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The precise functional role of the hippocampus remains a topic of much debate. 

According to a dominant view, the dorsal/posterior hippocampus is implicated in 

memory and spatial navigation and the ventral/anterior hippocampus mediates anxiety-

related behaviours. However, this ‘dichotomy view’ may need revision. Gene expression 

studies demonstrate multiple functional domains along the hippocampal long axis, 

which often exhibit sharply demarcated borders. By contrast, anatomical studies and 

electrophysiological recordings in rodents suggest that the long-axis is organized along a 

gradient. Together, these observations suggest a model in which functional long-axis 

gradients are superimposed on discrete functional domains. This model provides a 

potential framework to explain and test the multiple functions ascribed to the 

hippocampus. 

 

The hippocampus is a medial temporal lobe structure critically involved in episodic memory 

and spatial navigation1-7. Its long, curved form is present across all mammalian orders and 

runs along a dorsal (septal) to ventral (temporal) axis in rodents, corresponding to a posterior-

to-anterior axis in humans (FIG. 1a-b). The same basic intrinsic circuitry is maintained 

throughout the long axis and across species (FIG. 1c). Despite this conserved intrinsic 

circuitry, the dorsal and ventral portions have different connectivities with cortical and 

subcortical areas, and this has long posed a question as to whether the hippocampus is 

functionally uniform along this axis. Here we review cross-species data that show how the 

seemingly disparate functions ascribed to the hippocampus can be accommodated by a model 

in which different functional properties exist along the longitudinal axis.  

The severe memory impairment suffered by patient H.M. following bilateral 

hippocampal resection1 led to intensive study8 of patients and animal models with 

hippocampal damage, with an ensuing characterisation of hippocampal function in terms of 

declarative memory2, encompassing both episodic and semantic memory. At the same time, 

however, evidence emerged for a hippocampal role in spatial memory, based on the discovery 

of hippocampal ‘place cells’9,10 and the demonstration that hippocampal lesions impair spatial 

memory4.  Both the declarative memory hypothesis11 and the spatial mapping hypothesis12 of 

hippocampal function proposed a unitary model in which the entire hippocampus is dedicated 
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to a single, general type of memory. In light of subsequent evidence for a hippocampal role in 

emotional memory13, an alternative model that could account for different types of memory is 

that each type of memory depends on separate intrahippocampal circuits; this raises the 

question of whether these circuits are segregated or superimposed14.  

In one anatomical framework, functionally distinct hippocampal circuits are 

segregated along the dorsoventral hippocampal axis. Indeed, early rodent electrophysiological 

studies indicated dissociable response properties in dorsal vs. ventral hippocampus15-16, and 

early lesion studies suggested that behaviour was differentially affected by dorsal and ventral 

hippocampal lesions17-20. These early studies did not, however, distinguish between the 

location and the volume of the lesion. Subsequent work21-22 which did make this distinction 

showed that restricted dorsal hippocampal lesions, but not similarly sized ventral lesions, 

impaired spatial learning. A role for the hippocampus in emotional responses23 was proposed 

to reside in the more ventral parts of the hippocampus, on the basis of more dense ventral than 

dorsal connectivity with the amygdala24-25 and hypothalamic endocrine and autonomic 

nuclei26, and the selective ventral hippocampal role in the endocrine stress response27. The 

ensuing view, which has dominated the field ever since, has been that dorsal parts of the 

hippocampus (DH) mediate cognitive functions — particularly spatial memory — whereas 

ventral portions of the hippocampus (VH) are involved in emotional responses28-29.  

 This ‘dorsal–ventral dichotomy view’ was, in part, based on observations that 

emphasized segregation of inputs to the hippocampus. However, differences in connectivity 

with cortical and subcortical structures along the dorsoventral axis of the hippocampus are 

gradual rather than absolute30, which suggests that functional differences along the long axis 

may also follow gradient-like organisation31. Furthermore, recent gene expression data 

indicate that there are multiple, discretised dorsal–ventral subdivisions along the hippocampal 

long-axis32. Thus, given this potentially more complex hippocampal long-axis functional 

organisation14, the currently accepted dorsal–ventral dichotomy model requires revision. 

In this Review, we first describe anatomical findings in rodents that suggest there are 

multiple long-axis functional gradients. We then review evidence from rodent gene 

expression data indicating that discrete genetic domains are superimposed on this graded 

long-axis organisation. We then discuss — using data from studies in animals and humans —

how these anatomical and genetic patterns may result in patterns of long-axis functional 

specialisation, particularly in terms of spatial processing, emotional responses, action and 

episodic memory. The evidence for multiple levels of longitudinal functional organisation 

should change our view of the hippocampus and is critical to understanding the role of the 

hippocampus in cognition. 

 

 

Hippocampal long-axis anatomy in rodents 

 

Gradients in hippocampal–cortical connectivity 

In terms of cortical input in rodents, a dorsolateral to ventromedial gradient of origin in the 

entorhinal cortex (EC) corresponds to a dorsoventral axis of termination in the hippocampus33-

35 (FIG. 2a). This topography is smooth, without abrupt transitions in EC–hippocampal 

projections. The cortical input to the EC is itself topographically arranged (FIG. 2a) and this 

mapping is maintained in EC–hippocampal inputs. Taking the rat cingulate cortex as an 

example36, information arising from the infralimbic (IL) and prelimbic (PL) cortex will, via 

input to the ventromedial parts of the EC, primarily reach ventral parts of the hippocampus. 

By contrast, projections from the PL cortex targeting intermediate parts of the EC influence 
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the hippocampus at intermediate dorsoventral levels. The remaining parts of the cingulate 

cortex — anterior cingulate and retrosplenial (RS) cortices — primarily target dorsal and 

lateral parts of the EC, which subsequently project to dorsal parts of the hippocampus36. The 

hippocampus thus receives a transition of projections from the cingulate cortex along its long 

axis: cingulate areas involved in emotional regulation (IL and PL) project more ventrally, and 

cingulate areas involved in spatial processing (RS) project more dorsally. Importantly, this 

transition of projections is continuous rather than discretised. Furthermore, reciprocating 

projections from the CA1 and subiculum to the EC show a topographical organisation similar 

to the EC–hippocampal inputs37.  

 

Gradients in hippocampal–subcortical connectivity  

Hippocampal connectivity with multiple subcortical structures also shows dorsoventral 

topographical gradients. Taking the topography of the major hippocampal  output to the 

lateral septum (LS)26 as an example, the dorsal half of the hippocampus projects to a very 

small dorsal part of the LS, whereas progressively more-ventral parts of the hippocampus 

innervate progressively larger parts of the LS more ventrally (FIG. 2b). Adjacent hippocampal 

areas along the longitudinal axis innervate distinct, though overlapping regions of the LS38. 

