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REALIZING ORBIT CATEGORIES AS STABLE MODULE

CATEGORIES - A COMPLETE CLASSIFICATION

BENEDIKTE GRIMELAND AND KARIN M. JACOBSEN

ABSTRACT. We classify all triangulated orbit categories of path-algebras of

Dynkin diagrams that are triangle equivalent to a stable module category of a

representation-finite self-injective standard algebra. For each triangulated or-

bit category T we give an explicit description of a representation-finite self-

injective standard algebra with stable module category triangle equivalent to T .

1. INTRODUCTION

Let k be an algebraically closed field. In this paper we will focus on two types

of triangulated categories with finitely many isomorphism classes of indecompos-

able objects: triangulated orbit categories of bounded derived categories of path

algebras of Dynkin quivers of type A,D and E, and stable module categories of

representation-finite self-injective algebras of Dynkin tree type. The triangulated

categories we consider are Hom-finite.

It is well-known that the stable module category of a self-injective algebra is a

triangulated category. Riedtmann showed in [17] that all connected stable compo-

nents of the AR-quiver of a representation-finite algebra are of Dynkin tree type.

In two subsequent papers by Riedtmann [18] and Bretschner, Läser and Riedtmann

[6], a complete classification of all representation-finite self-injective algebras of

Dynkin type is given in terms of their quivers with relations. Continuing their

work, Asashiba gives an invariant under derived equivalence for representation-

finite self-injective algebras, based on the shape of the AR-quiver [3][2], called the

type of the algebra. Standard algebras of one type are stably equivalent, as well as

derived equivalent. He also determines which types contain standard algebras.

Triangulated orbit categories have been well studied, see e.g. [7], [8] and [13].

The orbit category of a triangulated category is not necessarily triangulated itself.

However Keller showed that the orbit category Db(H)/F is triangulated for H a

hereditary algebra, Db(H) the bounded derived category of modA, and with certain

restrictions on the functor F [13]. In the case where F = τ−1[m−1] for m ∈N, the

orbit category Db(H)/F is known as the m-cluster category Cm(H). The Calabi-

Yau dimension of Cm(H) is m.

Keller and Reiten proved in [15] that an algebraic triangulated category with

Calabi-Yau dimension m that contains an (m− 1)-cluster tilting object T with a

hereditary endomorphism algebra H such that Hom(T,Σ−iT )= 0 for i= 0, . . . ,m−
2 is triangle equivalent to the m-cluster category Cm(H).

More recently in [9], Dugas was able to determine the Calabi-Yau dimension

to some of the stable module categories of representation-finite self-injective alge-

bras.

The theorem of Keller and Reiten, combined with the Calabi-Yau dimensions

calculated by Dugas, was used by Holm and Jørgensen [12] to classify which stable
1
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module categories of self-injective algebras are triangle equivalent to an m-cluster

category.

Another approach has been to use Galois coverings to study triangle equiva-

lences between triangulated categories with some finiteness condition:

Xiao and Zhu show in [19] that if T is a locally finite triangulated category,

its Auslander-Reiten quiver is of the form Z∆/G, where ∆ is a Dynkin diagram

and G is an automorphism group of Z∆. For most quivers Z∆/G they also give

triangulated categories where Z∆/G is the Auslander-Reiten quiver. In doing this,

they show that the orbit categories of the form Db(kAn)/τm are equivalent to stable

categories.

In [1], Amiot reproves Xiao and Zhu’s statement for categories with finitely

many equivalence classes of indecomposable objects. Amiot also shows [1, Thm.

7.2] that any finite, standard, connected, algebraic, triangulated category is triangle

equivalent to Db(k∆)/Φ for some Dynkin diagram ∆ and autoequivalence Φ. This

result reduces the problem of finding triangle equivalences between triangulated

categories to finding isomorphisms between translation quivers.

Using the result from Amiot, we classify all triangulated orbit categories of path

algebras of Dynkin diagrams that are triangle equivalent to the stable module cate-

gory of a representation-finite standard self-injective algebra. The orbit categories

we consider are all of standard type. We cannot have an equivalence between a cat-

egory of standard type and one of non-standard type, so we only need to consider

self-injective algebras of standard type.

In Sections 2-5, we give an overview of the theory required for our result. In

particular, section 4 contains a corollary to Amiot’s theorem [1, Thm. 7.2] that is

the basis for our main result.

Sections 6-8 contain the calculations, examples and results for Dynkin type

A,D,E. The results are summed up in Section 9, where the main theorem is stated:

Theorem 1.1. Let ∆ be a Dynkin diagram and let Φ be an autoequivalence such

that Db(k∆)/Φ is triangulated. Let Λ a self-injective algebra. The orbit category

C = Db(k∆)/Φ is triangle equivalent to modΛ exactly in the cases described in

table 1.

2. TRANSLATION QUIVERS, MESH CATEGORIES AND AUTOMORPHISM

GROUPS

Translation quivers can be seen as an abstraction of the properties of AR-quivers.

They are central in Riedtmann’s classification of all self-injective algebra of Dynkin

type A, D and E. They are also related to the derived category, as we will see in

theorem 2.3. Background on translation quivers can be found in [11] and [5], from

which we recall the following central definitions and results.

Definition 2.1. We define a quiver Q = (Q0,Q1,s, t) to consist of a set of vertices

Q0, a set of arrows Q1, a source map s and a target/sink map t.

x− and x+: For a vertex x ∈ Q0 we denote by x− the set of direct predecessors of

x in Q, and by x+ the set of direct successors of x in Q.

Locally finite quiver: A quiver Q is called locally finite if for each x ∈ Q0 the sets

x− and x+ are finite.

Translation quiver: Let θ be an injective map from a subset of Q0 to Q0. The pair

(Q,θ) is called a translation quiver if the following is satisfied:
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C Λ Sec.

