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Problem description
Electricity price forecasts are important inputs to energy companies’ decision-making.
Value-at-Risk (VaR) is the market standard for risk management, yet VaR forecasting of
electricity prices remains under-researched. Our work contributes to this literature and
analyses the performance of fundamental VaR forecasting approaches.

Forecasting VaR amounts to predicting the electricity price distribution. Quantile regres-
sion (QR) has several promising properties in this respect. We employ the traditional QR
model, as well as novel extensions that are not yet explored for electricity prices. We
benchmark these against common VaR models in literature. An important step in this
analysis is to select variables with high predictive ability. We perform our study on the
EPEX spot price, as the German market is the main reference for power trading in Eu-
rope. Moreover, we are not aware of previous studies that apply QR for forecasting in this
market.

The purpose of our work is to identify modelling approaches that yield accurate and robust
VaR forecasts, and thus, provide important insight to market operators.
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Abstract
The increased focus on risk management in electricity markets underpins the importance
of distribution forecasting. We contribute to this literature by providing empirical evi-
dence for the use of state-of-the-art fundamental distribution forecasting approaches. More
specifically, we forecast Value-at-Risk (VaR) for the hourly German spot prices. We focus
on quantile regression (QR) approaches, because of their simplicity, possibility to include
fundamentals, and promising ability to capture the complex features of electricity prices.

In addition to traditional QR, we employ sophisticated extensions of the model that are
not previously applied to electricity prices. Exponentially weighted QR (EWQR) and
exponentially weighted double kernel QR (EWDKQR) intend to capture swift distribu-
tion changes. We benchmark these models against common VaR approaches in litera-
ture: Skewed student-t GARCH, asymmetric slope CAViaR, and symmetric absolute value
CAViaR.

We argue that the greatest advantage of QR is that it models the quantiles separately. In
contrast to existing works, we take advantage of this through the variable selection. We
propose using a separate set of variables for each quantile and trading period, and our
results support that this improves forecasting accuracy. Moreover, our findings highlight
the importance of variable selection, and show that it in many cases is as important as the
choice of model.

The empirical study shows that EWQR is the best model overall. It consistently exhibits
good performance across trading periods, and performs particularly well in the outer tail
quantiles. This suggests that EWQR is able to capture the changing market conditions in
Germany. The CAViaR models are the best performing benchmarks, but their performance
is inconsistent. The GARCH model captures clustering of exceedances the best. However,
it performs poor overall. Our results indicate that both EWQR and EWDKQR suffer from
overfitting. This is evident in the mid-region of the distribution where traditional QR
outperforms the more complex models.

Based on the encouraging results in this thesis, we recommend further studies to investi-
gate EWQR. Its ease of implementation, transparency and low computational complexity
increases the probability of industry adoption.
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Sammendrag
Vi ser et økt fokus på risikostyring i elektrisitetsmarkeder. Dette gjør det viktig å predikere
sannsynlighetsfordelingen for fremtidige priser. Vi bidrar til litteraturen ved å fremlegge
empiriske resultater for bruk av fundamentale metoder for å estimere prisfordelinger. Mer
presist beregner vi risikomålet Value-at-Risk (VaR) for tyske spottpriser på timesbasis. Vi
fokuserer på kvantilregresjonsmetoder (QR), fordi de er enkle, kan brukes med fundamen-
tale variabler og har vist seg å være lovende for å fange de komplekse egenskapene til
elektrisitetspriser.

I tillegg til tradisjonell QR, bruker vi mer avanserte versjoner av QR som ikke tidligere er
anvendt på elektrisitetspriser. Eksponentielt vektet QR (EWQR) og eksponentielt vek-
tet dobbel kernel QR (EWDKQR) er metoder ment for å fange opp raske endringer i
fordelinger. Vi sammenligner disse modellene med vanlige referanser i litteraturen: Skewed
student-t GARCH, asymmetric slope CAViaR og symmetric absolute value CAViaR.

Den største fordelen ved QR er at kvantilene modelleres separat. I motsetning til eksis-
terende studier, utnytter vi dette gjennom variabelseleksjonen. Vi foreslår å bruke separate
forklaringsvariabler for hver kvantil og time. Resultatene våre støtter at denne typen se-
leksjon forbereder kvaliteten på estimatene. De viser også at en god variabelseleksjon i
mange tilfeller er like viktig som valget av modell.

EWQR er den beste modellen samlet sett. Den leverer gode estimater for alle timer og gjør
det spesielt bra i de ytre kvantilene. Dette indikerer at EWQR klarer å fange opp utviklin-
gen av det tyske markedet over tid. CAViaR-modellene gjør det best blant referansemod-
ellene, men kvaliteten på estimatene varierer. GARCH-modellen fanger opphopning av
overskridelser best, men gjør det dårlig samlet sett. Resultatene våre viser at overtilpas-
ning er et problem for både EWQR og EWDKQR. Dette ser vi i den midtre delen av
fordelingen, hvor tradisjonell QR utkonkurrerer de mer komplekse modellene.

Basert på de lovende resultatene for EWQR, anbefaler vi at denne modellen utforskes
videre i fremtidige studier. EWQR kan enkelt implementeres og tolkes, og krever be-
grenset regnekraft. Dette øker sannsynligheten for at modellen tas i bruk i industrien.
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Chapter 1

Introduction

Electricity price forecasts are important inputs to energy companies’ decision-making. For
day-to-day market operations, accurate forecasts of short-term prices are crucial. These
serve as aids for producers, retailers, and speculators who seek to determine their opti-
mal short-term strategies for production, consumption, hedging and trading (Bunn et al.,
2016). In this thesis, we focus on distribution forecasting models and investigate their
performance for the EPEX spot price.

Electricity is non-storable by nature, and a stable power system requires a constant demand-
supply balance. This makes electricity a unique commodity with price dynamics not ob-
served in any other market (Chan and Gray, 2006). Prices are highly volatile, feature high
levels of skewness and kurtosis, and display significant seasonality as well as volatility
clustering. Thus, forecasting in electricity markets is arguably more challenging than in
traditional financial markets.

Uncontrolled exposure to market price risk can have devastating consequences for market
participants (Deng and Oren, 2006). This has led to an increased focus on risk manage-
ment in power markets. As stakeholders require explicit control of the risk of both high
and low extreme prices, point forecasts are inadequate in many cases (Paraschiv et al.,
2016). Distribution forecasts, on the other hand, provide a more comprehensive picture.
According to Bunn et al. (2016), forecasting the tails of price distributions is often more
crucial than central expectations. And Chatfield (2000) argues that distribution forecasts
are important for planning different strategies for a range of possible outcomes.

Value-at-Risk (VaR) is a particular type of distribution forecast, and can be regarded as a
market standard for risk measurement. VaR is popularly used to evaluate down-side risk in
financial markets, and is favoured because it is effective and easy to interpret (Senera et al.,
2012). α-VaR is defined as the threshold loss value, such that the probability that a loss
over a certain time horizon exceeds this value is α%. When applied to electricity prices,
it gives the value that the price will stay below with probability α%. This is equivalent to
the quantiles of the distribution. Although VaR commonly refers to the tail quantiles, we
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Chapter 1. Introduction

use these terms interchangeably.

Despite the importance of risk management in power markets, Weron (2014) finds that
distribution forecasting is “barely touched upon” in electricity price forecasting literature.
This is supported by Bunn et al. (2016), who argue that for electricity markets, VaR fore-
casting remains under-researched. Maciejowska et al. (2016) state that the lack of such
research is likely due to the increased complexity of the problem compared to point fore-
casting. The sparseness in current literature, combined with the importance of the problem,
is our motivation for considering VaR forecasting of electricity spot prices.

There is significant evidence in literature that electricity prices adapt to fundamental vari-
ables (e.g. Karakatsani and Bunn (2008), Weron (2014) and Paraschiv et al. (2014)). In a
comprehensive review of electricity forecasting literature, Weron (2014) finds that the ma-
jority of models include fundamentals. While the use of such variables has been successful
in traditional point forecasting of electricity prices, literature on fundamental distribution
forecasting is sparse. However, we find examples of fundamental modelling of electricity
price distributions, e.g. in Paraschiv et al. (2016) and Hagfors et al. (2016a,b). These
studies do not consider forecasting, but focus on in-sample fit and revealing price drivers
in different parts of the distribution. A main finding from these papers is that the impact
of fundamentals varies significantly across the price distribution and trading periods.

Quantile regression (QR) approaches estimate each quantile with a distinct regression.
Moreover, they are simple, insensitive to outliers, avoid distributional assumptions and
facilitate the use of fundamentals. Thus, they promise several attractive features for cap-
turing the complex properties of electricity prices. QR has already received some attention
in electricity price forecasting, e.g. in Bunn et al. (2016) and Lundby and Uppheim (2011).
We argue that the greatest advantage of QR is that it models quantiles separately. In con-
trast to the aforementioned works, we take advantage of this through the variable selection.
Since we know from literature that the effects of fundamentals vary, we propose using a
separate set of variables for each quantile and trading period.

By using knowledge of market conditions, we form a set of fundamental factors and per-
form a variable selection for each trading period and quantile. We use the selected vari-
ables to forecast VaR with traditional QR, as well as with exponentially weighted QR
(EWQR) and exponentially weighted double kernel QR (EWDKQR). The latter two mod-
els are more sophisticated extensions of QR, and not yet explored for electricity prices.
These models were proposed by Taylor (2008b), with the goal of capturing swift distri-
bution changes. This is an attractive property for EPEX, since the input mix and market
conditions change over time. Both EWQR and EWDKQR show promising results in other
domains. Thus, we investigate if they offer improvements for electricity price forecast-
ing. We compare the predictive performance of the QR type models to some of the most
common benchmarks in literature; parametric GARCH models and CAViaR.

The subject of our analysis is the hourly spot price in Germany, the “Phelix” spot traded
on EPEX 1. We study the German market, as it is the main reference for electricity price
trading in Europe. Moreover, we are not aware of previous studies that apply QR for

1 The term spot price refers to the hourly day-ahead price, following the European convention.
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forecasting in this market.

The overall goal of our work is threefold. Firstly, we want to identify appropriate funda-
mental variables for selected hours and quantiles of the price distribution. Secondly, we
assess the gain of using more complex QR models compared to traditional QR. Thirdly,
we benchmark the QR models against common VaR approaches in literature. From this,
we hope to show that QR is an appropriate choice for capturing the unique features of
electricity prices.

The thesis is structured as follows: In Chapter 2 we review relevant literature on funda-
mental electricity price modelling and VaR forecasting. Next, we describe the German
power market and price formation process in Chapter 3. In Chapter 4 we present and anal-
yse the data set. This is followed by Chapter 5, where we give a detailed explanation of
the models and how we implement and evaluate them. We present and discuss the empiri-
cal results in Chapter 6, and consider the practical implications of our work in Chapter 7.
Chapter 8 concludes this thesis, before we recommend further work in Chapter 9.
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Chapter 2

Literature review

As motivated in Chapter 1, we aim to forecast the VaR of electricity spot prices using
fundamental variables. We therefore position ourselves between the following groups of
literature: i) Fundamental electricity price modelling, and ii) VaR forecasting. This thesis
contributes to filling the missing link between these literature streams for the German
market.

In this chapter, we review research belonging to both of these literature groups. Our fo-
cus is on electricity price forecasting, but we also supplement with research from other
domains.

2.1 Fundamental electricity price modelling
Fundamental models try to capture price dynamics by modelling the impact of exogenous
factors on the electricity price (Weron, 2014). The main motivation for using such mod-
els is that characteristic electricity price patterns are results of adaption to fundamentals
(Paraschiv et al., 2014). Note that by the term fundamentals we refer to exogenous vari-
ables, and that we use these terms interchangeably. In literature, fundamental models are
also referred to as structural models. This is in contrast to reduced-form models, which
solely rely on intrinsic properties (Weron, 2014).

Chen and Bunn (2010) argue that prices are functions of different drivers in specific trading
periods. Bunn et al. (2016) find evidence that while fundamentals have substantial impact
on UK spot prices, this impact varies across quantiles and over time. This is backed by
Karakatsani and Bunn (2008), who argue that models accounting for the time-varying
effects of fundamental drivers are the most effective and useful in practice.

The findings for UK spot prices are also confirmed for the German market. Hagfors et al.
(2016a) find that the effect of fundamentals varies substantially across both trading periods
and the price distribution. Paraschiv et al. (2016) come to similar conclusions. They
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Chapter 2. Literature review

emphasise the importance of using fundamentals, and find variables for renewable power
particularly influential. Paraschiv et al. also stress that electricity prices’ dependence upon
fundamental factors is dynamic. This is because evolving factors, like technology, market
structure and participant conduct, affect the underlying price formation. They argue that
the dynamicity of the price distribution can be captured by modelling the dependence of
fundamentals that evolve over time.

Gonzales et al. (2012) find improved accuracy by including fundamentals when forecasting
UK spot prices. Moreover, they observe that the variable coefficients in their models
evolve remarkably over time. Thus, they argue that dynamic specifications are necessary,
and that forecasting models should be re-estimated day by day. They suggest constant
monitoring of market conditions in order to select the appropriate model specification and
fundamental drivers.

Maciejowska and Weron (2016) find that inclusion of fundamentals generally improves the
forecasting performance of UK baseload prices. However, they emphasise that variable se-
lection is crucial. For example, they observe that including gas prices increases forecasting
performance, whereas variables related to system-wide demand and CO2 prices worsen
price predictions. The authors conclude that there is no general answer as to which fun-
damentals are the best, and that the optimal selection depends on both forecasting horizon
and trading period.

Hagfors et al. (2016b) show that including fundamental variables is useful because it en-
ables scenario analysis. They create scenarios by changing the values of the fundamentals
and evaluating the corresponding price changes. Market participants can use these in risk-
management, by planning for a range of price scenarios given different input ranges for
the fundamental variables.

Weron (2014) points to several challenges regarding the inclusion of fundamentals in fore-
casting models. The first is data availability, as data is usually not public. Moreover,
Weron finds that it is an open question how to select a minimum set of the most effective
input variables. He argues that it is unlikely that one universal set can be found. Despite
these challenges, Weron finds that the majority of models in electricity price forecasting
literature include fundamentals.

2.2 VaR forecasting
The definition of VaR does not specify how to calculate it. Consequently, many different
forecasting methods are proposed in literature (Senera et al., 2012). The best approach in
each case depends both on what is being modelled, and on which information the forecast
should give.

VaR forecasting is complicated by the fact that most financial assets, e.g. electricity prices,
exhibit non-standard statistical properties. According to Hartz et al. (2006), there are
particularly two aspects an adequate VaR model must be able to capture: i) Time-varying
volatility and volatility clustering, and ii) excess kurtosis relative to the normal distribution.
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2.2 VaR forecasting

2.2.1 Classification of VaR forecasting models
Kuester et al. (2006) provide a comprehensive review of VaR prediction strategies. They
argue that the approaches for obtaining VaR forecasts can be classified into four main
categories:

• Historical simulation is a simple approach that computes empirical quantiles based
on past data.

• Extreme value theory (EVT) models the tails of the distribution separately.
• Fully parametric models assume a price/return distribution.
• Quantile regression directly models specific quantiles, rather than the whole distri-

bution.

We find examples of models belonging to all four classes in literature on electricity price
VaR forecasting. Historical simulation is used to a limited extent since it is not able to
capture time-varying volatility, and thus, has poor performance in practice (Kuester et al.,
2006). Filtered historical simulation (FHS) attempts to overcome this issue by prefiltering
the data with location-scale models, such as ARMA and GARCH (see below). Gurrola-
Perez and Murphy (2015) evaluate FHS models for energy markets. However, we are not
aware of recent applications to electricity prices.

At present, research on EVT for estimating VaR in energy markets is sparse. However,
examples are found in Bystrom (2005), Chan and Gray (2006) and Florentina and Hadzi-
Mishev (2016), who all report that the results are encouraging.

Fully parametric models are often based on models of volatility dynamics. Examples
include the RiskMetrics model widely applied in banking (J.P.Morgan/Reuters, 1996),
and Generalised Autoregressive Conditional Heteroscedacity (GARCH) models. GARCH
models were first introduced by Bollerslev (1986), and build upon the ARCH model of
Engle (1982). The idea is to let conditional variance change over time as a function of past
variance and error terms. The models are specifically designed to capture volatility clus-
tering, one of the key characteristics of electricity prices. For this reason, they are common
benchmarks in electricity price forecasting literature. However, Alexander (2008b) finds
that GARCH models are used to a limited degree in practice, because they are hard to
calibrate.

The last class from Kuester et al.’s classification is quantile regression (QR). This class
consists of all approaches that model the specific quantiles of a distribution. This includes
the traditional QR model by Koenker and Bassett Jr. (1978), as well as the Conditional
Autoregressive Value-at-Risk (CAViaR) models by Engle and Manganelli (2004). In this
thesis, we refer to CAViaR as a separate group of models.

The QR model by Koenker and Bassett Jr. (1978) has the advantage of reducing sensitivity
to large outlying observations, and is solved as a linear program. The model can easily be
extended to include explanatory variables. Since each quantile is modelled separately, it
is possible to capture varying effects of factors across the distribution. Moreover, QR has
the appeal of avoiding distributional assumptions. This makes it appropriate for modelling
time series with complex statistical properties, for instance electricity prices.
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Chapter 2. Literature review

CAViaR approaches model quantiles directly, similar to the approach of QR. However,
these models specify the evolution of quantiles as autoregressive processes. In the orig-
inal paper, Engle and Manganelli (2004) consider stock market returns. They argue that
since the volatilities of returns cluster over time, their distribution is autocorrelated. Con-
sequently, the quantiles must exhibit similar behaviour. The same argument may be used
for electricity prices. This makes CAViaR a popular benchmark in electricity forecasting
literature (Bunn et al., 2016).

In addition to the aforementioned categories, there are several hybrid approaches and ad-
vanced statistical techniques for VaR forecasting. Kuester et al. (2005) name long memory,
Markov-switching and stochastic volatility models as other commonly used techniques.
Furthermore, computational intelligence receives increasing attention in all types of fore-
casting literature. Maciel et al. (2017) apply a fuzzy modelling approach for VaR esti-
mation of the S&P500, and report that it achieves higher performance than alternative
econometric models. Mostafa et al. (2017) provide a review of neural network applica-
tions for modelling VaR. Examples of computational intelligence techniques applied to
electricity price forecasting are found in Keles et al. (2016), who use a neural network ap-
proach, and in Neupane et al. (2017), who use an ensemble model. However, none of these
forecast VaR or price distributions. We consider computational intelligence models to be
interesting subjects for future studies. However, we limit our scope to traditional statisti-
cal approaches in this work, since these models currently are more accepted by industry
practitioners.

Among the approaches from Kuester et al.’s classification, we find QR models to be par-
ticularly promising for forecasting electricity prices. We focus on QR models rather than
the alternative approaches, because of their simplicity, possibility to include fundamen-
tals, and promising ability to capture the complex features of electricity prices. Due to the
wide use in literature, we use GARCH- and CAViaR models as benchmarks. In the next
section, we review literature on using QR-, GARCH- and CAViaR models for forecasting.
Moreover, we consider extensions of the QR model. For further description of the models
we review in this section, please refer to Kuester et al. (2006) and Alexander (2008d).

2.2.2 Performance of VaR forecasting models in literature
Bunn et al. (2016) forecast the VaR of UK spot prices. They apply three QR models;
one with price lags only, one including fundamentals, and one with fundamentals as well
as a volatility variable. The QR models are benchmarked against CAViaR models, and
GARCH models with both a gaussian- and a skewed student-t distribution. Bunn et al.
find that the QR model including fundamentals and volatility outperforms all other mod-
els. QR is also favoured due to its ease of implementation. Furthermore, the authors
conclude that gaussian GARCH models are “seriously flawed” for electricity forecasting.
This is unsurprising, as the kurtosis and skewness of the data is lost under the normal-
ity assumption. However, they observe significant improvement with a skewed student-t
distribution.

The work of Bunn et al. (2016) has several similarities to that of Lundby and Uppheim
(2011), who forecast the VaR of Nord Pool spot prices. Lundby and Uppheim implement
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2.2 VaR forecasting

QR, EWQR (see Section 2.2.3), and different CAViaR specifications. They also extend one
of the CAViaR models to include explanatory variables. GARCH models with gaussian-
and skewed student-t distributions serve as benchmarks. The results show that the ex-
tended CAViaR model outperforms the rest, and that CAViaR models generally perform
well. However, due to the simplicity and relatively good performance of QR, the authors
argue that market participants may favour it over the more sophisticated extended CAViaR
model.

Garcia et al. (2005) use two GARCH models to forecast spot prices in the Spanish and
Californian market; one with price as the only variable, and one including demand. They
benchmark these against an ARIMA model. They find that GARCH with price only out-
performs ARIMA when volatility and price spikes are present. Moreover, adding demand
as explanatory variable further improves the forecasting performance. This version of
GARCH consistently outperforms ARIMA. Florentina and Hadzi-Mishev (2016) use a
combination of GARCH and EVT to investigate the tails of the German electricity price
change distribution. They find that the model delivers relatively precise quantile estimates,
but that the quality of the estimates is sensitive to the threshold selected for the tail.

QR models are also applied in domains other than electricity prices. Bremnes (2006) uses
a QR model to forecast wind power production, and compares the model to a gaussian
model and the Nadaraya–Watson (NW) estimator. He concludes that QR outperforms the
gaussian model, but that the differences between QR and the NW estimator are minor.
Chen and Chen (2002) apply a QR model to forecast VaR for the returns of the Nikkei 225
index. They find that it outperforms the conventional variance-covariance approach.

2.2.3 Extensions of the QR model
Taylor (2008b) introduces exponentially weighted quantile regression (EWQR). The ex-
tension is motivated by the trade-off between including too few observations and getting
large sampling errors, and including too many and getting a model that reacts slowly to
changes in the true distribution. EWQR attempts to resolve this by placing exponentially
decaying weights on the observations, which gives greater emphasis to newer observa-
tions. This could be useful for modelling the EPEX spot price, since we observe significant
changes in input mix and market structure over time. Taylor uses EWQR to estimate VaR
for stock returns and finds that it outperforms GARCH- and CAViaR models. In Taylor
(2007), he uses an intercept-only EWQR model to forecast daily supermarket sales. He
reports that the empirical results are encouraging, with improvements over traditional QR.

Gelper et al. (2010) argue that despite the simplicity of exponential smoothing methods,
they are still competitive with more complicated forecasting models. However, De Liv-
era et al. (2011) warns that in modelling complex time-series, the exponential smoothing
models, used by e.g. Taylor, suffer from over-parameterisation.

To the best of our knowledge, EWQR has received little attention in electricity price fore-
casting literature. The only example we find is in the aforementioned study by Lundby and
Uppheim (2011). They report poor results and find that an intercept-only EWQR model is
outperformed by both traditional QR and the CAViaR methods.

9



Chapter 2. Literature review

It is challenging to estimate extreme quantiles due to the sparseness of observations in the
tails. This is Taylor’s (2008b) motivation for extending the EWQR model further, to expo-
nentially weighted double kernel quantile regression (EWDKQR). The EWDKQR method
is based on the paper by Jones and Yu (1998), who argue that double-kernel methods are
useful for calculating quantiles. In empirical studies, Taylor finds that EWDKQR per-
forms worse than EWQR in terms of hit percentage. However, the dynamic properties of
the quantiles are better explained by the EWDKQR model. To the best of our knowledge,
this model has not previously been applied to electricity prices.

2.3 Key findings
We conclude the literature review by summarising the key findings and discussing similar-
ities with our work.

In Section 2.1, we reviewed literature on modelling electricity prices with fundamental
variables. We find evidence in literature that different fundamentals affect specific trad-
ing periods and quantiles. Moreover, current research suggests that the dependence upon
fundamentals varies over time and that forecasting models should be dynamic. While the
use of fundamentals is encouraged for improving forecasting performance, selecting the
optimal input variables is challenging.

Section 2.2 reviewed different types of VaR forecasts. VaR forecasting approaches can be
classified into i) historical simulation, ii) EVT, iii) fully parametric models, and iv) quantile
regression. The latter two approaches are the most common for electricity prices. Within
these classes, GARCH and CAViaR models are widely applied. Thus, they are appropriate
benchmarks. We argue that QR models are promising for forecasting electricity prices,
because they model each quantile separately. This enables them to capture the varying
effect of fundamentals across the distribution.

We examined research on the predictive performance of QR, GARCH and CAViaR mod-
els in Section 2.2.2. QR exhibits good predictive accuracy, and generally outperforms
GARCH and traditional CAViaR models for electricity price forecasting. However, QR
may be inferior to more sophisticated CAViaR models. Accurate forecasting of extreme
quantiles is challenging due to the sparseness of data in the tails. This is a particular prob-
lem when the distribution changes rapidly, as is the case for EPEX. EWQR and EWDKQR
are extensions of QR intended to account for this, as discussed in Section 2.2.3.