Thus, although individual LS neurons receive inputs from a dorsoventral ‘patch’ of 

hippocampal pyramidal cells38, the projection on the whole has a topographically graded 

organisation. Critically, this topographically graded organization is preserved in LS 

projections to the hypothalamus. This implies that different hippocampal regions along the 

longitudinal axis map topographically onto different hypothalamic regions involved in 

behavioural, endocrine and autonomic responses associated with specific goal-oriented 

behaviours26 (FIG. 2b). Hippocampal connectivity with the nucleus accumbens39 (NAc) and 

amygdala40 also follows a topographical pattern, with progressively more ventral hippocampal 

portions projecting to progressively more medial parts of both of these subcortical structures 

(FIG. 2c).  

Interestingly, these topographical gradients appear to arise during embryonic 

neurogenesis41. Although neurogenesis occurs simultaneously along the hippocampal 

dorsoventral axis, the dorsal hippocampus projects to those zones in target structures in which 

cells were generated earlier, whereas progressively more ventral parts project to zones in 

which cells were generated later. For example, the dorsal hippocampus projects to a zone in 

the LS that contains earlier formed, medially placed LS cells, whereas the ventral 

hippocampus — which is geometrically further away from the LS — projects to lateral-

septum zones containing later-formed, laterally placed cells41.  

The density of neuromodulator projections to the hippocampus also changes along the 

long axis (Supplementary Box 1). Whether these changes are gradual, step-like or abrupt has 

not been studied in detail, but a clear pattern of stronger projections of monoamine systems to 

more ventral parts of the hippocampus is apparent. Thus, in general, the dorsoventral 

organisation of extrinsic connectivity is one of gradual transitions of topographically 

organised projections, which does not show a dichotomous segregation into discrete dorsal vs. 

ventral portions. 

 

 

Gene expression along the long axis  

The development of an unbiased transcriptional map of the mouse hippocampus, using 

genome-scale in situ hybridization42 has provided detailed molecular evidence for a 

discretised dorsal–ventral pattern of gene expression29,32,43. Importantly, genetic domains are 
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not defined by expression of any single gene but, rather, by the combined overlap of many 

gene expression domains32. Thus, the overlap of many genes with common expression 

boundaries gives rise to genetic domains with clearly demarcated borders32. Boundaries 

between domains can be reciprocal, in that individual genes delineate a given boundary from 

each side (FIG. 3a) 32. Multiple segregated molecular subdomains, each with a unique 

complement of expressed genes, have been demonstrated along the long axis. A first study 

demonstrated 9 domains within CA332, and other studies showed that DG29 and CA143 are 

segregated into three major molecular domains: dorsal, intermediate and ventral (with ventral 

CA1 domain comprising 4 subdomains). Importantly, the molecular differentiation along the 

longitudinal axis is not simply dorsal vs. ventral, i.e. there is no evidence for a boundary that 

divides the long-axis into two portions. If the 9 expression domains in CA3 can be simplified 

into dorsal, intermediate and ventral parts, similar to CA1 and DG29, this could suggest a 

tripartite model of the long axis. Such a tripartite model has been recently corroborated in a 

developmental gene expression study in rats44. Nevertheless, the exact number of domains 

along the long axis, and whether these are hierarchically organised, is currently unknown14.  

The interesting challenge ahead will be to assess whether these patterns of molecular 

expression translate into specific functional properties along the hippocampal long axis. The 

expression profiles of genes encoding adhesion molecules and ion channels32,43 may 

determine intrinsic electrophysiological properties of discrete hippocampal neuronal 

populations, such as the differences in neuronal excitability45 and synaptic plasticity46-47 that 

have been detected along the long axis. For example, hyperpolarisation-activated cation 

channels HCN1 and HCN2, which mediate hyperpolarization-activated currents (Ih) currents, 

exhibit dorsoventral expression differences48 and are important for a spatial function that is 

dorsoventrally graded49-51. In general, neurotransmitter receptor expression varies across the 

long axis for the majority of transmitter systems (Supplementary Table 1). Studies combining 

genetic and anatomical techniques in the rodent brain have begun to reveal that neuronal 

circuits, both within the hippocampus52-53 and between hippocampus and lateral septum43, 

share common gene expression patterns, which indicates overlap between anatomical and 

genetic levels of organisation along the long axis. Importantly, however, in contrast to the 

anatomical homologies between the rodent and primate hippocampus described in Box 1, the 

recently developed transcriptional atlas of the adult human brain54 indicates that there are 

differences in gene regulation between mouse and human hippocampus. The molecular 

organisation along the hippocampal long axis in primates, and whether this is similar to 

mice32,43, remains to be examined.  

 

 

Reconciling molecular and anatomical data  

How can the molecular data indicating sharp expression boundaries along the long axis that 

are common to many genes be reconciled with the anatomical data showing extrinsic 

connectivity gradients along the long axis? Two points are important in answering this 

question. First, at the level of individual genes, there are various long-axis expression 

patterns, including gradual changes, step-like changes and sharp transitions32. Second, 

although extrinsic hippocampal connectivity appears to follow a smooth, graded 

topographical organisation, sharp demarcations of intrinsic connectivity along the long-axis 

have also been observed. For example, the two major longitudinal association fibre systems in 

the hippocampal formation — the longitudinal axon collaterals of CA3 pyramidal cells and 

the longitudinally-oriented axons of DG mossy cells — show extensive axon divergence 

within the dorsal two-thirds and within the ventral third of rat hippocampus, but few fibres 
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cross between these subdivisions30,55-58 (FIG. 3b). That is, the division between these areas in 

terms of intrinsic connectivity is relatively abrupt. Similarly, in monkeys there are extensive 

vs. limited interconnections in the posterior two-thirds vs. the anterior third of the 

hippocampus, respectively59 (FIG. 3b), although the boundary, in terms of intrinsic 

connectivity, between these hippocampal portions is less marked than that in rodents.  

In humans, discrete changes in molecular or anatomical organisation along the 

hippocampal long axis have yet to be examined. However, one study showed abrupt 

transitions in electrophysiological properties along this axis in humans60. Specifically, 

measurements at adjacent contacts (on multi-contact depth electrodes) showed an abrupt 

decrease in coherence at approximately the transition between anterior third and posterior two 

thirds of the hippocampus60. Similarly, in rats theta-wave coherence is relatively high between 

dorsal and intermediate sites, but substantially less between dorsal and ventral sites61 (FIG. 