Db(kAr)/τw r ≥ 1,w ≥ 1 Nakayama alg. Nw,r+1 6.1

Db(kAr)/τwφ
r = 2l +1, l ≥ 1

w = rv, r ≥ 1
Möbius alg. Ml,v 6.2

Db(kDr)/τw r ≥ 4,w = s(2r−3),s ≥ 1 Dn,s,1 7.1

Db(kDr)/τwφ r ≥ 4,w = s(2r−3),s ≥ 1 Dn,s,2 7.2

Db(kD4)/τ5wρ w ≥ 1 D4,s,3 7.3

Db(kDr)/τw
r = 3m,m ≥ 2

w = s(2r−3)/3,s ≥ 1,3 ∤ s
D3m, s

3
,1 7.4

Db(kEr)/τw

r = 6 and w = 11s

r = 7 and w = 17s s ≥ 1

r = 8 and w = 29s

Er,s,1 8.1

Db(kE6)/τwφ w = 11s,s ≥ 1 E6,s,2 8.2

TABLE 1. The cases up to triangulated equivalence where C =
Db(k∆)/Φ is triangle equivalent to modΛ. The definitions of the

self-injective algebras Λ are stated in the sections as listed.

(1) Q has no loops and no multiple arrows

(2) For x ∈ Q0 such that θ(x) is defined, we have that x− = θ(x)+

The map θ is called the translation of the translation quiver (Q,θ).
For x ∈ Q0 such that θ(x) is defined, we can define a map σ on the

arrows going into x, by setting σ(z → x) = (θ(x) → z). This map is a

bijection on the respective sets of arrows.

Stable translation quiver: A translation quiver (Q,θ) is called stable if θ : Q0 →
Q0 is a bijection.

Morphism of translation quivers: Given two translation quivers (Q,θ) and (Q
′
,θ

′
),

we define a morphism f : (Q,θ)→ (Q
′
,θ

′
) as a pair of maps f0 : Q0 → Q

′

0

and f1 : Q1 → Q
′

1 such that

• if α ∈ Q1, and α : x → y then f1(α)∈ Q
′

1 is the arrow f1(α) : f0(x)→
f0(y).

• for all vertices x∈Q where θ is defined we have f0(θ(x)) = θ
′
( f0(x)).

Isomorphism of translation quivers: A morphism of translation quivers f : (Q,θ)→

(Q
′
,θ

′
) is an isomorphism if it has an inverse. The inverse is a morphism

of translation quivers g : (Q
′
,θ

′
)→ (Q,θ) such that g◦ f is the identity on

(Q,θ) and f ◦g is the identity on (Q
′
,θ

′
).

For a quiver ∆= (∆0,∆1) without loops, we can define a stable translation quiver

(Z∆,θ) as follows:

Vertices: The elements of Z×∆0.

Arrows: For any arrow i → j in ∆1 and any n ∈ Z, we have arrows (n, i) → (n, j)
and (n, j)→ (n+1, i).

Translation: Given by θ(n, i) = (n−1, i).

Our focus will be on translation quivers of the form (Z∆,θ) for ∆ of Dynkin

type A,D and E. We use the following orientation on the Dynkin diagrams:
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Ar: 1 2 · · · r−1 r

Dr: 1 2 · · · r−2

r−1

r

Er:

1 2 3 · · · r−2 r−1

r

The stable translation quivers (ZAr,θ), (ZDr,θ), (ZE6,θ), (ZE7,θ) and (ZE8,θ)
are shown in figure 1.

The set of automorphisms on a translation quiver (Q,θ) forms a group A. A

group of automorphisms of (Q,θ) is a subgroup of A.

Definition 2.2. Let G be a group of automorphisms of a translation quiver (Q,θ).
The group G is called admissible if each orbit of G intersects the set {x}∪ x+ in at

most one point, and intersects the set {x}∪x− in at most one point for each x ∈ Q0.

Given a (stable) translation quiver (Q,θ) and an admissible group G of auto-

morphisms of (Q,θ), one can form the (stable) translation quiver (Q,θ)/G, where

(Q/G)0 = Q0/G and (Q/G)1 = Q1/G. The maps s, t and θ are induced by the

corresponding maps of (Q,θ) [17]. For the stable translation quivers given by

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2)

(−2,r) (−1,r) (0,r) (1,r) (2,r)

· · ·

· · ·

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2)

(−2,r−2) (−1,r−2) (0,r−2) (1,r−2) (2,r−2)

(−2,r)

(−2,r−1)

(−1,r)

(−1,r−1)

(0,r)

(0,r−1)

(1,r)

(1,r−1)

· · ·

· · ·

(ZAr,θ) (ZDr,θ)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2)

(−1,3) (0,3) (1,3) (2,3) (3,3)

(−1,4) (0,4) (1,4) (2,4)

(−2,5) (−1,5) (0,5) (1,5) (2,5)

(−1,6) (0,6) (1,6) (2,6)

· · ·

· · ·

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2)

(−1,3) (0,3) (1,3) (2,3) (3,3)

(−1,4) (0,4) (1,4) (2,4)

(−2,5) (−1,5) (0,5) (1,5) (2,5)

(−2,6) (−1,6) (0,6) (1,6)

(−1,7) (0,7) (1,7) (2,7)

· · ·

· · ·

(ZE6,θ) (ZE7,θ)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2)

(−1,3) (0,3) (1,3) (2,3) (3,3)

(−1,4) (0,4) (1,4) (2,4)

(−2,5) (−1,5) (0,5) (1,5) (2,5)

(−2,6) (−1,6) (0,6) (1,6)

(−3,7) (−2,7) (−1,7) (0,7) (1,7)

(−1,8) (0,8) (1,8) (2,8)

· · ·

· · ·

(ZE8,θ)

FIGURE 1. Translation quivers of Dynkin diagrams
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Z∆, where ∆ is a Dynkin diagram, all admissible automorphism groups are known

[17][1].

For a translation quiver (Q,θ), we can define a path category P(Q,θ) as fol-

lows:

Objects: The objects are the vertices of Q.