The studies of Bunn et al. (2016) and Lundby and Uppheim (2011) are most similar to
what we do in this thesis. However, we analyse the German market, while the aforemen-
tioned papers consider the UK- and Nord Pool markets. We also apply more sophisticated
QR models, and perform a variable selection across quantiles. We are not aware of any
previous studies that consider the predictive ability of fundamentals across the distribu-
tion for electricity spot prices. We argue that these distinctions make our work a valuable
contribution to current literature.
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Chapter 3

Market description

In this chapter, we describe the German electricity market to provide an understanding of
price drivers and the price formation process. This serves as motivation for our choice of
fundamental variables.

The European Power Exchange (EPEX) is the main trading platform for electricity prices
in Europe. It offers trading, clearing and settlement in both the day-ahead- and intraday
markets. The day-ahead, hourly prices in Germany are traded on EPEX and are referred to
as ”Phelix”. The day-ahead market is the primary market for power trading. Here, buyers
and sellers make hourly contracts for delivery of power the following day. This happens
through a daily auction at 12.00pm, where the market clearing price is determined by
matching demand and supply. The intraday market supplements the day-ahead market and
helps secure necessary demand-supply balance.

Seasonal fluctuations, substantial volatility clustering, large spikes and increasing occur-
rences of negative prices characterise the German electricity price (Reisch and Micklitz,
2006; Bunn et al., 2016; Hagfors et al., 2016c). In the following sections, we describe the
market mechanisms that give rise to this complexity.

3.1 Energy mix
Table 3.1 shows the development of the energy mix in Germany from 2010 to 2016. It
illustrates that power production in Germany mainly relies on fossil fuel power, particu-
larly coal with 40.3% of the total production in 2016. Moreover, there is a large share of
intermittent renewable energy in the form of wind and solar power.

The increase in renewable energies and reduction in nuclear power are the most notable
developments during the period. The latter is due to the German government’s decision to
phase out nuclear energy within 2022. Regulatory changes are also the key driving force
for the growth in renewables, as several subsidies have been introduced to incentivise

11



Chapter 3. Market description

expansion of renewable production (Federal Minsitry for Economic Affairs and Energy,
2017).

Table 3.1: Electricity production in Germany by source (%)

Source 2010 2011 2012 2013 2014 2015 2016
Coal 41.6 42.9 44.1 45.2 43.8 42.1 40.3
Nuclear 22.2 17.6 15.8 15.3 15.5 14.2 13.1
Natural gas 14.1 14.1 12.2 10.6 9.7 9.6 12.4
Oil 1.4 1.2 1.2 1.1 0.9 1.0 0.9
Renewable energies: 16.5 20.1 22.6 23.7 25.8 29.0 29.0

Wind 6.0 8.0 8.1 8.1 9.1 12.3 11.9
Solar 1.9 3.2 4.2 4.9 5.7 6.0 5.9
Biomass 4.6 5.2 6.1 6.3 7.7 6.9 7.0
Hydro power 3.3 2.9 3.5 3.6 3.1 2.9 3.2
Waste to energy 0.7 0.8 0.8 0.8 1.0 0.9 0.9

Other 4.2 4.1 4.1 4.1 4.3 4.1 4.2

Data from AG Energibalanzen e.V. (2017) and Clean Energy Wire (2017)

3.2 Price formation fundamentals
As seen in Chapter 2.1, there is significant evidence in literature that electricity prices adapt
to fundamentals. To explain how fundamental variables influence the price formation, we
follow the approach of Paraschiv et al. (2014) and categorise the variables into demand-
and supply side factors. In addition, we discuss the effect of endogenous variables. By
this, we refer to the intrinsic properties of the electricity price, for instance price lags and
volatility.

3.2.1 Demand side factors
Since electricity is a flow, it is produced and consumed continuously (Bunn et al., 2016).
The non-storable nature of electricity entails that a constant balance between supply and
demand is necessary to ensure power system stability (Kaminski, 2013). Hence, hourly
price variations are largely due to fluctuations in demand.

Demand is a function of temperature, seasonality and consumer patterns, which give rise
to the periodic nature of electricity prices (Mirza and Bergland, 2012). As few options are
available to consumers in response to price changes, demand is highly inelastic in the short
term (Mirza and Bergland, 2012). Hagfors et al. (2016c) find that positive price spikes are
closely related to high demand. This is because producers with market power may offer
and create market prices substantially above marginal costs in times of scarcity and high
demand (Bunn et al., 2016).
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3.2.2 Supply side factors
The merit order curve plays a vital role in the electricity price formation process (Paraschiv
et al., 2014). This is the sorted marginal cost curve of electricity production, starting with
the least expensive technologies to the left. Generally, the plants with the lowest marginal
costs are the first to be brought online to meet demand. Thus, we can use the merit order
curve to determine the price setting technology, i.e. the production technology located
at the intersection between supply and demand. The German merit order curve increases
through concave, flat and convex regions (Karakatsani and Bunn, 2008).

During periods of low demand, base load power plants, such as nuclear and coal, usually
serve as price setting technologies (Erni, 2012). These plants are inflexible, due to high
ramp-up costs. Contrary, in times of high demand, prices are set by expensive peak load
plants, like gas and oil. These facilities have high flexibility, high marginal costs, and give
rise to the convex shape of the merit order curve. With the lowest marginal cost, renewable
energy sources are at the bottom of the merit order curve. Increased supply of renewable
energy shifts the curve to the right, and thus lowers power prices1.

Fuel prices and CO2 emission allowances

Coal is the largest source of electricity in Germany. Hence, coal is a generating technology
in the mid-region of the supply function where demand tends to be most of the time.

Gas is characterised by high operational flexibility and short ramp-up times (Sensfu et al.,
2008). In 2016, it supplied about 12% of the electricity in Germany. These power plants
are price setting during peak hours when demand for electricity is high. Along with coal,
gas is also a price setting technology in the mid-region of the supply function (Paraschiv
et al., 2016).

With a share of only 0.9% in 2016, oil is rarely used directly for electricity production in
Germany. Thus, it has a relatively small impact on the merit order curve. Nevertheless,
Paraschiv et al. (2014) and Erni (2012) argue that oil prices influence the electricity prices
in Germany, because of the significant impact on the transportation costs of imported coal.

CO2-producing companies are obliged to buy emission allowances. Since coal-fired power
plants and some gas-fired power plants are CO2 intensive, the price of CO2 allowances
influence their marginal cost (Paraschiv et al., 2014). Thus, the prices of CO2 allowances
affect the spot prices in general. During periods of high prices for emission allowances,
a phenomenon called fuel switch may occur. This is a change in the merit order curve,
where the marginal production costs of more efficient gas-fired power plants become less
than those of CO2 intense coal-fired power plants (Erni, 2012).

Renewables

Among the renewable energy sources in Table 3.1, wind and solar energy have attracted the
most attention in Germany over the past years (Erni, 2012; Paraschiv et al., 2014). In 2016,
they contributed to 18% of the total production in Germany. The supply of wind and solar

1Note that it reduces the wholesale prices. Prices for the final consumers may increase because they must pay
the feed-in tariffs for the promotion of renewable energy, see Paraschiv et al. (2014)
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energy is determined by meteorological conditions and features seasonal patterns (Erni,
2012; Grothe and Schnieders, 2011). A notable observation is that wind infeed tends to be
higher in the early morning and the afternoon hours (Erni, 2012; Paraschiv et al., 2014).

Due to intermittency, renewable energy sources pose significant challenges for modern
energy markets (EPEX Spot, 2017). Hours with increased supply of renewable energy
cause difficulties for inflexible facilities that should run continuously. This is because the
inflexible base load facilities have shutdown and start-up costs, forcing them to accept
negative marginal returns in order to generate continuously. This has a lowering effect
on electricity prices. Hagfors et al. (2016c) find that negative prices largely are caused
by high wind production at times when demand is low. Thus, negative price spikes occur
mainly at night.

Reserve margin and other supply side factors

Reserve margin is a commonly considered supply side factor in literature. It is defined as
available supply minus demand. Bunn et al. (2016) argue that spot prices are sensitive to
demand shocks and plant outages, and that expectations of spot prices involve considera-
tion of the reserve margin.

From Table 3.1, we see that the German energy mix also consists of nuclear and other
renewable energy sources, such as biomass, hydro power and waste to energy. Nuclear
power plants are must-run facilities that never go off-line and have low marginal costs.
Thus, they have little impact on electricity prices (Erni, 2012). Moreover, as previously
mentioned, Germany is phasing out nuclear energy. The impact of other renewable energy
sources is explored to a limited extent in literature. This is because the respective data is
unavailable or incomplete.

3.2.3 Endogenous factors
The majority of the reviewed forecasting models include lagged values of spot prices to
capture learning effects. Naturally, lagged prices reflect the current price level. Moreover,
they influence market agents’ price expectations and risk aversion.

Bunn et al. (2016) find that the price signal from the previous day often has a positive
effect on the next day’s price. This is because market agents tend to reinforce previously
successful offers in the market. As a result, high prices are followed by high prices, and
positive spikes cluster. Bunn et al. (2016) argue that this effect is particularly strong at
higher quantiles where the market becomes less competitive and gaming more plausible.
Although lagged prices are commonly found in forecasting models, Paraschiv et al. (2016)
claim that autocorrelation of prices often is better reflected in the adaption process to
market fundamentals.

Volatility and volatility lags are other commonly considered endogenous factors in litera-
ture. Volatility is an indicator of historic instability and risk. Paraschiv et al. (2014) argue
that the coefficient of price volatility can be interpreted as a risk compensation in the mar-
ket. Bunn et al. (2016) find that in times of low prices, an increase in volatility drives
prices even lower, and conversely for high prices.
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Data analysis

In this chapter, we describe and analyse our data set. The selection of fundamental vari-
ables is based on the factors we found to be important price drivers in Chapter 3. However,
we omit some of the renewable energy sources, for instance biomass, due to data avail-
ability. Note that we use expected power plant availability (PPA) as a proxy for reserve
margin.

We use data from EPEX observed between 01.01.2010 and 31.08.2016. The main reason
for this choice is the Equalisation Mechanism Ordinance, which came into force January
1st 2010. This act induced a significant increase in the use of renewable energy and caused
large changes in the EPEX input mix (Paraschiv et al., 2014). Moreover, some of the data,
like solar and power plant availability, are incomplete or not available for earlier time
periods.

The spot price data has hourly resolution, which means that we have 58 440 price obser-
vations. However, since each hour is a separate trading period, we treat the price data as
24 independent time series with 2435 data points each. Our data set consists of the fun-
damental variables shown in Table 4.1. Please refer to Appendix A for a more detailed
description of the variables and the data sources.

Variable Daily Hourly
Phelix spot price X
Coal price X
Gas price X
Oil price X
CO2 allowance price EU X
Expected wind infeed X
Expected solar (PV) infeed X
Expected power plant availability (PPA) X
Expected demand X

Table 4.1: Data granularity
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In addition to the exogenous variables above, we include seven lags of the price and volatil-
ity as variables. We compute the volatility for each hour separately using a skewed-t
GARCH(1,1) model. GARCH is a well-known and frequently used model for estimating
volatility, as well as being relatively accurate and simple to implement.

4.1 Descriptive statistics
Figure 4.1 shows how the volatility and average prices vary throughout the day. We see
that there are large variations in both prices and volatility. The price has a peak in hour 8
in the morning, and reaches its super-peak in hour 19 in the evening. The off-peak, i.e. the
period with the lowest prices, occurs in hour 3 at night. We also observe that the extrema
of the price graph coincide with periods of high volatility.

Based on the findings in Figure 4.1, we select hours 3, 8 and 19 as the periods we aim
to model. We consider these hours most interesting, as they represent the highest and the
lowest prices. Hour 8 and 19 are among the hours with highest volatility, while hour 3 is
the most volatile hour at night and has a large number of negative price occurrences. More-
over, this selection allows us to analyse intraday variations of the effects of fundamental
factors.

Figure 4.1: Average hourly prices and volatility

Figure 4.2 shows the development of spot prices in the selected hours. We see occurrences
of negative price spikes in hour 3, and positive spikes in hours 8 and 19. Moreover, there
seems to be volatility clustering in all hours. The period between 2012 and 2013 appears
to be particularly volatile, while prices in 2016 are more stable. The seasonality of spot
prices is particularly evident in hour 19, where we find price dips in the summer months.
We observe some seasonality in hour 8 as well, while prices in hour 3 seem to be less
affected by the time of the year. This is unsurprising, as demand at night tends to be
relatively stable throughout the year.
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Figure 4.2: Development in hourly spot prices from 2010 to 2016
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The descriptive statistics in Table 4.2 reflect these findings. The decreasing mean and
median values show that prices overall have fallen from 2010 to 2016. Moreover, we find
that the maximum prices have declined. This indicates a lower amplitude of the extreme
price spikes in the most recent years. This is also evident from the decreasing standard
deviation. From reaching its maximum in 2012, the volatility is declining over time for all
hours. Note that we do not have data for the entire 2016, which may explain why we find
significantly less volatility this year.

Table 4.2: Descriptive statistics of spot prices, measured in Euros. The tables show the evolution
of the price characteristics from 2010 to 2016 for each hour, as well as a total calculated across all
years

Hour 3 Median Mean Min Max Std.div. Skewness Kurtosis

2010 29.83 27.63 -18.10 50.15 10.60 -0.77 3.47
2011 38.58 34.85 -0.10 51.08 10.71 -1.10 3.47
2012 30.08 26.21 -221.94 45.20 20.99 -8.11 86.69
2013 25.90 23.29 -62.03 39.67 10.78 -2.03 13.98
2014 23.98 21.14 -60.26 34.46 9.00 -3.09 23.16
2015 24.02 21.29 -31.41 34.92 9.21 -1.82 7.73
2016 20.10 18.48 -19.30 30.01 6.27 -1.99 8.95

Total 25.67 25.00 -221.90 51.08 13.10 -5.37 84.24

Hour 8 Median Mean Min Max Std.div. Skewness Kurtosis

2010 51.55 50.07 1.06 98.71 14.66 -0.50 3.83
2011 60.63 57.44 -5.95 88.78 13.83 -1.18 5.10
2012 53.24 51.38 -0.09 175.55 19.35 1.15 10.20
2013 46.61 46.71 -0.98 109.36 18.14 -0.10 3.02
2014 41.03 39.65 0.05 72.94 13.81 -0.35 2.82
2015 40.46 38.85 -6.86 71.92 13.88 -0.43 3.05
2016 34.10 31.17 2.59 85.05 10.53 0.03 5.86

Total 46.37 45.76 -6.86 175.60 17.21 0.19 2.02

Hour 19 Median Mean Min Max Std.div. Skewness Kurtosis

2010 50.85 53.52 24.76 95.00 10.78 0.92 4.15
2011 62.53 62.37 21.49 117.49 9.79 0.20 6.20
2012 55.00 56.39 13.70 169.90 15.85 1.87 12.79
2013 49.55 51.29 9.28 120.16 15.67 0.85 4.45
2014 42.44 44.20 14.34 81.51 11.56 0.67 3.73
2015 42.11 42.53 10.55 98.05 11.39 0.44 4.40
2016 33.15 33.04 11.79 70.03 6.99 0.75 6.74

Total 48.95 49.85 9.28 169.90 14.99 0.74 2.65

We find that the distribution in hour 3 is highly leptokurtic, with a negative skew. This
indicates a fat lower tail and high probability of observing low prices. Hour 8 is slightly
skewed, but the skew varies between being negative and positive. We find excess kurtosis
in hour 8 for most years. This suggests a greater probability of observing extreme values
relative to the normal distribution. Hour 19 has positive skew and excess kurtosis. This
implies that the probability of observing prices in the upper tail is greater than in the lower
tail. For all hours, we find that 2012 was a particularly volatile year with high kurtosis.
This is also visible in in Figure 4.2, where we observe particularly many price spikes in
2012. Overall, we observe swift changes in the price distribution of all hours.

Table 4.3 displays the results from testing the spot prices for stationarity and normality.

18



4.1 Descriptive statistics

The Augmented Dickey Fuller (ADF) test reveals that prices are stationary at a 1% sig-
nificance level. As mentioned in Chapter 3, electricity prices are known to exhibit mean
reversion, and hence, this result is as expected. We perform the test using seven lags, and
test for both unit root with drift and unit root with drift and trend. The stationarity of prices
entails that we can forecast prices directly without differentiating. Moreover, the Jarque-
Bera test rejects normal distribution of prices for all three time series. This is unsurprising,
based on the skewness and kurtosis values in Table 4.2.

Table 4.3: Tests of stationarity- and normality of spot prices

Hour 3 Hour 8 Hour 19

ADF -10.11 -6.08 -5.45
Jaque-Bera 731610 425 939

Results from the Augmented Dickey Fuller (ADF) test for stationarity with seven lags and unit root with drift,
and Jaque-Bera test for normality. The critical values at the 1% significance level are -3.43 and 9.21 for ADF
and Jaque-Bera, respectively.

To test for autocorrelation of prices, we use a Ljung-Box test with seven lags. It confirms
that autocorrelation is present in all hours, as show in Table 4.4. The autocorrelation is
strongest for lag 1 and lag 7, i.e. the prices one and seven days earlier. Hour 19 has the
highest degree of autocorrelation overall.

Table 4.4: Autocorrelation of prices

Hour Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 LB(1) LB(7)

3 0,649 0,431 0,333 0,311 0,318 0,348 0,323 1025 2778
8 0,528 0,243 0,200 0,174 0,185 0,444 0,714 676 2795
19 0,738 0,614 0,529 0,519 0,551 0,629 0,675 1323 6391

The table shows the correlation between the price and previous price lags, as well as the test statistics for a
Ljung-Box (LB) test with one and seven lags. The critical value at 1% significance for the Ljung-Box test is
18.48

High correlation with lag 7 indicates that there is a weekday effect in the market. This
effect is particularly strong for hours 8 and 19. Interestingly, hour 8 has the lowest auto-
correlation of prices overall, but the highest weekday effect. We expect this to be due to
the differences in electricity demand on a weekday morning compared to weekends.

Table 4.5 displays descriptive statistics of the fundamental variables. For the variables with
hourly resolution, i.e. wind, solar and demand, we find distributional differences across
the trading periods. As expected, solar power has close to zero mean in hour 3. Moreover,
we see that there is substantially more solar infeed in hour 8 than in hour 19. Due to
the significant impact on prices, it is particularly interesting to analyse the differences in
demand. Hours 8 and 19 have approximately the same mean demand, whereas the mean
demand in hour 3 is considerably lower. However, we note that demand in hour 8 is
substantially more volatile. This could be due to the weekday effect we identified in the
autocorrelation analysis.
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Table 4.5: Descriptive statistics of fundamental variables

Hour 3 Median Mean Min Max Std.div. Skewness Kurtosis

Wind 4491 6067 286 37322 5265 1.9 7.4
Solar 0.0 0.1 0.0 255.0 5.2 49.3 2433
Demand 31078 31219 19127 45071 3821 0.2 3.1
Coal 60.4 64.2 37.6 99.0 14.1 0.3 2.2
Gas 22.1 21.4 11.0 39.5 4.7 -0.3 2.7
Oil 45.3 40.4 15.0 56.7 10.1 -0.6 2.1
Co2 7.2 8.5 2.7 16.8 3.8 0.8 2.3
PPA 55531 55323 40016 64169 4863 -0.2 2.1

Hour 8 Median Mean Min Max Std.div. Skewness Kurtosis

Wind 4075 5875 229 35663 5399 1.8 6.9
Solar 2087 3011 0.0 11665 2849 0.8 2.6
Demand 48673 45193 22783 62594 7800 -0.8 2.3
Coal 60.4 64.2 37.6 99.0 14.1 0.3 2.2
Gas 22.1 21.4 11.0 39.5 4.7 -0.3 2.7
Oil 45.3 40.4 15.0 56.7 10.1 -0.6 2.1
Co2 7.2 8.5 2.7 16.8 3.8 0.8 2.3
PPA 55531 55323 40016 64169 4863 -0.2 2.1

Hour 19 Median Mean Min Max Std.div. Skewness Kurtosis

Wind 4473 6101 270 33522 5225 1.7 6.3
Solar 74.0 736 0.0 4730 1047 1.3 3.5
Demand 45947 45496 30768 60966 5840 -0.3 2.4
Coal 60.4 64.2 37.6 99.0 14.1 0.3 2.2
Gas 22.1 21.4 11.0 39.5 4.7 -0.3 2.7
Oil 45.3 40.4 15.0 56.7 10.1 -0.6 2.1
Co2 7.2 8.5 2.7 16.8 3.8 0.8 2.3
PPA 55531 55323 40016 64169 4863 -0.2 2.1

Note that coal, gas, oil, CO2 and PPA has a daily data granularity, and therefore show the same numbers for all
hours.

Table 4.6 shows the correlation between the spot prices and the explanatory variables. We
see that hour 3 has the highest absolute correlation with wind. This correlation is negative,
implying that high values of wind tend to coincide with low prices. Hour 8 and 19 are
closest correlated with demand and coal, respectively.

Table 4.6: Correlation between spot prices and fundamental variables

Hour Wind Solar Demand Coal Gas Oil Co2 PPA GARCH

3 -0,571 -0,003 0,264 0,370 0,151 0,222 0,316 -0,074 -0,249
8 -0,378 -0,224 0,699 0,441 0,300 0,321 0,308 0,132 0,211
19 -0,394 -0,368 0,538 0,553 0,425 0,427 0,336 0,182 0,346

We observe multicollinearity in the data set, i.e. high correlation between the explanatory
variables. The correlations are shown in Tables B.3 - B.4 in Appendix B. We find par-
ticularly high correlations between the fossil fuels. This is as expected, as the fossils are
substitutes in many industries. The multicollinearity entails that models including several
fossils should not be used for analysis of the individual coefficients. This is because the
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presence of multicollinearity means that small changes to the input data can lead to large
changes in the model, and even changes in signs of the parameter estimates.

4.1.1 Log-transformation of variables
Logarithmic transformations of both prices and independent variables are commonly ap-
plied in electricity price forecasting literature (Maciejowska and Weron (2016) and Bunn
et al. (2016)). This is to limit the influence of price spikes and to variance stabilise the
data.

Negative prices occur in the German electricity market. Thus, we cannot transform the
prices directly. To overcome this problem, we shift each price series by the amount that
makes its most negative entry equal to one. This approach has the advantage of not distort-
ing the quantiles. We also observe values below one in the solar data, since there is no sun
at night. We resolve this by setting all values below one to one, before transforming the
data. As there is negligible solar infeed in hour 3, and the mean values of solar are 3011 in
hour 8 and 736 in hour 19, this small adjustment is unlikely to affect the results (see Table
4.5).
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Chapter 5

Method

In this chapter, we describe how we implement and test the QR- and benchmark models
reviewed in Chapter 2. We start with a detailed explanation of the implementation in
Section 5.1. In Section 5.2, we present the model evaluation criteria. Finally, in Section
5.3, we describe our variable selection approach.

We divide the data set described in Chapter 4 into two subsets; an in-sample set and an
out-of-sample set. The data is split at 31 August 2014. This leaves 30% of the data for
out-of-sample testing to evaluate the predictive performance. We use the in-sample set to
fit the model parameter, and the entire data set to perform the variable selection.

5.1 Model implementation
We implement three different QR models; traditional QR, EWQR, and EWDKQR. Addi-
tionally, we test some of the most common benchmark models in literature; GARCH(1,1)
with skewed student-t distribution, symmetric absolute value CAViaR and asymmetric
slope CAViaR.

From the literature review in Chapter 2, we know that electricity price models should
account for dynamicity. We do this by applying a rolling window formulation1, which
works as follows: If the window size is 365, observations [1, 365] are used for forecasting
the VaR of observation 366. Next, we re-estimate the model with observations [2, 366]
and forecast the VaR of observation 367, and so on. We test window sizes of 250, 365,
548, 730 and 913 days.

1Alternatively, we could have used an expanding window. However, we believe that a rolling window is a
better choice for swift adaption to changing market conditions, since it disregards observations far back in time.
Preliminary testing supported this hypothesis. Thus, we make this limitation of scope.
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5.1.1 Linear quantile regression
We start with the original QR model by Koenker and Bassett Jr. (1978). This is given by

Qθ(lnPi,t+1) = βθi,0 +

N∑
n=1

βθi,nXn,t. (5.1)

Here, θ ∈ {1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 99% } denotes the quantile, i ∈
[0, 23] is the hour, and n indexes the set of explanatory variables which has N elements.

Further, we define Xi,t as the vector of explanatory variables at time t, and βθi as the vector
of regression coefficients. The quantiles are found by solving the linear minimisation
problem given by

min
βθi

T∑
t=1

(
lnPi,t −Xi,tβ

θ
i

)(
θ − I(lnPi,t ≤ Xi,tβ

θ
i )
)
, (5.2)

where I(·) represents the indicator function, returning 0 or 1. We solve the minimisation
using the ”quantreg” package in R.