3c). It will be important to determine whether this decrease in coherence coincides with the 

locus on the long axis at which intrinsic connectivity shows the partition described above58-59. 

Together, the data suggest that there are different types of longitudinal organisation 

— both gradual gradients and discrete sharply-demarcated domains — that appear to be 

superimposed at both the anatomical and mRNA levels (FIG. 4). Next we review how these 

various patterns of long-axis organisation may be expressed functionally.  

 

 

Functional organization of the long axis  

Spatial processing in rodents  

The representation of location by hippocampal place cells is non-topographic3. A local cluster 

of place cells in the rodent DH can cover most of a spatial environment62. Initial evidence 

suggested that relatively small segments of the DH (a quarter or less of total hippocampal 

volume) are sufficient to encode spatial memory22. However, if the original spatial encoding 

occurs in the context of a normal hippocampus, retrieval requires the entire dorsal two-thirds 

of the hippocampus (i.e., including parts of the VH), suggesting a more distributed — or 

graded —  mode of action in a normal hippocampus during spatial learning63. Thus, these 

lesion studies suggested the possibility that normal rats engage an extensive hippocampal 

network — located in the dorsal 70% of the hippocampus — during encoding and retrieval of 

spatial memory, whereas more limited networks within this dorsal region can be used for 

encoding in rats with partial hippocampal lesions63.  

Does the ventral hippocampus have a role in spatial processing? Initial data indicated 

that the proportion of ventral hippocampal cells expressing place fields was markedly lower 

than that of DH, and that ventral place cells having lower spatial selectivity64. More recent 

data demonstrate that the relative size of place fields in area CA3 increases almost linearly 

with position from the dorsal hippocampal pole (where place fields are ~1m) to the ventral 

pole (where place field size approaches 10m) (Fig 5a)31. This finding not only highlights a 

role for the VH in the processing of large-scale spatial information, it also implies a functional 

gradient along the hippocampal longitudinal axis (as opposed to a dorsal–ventral dichotomy). 

That is, the VH may subserve similar spatial processing functions as the DH, but at a larger 

spatial scale. Such a representation of space at multiple scales has computational advantages 

in the sense that a gradient for space accommodates both spatial resolution and spatial 

contiguity. A further recent observation regarding place cells is that when rodents locomote in 

a constant location, place cells firing fields are defined by time instead of location65-67, posing 

the interesting question of whether such ‘time fields’ expand from dorsal to ventral68 similar 

to place fields. 
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Place cells participate in multiple, independent spatial representations69-70, whereas 

the more recently discovered entorhinal grid cells71 encode a universal metric of the spatial 

map. Grid-cell firing locations define a periodic triangular or hexagonal array covering the 

animal’s entire environment71, and they are anchored to external cues and maintained when 

the cue is removed and with ongoing changes in the animal’s speed and direction71. The 

spatial selectivity of place cells may be linked to inputs from grid cells72-76. Critically, the 

increase in the size of place fields along the hippocampal dorsoventral axis31,64,77 is mirrored 

by an increase in the spacing between grid-cell firing locations from the dorsomedial to the 

ventrolateral medial EC71,78-79. In contrast to the gradual dorsoventral increase in place-field 

size, the observed spatial gradient in medial EC grid size shows discrete, step-like increases80. 

However, although the scale of place cells increases gradually from dorsal to ventral on 

average, this does not rule out the existence of discrete transitions like those observed in 

entorhinal cortex80. If increase in place-field scale turns out not to be continuous, it will be 

important to determine whether this scale changes abruptly with transitions between genetic 

domains. Assuming for now that the place-field scale is indeed continuous, inputs from 

different medial EC functional modules could, in theory, be combined76,81 to give rise to the 

observed longitudinal spatial gradient75. Specifically, EC modules of increasing spatial scale 

show considerable anatomical overlap in the dorsal-to-ventral axis of the EC80, suggesting 

that there may be overlap of module inputs to hippocampus, even if inputs come from the 

same dorsoventral EC level. Future studies will determine whether grid-cell modules in the 

medial EC distribute evenly across the hippocampus, or connect to modules in hippocampus, 

or whether there is complete convergence. With respect to the organisation of the 

hippocampal long axis more generally, the gradient in place-field size illustrates that, despite 

numerous molecular and anatomical domains having distinct boundaries, a combination of 

hippocampal afferent signals may engender gradually changing functional properties (FIG. 4).  

 

Spatial processing in primates 

Does the dependence of spatial processing on dorsal portions of the hippocampus in rodents 

extrapolate to posterior portions of the hippocampus in primates? The majority of primate 

data pertaining to functional long-axis organisation comes from human structural and 

functional MRI (fMRI) studies. It should be kept in mind that technical factors may 

differentially influence fMRI and voxel-based volumetric measures for anterior vs. posterior 

portions of human hippocampus. fMRI susceptibility artefact and signal drop-out may affect 

the anterior medial temporal lobe more than posterior medial temporal lobe82 (although 

protocols exist to correct this83). In addition, posterior hippocampus is approximately half the 

cross-sectional area than the larger anterior hippocampal head, such that activated cluster size 

and degree of post-acquisition spatial smoothing may influence statistical effects differentially 

along the long-axis.  

Despite these potential limitations, fMRI studies in humans have demonstrated a 

relationship between activation7,84-85 and structural change86 in the posterior hippocampus 

with navigation, and are therefore broadly in keeping with the dependence of spatial function 

on dorsal portions of the hippocampus in rodents. However, neuroimaging results are 

typically reported as anatomically focal effects that exceed a particular statistical threshold, 

and simply demonstrating an effect to be located at a specific long-axis locus does not exclude 

an effect just below that statistical threshold at another locus. Although most studies report 

responses in either anterior or posterior hippocampus, some studies demonstrate functional 

double dissociations between long-axis loci, and these are particularly informative6,87. Thus, 

in further support of a posterior hippocampal specialisation for space processing, one reported 
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double dissociation is that accurate way-finding activates posterior, but not anterior, 

hippocampus84, whereas activity in anterior, but not posterior, hippocampus correlated with 

the formation of a survey representation of a new virtual-reality environment84 (see also 88-89). 