Morphisms: For a pair of objects x,y ∈ ObP(Q,θ) we let HomP(x,y) be the

k-vector space with basis given by the set of all paths from x to y.

There is a mesh ideal in P(Q,θ) generated by relations

mx = ∑
α :z→x

ασ(α)

for any x where θ(x) is defined. We get the mesh category M (Q,θ) by taking the

quotient of the path category by the mesh ideal.

Theorem 2.3 ([11]). Let ∆ be a Dynkin quiver. The category of indecomposables

in Db(k∆) is equivalent to M(Z∆,θ ) as an additive category.

The category Db(k∆) has Auslander-Reiten triangles [11] and the Auslander-

Reiten translation τ commutes with suspension functor. Thus an autoequivalence

on Db(k∆) induces an automorphism on (Z∆,θ). In particular, the suspension

functor on Db(k∆) induces an automorphism on M(Z∆,θ ), of which we give the

details in Table 2.

Conversely, an automorphism on (Z∆,θ) induces an autoequivalence on Db(k∆):

Theorem 2.4 ([16, Thm. 3.8]). Let ∆ be a Dynkin diagram. Let D Pick(k∆) be

the derived Picard group, i. e. the group of automorphisms on Db(k∆) induced by

two-sided tilting complexes. Let Aut(Z∆,θ) be the group of automorphisms on

(Z∆,θ). Then

D Pick(k∆)∼= Aut(Z∆,θ).

This result will be used in Section 7.

Translation quiver Automorphism S

(ZAn,θ) S(p,q) = (p+q,n+1−q)

(ZDn,θ) n even S = θ−(n+1)

(ZDn,θ) n odd

S = θ−(n+1)ξ , where ξ is the automorphism on

(ZDn,θ) which exchanges the vertices (x,r) and

(x,r−1) for x ∈ Z

(ZE6,θ)

S = ξ θ−6, where ξ is the automorphism on

(ZE6,θ) exchanging (x,5) with (x + 2,1) and

(y,4) with (y+1,2) for x,y ∈ Z

(ZE7,θ) S = θ−9

(ZE8,θ) S = θ−15

TABLE 2. The definition of the automorphism S in translation

quivers of Dynkin type
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3. ORBIT CATEGORIES

Throughout the rest of this paper we will assume k to be an algebraically closed

field.

Definition 3.1. Given an additive category A and an automorphism F : A → A ,

we define the quotient functor π : A → A /F, where A /F is the orbit cate-

gory. The orbit category has the same objects as A , and morphisms given by

HomA /F(X ,Y ) =
⊕

n∈Z HomA (X ,FnY ).

We can replace the automorphism by an autoequivalence, see e. g. [4]. Cer-

tain orbit categories of triangulated categories were shown by Keller in [13] to be

triangulated:

Theorem 3.2 ([13]). Let H be an hereditary abelian k-category such that there is

a triangle equivalence

D
b(A)∼= D

b(H ),

where A is a finite dimensional k-algebra. If F is a standard autoequivalence on

Db(H ) such that

• for each indecomposable object U of H there are only finitely many ob-

jects F iU that lie in H for i ∈ Z.

• there exist some integer N ≥ 0 such that the F-orbit of each indecompos-

able object of Db(H ) contains an object U [n] for some 0 ≤ n ≤ N and

some indecomposable object U of H .

Then the orbit category OF(H ) := Db(H )/F is naturally a triangulated cate-

gory, and the projection functor π : Db(H )→ OF(H ) is a triangle functor.

We now let ∆ be a Dynkin diagram, and consider the category Db(k∆). The

AR-translation τ and the suspension functor [1] satisfies the requirements on F . In

many cases, as we will see, so will the composition τm [n].
The AR-quiver of Db(k∆) is isomorphic as a translation quiver to (Z∆,θ). The

action of τ and [1] on the AR-quiver of Db(k∆) is equivalent to the action of respec-

tively θ and S on (Z∆,θ). Hence, if τm [n] satisfies the requirements on F , the AR-

quiver of Db(k∆)/τm [n] is isomorphic as a translation quiver to (Z∆,θ)/(θmSn).
In Db(k∆) we know that [2] ∼= τ−h where h is the Coxeter number of ∆ see

[10][14]. The Coxeter number is known to be n+ 1 for An, 2n− 2 for Dn, 12 for

E6, 18 for E7 and 30 for E8.

4. AMIOT’S THEOREM

A very important tool we will use is theorem [1, Thm. 7.2] by Amiot. We first

need to give a definition of two special classes of triangulated categories.

Definition 4.1. A Hom-finite triangulated category T is called

algebraic: if it is triangle equivalent to the stable category of a Frobenius cate-

gory.

standard: if the category of indecomposable objects of T equivalent as a k-linear

category to the mesh category M(kΓ,τ), where Γ is the AR-quiver of T .

finite: if it has finitely many indecomposable objects up to isomorphism

Theorem 4.2 ([1, 7.2]). Let T be an indecomposable finite triangulated category

which is algebraic and standard. Then there exists a Dynkin diagram ∆ of type A,
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D or E, and an auto-equivalence Φ on Db(k∆) such that T is triangle equivalent

to the orbit category Db(k∆)/Φ.

We specialize the theorem to deal with the cases we will use:

Corollary 4.3. Let Λ be a representation-finite, self-injective, basic algebra such

that modΛ is of standard type. Let ∆ be a Dynkin diagram, and let Φ : Db(k∆)→
Db(k∆) be a functor such that Db(k∆)/Φ is triangulated.

If the AR-quivers of modΛ and Db(k∆)/Φ are isomorphic as translation quiv-

ers, then modΛ and Db(k∆)/Φ are equivalent as triangulated categories.