5.1.2 Exponentially weighted quantile regression
By adding a weighting parameter λ to Equation 5.2, we get the EWQR model by Tay-
lor (2008b). λ decays exponentially, amounting to simple exponential smoothing of the
cumulative distribution function. Thus, the EWQR minimisation has the form

min
βθi

T∑
t=1

λT−t
(
lnPi,t −Xi,tβ

θ
i

)(
θ − I(lnPi,t ≤ +Xi,tβ

θ
i )
)
. (5.3)

As before, the vector of explanatory variables is given by Xi,t, and βθi is the vector of re-
gression coefficients. T is the time of the last observation in the window. The θ-quantiles
are given by Equation 5.1. Again, we solve the minimisation using R’s ”quantreg” pack-
age.

The value of λ determines how fast the weights decay. If the distribution changes rapidly,
a relatively low value is needed to ensure that the model adapts swiftly. However, larger
values may be necessary in the extreme quantiles to give significant weight to a higher
number of observations. We follow Taylor’s approach to optimise the λ-values. This
is done by using a rolling window to produce one step-ahead quantile forecasts for the
observations in the in-sample set, and selecting the λ that yields the minimum QR sum.
This is the summation in the standard form of QR in Equation 5.2.

Since λ depends on all parts of the model specification, we perform this optimisation for
all combinations of hours, quantiles, explanatory variables and window sizes. We test a
window of λ-values between 0.9 and 1, with a step size of 0.001.
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5.1.3 Exponentially weighted double kernel quantile regression
We expand the EWQR model further to EWDKQR, following the approach of Taylor
(2008b). In this model, we replace the observations lnPi,t from Equation 5.3 with a kernel
function Kh2

.

In this context, the term kernel refers to a non-negative function with zero mean that inte-
grates to one. Kernel density estimation (KDE) is perhaps the most important application
of these functions. This is a non-parametric approach to estimating the probability den-
sity function of a random variable and an alternative to using histograms. The latter is
similar to how traditional QR and EWQR works. In EWQR, a rapidly decaying weight-
ing parameter is analogous to using a small number of observations to construct the his-
togram. When few observations are available, kernels often improve the density estimates
from histograms. Thus, Taylor argues that introducing kernels may allow faster decay of
the EWQR weighting parameter, and consequently, better adaption to swift distribution
changes.

The minimisation problem is formulated as

min
βθi

T∑
t=1

Kh1
(x− xt)

(∫ ∞
−∞

(y − x′tβ
θ
i )(θ − I(y < x′tβ

θ
i ))Kh2

(y − yt)dy
)
. (5.4)

In this equation, y = lnPriceT and yt = lnPricet. Kh1
and Kh2

are kernel functions in
the x- and y-dimension, respectively. Kh1 is selected to be exponentially weighted with
Kh1(x − xt) = λT−t and Kh2 to be gaussian. With these kernels defined, Taylor shows
that the minimisation becomes

min
βθi

T∑
t=1

λT−t(θ(lnPi,t−Qt)+(Qt−lnPi,t)Θ((Qt−lnPi,t)/h2)+h2φ((Qt−lnPi,t)h2)).

(5.5)
Here, Θ is the standard gaussian cdf and φ is the gaussian pdf. Qθt = x′tβ

θ
i , as specified

in Equation 5.1. Further, h2 is the bandwidth of kernel Kh2. It determines the degree of
smoothing in the kernel density estimate. Taylor explains that h2 and λ have a negative
relationship. Lower values of λ entail faster exponential decay and that less historical in-
formation is captured. Thus, there is a need for more kernel smoothing, which we achieve
through larger values of h2. Note that EWDKQR with h2 set to zero corresponds to
EWQR.

We estimate the optimal bandwidth using the same approach as for the weighting param-
eter in EWQR. We test values for h2 between 0 and 0.045, with a step size of 0.005. Due
to the computational complexity of this procedure, the λ values are kept fixed during the
optimisation. We use the same λ estimates as in EWQR.

To perform the minimisation, we use the ”nlm” nonlinear optimisation solver in R .
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5.1.4 Fully parametric GARCH models
In Section 2.2.2, we found GARCH with a skewed student-t distribution to perform signif-
icantly better than gaussian GARCH. This is the reason why we only implement skewed
student-t GARCH.

We follow the approach of Bunn et al. (2016), and assume a model where the conditional
mean, µt, is a linear function of exogenous variables, and the conditional volatility follows
a GARCH(1,1) process. This gives

lnPt = Xi,tβi + σtzt (5.6)

where Xi,t is as defined in Section 5.1.1, and σt is given by

σt =
√
α0 + α1σ2

t−1 + α2ε2t−1. (5.7)

Further, zt is an i.i.d random variable, assumed to have a skewed student-t distribution.
Thus, we get the one-step forecast of the θ-quantile of lnPt, conditional on the information
up to time t, from

Qθ(lnPt+1) = Xi,tβi + σ̂tQθ(zt). (5.8)

Qθ(zt) is the θ-quantile of zt. We can compute this because of the distributional assump-
tion. The skew- and shape parameters of the distribution are re-estimated in each window.

We estimate this model in two steps. First, we estimate the β-parameters in Equation 5.6
using OLS. Then, we fit a GARCH(1,1) model to the residuals from the regression using
the ”fGarch” package in R.

Note that with this approach, the regression coefficients βi are not specific to the quantiles.
Instead, the explanatory variables model the mean of the distribution. This is a limitation,
because it means that the variables have the same effect across the distribution.

5.1.5 Conditional autoregressive Value-at-Risk models
The CAViaR models by Engle and Manganelli (2004) specify the evolution of a quan-
tile over time as an autoregressive process. They derive expressions for four different
CAViaR processes; symmetric absolute value, asymmetric slope, adaptive, and indirect
GARCH(1,1). We use the first two as benchmarks, as these outperformed the others in
preliminary empirical testing. Qt(θ) is the θ-quantile at time t, the residual term yt is the
return at time t, and αi are parameters to be decided. I(·) represents the indicator function,
returning values 0 or 1.

Symmetric absolute value CAViaR is given by

Qt(θ) = α1 + α2Qt−1(θ) + α3|yt−1|, (5.9)

and asymmetric slope CAViaR is defined as

Qt(θ) = α1 + α2Qt−1(θ) + α3max(yt−1, 0)− α4min(yt−1, 0). (5.10)
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5.2 Out-of-sample performance analysis

Both models are mean-reverting in the sense that the coefficient of the lagged quantile
estimate, Qt−1, can take any value. However, they differ in how they respond to past
returns. While the first responds symmetrically, the second may respond differently to
positive and negative past returns.

Following the approach of Jeon and Taylor (2013), we estimate the parameters of the
CAViaR models by solving the minimisation problem

min
α

[ ∑
t|yt>Qt

θ | yt −Qt(θ) |
∑

t|yt<Qt

(1− θ) | yt −Qt(θ) |
]
. (5.11)

This is equivalent to minimising the objective function in the quantile regression model of
Koenker and Bassett Jr. (1978).

As standard CAViaR specifications do not include exogenous variables, we follow the
approach of Bunn et al. (2016). They formulate a linear regression model for the mean of
the distribution on the form

lnPt = Xi,tβi + εt, (5.12)

where the beta coefficients are found using OLS. A CAViaR model can then be fitted on
the residuals. This means that we replace the return terms in in Equations 5.9 and 5.10
with the error term from Equation 5.12, εt. Thus, we define the quantiles of the price
distribution as

Qθ(lnPt+1) = Xi,tβi +Qθ(εt). (5.13)

This approach has the same limitation as the GARCH models in that the beta-coefficients
are not specific to the quantiles.

5.2 Out-of-sample performance analysis
To test the predictive performance of the models, we use Kupiec’s unconditional coverage
(UC) test (1995), Christoffersen’s conditional coverage (CC) test (1998), and the dynamic
conditional quantile (DQ) tests by Engle and Manganelli (2004).

The simplest way to test a quantile model is to find the percentage of observations falling
below the estimated quantile. Ideally, this percentage should be close to θ. The UC test of
Kupiec (1995) is based on this idea. In our context, we let {It}Tt=1 be a sequence of i.i.d
Bernoulli variables, i.e.

It =

{
1, if Yt < Qt(θ)

0, if Yt > Qt(θ)
, (5.14)

where Yt is the observed price and Qt is the predicted quantile at time t.

The UC test is a test of the null hypothesis that the indicator sequence has an exceedance
percentage sufficiently close to the quantile. The test statistic is a likelihood ratio statistic
given by

LRuc = −2 log

(
πn1
exp(1− πexp)

n0

πn1

obs(1− πobs)
n0

)
asy∼ X2

1 . (5.15)
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Here, n1 and n0 are the number of exceedances and non-exceedances, respectively. πexp
is the expected proportion of exceedances, and πobs = n1/(n0 + n1) is the observed
proportion of exceedances. Clustering of violations can invalidate a VaR model, indicating
that it is not sufficiently responsive to changing market conditions (Alexander, 2008d).
A weakness of the UC test is therefore that it only counts the number of hits, ignoring
clustering of exceedances.

The CC test extends the UC test by also specifying that the hit sequence should be inde-
pendent over time. This is a combined test for both coverage and independence. The test
statistic is given by

LRcc = −2 log

(
πn1
exp(1− πexp)

n0

πn01
01 (1− π01)

n00πn11
11 (1− π11)

n10

)
asy∼ X2

2 , (5.16)

where nij is defined as the number of times an observation with indicator value i is fol-
lowed by indicator value j. For example, n01 is the number of times a non-exceedance
is followed by an exceedance. Further, we define π01 = n01/(n00 + n01) and π11 =
n11/(n11 + n10). As before, n1 and n0 represent the number of exceedances and non-
exceedances, respectively. The CC test only considers autocorrelation of order one in the
hit sequence, i.e. whether an exceedance today affects the probability of an exceedance
tomorrow. This means that the test has limited power to detect general patterns of cluster-
ing.

Some VaR models are misspecified because they do not utilise all the information available
in the market. Since the UC- and CC tests only use information on past quantile violations,
they do not have the power to detect such misspecifications (Engle and Manganelli, 2004).
Arguing that the conditional probability of an exceedance also depends on the quantile
estimate itself, Engle and Manganelli (2004) introduce the dynamic conditional quantile
(DQ) tests. These tests are based on a linear regression model that links the exceedances
to a set of explanatory variables. The first test, DQ1, is formulated as

It = β0 +

7∑
k=1

βkIt−k + εt, (5.17)

where It is the hit sequence defined by Equation (5.14). We choose to test seven lags based
on our findings in the data analysis in Chapter 4. The second test, DQ2, is an extension of
DQ1, where the quantile estimate itself, Qt, is included. This test is formulated as

It = β0 +

7∑
k=1

βkIt−k + β8Qt + εt. (5.18)

We use a standard F-test to test the null hypothesis that all coefficients in Equation (5.17)
are equal to zero. Here, H0: βi = 0, where i ∈ {1..7}, is tested against the alternative
hypothesis that at least one of the coefficients is different from zero. This provides insight
into clustering. Further, we use a t-test to test the null hypothesis that the individual coef-
ficient, β8, in Equation (5.18) is equal to zero, H0: β8 = 0. In other words, given that there
may be clustering, we test whether the quantile exceedances are linked to the scale of the
quantile forecasts.
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5.3 Variable selection

5.3 Variable selection
Variable selection is a crucial step in building a good prediction model (e.g. Diebold
(2015)). For distribution forecasting this is a complex process, and the standard goodness-
of-fit tests are not sufficient. In Chapter 2, we saw evidence that fundamental variables
affect specific hours and quantiles differently. It is therefore necessary to perform variable
selections for all combinations of hours and quantiles, to take full advantage of modelling
each quantile separately.

In Chapter 3, we found that there are significant changes in the EPEX energy mix from
2010 to 2016. Thus, we argue that it is of greater interest to perform variable selection
using the entire data set, rather than just the in-sample set. This is to catch the latest
distributional changes. However, we recognise that this results in some optimism in the
overall performance of our models.

We emphasise that we are searching for a model with high predictive power, rather than
explanatory or descriptive power. Explanatory and descriptive models aim to test causal
hypotheses and describe how a set of factors X affect a factor Y. Predictive models, on
the other hand, anticipate future observations. The choice between these objectives often
results in different models (Shmueli, 2010). To achieve high predictive power, variable se-
lection should be based on the quality of the association between predictors and responses,
rather than causal relationships. In fact, prediction accuracy is often improved by removing
statistically significant variables. This is because removing variables reduces estimation
variance, a gain that may outweigh the bias introduced by omitting them (Shmueli, 2010).

Diebold (2015) argues that overfitting is one of the greatest pitfalls when building pre-
diction models. Thus, variable selection methods must reward parsimony and valida-
tion procedures should use out-of-sample metrics. Commonly used criteria include the
Akaike Information Criterion (AIC) and the Schwarz Information Criterion (SIC). These
both measure in-sample fit, and introduce a penalty term for the number of parameters in
the model. For distribution forecasting models, out-of-sample validation tests include the
aforementioned UC-, CC- and DQ tests.

Variable selection for the distribution quantiles

We apply SIC to select variables for the quantiles, as it is commonly used in this context
(Schwarz et al., 1978; Koenker et al., 1994; Lee et al., 2014) 2. We use a version adapted
to QR by Behl et al. (2014), given by

SICQR,θ,i = ln

(
T∑
t=1

(
lnPi,t −Qθi

) (
θ − I(lnPi,t ≤ Qθi )

))
+
K × ln(T )

2
, (5.19)

where K is the number of variables (including the intercept) and T is the number of ob-
servations. Note that the first term is the objective function value of QR, as in Equation
5.2. Since we use a rolling window, we let this be the sum of objective function values for
all windows.

2We could have applied more advanced methods, like lasso, adaptive lasso and elastic net. As variable
selection procedures are not our main focus, we leave this for future work.
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We perform the variable selection using a traditional QR model, with a rolling window
of 2 years 3. For each hour and quantile, we choose the combination of variables that
yields the lowest SIC score while passing the out-of-sample tests. This means that we let
parsimony and in-sample performance decide in cases where more than one model pass
the out-of-sample tests. We perform two variable selections; one where the models must
pass the UC test, and one where they are restricted to pass both the UC- and CC tests.

With 24 variables to choose from, a brute force approach testing all variable combinations
amounts to performing 224–1 tests. To reduce the number of tests, we therefore define
classes of variables. Within each class, we create subsets of variables and restrict the tests
to include at most one subset from each class. For further description of the combinations
we test, please refer to Appendix C.

Note that we determine the variable combinations without considering multicollinearity,
since it does not affect the models’ predictive performance (Shmueli, 2010). However,
it means the information value of the individual coefficients is limited, as discussed in
Chapter 4.

Variable selection for the distribution mean

As previously discussed, the explanatory variables in the GARCH and CAViaR methods
model the mean, not the specific quantiles. Consequently, the optimal variables for QR
may be inappropriate choices for these models. Thus, we also perform a variable selection
to find the variables that best model the mean of the price distribution.

We follow the recommendation of Diebold (2015), and apply SIC rather than AIC. We use
the standard version (Schwarz et al., 1978) given by

SIC = −2lnL+KlnT. (5.20)

Here, lnL is the log-likelihood, K is the number of variables (including the intercept) and
T is the number of observations. Since we use a rolling window, the overall log-likelihood
of the model is given by the sum of log-likelihoods for all windows.

We proceed by fitting a linear regression model for each of the variable combinations, with
a window size of 2 years. We choose the set of variables that yields the lowest SIC, and
emphasise that this is a simplified approach. Finding the optimal model for the distribution
mean is beyond the scope of our work. Still, we consider it interesting to analyse the
performance of the GARCH and CAViaR model with variables chosen this way.

3The choice of window size is not trivial. Our choice is based on the window size used by Bunn et al. (2016).
We address the issue further in the model evaluation.
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Chapter 6

Results and discussion

In Chapter 1, we identified the three main goals of this thesis. In this chapter, we present
and evaluate empirical results to fulfil these goals.

Our first goal is to identify appropriate fundamental variables for selected hours and quan-
tiles. We do this in Section 6.1. In Section 6.2, we address the second and third goals; we
evaluate the predictive performance of our models, and assess the gain of using more com-
plex QR models. Moreover, we benchmark these models against common VaR models in
literature. In Section 6.3, we analyse the impact of the variable selection on the models’
predictive performance. Finally, we summarise our main findings in Section 6.4.

6.1 Variable selection
Tables 6.1 and 6.2 summarise the results of the variable selection. Table 6.1 shows the
variables selected using the SIC and the UC test. Table 6.2 displays the results when the
models are also restricted to pass the CC test. From here on, we refer to these variable
combinations as VarGroup1 and VarGroup2, respectively.

Overall, we find that Coal and P.lag1 have the highest predictive power. This is unsur-
prising, since we know that there is a strong autocorrelation of prices and that coal is by
far the largest source of energy production in Germany.

Further, the results demonstrate that the variables with the highest predictive ability vary
for different hours and parts of the price distribution. This is particularly evident in Table
6.1. Here, we find that Wind is the best predictor for extremely low prices in hour 3, and
that Demand should be used for predicting the highest peaks in hours 8 and 19. These
findings are well aligned with the market characteristics described in Chapter 3. In times
of scarcity and high demand, producers can set asking prices well above marginal costs,
and thereby contribute to price jumps. Contrary, negative price spikes that occur at night
are to a large extent caused by high wind production at times when demand is low.
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Table 6.1: Results of variable selection based on Schwarz Information Criterion (SIC) and the
unconditional coverage (UC) test, referred to as VarGroup1

Quantile Hour 3 Hour 8 Hour 19

Q0.01 Wind V.lag1 Coal
Q0.05 P.lag1 P.lag1 Coal
Q0.10 P.lag1 Coal Coal, Demand
Q0.25 P.lag1 Coal, Demand Coal
Q0.50 Coal, Demand Coal, Gas Coal, Gas
Q0.75 Coal, Gas Coal, Gas Coal
Q0.90 Coal, V.lag1 Coal Coal
Q0.95 Coal Coal P.lag1
Q0.99 Coal Demand Demand

P.lag1 is the first lag of the spot price, V.lag1 is the first lag of volatility.

We observe that Coal and Gas are good predictors for the quantiles in the middle of
the price distribution for all hours. This also coincides with the discussion in Chapter 3.
Here, we found that coal and gas are price-setting technologies in the mid-region of the
supply function. Another interesting observation is that that the majority of the selected
sets include exogenous variables.

Table 6.2: Results of variable selection based on Schwarz Information Criterion (SIC), the uncon-
ditional coverage (UC)- and conditional coverage (CC) test, referred to as VarGroup2

Quantile Hour 3 Hour 8 Hour 19

Q0.01 Demand, PPA V.lag1 P.lag1, Avg.P.lag2-7, Coal
Q0.05 P.lag1, Avg.P.lag2-7 P.lag1 P.lag1, Avg.P.lag2-7, Coal
Q0.10 P.lag1, Avg.P.lag2-7 P.lag1, Avg.P.lag2-7 P.lag1, Avg.P.lag2-7, Coal
Q0.25 P.lag1, Avg.P.lag2-7, V.lag1 Coal, Demand* P.lag1, Avg.P.lag2-7, Coal
Q0.50 Coal, Demand* Coal, Gas* P.lag1, P.lag2, P.lag3, P.lag4, P.lag5,

P.lag6, P.lag7, Coal, Co2
Q0.75 Coal, Gas* Coal, Gas* P.lag1, P.lag2, P.lag3, P.lag4, P.lag5,

P.lag6, P.lag7, Coal, Co2, PPA
Q0.90 P.lag1, P.lag2, P.lag3, P.lag4, P.lag5,

P.lag6, P.lag7, Coal, Gas, Demand
Coal* P.lag1, Avg.P.lag2-7, V.lag1, PPA

Q0.95 P.lag1, Avg.P.lag2-7, V.lag1,
Avg.V.lag2-7, Coal, Oil, Demand

Coal* V.lag1

Q0.99 P.lag1, Avg.P.lag2-7, Coal, Demand V.lag1, PPA V.lag1

Combinations marked with * do not pass the CC test. These are selected in scenarios where no variable combi-
nations pass the CC test. P.lagX is the Xth lag of the spot price, V.lag1 is the first lag of volatility, Avg.P.lag2-7
is the average of price lags 2 to 7.

There are significant differences between VarGroup1 and VarGroup2. Firstly, from Table
6.2 we see that more variables are necessary to pass the CC test. As previously mentioned,
this test is stricter than UC because it also considers clustering of exceedances. Secondly,
price- and volatility lags are used to a greater extent in VarGroup2, indicating that they help
capturing the dynamicity of a distribution. Moreover, the high autocorrelation of hours 3
and 19 explains the wide use of price lags (see Chapter 4). Thirdly, we note that also the
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exogenous variables differ between VarGroup1 and VarGroup2.

In VarGroup2, extremely low prices in hour 3 can be predicted using Demand and PPA.
This is probably because low prices occur when demand is low and the reserve margins
are high. The peaks in hours 8 and 19 are best captured by V.lag1 and PPA. This sup-
ports the findings in the market description; when prices are high, high volatility drives
prices even higher. We emphasise that our model is not designed to reveal causal relation-
ships. However, these results indicate that there is a strong association between certain
fundamental variables and extreme events.

We perform the variable selection using the simplest model, traditional QR. Models that
are more sophisticated may be able to capture dynamic properties with fewer variables.
Thus, we use both VarGroup1 and VarGroup2 in the model evaluation.

For predicting the mean, we find [P.lag1, Avg.P.lag2− 7, Coal, Co2, Demand, Solar,
Wind] to be the best variable combination for all three hours. The inclusion of price lags
is unsurprising, as Table 4.4 shows high autocorrelation of prices. From Table 4.6, we see
that the included variables have high correlations with the spot prices, in particular coal
and demand for hours 8 and 19, and wind for hour 3.

6.2 Model evaluation
In this section, we assess the predictive performance of the models presented in Section
5.1. As evaluation criteria, we use the UC-,CC- and DQ tests from Section 5.2. Tables 6.3,
6.4, and 6.5 show the detailed results for hours 3, 8, and 19, respectively. Here, we only
present each model’s best run, meaning that we select one window size and one variable
combination per hour. For results beyond this, please refer to Appendix D.

It is difficult to draw general conclusions as to which model is the ”best” based on our
results. The model with the highest predictive performance varies across both the distribu-
tion and the trading periods. Moreover, the four evaluation criteria favour different models
in many cases. Thus, both application and preferences must be accounted for when se-
lecting the most appropriate model. Unless otherwise noted, we refer to the total number
of rejected tests when we rate one model as better than another. We place particular fo-
cus on the UC test, as we argue that there is limited value in a model with independent
exceedances if the hit percentage is wrong.