A recent fMRI study90 reported a long-axis dissociation in terms of spatial size and 

complexity. Participants navigated through three virtual mazes (small with 6 corridors; large 

with 6 corridors; large with 14 corridors), and then, during scanning, were presented images 

of landmarks from these mazes and asked to retrieve to which maze they pertained. Anterior 

hippocampal activation scaled with the number of corridors (complexity), whereas posterior 

responses were larger for larger mazes. The interpretation of these data is limited, however, 

by the fact that for all mazes, participants navigated almost exclusively along border paths, 

and there was no measure of how much spatial retrieval was evoked by correct landmark 

retrieval (cf. 91).  

Electrophysiological evidence for posterior hippocampal involvement in spatial 

processing in primates is limited. One non-human primate study using a spatial delayed 

matching-to-sample  task demonstrated greater activity during the delay period in posterior 

hippocampus than in anterior hippocampus92. Although intracranial recordings in humans 

have provided evidence for place-cell-like responses during navigation93, the relative 

distribution of these cells along the long axis, and how their responses vary as a function of 

environment size, has yet to be determined. However, recent electrophysiology data from 

non-human primates reveal grid-like cell properties in the posterior EC. The study showed 

that spatial scale varied as a function of distance from the rhinal sulcus94 (which is equivalent 

to the dorsomedial-to-ventrolateral axis in rodent medial EC), suggesting that spatial scale 

may also vary along the primate hippocampal long axis (FIG. 5b).  

How does spatial scale representation observed in rodents increase or change across 

species?  Developments in human fMRI, such as hippocampal MRI unfolding95 and high-

resolution fMRI techniques96-97, combined with within-scanner virtual reality applications84-85, 

may provide the technical advances that are required to confirm whether there is a linear 

representation of spatial scale along the human hippocampal long axis. It will be particularly 

interesting to assess whether humans show the same spatial precision as that expressed in the 

rat DH (<1 m at the dorsal pole31), and conversely, whether spatial scale extends beyond the 

10 m expressed in the rat VH31, given the much larger home range of humans vs. rats. By 

contrast, no species may need grids larger than a few meters because grid maps are likely to 

be local and fragmented in all realistic environments98. An important point to note, however, 

is that humans are obviously not locomoting during fMRI scanning, and this might influence 

the scale of the place fields during scanning, similar to what has been observed in rodents 

locomoting by train instead of walking themselves99. Studies in monkeys have also been 

limited for practical reasons: thus far these have involved head fixation94. As a result, grid-like 

cells in monkeys94 observed in these studies differ from rodent grid cells71 in that they follow 

eye position, rather than the animal’s movement in space. Thus, future studies could perform 

recordings in freely-moving monkeys to test whether spatial scale is comparable to that 

observed in rodents.  

 

Emotion 

Anatomical evidence demonstrates that the reciprocal connectivity between the amygdala on 

the one hand and CA1 and the subiculum on the other hand is largely confined to the ventral 

two thirds40,100-102. This is particularly striking in a study which reported that only the dorsal-

most portion of the hippocampus does not innervate the amygdala40. This connectivity is 

topographically organized along the longitudinal hippocampal axis, so that the ventral-to-
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dorsal axis of origin of the projection in CA1 and subiculum is associated with a medial-to-

lateral axis of termination in the amygdala40,102 (FIG. 2c).  In view of the specific roles for 

individual amygdala nuclei, this pattern of connectivity could explain the emotion-related 

functions of hippocampal regions along the dorsoventral axis. For example, the basolateral 

amygdala, which has a crucial role in fear learning103, receives inputs from a considerable 

extent of the dorsoventral long-axis40,102 (FIG. 2c). This may explain the inconsistent findings 

in rodent fear conditioning studies following lesions or inactivation of either dorsal or ventral 

hippocampus29,104-106 (in which some studies find effects of dorsal not ventral lesions, and vice 

versa). That is, the effects on conditioned fear may be a function of the locus of the 

hippocampal lesion with respect to the dorsoventral hippocampus to mediolateral amygdala 

topography. It should be noted that the origin of the homologous hippocampus–amygdala 

topographical projections in primates is more restricted in the sense that  amygdala-projecting 

neurons are focally restricted to the most anterior (uncal) CA1 and prosubiculum107. This may 

explain why fMRI activations associated with emotional memory in humans are primarily 

anterior108-109 (but see ref. 110). 

In contrast to evidence for both DH and VH involvement in conditioned fear, there is 

growing evidence that the ventral hippocampus, but not the dorsal hippocampus, plays a role 

in mediating unconditioned fear behaviour28,111-112. An initial study111 demonstrated that 

ventral, but not dorsal, hippocampal lesions reduce defensive fear responses during exposure 

to the elevated plus maze (an unconditioned threatening environment). The fact that selective 

amygdala lesions did not reduce defensive responses111 suggests that the ventral hippocampus 

may influence unconditioned fear expression independently of the amygdala, namely through 

direct VH projections to downstream neuroendocrine and behavioral control systems in the 

hypothalamus26 (FIG. 2b). With respect to longitudinal organisation, the critical observation is 

that lesion data for unconditioned emotional response show an anatomically marked ventral-

dorsal hippocampal distinction: lesions of the dorsal two-thirds of the hippocampus not 

affecting fear expression, whereas small lesions in the ventral one-third did111. The 

hippocampal role in unconditioned emotional responses may thus be segregated to a ventral 

functional portion.  

Given the model of longitudinal organisation we propose, in which demarcated 

domains are superimposed on functional gradients (FIG. 4), it is particularly interesting to 

consider the role of this ventral portion in unconditioned emotional responses in the context of 

the hippocampal gradient for space processing31. In non-spatial tasks, such as tone–shock fear 

conditioning, place-cell responses to non-spatial stimuli, such as the auditory tone that 

predicts the shock113, are only observed when the animal is in that cell’s place field. Thus, 

having larger place fields in the ventral hippocampal portion, which is strongly linked to 

defensive behaviour-related circuitry of the hypothalamus26,101, may be evolutionary 

advantageous. That is, it is obviously advantageous to detect approaching danger as far away 

as possible, and distant danger may require fewer computational steps within these larger 

fields of the ventral hippocampus. However, it is not yet known whether this ‘emotional’ 

portion of the hippocampus has a dorsal border that is defined by molecular transitions29,32,43, 

by abrupt changes in longitudinal association fibre anatomy58, or is anatomically 

circumscribed to a particular level of topographical VH–LS–hypothalamic connections26.  