Proof. Obviously, modΛ is a finite standard triangulated category. It is algebraic,

because Λ is self-injective and basic, and hence Frobenius. By the proof of theorem

4.2 in [1], the equivalence follows. �

5. SELF-INJECTIVE REPRESENTATION-FINITE ALGEBRAS

Our aim is to use Claire Amiot’s theorem to show that many orbit categories

of bounded derived categories of hereditary algebras are actually realizable as sta-

ble module categories of self-injective algebras. In order to apply the theorem on

the stable module categories of self-injective algebras, we need to know that the

categories are algebraic and standard. It is clear that they are algebraic, as any

representation-finite self-injective algebra is Frobenius.

Asashiba has in his paper [2] defined an invariant under derived and stable equiv-

alence, called the type of the indecomposable representation-finite self-injective al-

gebra. He shows that any two standard (resp. non-standard) representation-finite

self-injective algebras have the same type if and only if they are derived equivalent,

and also if and only if they are stably equivalent. In the appendix to [3] a list of

algebras, in terms of quivers with relations, is given for each type defined in [2].

In sections 6, 7 and 8, we make use of the explicit representatives for each type,

and give the details of equivalent orbit categories and stable module categories of

self-injective indecomposable algebras.

We give a brief summary of the classification of Asashiba.

Definition 5.1 ([2]). Let ∆ be a Dynkin diagram type A,D,E6,E7 or E8. We define

the type of a representation-finite self-injective indecomposable algebra Λ to be a

triple (∆(Λ), f (Λ), t(Λ)). The parameters are defined as follows:

∆(Λ): the tree type of Λ (for this definition, we write ∆ = ∆(Λ)).

Let m∆ be the Loewy length of the mesh category kZ∆. From [6] we know that

mAn
= n, mDn

= 2n−3, mE6
= 11, mE7

= 17 and mE8
= 29. The AR-quiver of the

stable module category of Λ is known [17] to be on the form Z∆/〈φτ−r〉 for some

automorphism φ with a fixed vertex.

f (Λ): the frequency of Λ is given by f (Λ) := r/m∆.

t(Λ): the torsion order t(Λ) is the order of φ .

Using this notation, Asashiba gives a list of the types a standard representation-

finite self-injective indecomposable algebra can have.

Theorem 5.2 ([2]). The set of types of standard representation-finite self-injective

indecomposable algebras is the disjoint union of the following sets:

•
{

(An,
s
n
,1)|n,s ∈N

}

• {(A2p+1,s,2)|n,s ∈ N}
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• {(Dn,s,1)|n,s ∈ N,n ≥ 4}
•
{

(D3m,
s
3
,1)|m,s ∈ N,m ≥ 2,3 ∤ s

}

• {(Dn,s,2)|n,s ∈ N,n ≥ 4}
• {(D4,s,3)|s ∈N}
• {(En,s,1)|n = 6,7,8,s ∈ N}
• {(E6,s,2)|s ∈N}

Since this is an exhaustive list of all families of standard representation-finite

self-injective algebras, this list also tells us what orbit categories to consider. If an

orbit category has finitely many indecomposables, but is not of any of the types

in the list, it cannot be equivalent to the stable module category of a self-injective

algebra.

6. TYPE A

There are two standard types of representation-finite self-injective algebras that

have AR-quivers of the form ZAn/G, up to stable equivalence. The representa-

tives gives for these two standard types by [3] and also by [18] are the Nakayama

algebras, with AR-quivers of cylindrical shape, and the Möbius algebras, which

have AR-quivers shaped like a Möbius band. The Nakayama algebra case was also

considered in [19, Thm. 3.3.8], but we will restate it for the sake of completeness.

For the Nakayama algebras, the stable module categories will be equivalent to

orbit categories using functors that are some power of the AR-translation τ . For

Möbius algebras we need a ”flip functor” to get the Möbius shape of the quiver:

Definition 6.1. Let n = 2l +1 with l ∈ N. The flip functor φ on Db(kAn) is given

by φ = τ l+1[1].

6.1. Self-injective Nakayama algebras.

1

2v

α1αv

FIGURE 2. Quiver of a self-injective Nakayama algebra Nv,r

Definition 6.2. A self-injective Nakayama algebra is a path algebra Nv,r = Qv/Ir,

for v ≥ 1,r ≥ 2, where Qv is the quiver in figure 2 and Ir is the ideal generated by

paths of length r.

These algebras are self-injective, and the stable module category modNv,r is tri-

angulated. The AR-quiver of modNv,r has been described by Riedtmann in [18].

As a translation quiver it is of the form ZAr−1/(θ
v). In the notation of Asashiba

this is of type (An,
v
r
,1).

We denote the indecomposable modules over Nv,r by Ml
n, where n is the socle of

the module, and l is the (Loewy) length of the module. The AR-quiver of modNv,r

is shown in Figure 3.

Proposition 6.3 ([19, Thm. 3.3.8]). The categories modNv,r and Db(kAr−1)/τv

are triangle equivalent for r ≥ 2 and v ∈N\{0}.
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M1
v M1

v−1 M1
v−2 M1

1 M1
v

M2
v M2

v−1 M2
v−2 M2

1 M2
v

Mr−1
v Mr−1

v−1 Mr−1
v−2 Mr−1

1 Mr−1
v

FIGURE 3. AR-quiver of modNv,r. The leftmost and rightmost

diagonal are identified.

Proof. For v 6= 0, the functor τv fulfills the conditions in theorem 3.2, so Db(kAr−1)/τ
v

is triangulated. The algebra Nv,r is a representation-finite, self-injective, basic al-

gebra, whose stable module category is standard by theorem 5.2.

Consider the stable translation quiver (ZAr−1,θ)/〈θ
v〉. This is the quiver we get

if we take the quiver (ZAr−1,θ) from Figure 1 and identify (p,q) with (p+v,q) for

all (q∈Z). One morphism of translation quivers from the AR-quiver of the algebra

Nv,r to (ZAr−1,θ)/〈θ
v〉 is given by M

q
p 7→ (v− p,q) (the map on the arrows follow

uniquely). Moreover, it is an isomorphism with inverse given by (p,q) 7→ M
q
v−p

The conclusion follows from Corollary 4.3. �

The explicit translation quiver isomorphisms can be found in a similar way in

the other cases.