We start by presenting high-level results and overall performance in Section 6.2.1. Next,
we go more in-depth into the performance in each hour in Section 6.2.2, and across the
distribution in Section 6.2.3.
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Table 6.3: Predictive performance in hour 3

Quantile Violations P UC P CC P DQ1 P DQ2 Quantile Violations P UC P CC P DQ1 P DQ2
Q

R

0.01 1.09E-02 8.01E-01 0.00E+00 1.86E-01 2.61E-02

G
A

R
C

H

0.01 6.84E-03 3.62E-01 0.00E+00 1.00E+00 1.80E-01
0.05 4.92E-02 9.25E-01 3.07E-01 1.32E-01 1.65E-01 0.05 6.29E-02 1.22E-01 3.03E-01 3.54E-01 5.66E-01
0.10 8.48E-02 1.61E-01 2.73E-01 6.11E-01 6.07E-01 0.10 1.07E-01 5.50E-01 5.09E-01 6.24E-01 9.45E-01
0.25 2.42E-01 6.22E-01 1.08E-01 7.81E-03 1.21E-01 0.25 2.38E-01 4.52E-01 7.26E-04 1.49E-05 4.28E-02
0.50 5.62E-01 7.51E-04 0.00E+00 5.54E-31 3.38E-02 0.50 8.81E-01 0.00E+00 0.00E+00 7.93E-13 1.46E-02
0.75 7.44E-01 7.17E-01 0.00E+00 2.46E-38 2.16E-01 0.75 6.13E-01 3.33E-16 0.00E+00 3.60E-16 2.03E-06
0.90 8.88E-01 2.81E-01 3.61E-02 5.28E-04 3.75E-01 0.90 8.84E-01 1.52E-01 1.18E-01 3.11E-01 2.29E-09
0.95 9.51E-01 9.25E-01 6.71E-01 1.56E-04 9.64E-01 0.95 9.49E-01 9.39E-01 7.62E-01 6.04E-02 1.37E-06
0.99 9.84E-01 1.11E-01 0.00E+00 1.90E-04 2.83E-02 0.99 9.93E-01 3.62E-01 0.00E+00 1.00E+00 2.07E-02

# Rejections 1 5 6 3 # Rejections 2 5 3 6
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0.01 1.37E-02 3.44E-01 0.00E+00 4.95E-01 9.23E-02
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R 0.01 1.37E-02 3.44E-01 1.74E-01 9.98E-01 3.13E-01

0.05 5.06E-02 9.39E-01 3.52E-01 1.85E-01 2.70E-01 0.05 5.75E-02 3.66E-01 3.86E-01 8.26E-01 2.71E-01
0.10 9.44E-02 6.10E-01 7.24E-01 7.26E-01 7.97E-01 0.10 9.44E-02 6.10E-01 1.32E-02 1.24E-02 2.59E-01
0.25 2.46E-01 8.14E-01 8.27E-01 1.41E-02 1.50E-01 0.25 2.28E-01 1.74E-01 2.20E-04 7.02E-05 9.86E-02
0.50 4.77E-01 2.22E-01 0.00E+00 1.14E-23 8.24E-03 0.50 5.27E-01 1.49E-01 7.05E-09 6.33E-14 1.72E-07
0.75 6.87E-01 1.17E-04 0.00E+00 5.96E-27 7.97E-03 0.75 7.55E-01 7.48E-01 9.26E-04 2.97E-11 3.32E-06
0.90 8.82E-01 1.21E-01 4.32E-02 2.70E-02 1.22E-01 0.90 9.21E-01 5.43E-02 5.29E-05 5.49E-05 3.99E-09
0.95 9.51E-01 9.25E-01 6.71E-01 1.56E-04 9.64E-01 0.95 9.67E-01 2.34E-02 1.79E-03 1.30E-03 5.79E-01
0.99 9.82E-01 5.66E-02 7.74E-02 1.60E-01 4.90E-01 0.99 9.86E-01 3.44E-01 0.00E+00 1.21E-05 2.64E-01

# Rejections 1 4 5 2 # Rejections 1 7 7 3

E
W

D
K

Q
R

0.01 6.84E-03 3.62E-01 0.00E+00 1.00E+00 7.49E-02
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R 0.01 1.09E-02 8.01E-01 1.89E-01 2.98E-03 2.26E-01
0.05 3.97E-02 1.84E-01 3.13E-01 8.41E-01 8.72E-01 0.05 5.61E-02 4.58E-01 1.77E-01 1.26E-01 1.20E-01
0.10 8.62E-02 2.03E-01 4.30E-01 4.58E-01 4.73E-01 0.10 1.11E-01 3.38E-01 4.76E-03 3.11E-02 9.41E-01
0.25 2.37E-01 4.02E-01 0.00E+00 3.98E-43 2.79E-10 0.25 1.44E-01 1.82E-12 0.00E+00 1.09E-18 2.30E-02
0.50 4.90E-01 5.79E-01 4.45E-02 3.44E-02 3.83E-08 0.50 5.40E-01 2.90E-02 0.00E+00 2.47E-39 1.59E-04
0.75 7.35E-01 3.40E-01 0.00E+00 6.60E-85 1.48E-26 0.75 6.80E-01 2.05E-05 0.00E+00 6.18E-43 4.10E-04
0.90 9.53E-01 9.73E-08 1.53E-07 1.84E-01 4.63E-18 0.90 8.96E-01 7.22E-01 4.45E-01 5.17E-01 4.05E-09
0.95 9.53E-01 6.62E-01 4.51E-11 2.12E-25 2.17E-12 0.95 9.52E-01 7.91E-01 8.11E-01 9.57E-01 2.12E-10
0.99 9.96E-01 6.92E-02 0.00E+00 1.00E+00 2.29E-07 0.99 9.88E-01 5.44E-01 0.00E+00 9.97E-01 3.06E-11

# Rejections 1 7 4 6 # Rejections 3 5 5 6
The table displays the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as described in Section
5.2. P-values highlighted in red are significant at the 5% level, which implies poor model calibration. Asymmetric slope CAViaR uses VarGroup1, while the rest use VarGroup2. The models use the
following window sizes: QR 730, EWQR 730, EWDKQR 365, GARCH 365, Asym. slope CAViaR 730, and Sym. abs. value CAViaR 365.
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Table 6.4: Predictive performance in hour 8

Quantile Violations P UC P CC P DQ1 P DQ2 Quantile Violations P UC P CC P DQ1 P DQ2
Q

R

0.01 9.58E-03 9.08E-01 0.00E+00 9.99E-01 2.73E-01

G
A

R
C

H

0.01 1.37E-02 3.44E-01 0.00E+00 5.08E-01 1.01E-03
0.05 3.15E-02 1.39E-02 4.60E-02 6.06E-01 9.98E-01 0.05 3.15E-02 1.39E-02 4.60E-02 2.53E-02 1.52E-03
0.10 7.52E-02 2.01E-02 6.10E-02 1.96E-02 6.43E-01 0.10 7.66E-02 2.85E-02 8.16E-03 1.21E-01 1.25E-01
0.25 2.54E-01 7.82E-01 6.66E-16 9.75E-20 2.52E-02 0.25 1.86E-01 3.72E-05 4.86E-07 1.08E-02 8.81E-02
0.50 4.90E-01 5.79E-01 1.37E-14 6.91E-49 1.66E-01 0.50 6.05E-01 1.35E-08 1.66E-11 2.79E-06 2.22E-08
0.75 7.15E-01 3.35E-02 3.26E-13 6.64E-23 5.32E-02 0.75 7.28E-01 1.69E-01 6.20E-06 2.20E-06 2.17E-11
0.90 9.18E-01 9.66E-02 6.16E-13 1.30E-28 1.41E-04 0.90 8.77E-01 4.35E-02 1.10E-02 1.03E-01 4.04E-12
0.95 9.49E-01 9.39E-01 2.33E-15 1.11E-42 1.86E-05 0.95 9.44E-01 4.58E-01 4.21E-01 1.56E-01 5.50E-10
0.99 9.96E-01 6.92E-02 0.00E+00 1.00E+00 4.56E-01 0.99 9.89E-01 8.01E-01 0.00E+00 1.38E-09 4.36E-05

# Rejections 3 8 6 3 # Rejections 5 8 5 7
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0.01 1.23E-02 5.44E-01 0.00E+00 9.97E-01 3.30E-01
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R 0.01 3.83E-02 4.43E-09 2.36E-08 4.04E-09 5.66E-03

0.05 4.79E-02 7.91E-01 9.35E-01 6.77E-01 6.50E-01 0.05 8.62E-02 4.33E-05 1.47E-05 2.59E-12 1.39E-01
0.10 9.85E-02 8.92E-01 3.08E-01 9.48E-04 1.23E-01 0.10 1.38E-01 1.07E-03 5.48E-04 5.51E-25 1.59E-02
0.25 2.60E-01 5.38E-01 8.48E-10 4.87E-10 2.86E-01 0.25 2.75E-01 1.23E-01 4.23E-07 1.25E-05 3.79E-02
0.50 4.66E-01 6.98E-02 5.07E-12 6.05E-52 7.33E-03 0.50 4.47E-01 4.36E-03 3.50E-06 2.12E-57 8.85E-16
0.75 7.10E-01 1.40E-02 3.72E-10 2.90E-15 1.28E-03 0.75 6.51E-01 2.72E-09 1.23E-12 2.60E-29 7.47E-08
0.90 9.12E-01 2.53E-01 2.63E-12 7.48E-21 4.84E-01 0.90 8.73E-01 1.80E-02 1.56E-09 3.33E-20 1.67E-03
0.95 9.44E-01 4.58E-01 7.71E-11 7.32E-24 1.44E-01 0.95 9.36E-01 8.88E-02 2.36E-06 6.59E-12 7.45E-04
0.99 9.86E-01 3.44E-01 0.00E+00 7.70E-02 1.34E-04 0.99 9.90E-01 9.08E-01 0.00E+00 6.20E-02 5.99E-01

# Rejections 1 7 6 3 # Rejections 6 9 8 7
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0.01 1.50E-02 2.02E-01 1.37E-02 9.01E-08 4.42E-01
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R 0.01 1.78E-02 5.66E-02 0.00E+00 7.79E-01 5.74E-02
0.05 5.20E-02 8.07E-01 7.50E-01 2.35E-04 9.10E-01 0.05 6.29E-02 1.22E-01 6.77E-02 3.68E-10 2.44E-01
0.10 9.99E-02 9.90E-01 1.65E-06 3.50E-07 8.85E-01 0.10 9.85E-02 8.92E-01 1.64E-01 4.60E-13 2.52E-02
0.25 2.50E-01 9.83E-01 1.40E-02 1.11E-59 1.47E-01 0.25 2.60E-01 5.38E-01 2.50E-08 1.24E-09 1.74E-01
0.50 5.06E-01 7.39E-01 0.00E+00 4.43E-29 4.71E-01 0.50 4.40E-01 1.27E-03 0.00E+00 1.33E-65 6.42E-04
0.75 7.47E-01 8.48E-01 6.50E-07 5.43E-08 5.04E-08 0.75 6.59E-01 4.56E-08 0.00E+00 1.11E-33 2.50E-04
0.90 9.06E-01 6.10E-01 2.55E-15 3.80E-28 3.67E-01 0.90 9.02E-01 8.92E-01 4.12E-09 8.98E-21 5.26E-03
0.95 9.53E-01 6.62E-01 3.49E-06 2.82E-17 4.76E-11 0.95 9.38E-01 1.66E-01 9.57E-06 1.52E-12 5.68E-03
0.99 9.88E-01 5.44E-01 2.05E-01 7.89E-04 9.62E-01 0.99 9.90E-01 9.08E-01 0.00E+00 6.20E-02 7.16E-01

# Rejections 0 7 9 2 # Rejections 2 7 7 5
The table displays the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as described in Section
5.2. P-values highlighted in red are significant at the 5% level, which implies poor model calibration. All of the QR- and CAViaR models are run with VarGroup2, and GARCH with mean variables.
The models use the following window sizes: QR 730, EWQR 730, EWDKQR 250, GARCH 913, Asym. slope CAViaR 548, and Sym. abs. value CAViaR 548.
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Table 6.5: Predictive performance in hour 19

Quantile Violations P UC P CC P DQ1 P DQ2 Quantile Violations P UC P CC P DQ1 P DQ2
Q

R

0.01 1.23E-02 5.44E-01 0.00E+00 3.24E-02 9.21E-03

G
A

R
C

H

0.01 1.09E-02 8.01E-01 0.00E+00 9.99E-01 2.84E-02
0.05 5.20E-02 8.07E-01 9.70E-01 2.80E-04 5.39E-02 0.05 4.51E-02 5.40E-01 7.51E-01 8.82E-02 4.33E-01
0.10 9.58E-02 7.01E-01 9.22E-01 4.30E-04 2.00E-01 0.10 8.62E-02 2.03E-01 3.46E-01 4.85E-01 3.29E-01
0.25 2.48E-01 8.81E-01 5.95E-01 1.06E-08 5.55E-01 0.25 2.13E-01 2.01E-02 8.09E-04 3.14E-02 4.67E-04
0.50 4.99E-01 9.70E-01 4.95E-01 6.61E-01 1.34E-01 0.50 4.87E-01 4.82E-01 5.84E-02 1.10E-02 7.33E-05
0.75 7.55E-01 7.48E-01 1.31E-01 5.58E-01 3.70E-04 0.75 6.83E-01 4.19E-05 2.65E-09 9.73E-05 3.65E-08
0.90 9.19E-01 7.30E-02 1.50E-03 1.33E-02 2.40E-01 0.90 8.80E-01 7.41E-02 6.92E-02 2.52E-01 2.26E-05
0.95 9.85E-01 4.18E-07 7.84E-11 5.81E-26 8.27E-01 0.95 9.45E-01 5.64E-01 7.28E-01 8.35E-01 2.39E-04
0.99 9.96E-01 6.92E-02 0.00E+00 1.00E+00 9.31E-01 0.99 9.95E-01 1.78E-01 0.00E+00 2.97E-08 6.07E-01

# Rejections 1 4 6 2 # Rejections 2 4 4 6
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R

0.01 1.64E-02 1.11E-01 0.00E+00 3.63E-01 2.58E-02
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R 0.01 2.33E-02 2.12E-03 0.00E+00 8.08E-01 2.41E-04

0.05 6.57E-02 6.32E-02 5.85E-02 5.40E-04 5.44E-03 0.05 5.61E-02 4.58E-01 6.73E-02 1.55E-02 4.35E-02
0.10 1.16E-01 1.52E-01 2.80E-01 1.91E-02 9.33E-03 0.10 1.01E-01 9.12E-01 2.29E-01 2.75E-02 6.87E-01
0.25 2.56E-01 7.17E-01 4.70E-01 4.32E-07 4.05E-01 0.25 2.68E-01 2.61E-01 4.36E-01 6.51E-08 6.19E-01
0.50 5.03E-01 8.53E-01 7.07E-01 6.33E-01 7.39E-02 0.50 4.92E-01 6.84E-01 8.61E-01 8.03E-01 5.39E-02
0.75 7.36E-01 3.84E-01 1.18E-01 2.19E-01 2.38E-02 0.75 7.28E-01 1.69E-01 7.67E-02 1.87E-01 6.64E-05
0.90 9.02E-01 8.92E-01 7.78E-02 6.55E-02 6.79E-02 0.90 9.15E-01 1.61E-01 9.68E-02 4.24E-01 1.42E-01
0.95 9.59E-01 2.52E-01 2.97E-10 5.45E-24 2.77E-01 0.95 9.48E-01 8.07E-01 2.89E-08 9.87E-15 6.05E-01
0.99 9.95E-01 1.78E-01 1.81E-02 2.76E-08 8.19E-01 0.99 9.85E-01 2.02E-01 5.59E-04 6.51E-12 9.58E-01

# Rejections 0 3 5 4 # Rejections 1 3 5 3
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0.01 1.09E-02 8.01E-01 1.89E-01 1.70E-01 1.25E-01
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R 0.01 1.37E-02 3.44E-01 0.00E+00 1.34E-01 6.44E-01
0.05 4.79E-02 7.91E-01 0.00E+00 8.60E-02 3.97E-01 0.05 5.06E-02 9.39E-01 7.22E-01 2.96E-01 6.95E-01
0.10 9.71E-02 7.95E-01 9.66E-01 4.56E-03 7.12E-02 0.10 1.05E-01 6.33E-01 9.03E-02 2.60E-04 4.84E-01
0.25 2.56E-01 7.17E-01 1.55E-15 2.13E-18 5.74E-01 0.25 2.76E-01 1.04E-01 2.00E-01 2.00E-06 2.06E-01
0.50 5.05E-01 7.96E-01 1.32E-01 2.24E-10 2.71E-02 0.50 5.06E-01 7.39E-01 8.29E-01 7.46E-01 2.21E-02
0.75 7.47E-01 8.48E-01 0.00E+00 3.66E-41 5.41E-01 0.75 7.35E-01 3.40E-01 3.04E-01 4.87E-01 3.42E-05
0.90 9.15E-01 1.61E-01 9.68E-02 5.92E-02 4.90E-02 0.90 9.21E-01 5.43E-02 1.25E-01 3.55E-01 5.33E-02
0.95 9.70E-01 7.85E-03 3.54E-04 1.63E-04 5.97E-01 0.95 9.59E-01 2.52E-01 2.97E-10 1.31E-24 7.20E-01
0.99 9.93E-01 3.62E-01 4.86E-02 1.25E-04 7.33E-01 0.99 9.92E-01 6.15E-01 1.82E-03 8.77E-18 2.31E-01

# Rejections 1 5 6 2 # Rejections 0 3 4 2
The table displays the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as described in Section
5.2. P-values highlighted in red are significant at the 5% level, which implies poor model calibration. All models are run with VarGroup2. The models use the following window sizes: QR 548,
EWQR 365, EWDKQR 365, GARCH 730, Asym. slope CAViaR 365, and Sym. abs. value CAViaR 365.
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6.2 Model evaluation

6.2.1 Overall performance

Table 6.6: Total number of test rejections per model

UC (27) CC (27) DQ1 (27) DQ2 (27) Total (108)

EWQR 2 14 16 9 41
QR 5 17 18 8 48
Sym. abs CAViaR 5 15 16 13 49
EWDKQR 2 19 19 10 50
GARCH 9 17 12 19 57
Asym. slope CAViaR 8 21 18 12 59

The table displays the total number of test rejections per model at the 5% significance level. The numbers in
parentheses give the maximum number of rejections. A high number of rejections indicates poor calibration. UC
is the unconditional coverage test, CC is the conditional coverage test, and DQ1 and DQ2 are the two dynamic
conditional quantile tests, as described in Section 5.2.

In Table 6.6 we display the total number of test rejections per model. Based on this, we
rate EWQR as the best model overall; it outperforms both the other QR type models and
the benchmarks in terms of test rejections.

Another important observation from Table 6.6, is that clustering of exceedances is chal-
lenging to capture for all models. This is evident from the scores on the CC- and DQ1
tests. Interestingly, our results suggest that the GARCH model is the best in this regard. It
has the fewest DQ1 rejections, and the majority of the CC rejections are due to incorrect
hit percentage. However, the GARCH model is inferior to all other models, as measured
by the UC and DQ2 tests. Thus, we rate this model as weak overall, despite its promising
ability to capture clustering.

The DQ2 scores indicate that the QR type models are less prone to correlations between
the quantile forecasts and the exceedances, compared to the benchmarks.

Aggregating the test scores as we do here hides a lot of important insight. To perform a
thorough model evaluation, we break down the analysis into performance in each hour and
parts of the distribution in the next sections.

6.2.2 Predictive performance across hours
In this section, we compare the models’ performance across trading periods and consider
how the characteristics of each hour affect the results. The results for each hour are sum-
marised in Table 6.7. We find that our models perform far better in hours 3 and 19 than in
hour 8, where the results are generally not satisfactory. For more detailed results, please
refer to Tables 6.3, 6.4, and 6.5.

EWQR is the best model overall in hour 3, but traditional QR and GARCH also exhibit
relatively good performance. Interestingly, asymmetric slope is the best CAViaR model
for hour 3, unlike in hours 8 and 19. From Table 6.7, we see that asymmetric slope
marginally outperforms symmetric absolute value CAViaR in terms of total rejections.
However, by looking at Table 6.3, we find that asymmetric slope provides a far better
score on the important UC test. As discussed in Chapter 4, the price distribution in hour
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Chapter 6. Results and discussion

Table 6.7: Total number of test rejections per hour

Rating Model Rejections

1 EWQR 12
2 QR 15
3 Student-t GARCH 16
4 EWDKQR 18
5 Asym. slope CAViaR 18
6 Sym. abs CAViaR 19

Rating Model Rejections

1 EWQR 17
2 EWDKQR 18
3 QR 20
4 Sym. abs CAViaR 21
5 Student-t GARCH 25
6 Asym. slope CAViaR 30

Hour 3 (36) Hour 8 (36)

Rating Model Rejections

1 Sym. abs CAViaR 9
2 Asym. slope CAViaR 11
3 EWQR 12
4 QR 13
5 EWDKQR 14
6 Student-t GARCH 16

Hour 19 (36)

The table displays the total number of test rejections per model at the 5% significance level. The numbers in
parentheses give the maximum number of rejections. A high number of rejections indicates poor calibration.

3 is significantly more skewed than the other trading periods. This explains why it is
advantageous to use a CAViaR model with asymmetric responses to previous error terms.

Our results are notably weak in hour 8 compared to the other hours, particularly when it
comes to clustering. EWQR is the model with the fewest rejections in total, but it also
exhibits poor performance on the CC- and DQ1 tests. However, we note that all QR type
models outperform the benchmarks.

Among the investigated periods, hour 8 has the highest volatility and the strongest week-
day effect, as seen in Chapter 4. We believe that both of these characteristics contribute to
the poor results. The DQ1 test catches up to seven lags of clustering. Thus, it is natural to
believe that failure of capturing the weekday effect is partly responsible for the weak DQ1
results.

Several models perform well in hour 19. The CAViaR models marginally outperform
EWQR, while all models exhibit relatively good accuracy. Note that the CAViaR models
exhibit far better performance in hour 19 than in any other trading period. In Chapter 4, we
found hour 19 to have the strongest autocorrelation. This could explain why the CAViaR
models perform particularly well in this hour.

6.2.3 Predictive performance across the distribution
In the previous section, we revealed substantial differences in model performance across
the trading periods. In this section, we assess performance across the distribution. For risk
management purposes, it is particularly important to consider accuracy in the tails. Thus,
we divide the distribution into three parts: i) The lower tail with quantiles 0.01%, 0.05%
and 0.10%, ii) the mid-region with quantiles 0.25%, 0.50% and 0.75%, and iii) the upper
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6.2 Model evaluation

tail with quantiles 0.90%, 0.95% and 0.99%.

Table 6.8: Total number of test rejections in sections of the distribution

Rating Model Rejections

1 EWDKQR 8
2 EWQR 9
3 Sym. abs CAViaR 9
4 Student-t GARCH 11
5 QR 12
6 Asym. slope CAViaR 17

Rating Model Rejections

1 QR 17
2 EWQR 19
3 Asym. slope CAViaR 20
4 EWDKQR 22
5 Sym. abs CAViaR 25
6 Student-t GARCH 31

Lower tail (36) Mid-region (36)

Rating Model Rejections

1 EWQR 13
2 Student-t GARCH 15
3 Sym. abs CAViaR 15
4 QR 19
5 EWDKQR 20
6 Asym. slope CAViaR 22

Upper tail (36)

The table displays the total number of test rejections per model at the 5% significance level. The numbers in
parentheses give the maximum number of rejections. A high number of rejections indicates poor calibration.

Table 6.8 displays the total number of test rejections for parts i), ii) and iii). Overall,
we find that the models perform better in the tails than in the mid-region. Our results
differ between the parts of the distribution. While traditional QR outperforms all other
models in the mid-region, it is among the bottom half in both tails. EWQR shows strong
performance overall, but scores particularly well in the tails. EWDKQR is inconsistent; it
is the top-performer for the lower tail, but is the second worst in the upper tail.

Sparseness of observations in the tails is particularly problematic when the distribution
changes rapidly. If this is the case, previous tail observations may stem from an under-
lying distribution with different characteristics. This means that high performance in the
tails indicates ability to capture dynamicity. Thus, the findings in Table 6.8 suggest that
EWQR is the best at accounting for the changing market conditions in EPEX. Moreover,
EWDKQR exhibits the same ability for the lower tail.

By selecting appropriate values for bandwidth and lambda, EWDKQR can be simplified
to both EWQR and QR. This means that whenever EWQR or EWDKQR perform worse
than QR, it is due to overfitting. Thus, our results suggest that both EWQR and EWD-
KQR suffer from this problem. However, in the tails where data is sparse, the gain of
increased sophistication outweighs the adverse effect of overfitting. Hence, both EWQR
and EWDKQR outperform traditional QR in these parts of the distribution. EWDKQR is
extra prone to overfitting, as it introduces an additional parameter. We believe that this is
the reason why EWDKQR is inferior to EWQR.
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6.2.4 Other findings
We find an inverse relationship between the complexity of the QR models and the se-
lected window sizes. EWDKQR always performs the best with a window that is smaller,
or the same size, as EWQR. The same relation holds for EWQR and QR. Thus, adding
exponential smoothing or double kernels reduces the number of observations needed to
produce accurate VaR forecasts. This finding suggests that the more complex models are
appropriate in scenarios where data is sparse, or when the data generating process changes
rapidly.

6.3 Impact of variable selection on model performance
In this section, we analyse how our choice of variables affects the models’ performance.
Moreover, we present results to highlight the importance of variable selection. Table 6.9
displays test results that offer valuable insights in this regard. To limit the number of
parameters, we restrict our analysis to QR models with window size 730.

Table 6.9: Total number of test rejections for various variable combinations

Variables Model UC (27) CC (27) DQ1 (27) DQ2 (27) Total (108)

VarGroup2 QR 7 17 16 8 48
VarGroup1 EWQR 3 19 21 11 54
Mean variables QR 14 19 15 9 57
VarGroup1 QR 7 24 21 9 61
All variables QR 20 21 15 15 71
Intercept only QR 18 27 22 8 75

The table displays the total number of test rejections per model at the 5% significance level. The numbers in
parentheses give the maximum number of rejections. A high number of rejections indicates poor calibration. UC
is the unconditional coverage test, CC is the conditional coverage test, and DQ1 and DQ2 are the two dynamic
conditional quantile tests, as described in Section 5.2. All models have window size 730 days.

It is evident from Table 6.9 that the intercept-only model is seriously flawed, and performs
the worst overall. By including regressors, the quantiles become dynamic because they
evolve as the regressors evolve. Thus, it is unsurprising that the intercept-only model is
inferior to all other models when it comes to clustering of exceedances.