 

Action and motivation 

Although no gross, permanent motor deficits arise after bilateral hippocampal lesions, an 

association between hippocampal activity and motor acts has long been described3,114. In non-

human primates, movement-related responses have been reported  in anterior, but not middle 
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or posterior, hippocampus92. Although human intracranial recordings115 and fMRI116 studies 

have demonstrated various motor-evoked hippocampal responses, differences in these 

responses along the human long axis have yet to be examined. In rodents, ventral, but not 

dorsal, hippocampal stimulation increases locomotion117-118 by engaging the NAc and 

mesolimbic dopamine (DA) system119-121, whereas inhibiting VH decreases locomotion104. 

This relationship with the NAc is also relevant to the observation that reward- or goal-directed 

functions localise to ventral parts of rodent hippocampus122-123 and to the anterior human 

hippocampus124, given that the ventral striatum — in particular the NAc — is considered the 

‘limbic–motor interface’ at which motivation- and emotion-related processing gains access to 

the motor system125-126.  

The rodent studies discussed above117-121 examined dorsal vs. ventral functional 

dissociations, but the anatomical connectivity between the hippocampus and NAc in fact 

shows a graded topography39. In view of this topography, it was suggested that the 

intermediate hippocampus, lying between the dorsal and ventral poles, is the site where 

accurate place encoding (which is strongest in DH) ‘meets’ connections (which are strongest 

in the VH) with behavioural control areas, including prefrontal cortex and nucleus 

accumbens127 (FIG. 2). Selective lesions along the long axis have demonstrated that the 

intermediate hippocampus is critical for rapid place learning and the subsequent use of this 

encoded information to guide navigational performance127. However, it should be noted (in 

view of the anatomical orientation of the intrinsic hippocampal circuitry) that after selective 

lesioning, the remaining dorsal, intermediate and ventral portions of the hippocampus will 

differ in their composition of subfields. Thus, intermediate tissue blocks are more likely to 

comprise complete trisynaptic circuits than blocks from the poles, and this could bias the 

interpretation of such studies in terms of the functional relevance of the intermediate 

hippocampus.  

 

Episodic memory 

An early suggestion128, based on human positron emission tomography (PET) data, proposed 

an dissociation between anterior and posterior hippocampus for episodic-memory encoding 

and retrieval, respectively (but see ref 129). Furthermore, anterior hippocampal responses to 

novel (vs. familiar) stimuli have been frequently reported6,130-132 (but see 133) and some studies 

showed a double dissociation between anterior responses to novelty and posterior responses to 

previously encountered stimuli6,130. Given that novelty and familiarity detection may be 

components of memory encoding and retrieval processes, respectively6,130,134, these data could 

be taken as support for a dissociation between encoding and retrieval within the 

hippocampus128. However, a caveat to these proposed dissociations is that single-unit data and 

neuronal-network models indicate that it is extremely unlikely that different hippocampal 

cells, i.e., anterior vs. posterior cells, are involved in encoding versus retrieval of a particular 

memory. This is because a memory is recalled by reactivating the very same neuronal 

network that was formed during the encoding of the event91,135-137, so that encoding and 

retrieval occur in parallel, possibly on alternating theta cycles137-139.  

One recent suggestion140 — based on an extrapolation of the ventral-dorsal increasing 

resolution gradient in the rodent representation of topographical space — is that in humans, 

episodic memories follow a similar gradient in terms of level of detail, i.e., the degree of 

context specificity and/or richness in detail with which that memory can be retrieved. Indeed, 

retrieval of detailed spatial141 or autobiographical142  memory has been observed to engage 

posterior hippocampus, whereas anterior hippocampus may be more involved in coarse, ‘gist-

like’ memory140. A demonstration that this organisation follows a gradient-like pattern akin to 
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place representation has yet to be provided, and a clear challenge will be how to define a 

metric by which to quantify the richness or detail of episodic memories.  

 

Forming non-sequential, higher-order connections 

A highly consistent observation in human memory neuroimaging is that tasks requiring 

semantic processing engage the anterior hippocampus129,143-144. There is evidence of double 

dissociation between semantic processing in the anterior hippocampus and non-semantic 

processing in the posterior hippocampus 143,145 (the term ‘relational’ memory146 has been used 

for the former, but we use semantic memory here, given that all memory could be viewed as 

relational). One example of semantic processing that requires flexible expression of memory 

is transitive inference147. Human studies showing that transitive inference activates the 

anterior hippocampus148-149 (FIG. 6a) are underpinned by earlier demonstration that 

hippocampal lesions impair transitive inference in rodents147. This led to the suggestion that 

the hippocampus is critical for the linking of episodic memories into semantic networks in 

order to abstract the common features — spatial and nonspatial — among related memories 

and to mediate flexible memory expression and inferential reasoning150. Although initial 

lesion data linking the hippocampus to transitive inference involved the entire dorsoventral 

extent147, a recent electrophysiological study reported that neurons in the ventral CA3 possess 

the response characteristics that are required to enable flexible memory encoding that span 

different contexts151. Whereas neuron ensembles in the dorsal CA3 rapidly associated the 

identity of specific objects with locations, successively more-ventral neurons were reported to 

increasingly generalise over object-sampling events involving specific objects and locations 

within a spatial context, whilst still distinguishing between different spatial contexts151. 

What response properties of ventral hippocampal neurons might facilitate the 

formation of higher-order memory representations? One possible mechanism emerges from 

the relationship between place-cell oscillating frequency and place-field size152. Every place 

cell oscillates faster than the population theta rhythm, which brings about a frequency-

interference pattern known as phase precession153. Phase precession enables a compressed 

representation of temporal structure to be expressed within single theta cycles (the 

compression dynamic154). Given the size of place fields, several place cells are active together 

in each theta cycle, such that the compression dynamic potentially allows not only adjacent 

but also more distant neuronal assemblies to be linked, as long as they consistently co-occur 

in the same theta cycles. The oscillation frequency of place cells decreases along the dorsal–

ventral axis, whereas the size of place fields increases31,77,122. Thus, larger place-field size 

ventrally theoretically provides more opportunities for neurons with distant place fields (that 

is, in the ventral hippocampus) to fire together in the same theta cycle than in the dorsal 

hippocampus5,155. As such, the ventral hippocampal portion may be specially suited for the 

formation of non-sequential or higher-order links between memory representations that could 

provide the flexibility needed for efficient navigation and detour planning5,155. Although this 

suggestion is derived from studies on spatial processing, it could be extrapolated to semantic 

function: if locations are assumed to be analogous to items, and we assume that dorsal–ventral 

differences in place-cell properties extrapolate to the human anterior–posterior axis, a larger 

field size anteriorly provides a potential explanation for the anterior locus of semantic 

processing responses in human hippocampus (FIG. 6b). Semantic memory obviously involves 

considerably more than just linking remote locations or time points, but this mechanism for 

creating higher-order memory representations potentially underpins aspects of semantic 

memory formation.  
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Clinical implications 