◦ ◦

◦

◦

◦

◦

◦ ◦

◦

◦

◦

◦◦

◦◦

α1
0

β 1
0

α1
1

β 1
1

α1
l−1

β 1
l−1

α1
l

β 1
l

α2
0

β 2
0

α2
1 β 2

1

αv−1
l−1

β v−1
l−1

αv−1
l

β v−1
l

αv
0β v

0

αv
1β v

1

αv
l−1β v

l−1

αv
lβ v

l

FIGURE 4. Quiver of the Möbius algebra Ml,v



REALIZING ORBIT CATEGORIES AS STABLE MODULE CATEGORIES 10

6.2. Möbius algebras.

Definition 6.4. Let l,v ≥ 1. The Möbius algebra Ml,v is the path algebra kQ/I,

where Q is the quiver in figure 4 and I is generated by the relations:

(1) α i
l · · ·α

i
0 = β i

l · · ·β
i
0 for i ∈ {1, . . . ,v}

(2) β i+1
0 α i

l = 0 and α i+1
0 β i

l = 0 for i ∈ {1, . . . ,v−1}

(3) α1
0 αv

l = 0 and β 1
0 β v

l = 0

(4) paths of length l+2 are equal to zero

1

2

3

4

5

6

β 0
0 β 0

1

α0
0 α0

1

α1
0α1

1

β 1
0β 1

1

FIGURE 5. The quiver of M1,2

Example 6.5. Let l = 1 and v = 2. The algebra M1,2 is given by the quiver in

Figure 5 with relations

α0
1 α0

0 = β 0
1 β 0

0 α1
1 α1

0 = β 1
1 β 1

0

β 1
0 α0

1 = 0 α1
0 β 0

1 = 0

α0
0 α1

1 = 0 β 0
0 β 1

1 = 0.

The AR-quiver of this algebra is shown in Figure 6. We see that modM1,2 is triangle

equivalent to Db(kA3)/φτ6.

P6 P2

P3

P1 P4

P5

◦

◦

FIGURE 6. The AR-quiver of the algebra M1,2. The identical ob-

jects on either side are identified.

Riedtmann[18] showed that in general the AR-quiver of the stable module cate-

gory of a Möbius algebra Ml,v is of the form ZA2l+1/(θ
(2l+1)vφ), where φ = θ

2l+2
2 S

and S is as in table 2. It is the asymmetry of relations (2) and (3) in I that gives

rise to the ”Möbius” twist.

In Asashiba’s notation these algebras are of type (A2l+1,v,2).
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Proposition 6.6. Let l,v ≥ 1 and let n = 2l+ 1. The categories modMl,v and

Db(kAn)/τnvφ are equivalent as triangulated categories.

Proof. Since nv ≥ 1, we know that τnvφ fulfils the requirements on F in theorem

3.2. Hence Db(kA2l+1)/τnvφ is triangulated. The algebra Ml,v is a representation-

finite, self-injective, basic algebra, whose stable module category is standard by

theorem 5.2. The conclusion follows from Corollary 4.3. �

7. TYPE D

We will now look in detail at the classes of self-injective algebras that have AR-

quivers of the form ZDn/G. For this purpose we will make use of the detailed

list of representatives of the standard types of representation-finite self-injective

algebras provided as an appendix to [3]. There are, as indicated by theorem 5.2,

four cases to consider that are standard. Three of these share the same quiver but

have different sets of relations, the last type has an entirely different quiver.

◦

◦

◦ ◦ ◦

γs−1
1

γ0
0

γ0
1 γ1

0 γ1
1

γ2
0

◦

◦

β 0
0

β 0
1

β 1
0 β 1

1

β 0
2

β s−1
1

◦

◦

◦ ◦

◦

◦

α0
n−2

α0
n−3

α0
2

α0
1

α1
n−2

α1
n−3 α1

2

α1
1

α2
n−2

α2
n−3

αs−1
2

αs−1
1

FIGURE 7. (Dn,s)

We will now define some automorphisms that induce functors that will be useful

in later subsections. Recall that by Theorem 2.4, an automorphism on the transla-

tion quiver (ZDn,θ) induces a functor on Db(kDn). The definitions are given with

respect to the translation quiver shown in Figure 1.

Definition 7.1. Let ξ be the automorphism on (ZDn,θ), which exchanges the ver-

tices (x,n) and (x,n− 1). Let φ be the autoequivalence on Db(kDn) induced by

ξ .

Definition 7.2. Let χ be the automorphism on (ZD4,θ) which acts as follows:

(x,r) (x,1) (x,2) (x,3) (x,4)
χ(x,r) (x−1,3) (x,2) (x,4) (x+1,1)

for all x ∈ Z.

Let ρ be the autoequivalence on Db(kD4) induced by χ .
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7.1. Type (Dn,s,1).

Definition 7.3. The representative of self-injective algebras of type (Dn,s,1) is

given by the path algebra Dn,s,1 := kQ/I where Q is the quiver of figure 7 and the

ideal I is generated by the following set of relations:

(1) α i
1α i

2 · · ·α
i
n−2 = β i

1β i
0 = γ i

1γ i
0 for all i ∈ {0, . . . ,s−1}

(2) For all i ∈ {0, . . . ,s−1}= Z/〈s〉,

β i+1
0 α i

1 = 0, γ i+1
0 α i

1 = 0,

α i+1
n−2β i

1 = 0, α i+1
n−2γ i

1 = 0,

γ i+1
0 β i

1 = 0, β i+1
0 γ i

1 = 0;

(3) α i+1
j−n+2 · · ·α

i
j = 0 for all i∈ {0, · · ·,s−1}=Z/〈s〉 and for all j ∈ {1, · · ·,n−

2}= Z/〈n−2〉.