Selecting a model with all the available variables offers significant improvement in the
dynamicity tests, i.e. CC and DQ1. However, this model still provides incorrect coverage
in the majority of tests. This illustrates a previously emphasised point: Using too many
explanatory variables leads to overfitting and inflation of estimation variance.

Table 6.9 also shows that the QR model with VarGroup2 outperforms the QR model with
VarGroup1, but that both models have the same number of UC rejections. Recall that we
selected VarGroup1 solely based on the UC test, whereas we also considered the CC test
for VarGroup2. Thus, this result is as expected. However, it illustrates that the choice of
variables plays a vital role in capturing dynamicity.

Furthermore, we find that the QR model with mean variables is inferior to the QR model
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with VarGroup2. This supports our hypothesis that using different variables across the
distribution improves predictive performance. Note that the model with mean variables
outperforms the QR model with VarGroup1. However, VarGroup1 performs significantly
better on the UC test, which was its selection criterion. Thus, we argue that this result does
not undermine our hypothesis. Instead, it illustrates an unsurprising, yet important result;
you make what you measure. We find that the variable groups perform best on the tests we
used in the selection procedure. This implies that if end-users require a model with high
performance on certain tests, these tests should be included in the variable selection.

Our results indicate that variable selection in many cases is more crucial than the model
formulation. This means that it might be wise to put more effort into identifying appro-
priate variables, rather than using a more complex model. To illustrate this point, we have
included an EWQR model with VarGroup1 in Table 6.9. We find that if you have a tradi-
tional QR model with VarGroup1, you will experience a greater improvement by switching
to VarGroup2, than by using a more complex EWQR formulation.

Based on the results we present in this section, it is unsurprising that we find VarGroup2
as the best variable combination for all the QR type models. It is more interesting to note
that VarGroup2 is also the best set of explanatory variables for the majority of the GARCH
and CAViaR models (see Tables 6.3, 6.4, and 6.5). Although the variables in GARCH and
CAViaR model the mean, our results suggest that it is advantageous to filter observations
with variables chosen for the specific quantiles.

Finally, we note that several variable combinations that pass both the UC- and CC tests
in the variable selection, fail when tested on the out-of-sample set. Recall that we use
data from 2010 to 2016 for the variable selection, but perform the out-of-sample analysis
with data from 2014 to 2016. Thus, this finding indicates that the relation between the
fundamentals and the spot prices has changed over this time period. This illustrates that
there is a need to investigate procedures that enable continuous re-estimation of variable
selection.

6.4 Summary of main findings
The results of the variable selection reflect our findings from the market description in
Chapter 3. The first price lag and the coal price are the best variables overall. However, we
find that the variables with the highest predictive ability vary across the price distribution
and between the trading periods.

We rate EWQR as the best model overall. This model has the fewest test rejections in
total, and shows particularly good performance in the tails. This indicates that it is able to
account for the changing market dynamics in Germany. We argue that the CAViaR models
are the best performing benchmarks, while noting that their performance is inconsistent
across trading periods. Capturing clustering is challenging for all models, but the GARCH
model outperforms the others in this regard.

Both EWQR and EWDKQR suffer from overfitting, and this it is particularly evident for
EWDKQR. This is because EWDKQR requires estimation of an additional parameter.
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The overfitting is visible in the mid-region of the distribution, where traditional QR out-
performs the more complex models. However, in the tails where data is sparse, the gain of
increased sophistication outweighs the adverse effect of overfitting.

Our results support that it is advantageous to tailor input variables to specific quantiles.
We also find that selecting appropriate variables is important for capturing dynamicity.
Moreover, our results reveal that variable selection in many cases is as crucial as the model
formulation.
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Chapter 7

Practical implications

In this section, we consider the practical implications of our work. An important step in
this analysis is to compare our results to existing literature. Moreover, we explain how
market operators can use the insight from our work to create value.

It is not straightforward to compare our findings to previous work. In Chapter 6, we
found that the models’ performance varies across trading periods. Consequently, it is
unsurprising that results from studies on other markets in many cases differ from ours.

The study that is most similar to this work, Bunn et al. (2016), come to conclusions that are
much alike ours. They find that a traditional QR model outperforms the skewed student-t
GARCH and the CAViaR models. Moreover, they also report that the GARCH model suf-
fers from exceedances being correlated with the quantile estimate itself, but that it shows
little clustering. In contrast to our results, they draw the same conclusion for the CAViaR
models. We note that this work does not consider the mid-region of the distribution, thus,
we cannot compare performance across the distribution.

We argue that the work by Bunn et al. largely supports our findings. However, they do
not consider what is arguably the most interesting aspect of our work, namely EWQR and
EWDKQR. To the best of our knowledge, Lundby and Uppheim’s analysis of Nordpool
prices (2011) is the only other application of EWQR to electricity prices. However, they
find that the model performs poorly, and that the CAViaR models are superior. A possible
explanation is that they do not include fundamentals in EWQR, and use a window size of
only 250 observations. From our experience, both of these decisions degrade performance.

Our results support the findings by Taylor (2008b). In his original paper, EWQR shows
encouraging results. Taylor finds that EWQR generally outperforms traditional QR for
forecasting of stock returns. Moreover, he comes to conclusions similar to ours regarding
the performance of EWDKQR. This model is largely inferior to EWQR, but is more com-
petitive in the extreme quantiles. The overfitting we observe for EWQR and EWDKQR
may be examples of the over-parameterisation that De Livera et al. (2011) warns of.
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We have no knowledge of previous research that considers the predictive ability of funda-
mentals across the distribution for electricity spot prices. However, our results are further
evidence of the differences that exist across the distribution and trading periods. Moreover,
the variables we select are well aligned with the current literature on the price formation
process, e.g. Paraschiv et al. (2014) and Hagfors et al. (2016a). Our results underpin the
importance of variable selection, as highlighted by e.g. Weron (2014), Diebold (2015) and
Shmueli (2010). This implies that significant effort should be devoted to this stage of the
modelling process.

For electricity price forecasting in practice, it is also important to consider the compu-
tational complexity of the models. Time is a limited resource in short-term forecasting.
Thus, models with shorter run-times are more likely to be used in situations with little time
from information becomes available until the forecast is needed. This criterion favours QR
and EWQR. Our results suggest that these models provide the best performance, as well
as being the least computationally demanding. EWQR requires slightly more computa-
tion than QR, as the weighting parameter must be estimated. However, our results suggest
that it also improves performance. The EWDKQR and CAViaR models are particularly
challenging to fit, but we do generally not observe a gain from the increased complexity.
Moreover, the simplicity and transparency of the QR type models increases the probability
of adoption by industry professionals.

The approaches we explore in this thesis are of great value to market operators. Both
producers and consumers of electricity can take advantage of sudden price changes by
forecasting VaR. We illustrate this with an example: A producer who forecasts high upside
risk, should offer a high volume to gain from the potential price spikes. Contrary, in times
of high downside risk, producers should restrict their production and offer lower volumes,
as the probability of a price lower than the cost of production increases. The opposite
applies for electricity consumers. Thus, VaR forecasts can be used for determining optimal
bidding and consumption strategies, both for profit maximisation and risk reduction.
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Chapter 8

Conclusion

In this thesis, we forecast VaR for the EPEX spot price. Despite the importance of
these forecasts to market participants, VaR forecasting of electricity prices remains under-
researched. We focus on QR approaches because of their simplicity, possibility to include
fundamentals, and promising ability to capture the complex features of electricity prices.

Our work has a threefold goal. Firstly, we identify variables with high predictive power for
selected quantiles and trading periods. Secondly, we assess the gain of using sophisticated
extensions of QR by investigating the performance of EWQR and EWDKQR. Thirdly,
we benchmark the QR type models against common VaR models in literature: Skewed
student-t GARCH, asymmetric slope CAViaR, and symmetric absolute value CAViaR.

The German market is the subject of our study, as it is the main reference for power trading
in Europe. In the data analysis, we found hours 3, 8 and 19 as the most interesting to model.
These hours represent the off-peak, the morning peak and the evening super-peak.

The greatest advantage of QR models is that they model each quantile separately. In
contrast to existing studies, we take advantage of this through the variable selection. We
propose using a separate set of variables for each quantile and hour. This is motivated
by evidence in literature that the impact of fundamentals differs across the distribution
and between trading periods. Our variable selection shows that the variables with highest
predictive ability do in fact vary. Moreover, the variables we select reflect current research
on the price formation process. Our findings highlight the importance of variable selection,
and show that it in many cases is as important as the choice of model. Thus, we argue that
market operators should devote significant attention to this procedure.

It is difficult to draw general conclusions as to which model is the best based on our
results, and both application and preferences must be accounted for when selecting the
most appropriate model. However, we rate EWQR as the best model overall based on the
total number of test rejections. EWQR is among the top-performers for all trading periods,
and performs particularly well in the outer quantiles. The latter is a crucial property for
risk management purposes.
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Our results indicate that both EWQR and EWDKQR suffer from overfitting. This is evi-
dent in the mid-region of the distribution, where these models are outperformed by tradi-
tional QR. Moreover, we believe overfitting to be the reason why EWDKQR is inferior to
EWQR.

The CAViaR models are the best performing benchmarks, but their performance is incon-
sistent across the hours. We find these models to perform particularly well in periods with
high autocorrelation. While asymmetric slope CAViaR performs well for highly skewed
periods, it is outperformed by symmetric absolute value CAViaR for periods with less
skew.

Clustering of exceedances is challenging to capture for all models, but the GARCH model
shows the best performance. However, GARCH is inferior to the other models, as mea-
sured by the important UC test. Thus, we rate this model as weak overall, despite its
promising ability to capture clustering.

Accounting for computational complexity and transparency favours QR and EWQR. These
models are simple to implement and interpret, as well as being less computationally de-
manding than the benchmarks. Moreover, they generally outperform the models with
higher complexity.

In summary, we have contributed to electricity price forecasting literature by providing
important empirical evidence for the use of fundamental VaR forecasting approaches. We
have demonstrated that EWQR exhibits particularly promising ability to capture electricity
price dynamics. Moreover, we presented results to underpin the importance of variable
selection, and identified fundamentals with predictive ability across the distribution. These
insights can be applied by market participants who seek to determine optimal bidding,
production and consumption strategies.
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Chapter 9

Further work

In this chapter, we briefly discuss recommendations for further work. This includes both
improvements of methods and possible extensions of the research.

We suggest to conduct similar studies on other electricity markets and trading periods, to
see if our findings are confirmed and to provide further empirical evidence. Moreover, ad-
ditional benchmark models can be added to the study. We find it particularly interesting to
measure the performance of QR type models against EVT and computational intelligence
approaches, like ANNs.

Our results indicate that the predictive performance of variables changes over time. Thus,
we suggest to devote attention to techniques for re-estimation of variable selection for QR,
e.g. adaptive lasso methods. We also recommend to further extend the set of fundamental
variables from which the variable selection is performed.

The models we analyse in this thesis generally struggle to capture clustering. Our findings
indicate that both the model formulation and the variable selection are important in this
respect. Thus, these components should be considered when attempting to resolve the
clustering issue. Our suggestions include adding more variables to capture the weekday
effect, and to use the DQ tests as variable selection criteria.

Although we find the results for EWQR encouraging, both EWQR and EWDKQR show
signs of overfitting. Thus, we argue that more effort should be made to improve the estima-
tion procedures of the lambda- and bandwidth parameters. We recommend to investigate
approaches where these parameters are re-estimated in each window.

47





Bibliography

AG Energibalanzen e.V., 2017. Stromerzeugung nach Energieträgern (Strommix) von
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Appendix A

Variable description

Figure A.1: Overview of fundamental variables, as in Frauendorfer et al. (2016)
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Appendix B

Additional statistics

Figure B.1: Negative spot price occurrences per hour

Table B.1: Correlation between the spot price and volatility lags per hour

Hour Vol lag1 Vol lag2 Vol lag3 Vol lag4 Vol lag5 Vol lag6 Vol lag7 Vol AVlag

Spot hour 3 -0,409 -0,192 -0,105 -0,105 -0,132 -0,144 -0,087 -0,179
Spot hour 8 -0,088 -0,035 -0,039 -0,075 -0,103 -0,202 -0,277 -0,190
Spot hour 19 -0,009 -0,041 -0,071 -0,078 -0,079 -0,081 -0,087 -0,104
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Table B.2: Above: Correlation between fundamentals for hour 3

Table B.3: Below: Correlation between fundamentals for hour 8

Variables Wind Solar Demand Coal Gas Oil Co2 PPA Vol lag1 Vol lag2 Vol lag3 Vol lag4 Vol lag5 Vol lag6 Vol lag7 Vol AVlag

Wind 1,000 0,029 0,223 -0,232 -0,120 -0,273 -0,162 0,238 0,271 0,176 0,122 0,113 0,116 0,113 0,089 0,193
Solar 0,029 1,000 0,007 -0,010 0,006 -0,020 -0,010 0,023 0,006 0,010 0,004 -0,009 -0,009 -0,010 -0,007 -0,004
Demand 0,223 0,007 1,000 0,192 0,064 0,004 0,244 0,552 -0,035 -0,004 -0,010 -0,017 -0,049 -0,091 -0,106 -0,050
Coal -0,232 -0,010 0,192 1,000 0,456 0,638 0,586 -0,165 0,064 0,064 0,064 0,063 0,062 0,061 0,060 0,151
Gas -0,120 0,006 0,064 0,456 1,000 0,745 -0,190 0,077 0,106 0,108 0,111 0,113 0,111 0,110 0,112 0,189
Oil -0,273 -0,020 0,004 0,638 0,745 1,000 -0,027 -0,167 0,057 0,057 0,058 0,059 0,059 0,060 0,061 0,114
Co2 -0,162 -0,010 0,244 0,586 -0,190 -0,027 1,000 -0,077 -0,013 -0,014 -0,016 -0,017 -0,017 -0,018 -0,020 0,010
PPA 0,238 0,023 0,552 -0,165 0,077 -0,167 -0,077 1,000 0,094 0,102 0,098 0,088 0,067 0,053 0,083 0,112
Vol lag1 0,271 0,006 -0,035 0,064 0,106 0,057 -0,013 0,094 1,000 0,691 0,396 0,228 0,185 0,200 0,213 0,497
Vol lag2 0,176 0,010 -0,004 0,064 0,108 0,057 -0,014 0,102 0,691 1,000 0,691 0,396 0,228 0,185 0,200 0,598
Vol lag3 0,122 0,004 -0,010 0,064 0,111 0,058 -0,016 0,098 0,396 0,691 1,000 0,691 0,396 0,228 0,185 0,677
Vol lag4 0,113 -0,009 -0,017 0,063 0,113 0,059 -0,017 0,088 0,228 0,396 0,691 1,000 0,691 0,396 0,228 0,729
Vol lag5 0,116 -0,009 -0,049 0,062 0,111 0,059 -0,017 0,067 0,185 0,228 0,396 0,691 1,000 0,691 0,396 0,756
Vol lag6 0,113 -0,010 -0,091 0,061 0,110 0,060 -0,018 0,053 0,200 0,185 0,228 0,396 0,691 1,000 0,691 0,742
Vol lag7 0,089 -0,007 -0,106 0,060 0,112 0,061 -0,020 0,083 0,213 0,200 0,185 0,228 0,396 0,691 1,000 0,663
Vol AVlag 0,193 -0,004 -0,050 0,151 0,189 0,114 0,010 0,112 0,497 0,598 0,677 0,729 0,756 0,742 0,663 1,000

Variables Wind Solar Demand Coal Gas Oil Co2 PPA Vol lag1 Vol lag2 Vol lag3 Vol lag4 Vol lag5 Vol lag6 Vol lag7 Vol AVlag

Wind 1,000 -0,248 0,060 -0,202 -0,092 -0,245 -0,147 0,259 0,165 0,152 0,116 0,135 0,135 0,129 0,125 0,217
Solar -0,248 1,000 -0,081 -0,306 -0,107 -0,036 -0,365 -0,565 0,037 0,044 0,048 0,050 0,055 0,053 0,058 0,063
Demand 0,060 -0,081 1,000 0,084 0,049 0,035 0,077 0,305 -0,033 0,051 0,025 0,000 -0,021 -0,153 -0,238 -0,075
Coal -0,202 -0,306 0,084 1,000 0,456 0,638 0,586 -0,165 -0,154 -0,155 -0,157 -0,157 -0,159 -0,160 -0,160 -0,267
Gas -0,092 -0,107 0,049 0,456 1,000 0,745 -0,190 0,077 0,154 0,141 0,142 0,141 0,131 0,125 0,123 0,135
Oil -0,245 -0,036 0,035 0,638 0,745 1,000 -0,027 -0,167 0,029 0,028 0,027 0,027 0,026 0,026 0,027 -0,024
Co2 -0,147 -0,365 0,077 0,586 -0,190 -0,027 1,000 -0,077 -0,306 -0,306 -0,306 -0,306 -0,305 -0,303 -0,303 -0,427
PPA 0,259 -0,565 0,305 -0,165 0,077 -0,167 -0,077 1,000 0,131 0,163 0,159 0,151 0,141 0,102 0,088 0,215
Vol lag1 0,165 0,037 -0,033 -0,154 0,154 0,029 -0,306 0,131 1,000 0,501 0,367 0,363 0,334 0,258 0,349 0,642
Vol lag2 0,152 0,044 0,051 -0,155 0,141 0,028 -0,306 0,163 0,501 1,000 0,501 0,367 0,363 0,333 0,257 0,674
Vol lag3 0,116 0,048 0,025 -0,157 0,142 0,027 -0,306 0,159 0,367 0,501 1,000 0,501 0,367 0,363 0,333 0,701
Vol lag4 0,135 0,050 0,000 -0,157 0,141 0,027 -0,306 0,151 0,363 0,367 0,501 1,000 0,501 0,367 0,362 0,708
Vol lag5 0,135 0,055 -0,021 -0,159 0,131 0,026 -0,305 0,141 0,334 0,363 0,367 0,501 1,000 0,501 0,367 0,704
Vol lag6 0,129 0,053 -0,153 -0,160 0,125 0,026 -0,303 0,102 0,258 0,333 0,363 0,367 0,501 1,000 0,501 0,683
Vol lag7 0,125 0,058 -0,238 -0,160 0,123 0,027 -0,303 0,088 0,349 0,257 0,333 0,362 0,367 0,501 1,000 0,651
Vol AVlag 0,217 0,063 -0,075 -0,267 0,135 -0,024 -0,427 0,215 0,642 0,674 0,701 0,708 0,704 0,683 0,651 1,000
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Table B.4: Correlation between fundamentals for hour 19

Variables Wind Solar Demand Coal Gas Oil Co2 PPA Vol lag1 Vol lag2 Vol lag3 Vol lag4 Vol lag5 Vol lag6 Vol lag7 Vol AVlag

Wind 1,000 -0,211 0,167 -0,198 -0,084 -0,235 -0,143 0,247 0,166 0,153 0,148 0,143 0,139 0,136 0,135 0,170
Solar -0,211 1,000 -0,384 -0,209 -0,113 -0,010 -0,271 -0,627 0,081 0,090 0,096 0,101 0,105 0,107 0,110 0,130
Demand 0,167 -0,384 1,000 0,179 0,119 0,064 0,169 0,545 0,025 -0,001 -0,038 -0,054 -0,057 -0,053 -0,020 -0,044
Coal -0,198 -0,209 0,179 1,000 0,456 0,638 0,586 -0,165 -0,171 -0,171 -0,170 -0,168 -0,166 -0,164 -0,164 -0,217
Gas -0,084 -0,113 0,119 0,456 1,000 0,745 -0,190 0,077 0,099 0,090 0,088 0,080 0,077 0,074 0,069 0,077
Oil -0,235 -0,010 0,064 0,638 0,745 1,000 -0,027 -0,167 -0,041 -0,040 -0,038 -0,036 -0,034 -0,033 -0,031 -0,056
Co2 -0,143 -0,271 0,169 0,586 -0,190 -0,027 1,000 -0,077 -0,309 -0,311 -0,311 -0,312 -0,313 -0,312 -0,313 -0,377
PPA 0,247 -0,627 0,545 -0,165 0,077 -0,167 -0,077 1,000 0,099 0,087 0,073 0,068 0,068 0,071 0,083 0,083
Vol lag1 0,166 0,081 0,025 -0,171 0,099 -0,041 -0,309 0,099 1,000 0,881 0,766 0,673 0,619 0,599 0,612 0,818
Vol lag2 0,153 0,090 -0,001 -0,171 0,090 -0,040 -0,311 0,087 0,881 1,000 0,881 0,766 0,673 0,619 0,600 0,864
Vol lag3 0,148 0,096 -0,038 -0,170 0,088 -0,038 -0,311 0,073 0,766 0,881 1,000 0,881 0,766 0,674 0,620 0,897
Vol lag4 0,143 0,101 -0,054 -0,168 0,080 -0,036 -0,312 0,068 0,673 0,766 0,881 1,000 0,881 0,767 0,674 0,913
Vol lag5 0,139 0,105 -0,057 -0,166 0,077 -0,034 -0,313 0,068 0,619 0,673 0,766 0,881 1,000 0,881 0,767 0,911
Vol lag6 0,136 0,107 -0,053 -0,164 0,074 -0,033 -0,312 0,071 0,599 0,619 0,674 0,767 0,881 1,000 0,881 0,888
Vol lag7 0,135 0,110 -0,020 -0,164 0,069 -0,031 -0,313 0,083 0,612 0,600 0,620 0,674 0,767 0,881 1,000 0,846
Vol AVlag 0,170 0,130 -0,044 -0,217 0,077 -0,056 -0,377 0,083 0,818 0,864 0,897 0,913 0,911 0,888 0,846 1,000

v





Appendix C

Variable selection

C.1 Tested variable combinations
We define the variable groups in Table C.1 to simplify the variable selection. We test
all combinations consisting of one or zero subsets from each variable group. The groups
and subsets are specified based on results from preliminary testing. For example, the
preliminary tests revealed that Coal has significantly higher predictive power than Co2,
Gas and Oil. Thus, we restrict the tests with fossil variables to include Coal and at most
one other fossil variable.

Table C.1: Definition of variable groups

Price lags

P.lag1
P.lag1, P.lag2, P.lag3, P.lag4, P.lag5, P.lag6, P.lag.7
P.lag1, Avg.P.lag2-7

Volatility lags

V.lag1
V.lag1, V.lag2, V.lag3, V.lag4, V.lag5, V.lag6, V.lag.7
V.lag1, Avg.V.lag2-7

Fossils

Coal
Coal, Co2
Coal, Gas
Coal, Oil

Renewables

Wind
Solar
Wind, Solar

Other
PPA
Demand
PPA, Demand
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Appendix D

Additional result tables

In this chapter, we provide additional result tables to support the discussion in Chapter
6. We include all three hours; 3, 8 and 19. For traditional QR we show results for both
VarGroup1 and VarGroup2, to illustrate the distinction between the two sets. For the rest
of the models, we only attach result tables for VarGroup2, as these are the most successful
runs.

• Traditional QR results is shown in Tables D.1 - D.3. Window sizes 365, 548, 730
and 913.

• EWQR results is shown in Tables D.4 and D.5. Window sizes 365, 548, 730 and
913.

• EWDKQR results is shown in Tables D.6 and D.7. Window sizes 250, 365, 548 and
730.

• GARCH results is shown in Tables D.8 and D.9. Window sizes 365, 548, 730 and
913.

• Asymmetric slope CAViaR results are shown in Tables D.10 and D.11. Window
sizes 365, 548, 730 and 913.

