frame. This was done to reduce the uncertainty in
the projection of pixels into the map frame as described in
Section III-A.

Using the occupancy grid map shown in Figure 6, a
location of interest was generated by thresholding this map
with T; = 0.8 after the UAV had completed 1 round of the
flight plan. This yielded the thresholded occupancy grid map
shown in Figure 7, with the centroid of the blob located
at —225 m North and 60 m East in the North-East plane.
This point was then autonomously given to the MPC path
planner, and the MPC was activated with a reference loiter
radius of 125 m. The resulting iceberg tracking behaviour is
illustrated in Figure 8, while the distance from the X8 UAV
to the estimated location of the iceberg is shown in Figure
9.

Looking at Figure 8 it is readily seen that the MPC is
successful at keeping the UAV in the wanted tracking range
of ~ 125 m to the located iceberg for most of the time.
However, on the right hand side of the loiter a more unstable
tracking pattern is observed. The unstable tracking pattern
is also visible in Figure 9, where it is observed that the
UAV’s distance to the estimated iceberg location occasionally
dips 10 — 30 m below the 125 m reference range. Although

Fig. 7. The complete (left) and thresholded (right) occupancy grid map for
the second flight test.

UAV Ice Tracking Path
T T T

-100 -

-150 [

-200

-250 [

North [m]

-300 [

-350 -

. . . . . . . . .
4150 100 -50 0 50 100 150 200 250 300 350
East [m]

Fig. 8. UAV path while using an MPC to track an iceberg.

200 Distance from UAV to Ice Berg

N
a
o

n
o
)

N
a
=]

T S

50

Distance to Object [m]
5
o

0 50 100 150 200 250 300 350 400
Time Step [s]

Fig. 9. Distance from the UAV to the estimated position of the iceberg.



the data of the UAV’s signal strength to the ground station
is not available, a temporary loss of signal was sometimes
observed when the UAV was traversing the right hand side
of the loiter. Since the MPC was implemented in the ground
station, a loss of communication between the UAV and the
ground station will cause the ground station to not receive
updated telemetry data from the UAV. Hence, the ground
station MPC believes that the UAV is standing still during the
time that the communication is lost since it will assume the
most recent received telemetry message is the current state of
the UAV. This causes the MPC to generate a waypoint which
is compliant with the belief that the UAV is at a different
position than what it really is. When the communication link
between the UAV and the ground station is re-established,
this wrongly calculated waypoint is the first waypoint the
UAV receives. However, the ground station will quickly
receive a telemetry update from the UAV, which enables the
ground station MPC to calculate a more reasonable waypoint,
correcting the UAV course so that it can continue to follow
the ideal loiter pattern. This problem could be mitigated by
implementing the MPC completely on-board and getting rid
of the MPC’s ground station component.

VII. CONCLUSIONS

In this paper, a UAV ice tracking framework for au-
tonomous sea ice management was developed. The frame-
work is focused on enabling a UAV to perform real-time
processing of on-board sensor data and autonomous decision
making in ice management applications. This is achieved by
combining a machine vision algorithm for object detection
with an occupancy grid map algorithm. Furthermore, in order
to enable autonomy, these algorithms are coupled with a
locations of interest generator and an MPC UAV path planner.
By doing this, the UAV is able to automatically identify
regions of interest based on the detection of ice features of
interest during an initial search period, before autonomously
investigating these regions of interest further using the MPC
path planner.

The object detection algorithm developed in [13] was
proven to be successful in segmenting the UAV’s thermal
images into ice and non-ice regions by tuning the algorithms
parameters. Furthermore, using on-board navigation data to
get the UAV’s and camera’s attitude and altitude, the on-
board computer was able to automatically generate and
update an occupancy grid map over an area of interest, where
each cell in the grid map is given a probability of being
occupied by an iceberg or ice floe. The generated occupancy
grid map can in turn be used in order to generate locations of
interest, which are locations that the UAV should investigate
and keep track of.

The presented ice tracking framework was implemented
on-board a UAV payload, and was tested in a UAV flight test
conducted in the fjord outside Ny-Aalesund at Svalbard. It
was found that the system was able to successfully create
an occupancy grid map based on automatically segmenting
thermal images on-board and in real-time into ice and non-
ice regions. Furthermore, using this occupancy grid map, a

single location of interest was detected and its centroid was
calculated and passed to the MPC path planner developed
in [14]. The MPC was successful at keeping the UAV in
the tracking range of the estimated iceberg location for most
of the time. However, some challenges regarding commu-
nication delay and having the MPC implemented off-board
in the ground station was observed. Although not a major
issue, this definitely emphasize the need to implement the
MPC in a more robust way, e.g completely on-board, for ice
management missions to be conducted in the future.

Although nominal testing indicates that the proposed
framework is suitable for ice management scenarios, a more
complete test where there are more icebergs and ice floes
should be conducted in order to better assess the performance
of the ice tracking framework as a UAV ice management
platform. The accuracy of the resulting occupancy grid map
should also be assessed in further testing.
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