1 2 3 4

γ0

γ1

β0

β1

α2

α1

FIGURE 8. The quiver of algebras D4,1,1,D4,1,2 and D4,1,3.

Example 7.4. Let n = 4 and s = 1. The algebra D4,1,1 is given by the quiver in

figure 8 with relations:

α1α2 = β1β0 = γ1γ0

α2β1 = 0 , β0α1 = 0 , γ0α1 = 0,

α2γ1 = 0 , β0γ1 = 0 , γ0β1 = 0,

and all paths of length 3 are 0. Note that the relations in point 2 makes it impossible

to compose arrows from different loops, this leads to an AR-quiver which has

cylinder shape. The AR-quiver of this algebra is shown in figure 9. In this case

modD4,1,1 is triangle equivalent to Db(kD4)/τ5.

P1 P2

P3

P4

FIGURE 9. D4,1,1
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The AR-quiver of the stable module category of algebras of type (Dn,s,1) is of

the form ZDn/θ s(h−1), where h is the Coxeter number for Dn.

Proposition 7.5. Let n≥ 4 and n,s∈N. The categories modDn,s,1 and Db(kDn)/τ s(h−1)

are equivalent as triangulated categories.

Proof. Since s(h−1)> 0 the functor τ s(h−1) satisfies the conditions of theorem 3.2,

so the category Db(kDn)/τ s(h−1) is triangulated. The algebra Dn,s,1 is a representation-

finite, self-injective, basic algebra, whose stable module category is standard by

theorem 5.2. The conclusion follows from Corollary 4.3. �

7.2. Type (Dn,s,2).

Definition 7.6. The representative of self-injective algebras of type (Dn,s,2) is

given by the path algebra Dn,s,2 := kQ/I where Q is the quiver of figure 7 and the

ideal I is generated by the following set of relations:

(1) α i
1α i

2 · · ·α
i
n−2 = β i

1β i
0 = γ i

1γ i
0 for all i ∈ {0, . . . ,s−1}

(2) for all i ∈ {0, . . . ,s−1}= Z/〈s〉,

β i+1
0 α i

1 = 0 γ i+1
0 α i

1 = 0,

α i+1
n−2β i

1 = 0 α i+1
n−2γ i

1 = 0,

and for all i ∈ {0, . . . ,s−2},

γ i+1
0 β i

1 = 0 β i+1
0 γ i

1 = 0,

β 0
0 β s−1

1 = 0, γ0
0 γs−1

1 = 0;

(3) α-paths of length n−1 are zero, and for all i ∈ {0, . . . ,s−2},

β i+1
0 β i

1β i
0 = 0, γ i+1

0 γ i
1γ i

0 = 0,

β i+1
1 β i+1

0 β i
1 = 0, γ i+1

1 γ i+1
0 γ i

1 = 0, and

γ0
0 β s−1

1 β s−1
0 = 0, β 0

0 γs−1
1 γs−1

0 = 0,

γ0
1 γ0

0 β s−1
1 = 0, β 0

1 β 0
0 γs−1

1 = 0.

Example 7.7. Let n = 4 and s = 1. The algebra D4,1,2 is given by the quiver in

figure 8 with relations:

α1α2 = β1β0 = γ1γ0

α2β1 = 0 , β0α1 = 0 , γ0α1 = 0,

α2γ1 = 0 , β0β1 = 0 , γ0γ1 = 0,

and all paths of length 3 are 0. The AR-quiver of this algebra is shown in figure 10.

This time the zero relations in point 2 glues together two of the τ-orbits of ZD4. In

this case modD4,1,2 is triangle equivalent to Db(kD4)/τ5φ .

The AR-quiver of the stable module category of algebras of type (Dn,s,2) is

of the form ZDn/θ s(h−1)ξ , where h is the Coxeter number for Dn, and ξ is the

automorphism described in Definition 7.1.

Proposition 7.8. Let n ≤ 4 and s,n ∈ N. The categories modDn,s,2 and

Db(kDn)/τ s(h−1)φ are equivalent as triangulated categories.
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P1 P2

P3

P4

⋆

⋆◦

◦

FIGURE 10. modD4,1,2. The quiver is glued together by identify-

ing the matching symbols on either side.

Proof. Since s(h − 1) > 0 the functor τ s(h−1)φ satisfies the conditions given in

theorem 3.2. Hence the category Db(kDn)/τ s(h−1)φ is triangulated. The algebra

Dn,s,2 is a representation-finite, self-injective, basic algebra, whose stable module

category is standard by theorem 5.2. The conclusion follows from Corollary 4.3.

�

7.3. Type (D4,s,3).

Definition 7.9. The representative of self-injective algebras of type (D4,s,3) is

given by the path algebra D4,s,3 := kQ/I where Q is the quiver of figure 7 and the

ideal I is generated by the following set of relations:

(1) The same relations as for (D4,s,1), part 1.

(2) For all i ∈ {0, . . . ,s−2}

β i+1
0 α i

1 = 0, γ i+1
0 α i

1 = 0,

α i+1
0 β i

1 = 0, γ i+1
0 β i

1 = 0,

α i+1
0 γ i

1 = 0, β i+1
0 γ i

1 = 0, and

α0
0 αs−1

1 = 0, γ0
0 αs−1

1 = 0,

α0
0 β s−1

1 = 0, β 0
0 β s−1

1 = 0,

β 0
0 γs−1

1 = 0, γ0
0 γs−1

1 = 0;

(3) all paths of length 3 are zero.

Example 7.10. Let n = 4 and s = 1. The algebra D4,1,3 is given by the quiver in

figure 8 with relations:

α1α2 = β1β0 = γ1γ0

α0α1 = 0 , α0β1 = 0 , β0γ1 = 0,

γ0α1 = 0 , β0β1 = 0 , γ0γ1 = 0,

and all paths of length 3 are 0. The AR-quiver of this algebra is shown in figure

11. As the figure shows, three of the τ-orbits of ZD4 are glued together, this is due

to the zero relations of length two. In this case modD4,1,3 is triangle equivalent to

Db(kD4)/τ5ρ .