• Symmetric absolute value CAViaR results are shown in Tables D.12 and D.13. Win-
dow sizes 365, 548, 730 and 913.
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Table D.1: Traditional QR results for hour 3

Quantile Violations P UC P CC P DQ1 P DQ2 Quantile Violations P UC P CC P DQ1 P DQ2

0.01 6.84E-03 3.62E-01 0.00E+00 1.00E+00 1.22E-02 0.01 1.23E-02 5.44E-01 0.00E+00 9.97E-01 3.13E-03
0.05 4.51E-02 5.40E-01 4.27E-01 5.56E-01 5.03E-01 0.05 4.79E-02 7.91E-01 9.35E-01 3.99E-01 9.94E-01
0.10 8.76E-02 2.53E-01 4.99E-01 6.13E-01 9.90E-01 0.10 9.03E-02 3.74E-01 6.08E-01 5.23E-01 6.73E-01

VarGroup1, 0.25 2.39E-01 5.06E-01 5.51E-01 6.64E-03 6.85E-01 VarGroup2, 0.25 2.46E-01 8.14E-01 6.12E-01 3.74E-02 7.91E-02
w = 365 0.50 5.42E-01 2.40E-02 0.00E+00 1.73E-36 1.23E-01 w = 365 0.50 5.42E-01 2.40E-02 0.00E+00 1.73E-36 1.23E-01

0.75 6.81E-01 2.94E-05 0.00E+00 1.10E-29 7.88E-03 0.75 6.81E-01 2.94E-05 0.00E+00 1.10E-29 7.88E-03
0.90 9.21E-01 5.43E-02 8.44E-12 2.48E-19 9.96E-01 0.90 8.60E-01 7.15E-04 1.74E-03 3.70E-01 4.46E-02
0.95 9.45E-01 5.64E-01 5.80E-10 5.30E-21 1.06E-01 0.95 9.64E-01 5.96E-02 1.69E-01 7.27E-02 3.88E-01
0.99 9.82E-01 5.66E-02 2.26E-05 2.72E-15 7.20E-04 0.99 9.77E-01 2.12E-03 6.30E-03 6.76E-01 2.56E-01

# Rejections 2 6 6 3 # Rejections 4 5 3 3

0.01 6.84E-03 3.62E-01 0.00E+00 1.00E+00 9.38E-01 0.01 1.09E-02 8.01E-01 0.00E+00 9.99E-01 1.82E-02
0.05 4.92E-02 9.25E-01 6.71E-01 5.80E-01 6.50E-01 0.05 4.92E-02 9.25E-01 6.71E-01 3.73E-01 2.32E-01
0.10 9.30E-02 5.25E-01 8.08E-01 6.47E-01 5.30E-01 0.10 8.89E-02 3.10E-01 5.58E-01 5.23E-01 8.12E-01

VarGroup1, 0.25 2.27E-01 1.48E-01 2.27E-01 4.36E-03 7.45E-01 VarGroup2, 0.25 2.44E-01 6.84E-01 1.38E-01 1.86E-03 1.58E-01
w = 548 0.50 5.61E-01 9.81E-04 0.00E+00 2.01E-32 1.16E-01 w = 548 0.50 5.61E-01 9.81E-04 0.00E+00 2.01E-32 1.16E-01

0.75 6.92E-01 4.21E-04 0.00E+00 1.65E-32 2.39E-03 0.75 6.92E-01 4.21E-04 0.00E+00 1.65E-32 2.39E-03
0.90 9.23E-01 2.85E-02 8.60E-13 1.53E-21 9.55E-01 0.90 8.62E-01 1.07E-03 5.48E-04 1.36E-03 2.68E-02
0.95 9.47E-01 6.81E-01 1.39E-11 3.03E-24 5.82E-02 0.95 9.56E-01 4.31E-01 3.39E-01 6.69E-02 3.59E-01
0.99 9.81E-01 2.72E-02 2.39E-05 4.23E-13 2.53E-06 0.99 9.82E-01 5.66E-02 7.74E-02 1.51E-03 1.78E-02

# Rejections 4 6 6 2 # Rejections 3 4 5 4

0.01 5.47E-03 1.78E-01 0.00E+00 1.00E+00 8.61E-02 0.01 1.09E-02 8.01E-01 0.00E+00 1.86E-01 2.61E-02
0.05 4.92E-02 9.25E-01 6.71E-01 3.28E-01 9.22E-01 0.05 4.92E-02 9.25E-01 3.07E-01 1.32E-01 1.65E-01
0.10 8.48E-02 1.61E-01 2.73E-01 2.30E-01 4.09E-01 0.10 8.48E-02 1.61E-01 2.73E-01 6.11E-01 6.07E-01

VarGroup1, 0.25 2.28E-01 1.74E-01 6.98E-02 1.06E-04 6.54E-01 VarGroup2, 0.25 2.42E-01 6.22E-01 1.08E-01 7.81E-03 1.21E-01
w = 730 0.50 5.62E-01 7.51E-04 0.00E+00 5.54E-31 3.38E-02 w = 730 0.50 5.62E-01 7.51E-04 0.00E+00 5.54E-31 3.38E-02

0.75 7.44E-01 7.17E-01 0.00E+00 2.46E-38 2.16E-01 0.75 7.44E-01 7.17E-01 0.00E+00 2.46E-38 2.16E-01
0.90 9.08E-01 4.46E-01 5.88E-15 4.44E-26 1.71E-01 0.90 8.88E-01 2.81E-01 3.61E-02 5.28E-04 3.75E-01
0.95 9.40E-01 2.20E-01 1.45E-13 4.56E-30 5.41E-04 0.95 9.51E-01 9.25E-01 6.71E-01 1.56E-04 9.64E-01
0.99 9.81E-01 2.72E-02 6.79E-07 6.69E-19 4.88E-07 0.99 9.84E-01 1.11E-01 0.00E+00 1.90E-04 2.83E-02

2 6 6 3 # Rejections 1 5 6 3

0.01 2.74E-03 1.93E-02 0.00E+00 1.00E+00 1.96E-03 0.01 9.58E-03 9.08E-01 0.00E+00 1.76E-04 7.67E-04
0.05 4.92E-02 9.25E-01 9.81E-01 7.37E-02 3.02E-01 0.05 5.34E-02 6.81E-01 7.52E-01 1.19E-01 9.80E-01
0.10 8.48E-02 1.61E-01 3.53E-01 2.89E-01 3.90E-01 0.10 8.76E-02 2.53E-01 9.09E-02 3.75E-01 5.12E-01

VarGroup1, 0.25 2.38E-01 4.52E-01 7.32E-02 6.19E-05 7.72E-01 VarGroup2, 0.25 2.61E-01 4.83E-01 3.35E-02 5.31E-05 2.63E-01
w = 913 0.50 5.53E-01 4.36E-03 0.00E+00 3.12E-32 1.49E-02 w = 913 0.50 5.53E-01 4.36E-03 0.00E+00 3.12E-32 1.49E-02

0.75 7.46E-01 7.82E-01 0.00E+00 1.01E-33 8.68E-01 0.75 7.46E-01 7.82E-01 0.00E+00 1.01E-33 8.68E-01
0.90 8.97E-01 8.15E-01 0.00E+00 1.14E-35 3.55E-01 0.90 8.80E-01 7.41E-02 5.08E-03 5.34E-03 8.48E-01
0.95 9.32E-01 3.02E-02 0.00E+00 6.90E-39 7.59E-03 0.95 9.52E-01 7.91E-01 6.00E-01 1.04E-04 6.72E-01
0.99 9.82E-01 5.66E-02 5.13E-07 1.03E-22 1.52E-05 0.99 9.82E-01 5.66E-02 6.19E-04 3.34E-08 4.36E-02

# Rejections 3 6 6 4 # Rejections 1 6 7 3

The table displays the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as described in Section
5.2. P-values highlighted in red are significant at the 5% level, which implies poor model calibration.
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Table D.2: Traditional QR results for hour 8

Quantile Violations P UC P CC P DQ1 P DQ2 Quantile Violations P UC P CC P DQ1 P DQ2

0.01 2.05E-02 1.23E-02 0.00E+00 9.21E-01 3.31E-02 0.01 2.05E-02 1.23E-02 0.00E+00 9.21E-01 3.31E-02
0.05 4.65E-02 6.62E-01 5.17E-01 5.56E-03 7.90E-01 0.05 4.65E-02 6.62E-01 5.17E-01 5.56E-03 7.90E-01
0.10 1.09E-01 4.01E-01 3.96E-05 3.93E-37 5.60E-03 0.10 9.17E-02 4.46E-01 3.64E-01 2.28E-06 5.77E-01

VarGroup1, 0.25 2.74E-01 1.45E-01 1.14E-12 2.54E-15 1.46E-01 VarGroup2, 0.25 2.74E-01 1.45E-01 1.14E-12 2.54E-15 1.46E-01
w = 365 0.50 4.51E-01 8.59E-03 2.04E-13 5.91E-59 3.78E-03 w = 365 0.50 4.51E-01 8.59E-03 2.04E-13 5.91E-59 3.78E-03

0.75 6.89E-01 2.25E-04 0.00E+00 4.85E-30 9.96E-04 0.75 6.89E-01 2.25E-04 0.00E+00 4.85E-30 9.96E-04
0.90 9.26E-01 1.40E-02 3.33E-16 7.96E-29 4.18E-02 0.90 9.26E-01 1.40E-02 3.33E-16 7.96E-29 4.18E-02
0.95 9.62E-01 1.31E-01 1.62E-08 2.13E-23 1.28E-02 0.95 9.62E-01 1.31E-01 1.62E-08 2.13E-23 1.28E-02
0.99 9.93E-01 3.62E-01 0.00E+00 1.00E+00 5.77E-01 0.99 9.90E-01 9.08E-01 1.48E-01 1.19E-04 3.84E-01

# Rejections 4 8 7 6 # Rejections 4 6 8 5

0.01 1.09E-02 8.01E-01 0.00E+00 9.99E-01 1.31E-02 0.01 1.09E-02 8.01E-01 0.00E+00 9.99E-01 1.31E-02
0.05 3.69E-02 8.98E-02 2.37E-01 2.48E-01 6.47E-01 0.05 3.69E-02 8.98E-02 2.37E-01 2.48E-01 6.47E-01
0.10 1.07E-01 5.50E-01 7.38E-05 2.43E-32 9.97E-03 0.10 8.76E-02 2.53E-01 4.28E-01 2.71E-04 6.34E-01

VarGroup1, 0.25 2.46E-01 8.14E-01 7.87E-14 1.39E-16 9.31E-02 VarGroup2, 0.25 2.46E-01 8.14E-01 7.87E-14 1.39E-16 9.31E-02
w = 548 0.50 4.64E-01 4.99E-02 1.55E-15 3.44E-60 1.07E-02 w = 548 0.50 4.64E-01 4.99E-02 1.55E-15 3.44E-60 1.07E-02

0.75 6.85E-01 8.36E-05 0.00E+00 3.46E-31 1.31E-03 0.75 6.85E-01 8.36E-05 0.00E+00 3.46E-31 1.31E-03
0.90 9.29E-01 6.35E-03 3.33E-16 1.72E-32 7.87E-03 0.90 9.29E-01 6.35E-03 3.33E-16 1.72E-32 7.87E-03
0.95 9.62E-01 1.31E-01 6.89E-10 2.69E-27 2.88E-03 0.95 9.62E-01 1.31E-01 6.89E-10 2.69E-27 2.88E-03
0.99 9.90E-01 9.08E-01 1.48E-01 3.35E-15 3.81E-01 0.99 9.92E-01 6.15E-01 0.00E+00 6.51E-03 4.17E-01

# Rejections 3 7 7 6 # Rejections 3 7 7 5

0.01 9.58E-03 9.08E-01 0.00E+00 9.99E-01 2.73E-01 0.01 9.58E-03 9.08E-01 0.00E+00 9.99E-01 2.73E-01
0.05 3.15E-02 1.39E-02 4.60E-02 6.06E-01 9.98E-01 0.05 3.15E-02 1.39E-02 4.60E-02 6.06E-01 9.98E-01
0.10 1.07E-01 5.50E-01 2.72E-04 1.12E-29 4.75E-02 0.10 7.52E-02 2.01E-02 6.10E-02 1.96E-02 6.43E-01

VarGroup1, 0.25 2.54E-01 7.82E-01 6.66E-16 9.75E-20 2.52E-02 VarGroup2, 0.25 2.54E-01 7.82E-01 6.66E-16 9.75E-20 2.52E-02
w = 730 0.50 4.90E-01 5.79E-01 1.37E-14 6.91E-49 1.66E-01 w = 730 0.50 4.90E-01 5.79E-01 1.37E-14 6.91E-49 1.66E-01

0.75 7.15E-01 3.35E-02 3.26E-13 6.64E-23 5.32E-02 0.75 7.15E-01 3.35E-02 3.26E-13 6.64E-23 5.32E-02
0.90 9.18E-01 9.66E-02 6.16E-13 1.30E-28 1.41E-04 0.90 9.18E-01 9.66E-02 6.16E-13 1.30E-28 1.41E-04
0.95 9.49E-01 9.39E-01 2.33E-15 1.11E-42 1.86E-05 0.95 9.49E-01 9.39E-01 2.33E-15 1.11E-42 1.86E-05
0.99 9.96E-01 6.92E-02 0.00E+00 6.07E-18 4.78E-01 0.99 9.96E-01 6.92E-02 0.00E+00 1.00E+00 4.56E-01

2 9 7 4 # Rejections 3 8 6 3

0.01 1.23E-02 5.44E-01 1.10E-02 1.29E-08 8.04E-02 0.01 1.37E-02 3.44E-01 0.00E+00 1.34E-01 3.97E-02
0.05 5.47E-02 5.64E-01 8.96E-05 2.18E-09 6.54E-01 0.05 4.79E-02 7.91E-01 0.00E+00 1.32E-03 7.01E-01
0.10 1.07E-01 5.50E-01 3.15E-08 3.56E-11 3.15E-02 0.10 9.99E-02 9.90E-01 9.92E-01 3.54E-02 3.43E-01

VarGroup1, 0.25 2.67E-01 2.99E-01 1.22E-15 4.85E-30 8.10E-01 VarGroup2, 0.25 2.52E-01 9.15E-01 5.46E-01 2.19E-09 5.76E-01
w = 913 0.50 4.49E-01 5.50E-03 3.33E-16 1.33E-24 1.00E+00 w = 913 0.50 5.10E-01 5.79E-01 4.69E-01 4.72E-01 1.21E-01

0.75 7.58E-01 6.22E-01 0.00E+00 1.98E-59 5.83E-01 0.75 7.78E-01 7.25E-02 1.36E-02 1.26E-01 3.40E-03
0.90 9.25E-01 2.01E-02 1.88E-14 7.16E-27 2.26E-01 0.90 9.29E-01 6.35E-03 2.49E-03 1.30E-01 9.43E-01
0.95 9.86E-01 1.11E-07 2.28E-07 8.31E-02 2.38E-01 0.95 9.93E-01 2.39E-11 1.50E-11 1.25E-04 7.26E-01
0.99 9.99E-01 3.19E-03 0.00E+00 1.00E+00 3.26E-01 0.99 9.99E-01 3.19E-03 0.00E+00 1.00E+00 2.09E-01

# Rejections 4 9 7 1 # Rejections 3 6 4 2

The table displays the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as described in Section
5.2. P-values highlighted in red are significant at the 5% level, which implies poor model calibration.
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Table D.3: Traditional QR results for hour 19

Quantile Violations P UC P CC P DQ1 P DQ2 Quantile Violations P UC P CC P DQ1 P DQ2

0.01 1.37E-02 3.44E-01 1.92E-01 8.89E-07 3.17E-07 0.01 1.64E-02 1.11E-01 0.00E+00 2.99E-03 2.50E-02
0.05 8.07E-02 4.44E-04 7.86E-09 4.63E-10 8.50E-03 0.05 6.70E-02 4.41E-02 3.91E-02 4.48E-03 1.51E-01
0.10 1.22E-01 5.71E-02 4.76E-11 2.73E-14 1.73E-02 0.10 1.03E-01 8.15E-01 5.05E-01 2.77E-03 4.69E-02

VarGroup1, 0.25 2.79E-01 7.30E-02 0.00E+00 4.51E-35 4.19E-02 VarGroup2, 0.25 2.59E-01 5.95E-01 4.43E-01 3.45E-09 4.70E-01
w = 365 0.50 4.45E-01 2.71E-03 0.00E+00 4.72E-35 3.14E-02 w = 365 0.50 5.05E-01 7.96E-01 2.28E-01 1.08E-01 3.62E-02

0.75 7.66E-01 3.12E-01 0.00E+00 7.09E-55 2.36E-01 0.75 7.40E-01 5.38E-01 2.21E-01 3.06E-01 3.38E-02
0.90 9.17E-01 1.26E-01 1.11E-16 8.23E-32 2.99E-01 0.90 9.19E-01 7.30E-02 1.32E-02 2.55E-02 1.15E-01
0.95 9.75E-01 5.06E-04 4.79E-04 2.88E-02 2.99E-01 0.95 9.78E-01 9.33E-05 1.81E-08 9.01E-16 1.43E-01
0.99 9.93E-01 3.62E-01 4.86E-02 1.48E-13 4.27E-01 0.99 9.96E-01 6.92E-02 4.38E-03 5.21E-18 7.73E-01

# Rejections 3 8 9 5 # Rejections 2 5 7 4

0.01 1.37E-02 3.44E-01 1.32E-02 2.13E-08 1.23E-03 0.01 1.23E-02 5.44E-01 0.00E+00 3.24E-02 9.21E-03
0.05 5.34E-02 6.81E-01 4.27E-04 4.26E-06 1.96E-01 0.05 5.20E-02 8.07E-01 9.70E-01 2.80E-04 5.39E-02
0.10 1.09E-01 4.01E-01 4.75E-07 8.43E-09 1.17E-01 0.10 9.58E-02 7.01E-01 9.22E-01 4.30E-04 2.00E-01

VarGroup1, 0.25 2.63E-01 4.32E-01 3.19E-14 2.34E-27 3.31E-01 VarGroup2, 0.25 2.48E-01 8.81E-01 5.95E-01 1.06E-08 5.55E-01
w = 548 0.50 4.47E-01 4.36E-03 0.00E+00 6.67E-37 1.50E-01 w = 548 0.50 4.99E-01 9.70E-01 4.95E-01 6.61E-01 1.34E-01

0.75 7.66E-01 3.12E-01 0.00E+00 2.43E-60 3.03E-01 0.75 7.55E-01 7.48E-01 1.31E-01 5.58E-01 3.70E-04
0.90 9.23E-01 2.85E-02 3.33E-16 1.00E-29 1.38E-01 0.90 9.19E-01 7.30E-02 1.50E-03 1.33E-02 2.40E-01
0.95 9.81E-01 1.34E-05 4.10E-05 3.52E-01 6.00E-01 0.95 9.85E-01 4.18E-07 7.84E-11 5.81E-26 8.27E-01
0.99 9.96E-01 6.92E-02 0.00E+00 1.00E+00 2.53E-01 0.99 9.96E-01 6.92E-02 0.00E+00 1.00E+00 9.31E-01

# Rejections 3 9 7 1 # Rejections 1 4 6 2

0.01 1.23E-02 5.44E-01 1.10E-02 8.80E-11 4.47E-03 0.01 1.37E-02 3.44E-01 0.00E+00 1.34E-01 1.23E-02
0.05 4.92E-02 9.25E-01 5.27E-03 7.51E-05 3.17E-01 0.05 5.61E-02 4.58E-01 4.55E-01 3.53E-04 1.15E-01
0.10 1.04E-01 7.22E-01 3.16E-07 2.65E-09 1.63E-02 0.10 9.71E-02 7.95E-01 9.66E-01 2.91E-03 1.99E-01

VarGroup1, 0.25 2.72E-01 1.69E-01 8.99E-15 2.05E-28 4.11E-01 VarGroup2, 0.25 2.49E-01 9.49E-01 6.61E-01 1.17E-09 6.59E-01
w = 730 0.50 4.66E-01 6.98E-02 0.00E+00 6.11E-32 7.30E-01 w = 730 0.50 5.01E-01 9.70E-01 7.60E-01 7.56E-01 1.05E-01

0.75 7.59E-01 5.63E-01 0.00E+00 3.27E-63 9.80E-02 0.75 7.61E-01 5.06E-01 3.83E-01 7.55E-01 3.12E-03
0.90 9.22E-01 3.97E-02 1.11E-15 4.55E-28 5.99E-02 0.90 9.30E-01 4.16E-03 3.48E-03 4.86E-01 6.01E-01
0.95 9.86E-01 1.11E-07 2.28E-07 8.89E-03 9.76E-01 0.95 9.92E-01 1.74E-10 1.54E-10 6.61E-03 4.42E-01
0.99 9.97E-01 1.93E-02 0.00E+00 1.00E+00 7.25E-01 0.99 9.97E-01 1.93E-02 0.00E+00 1.00E+00 9.53E-01

3 9 8 2 # Rejections 3 4 4 2

0.01 1.23E-02 5.44E-01 1.10E-02 1.29E-08 8.04E-02 0.01 1.37E-02 3.44E-01 0.00E+00 1.34E-01 3.97E-02
0.05 5.47E-02 5.64E-01 8.96E-05 2.18E-09 6.54E-01 0.05 4.79E-02 7.91E-01 0.00E+00 1.32E-03 7.01E-01
0.10 1.07E-01 5.50E-01 3.15E-08 3.56E-11 3.15E-02 0.10 9.99E-02 9.90E-01 9.92E-01 3.54E-02 3.43E-01

VarGroup1, 0.25 2.67E-01 2.99E-01 1.22E-15 4.85E-30 8.10E-01 VarGroup2, 0.25 2.52E-01 9.15E-01 5.46E-01 2.19E-09 5.76E-01
w = 913 0.50 4.49E-01 5.50E-03 3.33E-16 1.33E-24 1.00E+00 w = 913 0.50 5.10E-01 5.79E-01 4.69E-01 4.72E-01 1.21E-01

0.75 7.58E-01 6.22E-01 0.00E+00 1.98E-59 5.83E-01 0.75 7.78E-01 7.25E-02 1.36E-02 1.26E-01 3.40E-03
0.90 9.25E-01 2.01E-02 1.88E-14 7.16E-27 2.26E-01 0.90 9.29E-01 6.35E-03 2.49E-03 1.30E-01 9.43E-01
0.95 9.86E-01 1.11E-07 2.28E-07 8.31E-02 2.38E-01 0.95 9.93E-01 2.39E-11 1.50E-11 1.25E-04 7.26E-01
0.99 9.99E-01 3.19E-03 0.00E+00 1.00E+00 3.26E-01 0.99 9.99E-01 3.19E-03 0.00E+00 1.00E+00 2.09E-01

# Rejections 4 9 7 1 # Rejections 3 6 4 2

The table displays the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as described in Section
5.2. P-values highlighted in red are significant at the 5% level, which implies poor model calibration.
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Table D.4: EWQR results for window sizes 365 and 548

Quantile Violations P UC P CC P DQ1 P DQ2 Quantile Violations P UC P CC P DQ1 P DQ2

0.01 1.37E-02 3.44E-01 1.92E-01 4.97E-01 3.58E-05 0.01 1.23E-02 5.44E-01 0.00E+00 3.33E-01 7.11E-02
0.05 4.79E-02 7.91E-01 9.35E-01 3.99E-01 9.94E-01 0.05 4.92E-02 9.25E-01 6.71E-01 3.73E-01 2.32E-01
0.10 9.71E-02 7.95E-01 8.73E-01 5.53E-01 4.15E-01 0.10 9.17E-02 4.46E-01 6.52E-01 6.05E-01 9.71E-01

Hour 3 0.25 2.49E-01 9.49E-01 9.32E-01 8.71E-03 6.80E-02 Hour 3 0.25 2.42E-01 6.22E-01 6.08E-01 1.43E-02 1.48E-01
w = 365 0.50 4.75E-01 1.71E-01 0.00E+00 2.58E-24 7.71E-03 w = 548 0.50 4.77E-01 2.22E-01 0.00E+00 1.14E-23 8.20E-03

0.75 6.87E-01 1.17E-04 0.00E+00 2.13E-25 3.31E-03 0.75 6.87E-01 1.17E-04 0.00E+00 5.96E-27 7.58E-03
0.90 8.52E-01 5.15E-05 1.42E-04 2.16E-01 6.52E-03 0.90 8.62E-01 1.07E-03 5.48E-04 1.36E-03 2.68E-02
0.95 9.63E-01 8.98E-02 0.00E+00 6.20E-01 6.99E-01 0.95 9.56E-01 4.31E-01 3.39E-01 6.69E-02 3.59E-01
0.99 9.77E-01 2.12E-03 6.30E-03 6.76E-01 2.56E-01 0.99 9.82E-01 5.66E-02 7.74E-02 1.51E-03 1.78E-02

# Rejections 3 5 3 4 # Rejections 2 4 5 4

0.01 2.19E-02 5.25E-03 0.00E+00 8.33E-01 3.31E-02 0.01 1.09E-02 8.01E-01 0.00E+00 9.99E-01 1.31E-02
0.05 4.79E-02 7.91E-01 6.00E-01 9.37E-03 7.08E-01 0.05 4.92E-02 9.25E-01 9.81E-01 6.87E-01 6.27E-01
0.10 9.30E-02 5.25E-01 7.84E-01 1.62E-05 8.69E-01 0.10 9.30E-02 5.25E-01 6.37E-01 2.83E-04 7.79E-01

Hour 8 0.25 2.60E-01 5.38E-01 2.14E-11 7.21E-11 3.33E-01 Hour 8 0.25 2.60E-01 5.38E-01 5.87E-12 5.47E-12 3.54E-01
w = 365 0.50 4.72E-01 1.29E-01 2.34E-12 3.52E-54 2.91E-03 w = 548 0.50 4.69E-01 9.59E-02 2.03E-12 6.18E-52 7.58E-03