We propose a model of hippocampal functional organisation which superimposes long-axis 

gradients and discrete functional domains (FIG. 4). Can we use this model of longitudinal 

organisation to make specific predictions about the clinical manifestations of hippocampal 

damage along the long axis in humans? Hippocampal structural abnormalities are observed in 

a wide range of diseases156.  With developments in human hippocampal volumetric 

techniques157 and the application of functional imaging to patient populations, evidence is 

emerging for anterior–posterior differences in the relative severity of hippocampal structural 

and functional changes in a variety of psychiatric and neurological conditions158 (although the 

caveats in interpreting long-axis differences described earlier also apply here). For a number 

of these conditions, preclinical animal models have considerable predictive value regarding 

the relative severity of anterior vs. posterior pathology observed in patients (Table 1). In 

addition, the locus of pathology on the long axis is associated with specific cognitive 

impairments (for example, schizophrenia is associated with anterior hippocampal pathology 

and with impaired transitive inference159-160) as well as with clinical manifestations of 

particular diseases. For example, in view of the greater connectivity between ventral (anterior) 

hippocampus and endocrine hypothalamic nuclei26, impaired hormonal regulation by the 

hypothalamus (such as  hyponataraemic polydypsia reported in schizophrenia patients with 

decreased AH volume161-163) may be a common finding in patients with AH damage — this is 

something that has been relatively under-investigated in medial temporal lobe epilepsy164-166. 

Furthermore, given the role of VH111 — and ventral DG in particular167 — in models of innate 

anxiety, this region could prove an important future target for a range of neurotic disorders. 

Lastly, assuming genetic subdomains are found in human hippocampus, one important future 

challenge for clinical research will be to determine whether these subdomains can be 

characterised non-invasively with current MR techniques, and whether the genetic 

composition of these subdomains can be related to specific pathologies. 

 

 

Conclusions and future directions 

Two patterns of functional organisation appear to be superimposed on the hippocampal long 

axis: gradual and discrete transitions. At present, this framework can accommodate some of 

the multiple, and disparate, functions that have been ascribed to the hippocampus. However, 

for future studies to disambiguate the relative contributions of different genetic domains and 

different levels along functional gradients to a given behaviour, a novel approach with high 

anatomical precision is required. The huge advance in understanding hippocampal molecular 

anatomy enables this information to be used to allow highly specific targeted genetic 

manipulation of a particular region of the hippocampus (e.g. the ventral third of a specific CA 

subfield). A variety of transgenic tools can be applied to stimulate or block activity in that 

region with tight temporal control relative to an experimental paradigm. Thus, this 

experimental approach provides an avenue toward functional manipulation that could 

determine whether a specific domain of the hippocampus is necessary or sufficient to 

subserve a particular behaviour, and the mechanism through which this is achieved.   
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Glossary 

Place cells: pyramidal cells that fire in specific locations, with spatially restricted firing 

patterns that are maintained on memory retention trials 

Episodic memory: Long-term memory for events or episodes that is accessible to conscious 

recollection. 

Hippocampus: in animal studies, the term describes dentate gyrus (DG) and CA subfields. In 

human fMRI studies, the term typically includes DG, CA subfields and subiculum (except in 

high-resolution fMRI). 

Semantic memory: Long-term memory for facts that is accessible to conscious recollection. 

Callosal mammals: mammals with a corpus callosum. In acallosal mammals, such as the 

opossum, the dorsal portion of the hippocampus extends into the frontal lobe. 

Theta rhythm: A prominent 4–10 Hz oscillation in the hippocampal local field potential (LFP) 

studied most in rodents but also present in humans. 

Transitive inference: If A is paired with B, and B paired with C, the transitive inference is A 

with C. 

Theta phase precession: the phenomenon that when a rat first enters the field of firing of a 

place cell, spiking occurs at late phases, but shifts to earlier theta phases as the rat moves 

through the place field. 

Adult neurogenesis: the production of new neurons within the brain of an adult animal. Adult 

neurogenesis is primarily confined to the subventricular zone and the subgranular zone of the 

DG. 

Ischaemia: a restriction in blood supply, leading to lack of oxygen delivery. 

Hippocampal MRI unfolding: The application of cortical unfolding techniques to high-

resolution MR images of hippocampus. Structural images are segmented and the gray matter 

surface extracted and stretched until it is a two-dimensional flat surface. 
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Box 1. Is the rodent ventral-dorsal axis homologous to the primate anterior-posterior 

axis? 

There are obvious macroscopic differences between the rodent hippocampus and the primate 

hippocampus. Therefore, we consider whether the rodent ventral-dorsal axis is homologous to 

an anterior-posterior axis in non-human primates and humans (FIG. 1).  

One obvious difference lies in the orientation of the hippocampal long axis in rodents 

versus humans. This difference probably relates to the fact that in non-primate callosal 

mammals, the major portion of dorsal hippocampus is tucked under the caudal section of the 

corpus callosum, whereas this subcallosal flexure diminishes from prosimian to simian 

species to being practically absent in human, presumably because of forward growth of the 

temporal lobe168. That is, the ventral hippocampus appears to have been ‘pulled’ downwards 

and forwards in primates to occupy a position in the anterior medial temporal lobe, thereby 

changing the long axis orientation.  

A second macroscopic difference is that the rodent hippocampus cross-sectional area is 

relatively uniform along the long axis, whereas the anterior hippocampus has expanded 

relative to the posterior hippocampus in primates, particularly in humans169. One speculative 

phylogenetic account for this involves the entorhinal cortex, which in all mammals has a close 

topological relationship with ventral/anterior hippocampus (FIG. 1b). With forward growth of 

the temporal lobe, the entorhinal cortex moved from its occipital lobe position in lower-order 

mammals to a rostral location in the primate anterior-medial temporal lobe, where it has 

expanded considerably compared to other components of the uncus168. Thus, the expansion of 

the entorhinal cortex and its more anterior position in the temporal lobe in primates may have 

accompanied the expansion of the anterior hippocampus, such that a greater portion of 

hippocampal tissue becomes located anteriorly. This observation poses several currently 

unanswered questions such as what is the functional gain/loss of increased size of anterior 

hippocampus, and is this at the expense of posterior functions in humans? What would an 

increased number of anterior cells be good for? Can the posterior functions be done with the 

small number of cells that e.g. a rodent dorsal hippocampus has? 