In general the AR-quiver of the stable module category of algebras of type

(D4,s,3) is of the form ZDn/θ5sχ , where χ is the automorphism of order 3 de-

scribed in Definition 7.2.
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P1 P2

P3

P4

⋆

⋆◦

◦

FIGURE 11. modD4,1,3. The quiver is glued together by identify-

ing the matching symbols on either side.

Proposition 7.11. Let n= 4 and s∈N. The categories modD4,s,3 and Db(kD4)/τ5sρ
are equivalent as triangulated categories.

Proof. Since 5s > 0, the functor τ5sρ satisfies the conditions given in theorem

3.2. Hence the category Db(kD4)/τ5sρ is triangulated. The algebra Dn,s,3 is a

representation-finite, self-injective, basic algebra, whose stable module category is

standard by theorem 5.2. The conclusion follows from Corollary 4.3. �

7.4. Type (D3m,
s
3
,1). This is the only type of tree type D where the frequency is

not an integer. If 3|s, then the type is already described, in section 7.1; hence we

require that s is not divisible by 3.

Definition 7.12. Let m ≥ 2 and s ≥ 1 with 3 ∤ s. The representative of self-injective

algebras of type (D3m,
s
3
,1) is given by the path algebra D3m, s

3
,1 := kQ/I where Q

is the quiver of figure 7 and the ideal I is generated by the following set of relations:

(1) α i
m · · ·α i

2α i
1 = βi+1βi for all i ∈ {1, . . . ,s}= Z/〈s〉;

(2) α i+2
1 α i

m = 0 for all i ∈ {1, . . . ,s} = Z/〈s〉;

(3) α i+3
j · · ·α i+3

1 βi+2α i
m· · ·α

i
j =0 for all i ∈ {1, . . . ,s} = Z/〈s〉 and for all j ∈

{1, . . . ,m}

Example 7.13. Let m = 2 and s = 1. The algebra D6, 1
3
,1 is given by the quiver in

figure 13 with relations:

β 2 = α2α1 α1α2 = 0

α1βα2α1 = 0 α2α1βα2 = 0.

The AR-quiver of this algebra is shown in figure 14. In this case modD6, 1
3
,1 is

triangle equivalent to Db(kD6)/τ3.

The AR-quiver of the stable module category of algebras of type (D3m,
s
3
,1) is

of the form ZD3m/θ s(h−1)/3, where h is the Coxeter number for D3m. (Note that

since h−1 = 2n−3 = 6m−3 we have that s(h−1)/3 is a natural number).

Proposition 7.14. Let m ≥ 2 and s ≥ 1 with 3 ∤ s. Then the categories modD3m, s
3 ,1

and Db(kD3m)/τ s(h−1)/3 are equivalent as triangulated categories.

Proof. Since s(h− 1)/3 > 0, the functor τ s(h−1)/3 satisfies the conditions of the-

orem 3.2, hence the category Db(kD3m)/τ s(h−1)/3 is triangulated. The algebra
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◦

◦
◦

◦

◦

◦

β1

β2

β3

β4 β5

β6

βs−1

βs

◦

◦

◦
◦

◦

◦

◦
◦ ◦

◦

◦
◦

α1
1

αs
m

α2
1

α1
m

α3
1

α2
m

α4
1

α3
m α5

1

α4
m

α6
1

αs−2
m

αs
1

αs−1
m

α1
2

α1
m−1

α2
2

α2
m−1

α3
2

α3
m−1

α4
2

α4
m−1

α5
2

α6
2

αs
m−1 αs

2

αs−1
m−1

αs−2
m−1

FIGURE 12. (D3m,
s
3
)

1 2

α2

α1

β

FIGURE 13. Quiver of the path algebra D6, 1
3
,1

D3m, s
3
,1 is a representation-finite, self-injective, basic algebra, whose stable mod-

ule category is standard by theorem 5.2. The conclusion follows from Corollary

4.3. �

8. TYPE E

We now look at self-injective algebras with AR-quivers of the form ZEn/G.

These algebras are all standard [2], and they are divided into two main groups;

those with a cylindrical AR-quiver, and those with a Möbius-shaped AR-quiver. In

Asashiba’s notation, the former are of type (En,s,1), while the latter are of type

(E6,s,2), see [2]. For the first group, the stable module categories will be equiv-

alent to orbit categories using functors that are some power of the AR-translation

τ . For the latter, however, we need a ”flip functor” to get the Möbius shape of the

quiver.

Definition 8.1. The flip functor φ on Db(kE6) is given by φ = τ6[1].
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P1

P2

FIGURE 14. D6, 1
3
,1

We follow the classification due to Asashiba for the rest of the section. Note

that the representative algebras all share the quiver given in figure 15; however the

relations are different.

◦

◦

◦ ◦ ◦

γ0
2

γ0
1

γ1
2 γ1

1

γ2
2

γs−1
1

◦

◦

◦ ◦

◦

β 0
3

β 0
2

β 0
1

β 1
3

β 1
2

β 1
1

β 2
3

β s−1
1

◦

◦

◦ ◦

◦

◦

α0
n−3

α0
n−4

α0
2

α0
1

α1
n−3

α1
n−4 α1

2

α1
1

α2
n−3

α2
n−4

αs−1
2

αs−1
1

FIGURE 15. Type (En,s)

8.1. Type (En,s,1).

Definition 8.2. The representative of self-injective algebras of type (En,s,1) is

given by the path algebra En,s,1 := kQ/I where Q is the quiver of figure 15 and the

ideal I is generated by the following set of relations:

(1) α i
1α i

2 · · ·α
i
n−3 = β i

1β i
2β i

3 = γ i
1γ i

2 for all i ∈ {0, . . . ,s−1};
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(2) For all i ∈ {0, . . . ,s−1}= Z/〈s〉,

β i+1
3 α i

1 = 0, γ i+1
2 α i

1 = 0,

α i+1
n−3β i

1 = 0, γ i+1
2 β i

1 = 0,

α i+1
n−3γ i

1 = 0, β i+1
3 γ i

1 = 0, and

(3) α-paths of length n− 2 are equal to 0, β -paths of length 4 are equal to 0

and γ-paths of length 3 are equal to 0.