0.75 7.05E-01 5.31E-03 1.10E-10 3.11E-17 1.49E-03 0.75 7.10E-01 1.40E-02 3.72E-10 1.04E-14 9.43E-04
0.90 9.12E-01 2.53E-01 2.63E-12 7.48E-21 4.63E-01 0.90 9.12E-01 2.53E-01 2.63E-12 7.48E-21 4.78E-01
0.95 9.41E-01 2.86E-01 7.27E-13 2.47E-28 8.62E-02 0.95 9.41E-01 2.86E-01 1.35E-11 1.11E-24 5.71E-02
0.99 9.78E-01 5.25E-03 2.71E-03 1.45E-02 2.07E-03 0.99 9.82E-01 5.66E-02 0.00E+00 2.27E-03 4.33E-04

# Rejections 3 7 8 4 # Rejections 1 7 7 4

0.01 1.64E-02 1.11E-01 0.00E+00 3.63E-01 2.58E-02 0.01 1.50E-02 2.02E-01 0.00E+00 2.22E-01 3.22E-02
0.05 6.57E-02 6.32E-02 5.85E-02 5.40E-04 5.44E-03 0.05 6.57E-02 6.32E-02 5.85E-02 2.02E-03 2.73E-02
0.10 1.16E-01 1.52E-01 2.80E-01 1.91E-02 9.33E-03 0.10 1.05E-01 6.33E-01 8.07E-01 9.47E-02 3.81E-03

Hour 19 0.25 2.56E-01 7.17E-01 4.70E-01 4.32E-07 4.05E-01 Hour 19 0.25 2.50E-01 9.83E-01 7.22E-01 2.30E-07 5.47E-01
w = 365 0.50 5.03E-01 8.53E-01 7.07E-01 6.33E-01 7.39E-02 w = 548 0.50 5.01E-01 9.70E-01 3.34E-01 6.10E-01 7.22E-02

0.75 7.36E-01 3.84E-01 1.18E-01 2.19E-01 2.38E-02 0.75 7.39E-01 4.83E-01 8.91E-02 2.57E-01 1.99E-03
0.90 9.02E-01 8.92E-01 7.78E-02 6.55E-02 6.79E-02 0.90 9.17E-01 1.26E-01 1.22E-02 1.57E-01 1.12E-01
0.95 9.59E-01 2.52E-01 2.97E-10 5.45E-24 2.77E-01 0.95 9.60E-01 1.84E-01 2.25E-09 4.22E-21 1.92E-01
0.99 9.95E-01 1.78E-01 1.81E-02 2.76E-08 8.19E-01 0.99 9.95E-01 1.78E-01 1.81E-02 2.76E-08 7.78E-01

0 3 5 4 # Rejections 0 4 4 4

The table displays the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as described in Section
5.2. P-values highlighted in red are significant at the 5% level, which implies poor model calibration.
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Table D.5: EWQR results for window sizes 730 and 913

Quantile Violations P UC P CC P DQ1 P DQ2 Quantile Violations P UC P CC P DQ1 P DQ2

0.01 1.37E-02 3.44E-01 0.00E+00 4.95E-01 9.23E-02 0.01 1.37E-02 3.44E-01 0.00E+00 4.95E-01 1.21E-01
0.05 5.06E-02 9.39E-01 3.52E-01 1.85E-01 2.70E-01 0.05 5.34E-02 6.81E-01 7.52E-01 1.19E-01 9.80E-01
0.10 9.44E-02 6.10E-01 7.24E-01 7.26E-01 7.97E-01 0.10 9.30E-02 5.25E-01 7.84E-01 7.84E-01 9.90E-01

Hour 3 0.25 2.46E-01 8.14E-01 8.27E-01 1.41E-02 1.50E-01 Hour 3 0.25 2.46E-01 8.14E-01 7.25E-01 1.75E-02 2.47E-01
w = 730 0.50 4.77E-01 2.22E-01 0.00E+00 1.14E-23 8.24E-03 w = 913 0.50 4.79E-01 2.51E-01 0.00E+00 1.82E-24 8.87E-03

0.75 6.87E-01 1.17E-04 0.00E+00 5.96E-27 7.97E-03 0.75 6.88E-01 1.63E-04 0.00E+00 9.25E-28 7.37E-03
0.90 8.82E-01 1.21E-01 4.32E-02 2.70E-02 1.22E-01 0.90 8.77E-01 4.35E-02 5.37E-03 6.67E-02 2.00E-01
0.95 9.51E-01 9.25E-01 6.71E-01 1.56E-04 9.64E-01 0.95 9.47E-01 6.81E-01 4.14E-01 1.02E-04 9.08E-01
0.99 9.82E-01 5.66E-02 7.74E-02 1.60E-01 4.90E-01 0.99 9.79E-01 1.23E-02 2.59E-02 4.66E-01 8.71E-01

# Rejections 1 4 5 2 # Rejections 3 5 4 2

0.01 1.23E-02 5.44E-01 0.00E+00 9.97E-01 3.30E-01 0.01 1.37E-02 3.44E-01 0.00E+00 9.93E-01 1.10E-01
0.05 4.79E-02 7.91E-01 9.35E-01 6.77E-01 6.50E-01 0.05 3.97E-02 1.84E-01 4.10E-01 3.98E-01 4.08E-01
0.10 9.85E-02 8.92E-01 3.08E-01 9.48E-04 1.23E-01 0.10 9.71E-02 7.95E-01 4.48E-01 1.36E-04 3.34E-01

Hour 8 0.25 2.60E-01 5.38E-01 8.48E-10 4.87E-10 2.86E-01 Hour 8 0.25 2.61E-01 4.83E-01 3.42E-12 2.41E-12 3.53E-01
w = 730 0.50 4.66E-01 6.98E-02 5.07E-12 6.05E-52 7.33E-03 w = 913 0.50 4.69E-01 9.59E-02 2.03E-12 6.18E-52 7.45E-03

0.75 7.10E-01 1.40E-02 3.72E-10 2.90E-15 1.28E-03 0.75 7.10E-01 1.40E-02 3.72E-10 2.90E-15 1.30E-03
0.90 9.12E-01 2.53E-01 2.63E-12 7.48E-21 4.84E-01 0.90 9.12E-01 2.53E-01 2.63E-12 7.48E-21 4.84E-01
0.95 9.44E-01 4.58E-01 7.71E-11 7.32E-24 1.44E-01 0.95 9.44E-01 4.58E-01 7.71E-11 7.32E-24 1.43E-01
0.99 9.86E-01 3.44E-01 0.00E+00 7.70E-02 1.34E-04 0.99 9.82E-01 5.66E-02 0.00E+00 2.27E-03 8.47E-04

# Rejections 1 7 6 3 # Rejections 1 7 7 3

0.01 1.09E-02 8.01E-01 0.00E+00 1.88E-01 2.12E-02 0.01 1.50E-02 2.02E-01 0.00E+00 2.60E-01 2.24E-02
0.05 5.75E-02 3.66E-01 6.37E-01 1.32E-04 6.41E-02 0.05 4.79E-02 7.91E-01 0.00E+00 1.32E-03 7.01E-01
0.10 1.09E-01 4.01E-01 5.54E-01 6.63E-02 5.00E-04 0.10 1.07E-01 5.50E-01 5.36E-01 1.38E-01 2.09E-03

Hour 19 0.25 2.48E-01 8.81E-01 7.11E-01 1.79E-07 8.25E-01 Hour 19 0.25 2.52E-01 9.15E-01 6.62E-01 2.53E-10 9.47E-01
w = 730 0.50 4.95E-01 7.96E-01 7.75E-01 6.44E-01 1.21E-01 w = 913 0.50 5.10E-01 5.79E-01 7.55E-01 8.38E-01 2.19E-01

0.75 7.46E-01 7.82E-01 3.28E-01 8.23E-01 2.25E-03 0.75 7.35E-01 3.40E-01 2.38E-01 9.14E-01 7.74E-03
0.90 9.17E-01 1.26E-01 1.22E-02 1.21E-01 2.39E-01 0.90 9.21E-01 5.43E-02 8.21E-02 5.59E-01 5.27E-01
0.95 9.60E-01 1.84E-01 2.25E-09 4.22E-21 1.73E-01 0.95 9.60E-01 1.84E-01 2.25E-09 4.22E-21 1.65E-01
0.99 9.95E-01 1.78E-01 1.81E-02 2.76E-08 9.38E-01 0.99 9.95E-01 1.78E-01 1.81E-02 2.76E-08 9.31E-01

0 4 4 3 # Rejections 0 4 4 3

The table displays the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as described in Section
5.2. P-values highlighted in red are significant at the 5% level, which implies poor model calibration.
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Table D.6: EWDKQR results for window sizes 250 and 365

Quantile Violations P UC P CC P DQ1 P DQ2 Quantile Violations P UC P CC P DQ1 P DQ2

0.01 1.23E-02 5.44E-01 0.00E+00 3.30E-01 1.77E-04 0.01 6.84E-03 3.62E-01 0.00E+00 1.00E+00 7.49E-02
0.05 6.02E-02 2.20E-01 0.00E+00 6.30E-36 4.53E-06 0.05 3.97E-02 1.84E-01 3.13E-01 8.41E-01 8.72E-01
0.10 9.85E-02 8.92E-01 9.18E-14 1.69E-25 2.58E-06 0.10 8.62E-02 2.03E-01 4.30E-01 4.58E-01 4.73E-01

Hour 3 0.25 2.57E-01 6.55E-01 0.00E+00 3.31E-52 1.46E-11 Hour 3 0.25 2.37E-01 4.02E-01 0.00E+00 3.98E-43 2.79E-10
w = 250 0.50 5.03E-01 8.53E-01 0.00E+00 1.42E-111 4.62E-24 w = 365 0.50 4.90E-01 5.79E-01 4.45E-02 3.44E-02 3.83E-08

0.75 7.14E-01 2.72E-02 0.00E+00 3.53E-97 3.11E-25 0.75 7.35E-01 3.40E-01 0.00E+00 6.60E-85 1.48E-26
0.90 8.78E-01 5.71E-02 0.00E+00 3.00E-53 2.55E-14 0.90 9.53E-01 9.73E-08 1.53E-07 1.84E-01 4.63E-18
0.95 9.36E-01 8.88E-02 4.55E-15 5.15E-35 1.32E-11 0.95 9.53E-01 6.62E-01 4.51E-11 2.12E-25 2.17E-12
0.99 9.82E-01 5.66E-02 6.19E-04 1.81E-16 3.24E-05 0.99 9.96E-01 6.92E-02 0.00E+00 1.00E+00 2.29E-07

# Rejections 1 9 8 9 # Rejections 1 7 4 6

0.01 1.50E-02 2.02E-01 1.37E-02 9.01E-08 4.42E-01 0.01 2.05E-02 1.23E-02 4.10E-04 6.08E-07 7.34E-02
0.05 5.20E-02 8.07E-01 7.50E-01 2.35E-04 9.10E-01 0.05 4.79E-02 7.91E-01 2.57E-01 1.59E-03 9.06E-01
0.10 9.99E-02 9.90E-01 1.65E-06 3.50E-07 8.85E-01 0.10 1.16E-01 1.52E-01 3.53E-06 3.64E-07 4.34E-01

Hour 8 0.25 2.50E-01 9.83E-01 1.40E-02 1.11E-59 1.47E-01 Hour 8 0.25 2.48E-01 8.81E-01 1.31E-02 1.07E-58 2.10E-01
w = 250 0.50 5.06E-01 7.39E-01 0.00E+00 4.43E-29 4.71E-01 w = 365 0.50 5.16E-01 3.95E-01 0.00E+00 1.38E-29 3.74E-01

0.75 7.47E-01 8.48E-01 6.50E-07 5.43E-08 5.04E-08 0.75 7.54E-01 8.14E-01 1.83E-06 9.58E-08 5.89E-08
0.90 9.06E-01 6.10E-01 2.55E-15 3.80E-28 3.67E-01 0.90 9.10E-01 3.74E-01 1.11E-15 6.47E-28 4.47E-01
0.95 9.53E-01 6.62E-01 3.49E-06 2.82E-17 4.76E-11 0.95 9.56E-01 4.31E-01 7.60E-07 2.27E-18 1.47E-10
0.99 9.88E-01 5.44E-01 2.05E-01 7.89E-04 9.62E-01 0.99 9.89E-01 8.01E-01 1.89E-01 9.61E-03 4.12E-01

# Rejections 0 7 9 2 # Rejections 1 7 9 2

0.01 1.23E-02 5.44E-01 2.05E-01 4.70E-02 1.13E-02 0.01 1.09E-02 8.01E-01 1.89E-01 1.70E-01 1.25E-01
0.05 5.47E-02 5.64E-01 6.03E-04 4.48E-08 8.68E-05 0.05 4.79E-02 7.91E-01 0.00E+00 8.60E-02 3.97E-01
0.10 1.11E-01 3.38E-01 2.23E-12 2.36E-17 2.62E-02 0.10 9.71E-02 7.95E-01 9.66E-01 4.56E-03 7.12E-02

Hour 19 0.25 2.50E-01 9.83E-01 1.11E-16 7.09E-21 5.43E-01 Hour 19 0.25 2.56E-01 7.17E-01 1.55E-15 2.13E-18 5.74E-01
w = 250 0.50 4.99E-01 9.70E-01 0.00E+00 2.10E-40 4.16E-01 w = 365 0.50 5.05E-01 7.96E-01 1.32E-01 2.24E-10 2.71E-02

0.75 7.29E-01 1.97E-01 0.00E+00 4.88E-41 2.38E-01 0.75 7.47E-01 8.48E-01 0.00E+00 3.66E-41 5.41E-01
0.90 8.99E-01 9.12E-01 3.33E-16 1.40E-28 7.20E-01 0.90 9.15E-01 1.61E-01 9.68E-02 5.92E-02 4.90E-02
0.95 9.59E-01 2.52E-01 1.95E-03 2.59E-05 6.15E-01 0.95 9.70E-01 7.85E-03 3.54E-04 1.63E-04 5.97E-01
0.99 9.89E-01 8.01E-01 1.89E-01 3.03E-03 4.23E-01 0.99 9.93E-01 3.62E-01 4.86E-02 1.25E-04 7.33E-01

0 7 9 3 1 5 6 2

The table displays the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as described in Section
5.2. P-values highlighted in red are significant at the 5% level, which implies poor model calibration.
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Table D.7: EWDKQR results for window sizes 548 and 730

Quantile Violations P UC P CC P DQ1 P DQ2 Quantile Violations P UC P CC P DQ1 P DQ2

0.01 5.47E-03 1.78E-01 0.00E+00 1.00E+00 1.01E-01 0.01 6.84E-03 3.62E-01 0.00E+00 1.00E+00 6.95E-02
0.05 2.74E-02 2.20E-03 2.64E-03 3.52E-01 9.30E-01 0.05 5.34E-02 6.81E-01 4.19E-09 3.51E-17 1.55E-05
0.10 1.05E-01 6.33E-01 8.31E-13 2.94E-24 1.92E-06 0.10 9.71E-02 7.95E-01 3.64E-13 1.23E-22 3.49E-06

Hour 3 0.25 2.01E-01 1.76E-03 4.34E-03 2.78E-01 4.63E-02 Hour 3 0.25 2.49E-01 9.49E-01 0.00E+00 1.33E-49 6.51E-11
w = 548 0.50 5.05E-01 7.96E-01 0.00E+00 1.47E-108 3.56E-23 w = 730 0.50 4.88E-01 5.29E-01 2.96E-02 5.48E-02 2.48E-08

0.75 8.33E-01 5.90E-08 8.27E-14 1.68E-09 2.70E-18 0.75 7.46E-01 7.82E-01 0.00E+00 3.53E-87 9.52E-27
0.90 9.07E-01 5.25E-01 0.00E+00 2.64E-39 1.00E-16 0.90 9.33E-01 1.68E-03 3.87E-04 3.04E-03 3.82E-17
0.95 9.73E-01 2.20E-03 2.64E-03 3.72E-01 3.23E-17 0.95 9.55E-01 5.40E-01 1.48E-11 1.39E-26 2.57E-12
0.99 9.96E-01 6.92E-02 0.00E+00 3.10E-15 4.80E-03 0.99 9.96E-01 6.92E-02 0.00E+00 3.10E-15 4.57E-03

# Rejections 0 0 0 0 # Rejections 0 0 0 0

0.01 1.92E-02 2.72E-02 5.33E-04 1.17E-08 3.32E-01 0.01 1.64E-02 1.11E-01 1.23E-02 1.47E-03 1.02E-01
0.05 4.79E-02 7.91E-01 2.57E-01 1.47E-04 9.46E-01 0.05 4.79E-02 7.91E-01 6.00E-01 3.12E-03 6.45E-01
0.10 1.15E-01 1.88E-01 5.71E-07 5.97E-08 2.42E-01 0.10 1.16E-01 1.52E-01 3.53E-06 1.03E-06 1.69E-01

Hour 8 0.25 2.48E-01 8.81E-01 1.31E-02 1.07E-58 2.07E-01 Hour 8 0.25 3.05E-01 7.72E-04 0.00E+00 1.50E-24 9.34E-01
w = 548 0.50 5.21E-01 2.51E-01 0.00E+00 1.51E-30 3.95E-01 w = 730 0.50 5.24E-01 1.95E-01 0.00E+00 1.83E-33 3.11E-01

0.75 7.65E-01 3.55E-01 0.00E+00 7.26E-30 3.28E-01 0.75 7.65E-01 3.55E-01 0.00E+00 7.26E-30 3.25E-01
0.90 9.12E-01 2.53E-01 1.44E-15 2.42E-27 4.04E-01 0.90 9.12E-01 2.53E-01 1.44E-15 2.42E-27 4.04E-01
0.95 9.55E-01 5.40E-01 1.20E-07 7.58E-19 1.82E-10 0.95 9.55E-01 5.40E-01 3.55E-10 1.03E-28 1.65E-01
0.99 9.92E-01 6.15E-01 0.00E+00 6.60E-03 6.74E-01 0.99 9.93E-01 3.62E-01 0.00E+00 1.26E-04 8.85E-01

# Rejections 0 0 0 0 # Rejections 0 0 0 0

0.01 1.23E-02 5.44E-01 2.05E-01 3.34E-01 4.24E-02 0.01 1.50E-02 2.02E-01 1.58E-01 2.56E-01 7.92E-03
0.05 4.92E-02 9.25E-01 0.00E+00 2.00E-03 2.28E-01 0.05 4.79E-02 7.91E-01 0.00E+00 2.08E-02 3.10E-01
0.10 9.58E-02 7.01E-01 8.86E-01 2.79E-02 9.76E-02 0.10 1.14E-01 2.31E-01 7.73E-08 1.28E-09 1.62E-01

Hour 19 0.25 2.60E-01 5.38E-01 1.22E-15 5.06E-18 5.67E-01 Hour 19 0.25 2.59E-01 5.95E-01 4.44E-16 1.08E-18 6.66E-01
w = 548 0.50 5.06E-01 7.39E-01 1.29E-01 6.11E-10 3.59E-02 w = 730 0.50 5.08E-01 6.84E-01 0.00E+00 2.05E-37 6.84E-01

0.75 7.51E-01 9.49E-01 0.00E+00 1.28E-38 4.68E-01 0.75 7.54E-01 8.14E-01 0.00E+00 8.05E-53 1.18E-01
0.90 9.15E-01 1.61E-01 9.68E-02 5.92E-02 5.06E-02 0.90 9.11E-01 3.10E-01 2.32E-01 3.23E-02 8.14E-01
0.95 9.71E-01 4.26E-03 1.42E-04 4.41E-05 4.07E-01 0.95 9.73E-01 2.20E-03 4.70E-04 4.51E-04 4.74E-01
0.99 9.89E-01 8.01E-01 0.00E+00 4.57E-11 5.26E-07 0.99 9.93E-01 3.62E-01 4.86E-02 1.25E-04 7.16E-01

# Rejections 1 5 7 3 # Rejections 1 7 8 1

The table displays the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as described in Section
5.2. P-values highlighted in red are significant at the 5% level, which implies poor model calibration.
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Table D.8: GARCH results for window sizes 365 and 548

Quantile Violations P UC P CC P DQ1 P DQ2 Quantile Violations P UC P CC P DQ1 P DQ2

0.01 6.84E-03 3.62E-01 0.00E+00 1.00E+00 1.80E-01 0.01 5.47E-03 1.78E-01 0.00E+00 1.00E+00 9.47E-02
0.05 6.29E-02 1.22E-01 3.03E-01 3.54E-01 5.66E-01 0.05 6.16E-02 1.66E-01 3.79E-01 3.65E-01 4.91E-01
0.10 1.07E-01 5.50E-01 5.09E-01 6.24E-01 9.45E-01 0.10 1.08E-01 4.72E-01 6.66E-01 8.23E-01 5.78E-01

Hour 3 0.25 2.38E-01 4.52E-01 7.26E-04 1.49E-05 4.28E-02 Hour 3 0.25 2.46E-01 8.14E-01 4.36E-03 6.59E-05 9.56E-02
w = 365 0.50 8.81E-01 0.00E+00 0.00E+00 7.93E-13 1.46E-02 w = 548 0.50 9.04E-01 0.00E+00 0.00E+00 1.70E-13 3.17E-01

0.75 6.13E-01 3.33E-16 0.00E+00 3.60E-16 2.03E-06 0.75 6.28E-01 2.97E-13 0.00E+00 1.23E-24 1.56E-07
0.90 8.84E-01 1.52E-01 1.18E-01 3.11E-01 2.29E-09 0.90 9.08E-01 4.46E-01 2.33E-01 3.17E-02 6.31E-06
0.95 9.49E-01 9.39E-01 7.62E-01 6.04E-02 1.37E-06 0.95 9.49E-01 9.39E-01 0.00E+00 2.07E-04 6.93E-04
0.99 9.93E-01 3.62E-01 0.00E+00 1.00E+00 2.07E-02 0.99 9.97E-01 1.93E-02 0.00E+00 1.00E+00 1.63E-01

# Rejections 2 5 3 6 # Rejections 3 6 5 3

0.01 5.20E-02 6.66E-16 0.00E+00 1.05E-222 1.76E-04 0.01 3.06E-01 0.00E+00 0.00E+00 1.33E-87 6.40E-08
0.05 6.29E-02 1.22E-01 0.00E+00 2.68E-299 6.36E-04 0.05 2.74E-03 1.44E-14 0.00E+00 1.00E+00 5.99E-03
0.10 1.07E-01 5.50E-01 1.96E-01 2.38E-01 1.58E-02 0.10 1.18E-01 1.21E-01 2.43E-01 5.84E-17 2.50E-01

Hour 8 0.25 7.25E-02 0.00E+00 0.00E+00 0.00E+00 2.17E-03 Hour 8 0.25 2.34E-01 3.12E-01 4.29E-09 3.61E-10 1.16E-01
w = 365 0.50 5.55E-01 2.71E-03 0.00E+00 9.17E-41 7.76E-03 w = 548 0.50 7.72E-01 0.00E+00 0.00E+00 4.17E-27 1.78E-04

0.75 9.58E-02 0.00E+00 0.00E+00 2.78E-283 2.30E-03 0.75 6.70E-01 1.40E-06 0.00E+00 2.95E-35 4.25E-04
0.90 1.12E-01 0.00E+00 0.00E+00 8.98E-256 2.99E-05 0.90 1.46E-01 0.00E+00 0.00E+00 2.05E-224 1.91E-04
0.95 4.10E-03 0.00E+00 0.00E+00 6.07E-18 6.64E-02 0.95 1.52E-01 0.00E+00 0.00E+00 1.46E-207 1.70E-04
0.99 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.99 9.92E-01 6.15E-01 0.00E+00 8.87E-03 5.30E-01

# Rejections 7 8 8 8 # Rejections 6 8 8 6

0.01 9.58E-03 9.08E-01 0.00E+00 9.99E-01 2.51E-01 0.01 1.23E-02 5.44E-01 0.00E+00 9.97E-01 3.04E-01
0.05 4.65E-02 6.62E-01 0.00E+00 1.28E-01 3.98E-01 0.05 4.79E-02 7.91E-01 0.00E+00 6.93E-02 1.44E-01
0.10 1.09E-01 4.01E-01 5.02E-01 2.37E-01 7.92E-01 0.10 9.71E-02 7.95E-01 9.66E-01 2.21E-01 9.66E-01

Hour 19 0.25 2.54E-01 7.82E-01 1.20E-01 1.43E-10 7.69E-01 Hour 19 0.25 2.45E-01 7.48E-01 1.89E-01 1.21E-10 4.29E-01
w = 365 0.50 5.95E-01 2.51E-07 5.96E-07 5.91E-01 1.09E-01 w = 548 0.50 5.95E-01 2.51E-07 1.04E-06 7.55E-01 3.21E-01