 The rodent and primate hippocampus also differ in terms of embryonic 

development170. Species that have an evolutionary relationship typically share the early stages 

of embryonic development but differ in later stages. Indeed, during early embryonic 

development, the human hippocampus resembles that of the rat, running dorsal-ventral with 

the dorsal portion lying above the diencephalon171. At approximately the 14-week stage and 

coincident with the development of the corpus callosum, the dorsal (supracallosal) 

hippocampus in humans begins massive involution and remains only as a rudimentary thin 

band above the corpus callosum (the indusium griseum)171-172. By contrast, the ventral 

embryological portion develops to form the length of the human hippocampus171-172. The 

figure illustrates the embryological development of human hippocampus. Note massive 

involution of dorsal (supracallosal) hippocampal primordium. Involution of the supracallosal 

part of the hippocampus also occurs in rodents, although the indusium griseum is far less 

conspicuous than in humans. This leaves open a possibility that the extent of involution of the 

dorsal embryological hippocampal portion differs between species, and one may therefore 

wonder whether a homologue of rat dorsal hippocampus is present in the human brain or 

whether the human posterior hippocampus instead corresponds, phylogenetically, to rodent 

intermediate hippocampal portions.  

 Notwithstanding these differences, a cross-species comparison of anatomical 

connectivity provides evidence that the primate hippocampal long axis may be homologous to 

that of the rat. Indeed, output connectivity of the primate hippocampus with subcortical areas 
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— including nucleus accumbens173 — follows a graded topography similar to that in 

rodents174 (but note longitudinally restricted vs. distributed hippocampal-amygdala 

projections in primates and rodents, respectively107,175). Input connectivity from entorhinal 

cortex to DG also follow a graded mapping that is analogous to that in rats34-35, with an 

anteromedial–posterolateral EC axis corresponding to an anterior–posterior DG 

termination176-178. For example, the pattern of connectivity between cingulate cortex and 

hippocampus in primates is similar to that in rats, in the sense that anterior hippocampus is 

more strongly connected with anterior regions and medial frontal cortex, and connections with 

posterior cingulate (including retrosplenial cortex) are stronger with posterior hippocampus179-

180. Figure is adapted from ref. 171. 

 

 

 

 

 

 

 

 

 

End 4th month End 3rd month End 6th month 



 23 

 
 

 

Figure 1. Cross-species comparative hippocampal anatomy.  

(a) Schematic illustrations of the orientation of the hippocampal long-axis in rat, macaque 

monkey and human. The longitudinal axis is described as ventro-dorsal in rodents, and 

antero-posterior in primates (also referred to as rostro-caudal in non-human primates). There 

is currently no precise anatomical definition for a dorsal/posterior portion relative to a 

ventral/anterior one, although in general topologically, the former is positioned close to the 

retrosplenial cortex and the latter close to the amygdaloid complex. Note that a 90º rotation is 

required for the rat hippocampus to have the same orientation as that of primates. In primates, 

the anterior extreme is curved rostro-medially to form the uncus. (b) The full long-axis of the 

hippocampus (red) can be seen in semi-transparent brains of rat, macaque monkey and 

human, with entorhinal cortex shown in blue. (c) Nissl cross-section in mouse, rhesus and 

human hippocampus. Scale bars: 1mm.  Panel (c) adapted (or reproduced, depending on 

whether we use photos or drawings) from 54.  
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Figure 2. Extrinsic connectivity gradients.  

(a) Left panel: representation of the topographical arrangement of entorhinal–hippocampal 

reciprocal connections in rodents. A dorsolateral band of the entorhinal cortex (magenta) is 

preferentially connected to the dorsal hippocampus (DH). Increasingly more ventral and 

medial bands of entorhinal cortex (purple to blue) are connected to increasingly more ventral 

levels of the hippocampus. (right panel).  Right panel: an enlarged EC indicating the topology 

of its major cortical connectivity. The white line indicates the border between lateral (L) and 

medial (M) EC.  (b) The hippocampal output to the lateral septum (LS) and hypothalamus. 

The LS can be divided into rostral (LSr), caudal (LSc) and ventral (LSv). The most ventral tip 

of CA1/subiculum (blue) projects to LSv, which projects to the medial preoptic nucleus 

(MPN) and hypothalamic periventricular zone (PVZ). More-ventral parts of the CA1-

subiculum field project to the LSr, which in turn projects to hypothalamic medial zone nuclei, 

including anterior (AHN) and ventromedial (VMH) hypothalamic nuclei. The dorsal 

subiculum (red) sends a small projection to dorsal LS, which is relayed to the mammillary 

body (MB). The thickness of the arrows indicates the projection density. (c) Topographical 

gradient of projections from the hippocampus to the medial (shell) to lateral (core) portions of 

the NAc (left) and the medial to lateral portions of the amygdala (right). Note the absence of 

projections from the DH and the relative lack of innervation of the central nucleus of the 

amygdala.  Abbreviations: mfb, medial forebrain bundle; BMA, anterior basomedial nucleus; 

BLA, anterior basolateral nucleus; BLP, posterior basolateral nucleus; BLV, ventral 

basolateral nucleus; Ce, central nucleus; La, lateral nucleus; Me, medial nucleus; PMCo, 

posteromedial cortical nucleus; rf, rhinal fissure. Part a, right panel, adapted from181; part c, 

bottom right panel, is adapted from ref 40. 
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Figure 3. Discrete transitions in molecular, anatomical and functional organisation of 

the hippocampal long axis.  

(a) Discrete gene expression domains in CA3 are defined by reciprocal, non-overlapping 

boundaries. Colour-coded 3D models of 9 gene expression-based subdivisions of CA3 are 

shown in rostral and caudal views at two different orientations (3D orientation bars: lateral, 

red; ventral, green; rostral, blue). Suggested boundaries for collapsing the 9 domains into 3 
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domains (ventral, intermediate and dorsal) are indicated in the top left 3D model. Note, 

however, that there are substantially different patterns within each of the dorsal, intermediate 

and ventral domains, and that these are sharp boundaries in some cases. The CA2 is indicated 

in dark blue. (b) Extensive vs. limited intrinsic connections in monkey and rat hippocampus. 