1

2

3

4

5

6

α3

α2

α1

β3

β2

β1

γ2

γ1

FIGURE 16. Quiver of E6,1,n for n = 1,2

Example 8.3. Let n = 6 and s = 1. The algebra E6,1,1 is given by the quiver in

figure 16, together with the relations

α1α2α3 = β1β2β3 = γ1γ2

α3β1 =0 α3γ1 = 0 β3α1 = 0

β3γ1 =0 γ2α1 = 0 γ2β1 = 0

α2α3α1α2 =0 β2β3β1β2 = 0.

The AR-quiver of the module category over this algebra is given in figure 17. It

turns out that modE6,1,1 is triangulated equivalent to Db(kE6)/τ11.

P1

P2P3

P4P5

P6

⋆ ⋆

◦ ◦

FIGURE 17. AR-quiver of modE6,1,1. The quiver is glued to-

gether by identifying the matching symbols on either side.

In general, the AR-quiver of the stable module categories of self-injective al-

gebras of type (En,s,1) is isomorphic to ZEn/θ tns, where t6 = 11, t7 = 17 and

t8 = 29.
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Proposition 8.4. Let n= 6,7,8 and s≥ 1. The categories modEn,s,1 and Db(kEn)/τ tns

are triangle equivalent.

Proof. Since tns > 0, the functor τ tns satisfies the conditions of theorem 3.2, hence

Db(kEn)/τ tns is a triangulated category. The algebra En,s,1 is a representation-

finite, self-injective, basic algebra, whose stable module category is standard by

theorem 5.2. The conclusion follows from Corollary 4.3. �

8.2. Type (E6,s,2).

Definition 8.5. The representative of self-injective algebras of type (E6,s,2) is

given by the path algebra E6,s,2 := kQ/I where Q is the quiver of figure 15 and the

ideal I is generated by the following set of relations:

(1) α i
1α i

2 · · ·α
i
n−3 = β i

1β i
2β i

3 = γ i
1γ i

2 for all i ∈ {0, . . . ,s−1};

(2) For all i ∈ {0, . . . ,s−1}= Z/〈s〉,

α i+1
3 γ i

1 = 0, β i+1
3 γ i

1 = 0,

γ i+1
2 α i

1 = 0, γ i+1
2 β i

1 = 0,

and for all i ∈ {0, . . . ,s−2},

β i+1
3 α i

1 =0, α i+1
3 β i

1 = 0,

α0
3 αs−1

1 =0, β 0
3 β s−1

1 = 0, and

(3) γ-paths of length 3 are equal to 0, and for all i ∈ {0, . . . ,s−2} and for all

j ∈ {1,2,3} = Z/〈3〉,

α i+1
j−3 · · ·α

i
j = 0, β i+1

j−3 · · ·β
i
j = 0,

β 0
j−3 · · ·β

0
3 αs−1

1 · · ·αs−1
j = 0, α0

j−3 · · ·α
0
3 β s−1

1 · · ·β s−1
j = 0.

Example 8.6. Let n = 6 and s = 1. The algebra E6,1,2 is given by the quiver in

figure 16, together with the relations

α1α2α3 = β1β2β3 = γ1γ2

α3α1 =0 α3γ1 = 0 β3β1 = 0

β3γ1 =0 γ2α1 = 0 γ2β1 = 0

α2α3β1β2 =0 β2β3α1α2 = 0

The AR-quiver of the module category over this algebra is given in figure 18. It

turns out that modE6,1,2 is triangulated equivalent to Db(kE6)/τ11φ .

In general, the AR-quiver of the stable module categories of self-injective alge-

bras of type (E6,s,2) is isomorphic to ZE6/θ11sφ , where φ is described in Table

2.

Proposition 8.7. Let s ≥ 1. The categories modE6,s,2 and Db(kE6)/τ11sφ are

triangle equivalent.

Proof. Since 11s > 0, the functor τ11sφ satisfies the conditions of theorem 3.2,

hence Db(kE6)/τ11sφ is a triangulated category. The algebra E6,s,2 is a representation-

finite, self-injective, basic algebra, whose stable module category is standard by

theorem 5.2. The conclusion follows from Corollary 4.3. �
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P1

P2P3

P4P5

P6

⋆

⋆◦

◦

FIGURE 18. AR-quiver of modE6,1,2. The quiver is glued to-

gether by identifying the matching symbols on either side.

9. SUMMARY

From the propositions of Sections 6, 7 and 8 it is clear that all self-injective

standard algebras of finite representation type are stably triangle equivalent to orbit

categories of the form Db(k∆r)/τwφ i where i ∈ {0,1} and φ is the functor de-

scribed in definition 6.1 for type A, definition 7.1 and 7.2 for D and definition 8.1

for type E6. However not all triangulated orbit categories of the form Db(k∆r)/F

are equivalent to a stable module category of a representation finite self-injective

algebra. We therefore sum up our findings in a table below, aiming at a way to eas-

ily look up if a certain orbit category is in fact equivalent or not to a stable module

category of a self-injective algebra.

Recall that given a functor of the form F = τm[n] on Db(k∆r), it can be expressed

on the form F = τwφ i using the Coxeter relation for ∆r, and the above-mentioned

definitions of φ . Thus the same autoequivalence, and hence orbit category, can be

expressed in many different ways.

The following theorem sums up our results.

Theorem 9.1. Let ∆ be a Dynkin diagram and let Φ be an autoequivalence such

that Db(k∆)/Φ is triangulated. Let Λ a self-injective algebra. The orbit category

C = Db(k∆)/Φ is triangle equivalent to modΛ exactly in the cases described in

table 3.
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