In monkeys (right), projections from CA3 to CA1 and CA3 at the level of the uncus are 

restricted to the anterior portions of the hippocampus (representative origins of projections are 

shown as circles). In rats (left) the longitudinal ipsilateral extent of associational fibres from 

dentate hilus is shown. The boundary between posterior/dorsal two-thirds vs. anterior/ventral 

third of hippocampus is indicated schematically by dotted lines. Note that this line is 

interrupted in the right panel to indicate that this boundary is less discrete in monkeys than in 

rodents58,59. (c) Coherence decreases along the longitudinal axis. Theta power correlations 

between dorsal (D), intermediate (I) and ventral (V) sites in the CA1 pyramidal layer during 

running (RUN) and REM sleep. Power–power correlations are high within the same portions 

(left) and significantly decrease between ventral vs. intermediate and dorsal sites (right). Panel 

a is based on data from 32, panel b is adapted from 59 ; panel (c) adapted from 61. 
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Figure 4. Schematic of superimposed patterns of long-axis organisation. Behavioural, 

recording and intrinsic-connectivity studies have suggested a functional distinction between 

the ventral third of the hippocampus versus the dorsal two-thirds. Other studies have revealed 

gradual changes along the hippocampus in terms of extrinsic connectivity, NMDA receptor 

expression and place fields size, whereas recent gene expression studies indicate that there are 

three sharply demarcated portions of the hippocampus. Superimposing these three 

organizational patterns results in a new model of functional organization along the 

hippocampal long axis.  
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Figure 5. Gradients for space in the medial temporal lobe in rodent and monkey.  

(a). Monotonic relationship between spatial scale and position along the dorsoventral 

hippocampal axis (top). Spatial scale is expressed as the half-width of the correlated band of 

the population vector, the average width of the largest place field of individual cells, and the 

estimated field width. The lower panels show place fields of example pyramidal cells in the 

dorsal (left) and ventral (right) CA3 of rats during running on an 18 m track. Smoothed spike 

density function indicates that the firing rate is a function of position. The horizontal bar 

indicates the estimated place field (left runs, magenta; right runs, cyan). Below the graphs are 

raster plots showing the density of spikes on individual laps. Each vertical tic indicates one 

spike and each horizontal line shows one lap. To the right of each panel are rate maps and 

trajectories (top pairs and bottom pairs, respectively) with individual spikes from repeated 

trials in two-dimensional enclosures (1 m × 1 m). Rate maps are colour-coded with red as 
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maximum and blue as 0 Hz, with peak rate indicated at the top. Trajectories are shown as 

black traces with positions of individual spikes shown as red dots on top of the trajectory. (b) 

Left, grid-cell spacing increased with distance from the rhinal sulcus (r.s.). Blue and red 

circles identify the grid cells from each of two monkeys. Note that these grid cells are from 

head-fixed monkeys and that firing is defined by view position rather than by position in the 

room.  Right, autocorrelations for representative grid cells recorded at different locations 

medial to the rhinal sulcus in three monkeys. The distance from r.s. (mm) and field spacing 

(deg) are indicated below. Part a is adapted from 31; part b is adapted from 94.  
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Figure 6. Forming non-sequential, higher-order connections in human hippocampus. 

Schematic to illustrate a putative mechanism by which the human anterior hippocampus is 

able to form non-sequential connections that enable flexible cognitive processes such as 

transitive inference. (a) fMRI studies demonstrate increased anterior hippocampal responses 

when subjects infer the correct transitive inference (e.g. A–C is correct if previous pairings 

were A–B and B–C), relative to simple recognition of previously learned pairs of non-

overlapping visual stimuli. (b) Interleaved neuronal sequences in the ventral/anterior (left) and 

dorsal/posterior (right) hippocampus. The coloured Gaussian curves represent place fields of 

5 cell assemblies in ventral/anterior and 5 cell assemblies in dorsal/posterior hippocampus. 

Together, the place fields could pertain to locations A-E, or (speculatively) a sequence of 

items A-E. Note the longer ‘tails’ of the fields in ventral/anterior hippocampus. Below the 

place fields are shown circles representing spiking activity from each cell assembly that 

represents the items in the sequence A-E. The spiking activity precesses gradually from the 

end to the beginning of the theta cycle (the size of the circle indicates the firing rates of the 

hypothesized assemblies). Each item is defined by the most active cell assembly that fires at 

the trough of the theta cycle (e.g., C is defined by the assembly depicted by the green place 
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field), and is embedded in the temporal context of previous and subsequent items. Portions of 

the sequence A-E are replicated repeatedly within individual theta cycles. Note that longer 

sequences are accommodated ventrally/anteriorly. The formation of assembly sequences 

within theta cycles could reflect a strengthening of connections not only between adjacent 

items (e.g., C-D) but also between nonadjacent (e.g., A-E; B-D) items, thereby enabling 

transitive inference to be made5,155. Part a is based on data from 148 and 149. (b) is based on 155 

and 5. 
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Table 1. Examples of pathologies in which long-axis differences in preclinical animal 

studies provide insights into the locus of hippocampal damage in different patient 

populations.  

Condition Abnormality along hippocampal long axis 

Medial temporal 

lobe epilepsy 

 

Animal 

• Greater spontaneous epileptiform bursting in VH than DH15,182. 

Human 

• Chronic intracranial recordings in patients indicate seizure 

initiation more frequent from AH than PH183.  

• Neuronal loss greater in AH than PH184-186 (expressed as anterior-

posterior gradient184). 

Depression 

Animal 

• Behavioural effects of chronic anti-depressant treatment are 

critically dependent on neurogenesis in the adult hippocampus187, with 

suggestion that this occurs in VH188.  

Human 

• Post-mortem studies on patients with major depressive disorder 

show that anti-depressants increase neurogenesis in anterior dentate 

gyrus189. 

Schizophrenia 

Animal 

• VH lesions is an animal model of several features of 

schizophrenia190 

• Schizophrenia-related biomarkers are present in VH at birth44 

Human 

• Increasingly viewed as primary pathology being in AH158, but 

considerable evidence for PH abnormality e.g.191-192 

Ischaemia 

Animal 

• Ventral to dorsal increase in hippocampal vulnerability to 

ischaemia193.  

• May be related to an increasing gradient for NMDA receptor 

expression from ventral-to-dorsal in area CA1194 and proposed role of 

NMDA activation in hypoxic excitotoxicity195. 

• Cerebral blood flow is greater in VH than DH during reperfusion 

following ischemia, which may contribute to DH damage196.  

Human 

• ↓ PH volume in patients who had had cardiac arrest with 

successful subsequent resuscitation197 (but note previous reports of 

cardiac arrest-induced ischaemia affecting entire hippocampal long-

axis198).  

 

 

 

 

 