0.75 7.36E-01 3.84E-01 5.16E-01 2.29E-01 1.13E-02 0.75 7.66E-01 3.12E-01 3.60E-01 4.58E-01 2.89E-01
0.90 9.18E-01 9.66E-02 2.21E-01 9.63E-01 7.53E-01 0.90 9.26E-01 1.40E-02 4.25E-02 5.15E-01 3.31E-01
0.95 9.85E-01 4.18E-07 9.81E-07 2.37E-04 8.82E-01 0.95 9.85E-01 4.18E-07 9.81E-07 2.37E-04 8.82E-01
0.99 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.99 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

3 5 3 2 # Rejections 4 6 3 1

The table displays the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as described in Section
5.2. P-values highlighted in red are significant at the 5% level, which implies poor model calibration.
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Table D.9: GARCH results for window sizes 730 and 913

Quantile Violations P UC P CC P DQ1 P DQ2 Quantile Violations P UC P CC P DQ1 P DQ2

0.01 1.09E-02 8.01E-01 0.00E+00 9.99E-01 6.68E-02 0.01 4.10E-03 6.92E-02 0.00E+00 1.00E+00 4.85E-01
0.05 2.87E-02 4.26E-03 1.50E-02 2.69E-01 2.97E-01 0.05 4.51E-02 5.40E-01 7.60E-01 1.20E-01 7.71E-01
0.10 6.16E-02 2.12E-04 9.18E-04 9.80E-01 8.33E-01 0.10 9.44E-02 6.10E-01 5.19E-01 8.17E-01 9.58E-01

Hour 3 0.25 1.59E-01 2.11E-09 3.20E-09 4.91E-01 2.41E-04 Hour 3 0.25 2.59E-01 5.95E-01 1.38E-01 1.66E-04 1.26E-02
w = 730 0.50 5.85E-01 3.57E-06 2.97E-07 8.88E-04 2.87E-14 w = 913 0.50 9.17E-01 0.00E+00 0.00E+00 2.76E-13 2.01E-04

0.75 6.66E-01 4.05E-07 4.44E-07 3.38E-03 5.77E-13 0.75 7.63E-01 4.02E-01 0.00E+00 3.98E-33 1.56E-03
0.90 8.45E-01 4.34E-06 2.58E-05 1.50E-01 2.40E-10 0.90 9.51E-01 5.02E-07 2.63E-06 2.66E-02 2.35E-03
0.95 9.32E-01 3.02E-02 6.58E-02 4.62E-01 7.11E-09 0.95 9.58E-01 3.34E-01 6.00E-01 4.64E-01 3.02E-06
0.99 9.95E-01 1.78E-01 0.00E+00 1.00E+00 1.08E-01 0.99 9.97E-01 1.93E-02 0.00E+00 1.00E+00 1.28E-01

# Rejections 7 8 2 5 # Rejections 3 5 4 5

0.01 1.37E-02 3.44E-01 0.00E+00 5.08E-01 2.09E-06 0.01 1.49E-01 0.00E+00 0.00E+00 1.45E-66 2.94E-07
0.05 3.15E-02 1.39E-02 4.60E-02 9.17E-01 1.93E-05 0.05 1.37E-03 5.55E-16 0.00E+00 1.00E+00 1.08E-03
0.10 7.39E-02 1.40E-02 2.67E-04 1.60E-03 4.00E-02 0.10 1.26E-01 2.45E-02 5.83E-02 2.30E-19 1.52E-01

Hour 8 0.25 1.86E-01 3.72E-05 9.23E-08 1.25E-03 2.10E-01 Hour 8 0.25 2.30E-01 2.03E-01 1.09E-10 9.27E-11 5.59E-02
w = 730 0.50 5.73E-01 7.35E-05 1.46E-06 8.50E-04 1.52E-08 w = 913 0.50 8.67E-01 0.00E+00 0.00E+00 1.10E-21 8.08E-01

0.75 7.06E-01 6.82E-03 1.49E-05 7.40E-04 7.29E-15 0.75 7.84E-01 3.17E-02 9.44E-14 1.72E-22 8.37E-01
0.90 8.62E-01 1.07E-03 2.92E-05 1.22E-02 1.20E-13 0.90 3.28E-02 0.00E+00 0.00E+00 2.35E-30 6.70E-05
0.95 9.32E-01 3.02E-02 6.58E-02 2.79E-02 3.54E-11 0.95 3.56E-02 0.00E+00 0.00E+00 6.91E-45 6.35E-05
0.99 9.95E-01 1.78E-01 0.00E+00 1.00E+00 2.58E-03 0.99 9.97E-01 1.93E-02 0.00E+00 1.00E+00 9.25E-01

# Rejections 7 8 6 8 # Rejections 8 8 7 4

0.01 1.09E-02 8.01E-01 0.00E+00 9.99E-01 2.84E-02 0.01 1.23E-02 5.44E-01 0.00E+00 9.97E-01 4.67E-01
0.05 4.51E-02 5.40E-01 7.51E-01 8.82E-02 4.33E-01 0.05 5.06E-02 9.39E-01 7.62E-01 1.83E-01 1.82E-01
0.10 8.62E-02 2.03E-01 3.46E-01 4.85E-01 3.29E-01 0.10 1.01E-01 9.12E-01 9.74E-01 2.06E-01 7.29E-01

Hour 19 0.25 2.13E-01 2.01E-02 8.09E-04 3.14E-02 4.67E-04 Hour 19 0.25 2.41E-01 5.63E-01 1.96E-01 7.47E-12 4.05E-01
w = 730 0.50 4.87E-01 4.82E-01 5.84E-02 1.10E-02 7.33E-05 w = 913 0.50 5.70E-01 1.36E-04 3.44E-04 8.87E-01 2.28E-01

0.75 6.83E-01 4.19E-05 2.65E-09 9.73E-05 3.65E-08 0.75 7.67E-01 2.72E-01 5.45E-01 9.33E-01 3.35E-01
0.90 8.80E-01 7.41E-02 6.92E-02 2.52E-01 2.26E-05 0.90 9.34E-01 1.03E-03 2.69E-03 4.67E-01 3.23E-01
0.95 9.45E-01 5.64E-01 7.28E-01 8.35E-01 2.39E-04 0.95 7.31E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.99 9.95E-01 1.78E-01 0.00E+00 2.97E-08 6.07E-01 0.99 7.31E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00

# Rejections 2 4 4 6 # Rejections 4 5 3 2

The table displays the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as described in Section
5.2. P-values highlighted in red are significant at the 5% level, which implies poor model calibration.
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Table D.10: Asymmetric slope CAViaR results for window sizes 365 and 548

Quantile Violations P UC P CC P DQ1 P DQ2 Quantile Violations P UC P CC P DQ1 P DQ2

0.01 2.05E-02 1.23E-02 2.59E-02 8.42E-01 2.38E-02 0.01 2.05E-02 1.23E-02 4.58E-03 1.17E-01 9.76E-03
0.05 5.34E-02 6.81E-01 1.67E-01 1.97E-01 6.00E-02 0.05 5.47E-02 5.64E-01 4.03E-01 7.96E-01 2.06E-02
0.10 9.99E-02 9.90E-01 8.71E-02 4.57E-01 6.14E-01 0.10 9.85E-02 8.92E-01 1.50E-01 2.87E-01 6.60E-01

Hour 3 0.25 2.41E-01 5.63E-01 8.68E-04 3.82E-05 1.89E-01 Hour 3 0.25 2.37E-01 4.02E-01 4.55E-04 6.89E-05 7.19E-02
w = 365 0.50 5.13E-01 4.82E-01 2.47E-06 4.52E-14 1.59E-03 w = 548 0.50 5.25E-01 1.71E-01 4.71E-09 3.03E-15 4.74E-03

0.75 6.74E-01 4.59E-06 1.07E-13 4.15E-16 1.68E-06 0.75 6.89E-01 2.25E-04 3.93E-09 2.71E-11 5.06E-07
0.90 8.78E-01 5.71E-02 1.57E-01 9.36E-01 1.50E-09 0.90 9.11E-01 3.10E-01 2.30E-01 6.96E-01 3.05E-07
0.95 9.40E-01 2.20E-01 4.27E-01 9.15E-01 3.21E-08 0.95 9.25E-01 3.46E-03 5.21E-03 7.99E-03 1.07E-07
0.99 9.79E-01 1.23E-02 0.00E+00 8.38E-01 2.43E-08 0.99 9.88E-01 5.44E-01 0.00E+00 9.97E-01 1.55E-03

# Rejections 3 5 3 6 # Rejections 3 6 4 7

0.01 5.47E-02 0.00E+00 2.22E-16 6.09E-14 2.92E-02 0.01 3.83E-02 4.43E-09 2.36E-08 4.04E-09 5.66E-03
0.05 9.03E-02 6.36E-06 4.38E-06 1.25E-10 9.00E-02 0.05 8.62E-02 4.33E-05 1.47E-05 2.59E-12 1.39E-01
0.10 1.42E-01 3.10E-04 9.40E-05 2.74E-20 5.43E-02 0.10 1.38E-01 1.07E-03 5.48E-04 5.51E-25 1.59E-02

Hour 8 0.25 2.56E-01 7.17E-01 2.77E-07 1.73E-06 1.46E-01 Hour 8 0.25 2.75E-01 1.23E-01 4.23E-07 1.25E-05 3.79E-02
w = 365 0.50 4.36E-01 5.72E-04 4.74E-07 4.09E-58 1.91E-14 w = 548 0.50 4.47E-01 4.36E-03 3.50E-06 2.12E-57 8.85E-16

0.75 6.37E-01 1.56E-11 1.33E-15 2.81E-38 7.78E-08 0.75 6.51E-01 2.72E-09 1.23E-12 2.60E-29 7.47E-08
0.90 8.69E-01 6.78E-03 4.20E-09 2.02E-17 2.94E-04 0.90 8.73E-01 1.80E-02 1.56E-09 3.33E-20 1.67E-03
0.95 9.33E-01 4.41E-02 5.49E-04 4.88E-07 1.36E-03 0.95 9.36E-01 8.88E-02 2.36E-06 6.59E-12 7.45E-04
0.99 9.86E-01 3.44E-01 0.00E+00 2.53E-05 2.74E-02 0.99 9.90E-01 9.08E-01 0.00E+00 6.20E-02 5.99E-01

# Rejections 7 9 9 6 # Rejections 6 9 8 7

0.01 2.33E-02 2.12E-03 0.00E+00 8.08E-01 2.41E-04 0.01 1.78E-02 5.66E-02 0.00E+00 9.66E-01 6.51E-03
0.05 5.61E-02 4.58E-01 6.73E-02 1.55E-02 4.35E-02 0.05 5.34E-02 6.81E-01 4.14E-01 4.66E-02 1.05E-01
0.10 1.01E-01 9.12E-01 2.29E-01 2.75E-02 6.87E-01 0.10 1.07E-01 5.50E-01 2.08E-02 3.85E-04 3.04E-01

Hour 19 0.25 2.68E-01 2.61E-01 4.36E-01 6.51E-08 6.19E-01 Hour 19 0.25 2.65E-01 3.40E-01 1.80E-01 2.18E-05 6.56E-01
w = 365 0.50 4.92E-01 6.84E-01 8.61E-01 8.03E-01 5.39E-02 w = 548 0.50 4.92E-01 6.84E-01 6.63E-01 9.81E-01 9.76E-02

0.75 7.28E-01 1.69E-01 7.67E-02 1.87E-01 6.64E-05 0.75 7.35E-01 3.40E-01 1.80E-01 4.84E-01 3.68E-02
0.90 9.15E-01 1.61E-01 9.68E-02 4.24E-01 1.42E-01 0.90 9.29E-01 6.35E-03 1.18E-02 8.10E-01 1.58E-01
0.95 9.48E-01 8.07E-01 2.89E-08 9.87E-15 6.05E-01 0.95 9.45E-01 5.64E-01 8.60E-09 5.85E-14 5.09E-01
0.99 9.85E-01 2.02E-01 5.59E-04 6.51E-12 9.58E-01 0.99 9.89E-01 8.01E-01 7.59E-03 2.82E-09 4.50E-02

1 3 5 3 # Rejections 1 5 5 3

The table displays the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as described in Section
5.2. P-values highlighted in red are significant at the 5% level, which implies poor model calibration.
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Table D.11: Asymmetric slope CAViaR results for window sizes 730 and 913

Quantile Violations P UC P CC P DQ1 P DQ2 Quantile Violations P UC P CC P DQ1 P DQ2

0.01 2.46E-02 8.10E-04 8.88E-06 1.30E-05 5.89E-03 0.01 2.46E-02 8.10E-04 5.16E-07 2.15E-10 7.59E-04
0.05 5.20E-02 8.07E-01 3.89E-01 5.93E-01 3.20E-02 0.05 6.02E-02 2.20E-01 1.80E-01 2.71E-01 6.10E-01
0.10 9.58E-02 7.01E-01 1.84E-02 7.70E-02 6.24E-01 0.10 1.07E-01 5.50E-01 2.85E-03 1.61E-02 7.93E-01

Hour 3 0.25 2.46E-01 8.14E-01 8.04E-03 2.97E-04 1.98E-03 Hour 3 0.25 2.53E-01 8.48E-01 3.83E-03 3.69E-08 1.60E-03
w = 730 0.50 5.27E-01 1.49E-01 7.05E-09 6.33E-14 1.72E-07 w = 913 0.50 5.43E-01 1.97E-02 1.99E-08 2.37E-13 1.37E-09

0.75 7.55E-01 7.48E-01 9.26E-04 2.97E-11 3.32E-06 0.75 7.98E-01 2.38E-03 3.61E-08 3.17E-12 2.90E-05
0.90 9.36E-01 6.24E-04 1.53E-03 6.09E-01 1.76E-05 0.90 9.47E-01 4.76E-06 2.84E-05 7.39E-01 2.69E-07
0.95 9.38E-01 1.66E-01 1.79E-03 8.55E-04 1.32E-10 0.95 9.41E-01 2.86E-01 3.74E-01 8.63E-02 6.39E-20
0.99 9.93E-01 3.62E-01 0.00E+00 1.00E+00 1.34E-02 0.99 9.95E-01 1.78E-01 0.00E+00 1.00E+00 5.88E-02

# Rejections 2 8 5 8 # Rejections 4 7 5 6

0.01 3.28E-02 9.29E-07 5.77E-06 1.26E-09 1.34E-02 0.01 3.01E-02 1.06E-05 5.66E-05 3.50E-05 9.42E-03
0.05 7.52E-02 3.46E-03 2.50E-03 2.94E-10 3.71E-01 0.05 7.39E-02 5.54E-03 7.01E-03 3.78E-12 2.55E-01
0.10 1.40E-01 7.15E-04 7.70E-04 9.01E-22 3.88E-02 0.10 1.40E-01 7.15E-04 7.70E-04 2.34E-18 6.03E-02

Hour 8 0.25 2.85E-01 3.35E-02 2.18E-07 1.35E-05 8.25E-03 Hour 8 0.25 2.83E-01 4.11E-02 1.45E-07 5.86E-06 2.75E-03
w = 730 0.50 4.60E-01 2.90E-02 2.24E-05 8.74E-58 1.84E-13 w = 913 0.50 4.58E-01 2.40E-02 1.89E-04 1.75E-52 4.24E-12

0.75 6.88E-01 1.63E-04 8.31E-07 3.51E-23 3.73E-05 0.75 6.89E-01 2.25E-04 1.38E-06 2.87E-20 2.48E-04
0.90 8.78E-01 5.71E-02 3.96E-08 9.09E-18 1.19E-04 0.90 8.80E-01 7.41E-02 9.94E-10 4.47E-23 7.38E-04
0.95 9.34E-01 6.32E-02 1.96E-05 9.46E-12 3.09E-05 0.95 9.30E-01 2.03E-02 1.53E-08 5.90E-16 1.42E-05
0.99 9.92E-01 6.15E-01 0.00E+00 8.87E-03 1.31E-01 0.99 9.96E-01 6.92E-02 0.00E+00 1.00E+00 9.26E-01

# Rejections 6 9 9 7 # Rejections 7 9 8 6

0.01 1.50E-02 2.02E-01 0.00E+00 9.88E-01 6.25E-01 0.01 1.37E-02 3.44E-01 0.00E+00 9.93E-01 4.83E-02
0.05 5.20E-02 8.07E-01 7.50E-01 3.49E-02 5.15E-01 0.05 5.06E-02 9.39E-01 7.22E-01 5.80E-02 4.20E-01
0.10 1.07E-01 5.50E-01 8.06E-03 8.53E-06 5.70E-01 0.10 1.04E-01 7.22E-01 1.36E-02 7.41E-06 7.86E-01

Hour 19 0.25 2.60E-01 5.38E-01 2.21E-01 4.63E-07 9.34E-01 Hour 19 0.25 2.52E-01 9.15E-01 3.33E-01 1.26E-07 7.94E-01
w = 730 0.50 4.90E-01 5.79E-01 4.68E-01 9.63E-01 1.14E-01 w = 913 0.50 4.92E-01 6.84E-01 8.61E-01 9.99E-01 1.13E-01

0.75 7.51E-01 9.49E-01 4.30E-01 7.05E-01 1.27E-02 0.75 7.59E-01 5.63E-01 5.56E-01 7.83E-01 1.52E-01
0.90 9.38E-01 2.12E-04 7.97E-04 8.65E-01 2.73E-01 0.90 9.40E-01 1.20E-04 2.34E-04 2.34E-01 2.40E-01
0.95 9.55E-01 5.40E-01 7.15E-09 1.70E-17 2.58E-01 0.95 9.56E-01 4.31E-01 1.20E-10 8.30E-22 4.61E-02
0.99 9.90E-01 9.08E-01 0.00E+00 9.99E-01 5.04E-01 0.99 9.90E-01 9.08E-01 0.00E+00 9.99E-01 7.33E-01

# Rejections 1 5 4 1 # Rejections 1 5 3 2

The table displays the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as described in Section
5.2. P-values highlighted in red are significant at the 5% level, which implies poor model calibration.
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Table D.12: Symmetric absolute value CAViaR results for window sizes 365 and 548

Quantile Violations P UC P CC P DQ1 P DQ2 Quantile Violations P UC P CC P DQ1 P DQ2

0.01 1.09E-02 8.01E-01 1.89E-01 2.98E-03 2.26E-01 0.01 2.05E-02 1.23E-02 4.10E-04 1.40E-04 3.45E-03
0.05 5.61E-02 4.58E-01 1.77E-01 1.26E-01 1.20E-01 0.05 5.88E-02 2.86E-01 1.78E-01 1.98E-01 1.21E-01
0.10 1.11E-01 3.38E-01 4.76E-03 3.11E-02 9.41E-01 0.10 9.71E-02 7.95E-01 3.00E-03 9.14E-03 5.65E-01

Hour 3 0.25 1.44E-01 1.82E-12 0.00E+00 1.09E-18 2.30E-02 Hour 3 0.25 2.45E-01 7.48E-01 7.79E-02 3.54E-04 3.00E-02
w = 365 0.50 5.40E-01 2.90E-02 0.00E+00 2.47E-39 1.59E-04 w = 548 0.50 5.91E-01 8.10E-07 0.00E+00 4.32E-35 4.00E-03

0.75 6.80E-01 2.05E-05 0.00E+00 6.18E-43 4.10E-04 0.75 7.11E-01 1.76E-02 0.00E+00 9.71E-43 7.56E-05
0.90 8.96E-01 7.22E-01 4.45E-01 5.17E-01 4.05E-09 0.90 9.06E-01 6.10E-01 2.17E-01 7.01E-02 1.58E-08
0.95 9.52E-01 7.91E-01 8.11E-01 9.57E-01 2.12E-10 0.95 9.36E-01 8.88E-02 1.25E-01 6.13E-01 3.41E-10
0.99 9.88E-01 5.44E-01 0.00E+00 9.97E-01 3.06E-11 0.99 9.89E-01 8.01E-01 0.00E+00 9.99E-01 2.19E-07

# Rejections 3 5 5 6 # Rejections 3 5 5 7

0.01 2.46E-02 8.10E-04 0.00E+00 1.05E-02 5.20E-03 0.01 1.78E-02 5.66E-02 0.00E+00 7.79E-01 5.74E-02
0.05 7.25E-02 8.70E-03 4.01E-03 7.45E-07 1.86E-02 0.05 6.29E-02 1.22E-01 6.77E-02 3.68E-10 2.44E-01
0.10 9.85E-02 8.92E-01 1.25E-02 6.08E-19 8.55E-01 0.10 9.85E-02 8.92E-01 1.64E-01 4.60E-13 2.52E-02

Hour 8 0.25 2.71E-01 1.97E-01 1.27E-08 2.53E-11 1.95E-01 Hour 8 0.25 2.60E-01 5.38E-01 2.50E-08 1.24E-09 1.74E-01
w = 365 0.50 4.32E-01 2.45E-04 3.33E-16 6.86E-66 8.40E-04 w = 548 0.50 4.40E-01 1.27E-03 0.00E+00 1.33E-65 6.42E-04

0.75 6.83E-01 4.19E-05 1.11E-16 1.08E-25 2.69E-03 0.75 6.59E-01 4.56E-08 0.00E+00 1.11E-33 2.50E-04
0.90 8.96E-01 7.22E-01 1.44E-09 3.75E-19 4.87E-04 0.90 9.02E-01 8.92E-01 4.12E-09 8.98E-21 5.26E-03
0.95 9.30E-01 2.03E-02 5.20E-06 1.11E-14 2.37E-03 0.95 9.38E-01 1.66E-01 9.57E-06 1.52E-12 5.68E-03
0.99 9.85E-01 2.02E-01 1.58E-01 1.85E-05 4.33E-02 0.99 9.90E-01 9.08E-01 0.00E+00 6.20E-02 7.16E-01

# Rejections 5 8 9 7 # Rejections 2 7 7 5

0.01 1.37E-02 3.44E-01 0.00E+00 1.34E-01 6.44E-01 0.01 1.23E-02 5.44E-01 0.00E+00 4.88E-02 8.30E-01
0.05 5.06E-02 9.39E-01 7.22E-01 2.96E-01 6.95E-01 0.05 4.79E-02 7.91E-01 9.35E-01 3.25E-02 2.99E-01
0.10 1.05E-01 6.33E-01 9.03E-02 2.60E-04 4.84E-01 0.10 9.44E-02 6.10E-01 8.30E-02 2.52E-02 9.28E-01

Hour 19 0.25 2.76E-01 1.04E-01 2.00E-01 2.00E-06 2.06E-01 Hour 19 0.25 2.53E-01 8.48E-01 9.89E-02 1.21E-05 5.44E-01
w = 365 0.50 5.06E-01 7.39E-01 8.29E-01 7.46E-01 2.21E-02 w = 548 0.50 4.98E-01 9.12E-01 7.14E-01 9.65E-01 1.09E-01

0.75 7.35E-01 3.40E-01 3.04E-01 4.87E-01 3.42E-05 0.75 7.47E-01 8.48E-01 5.99E-01 6.28E-01 1.47E-02
0.90 9.21E-01 5.43E-02 1.25E-01 3.55E-01 5.33E-02 0.90 9.27E-01 9.51E-03 3.45E-02 3.89E-01 2.52E-01
0.95 9.59E-01 2.52E-01 2.97E-10 1.31E-24 7.20E-01 0.95 9.64E-01 5.96E-02 1.49E-09 1.73E-21 7.95E-01
0.99 9.92E-01 6.15E-01 1.82E-03 8.77E-18 2.31E-01 0.99 9.92E-01 6.15E-01 9.57E-02 6.11E-14 4.99E-01

0 3 4 2 # Rejections 1 3 6 1

The table displays the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as described in Section
5.2. P-values highlighted in red are significant at the 5% level, which implies poor model calibration.
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Table D.13: Symmetric absolute value CAViaR results for window sizes 730 and 913

Quantile Violations P UC P CC P DQ1 P DQ2 Quantile Violations P UC P CC P DQ1 P DQ2

0.01 3.15E-02 3.20E-06 2.97E-09 1.64E-07 3.49E-04 0.01 2.19E-02 5.25E-03 1.81E-05 4.57E-10 1.18E-03
0.05 6.29E-02 1.22E-01 6.77E-02 3.70E-01 8.70E-02 0.05 6.29E-02 1.22E-01 1.46E-01 1.80E-01 8.25E-01
0.10 9.85E-02 8.92E-01 1.33E-03 2.45E-03 8.03E-01 0.10 1.04E-01 7.22E-01 4.83E-04 1.09E-03 6.86E-02

Hour 3 0.25 2.54E-01 7.82E-01 7.14E-02 4.86E-04 4.01E-02 Hour 3 0.25 2.72E-01 1.69E-01 8.46E-03 1.71E-05 3.18E-03
w = 730 0.50 6.14E-01 5.50E-10 0.00E+00 6.70E-31 4.37E-05 w = 913 0.50 6.79E-01 0.00E+00 0.00E+00 1.57E-35 1.48E-08

0.75 8.28E-01 4.47E-07 0.00E+00 3.35E-30 1.58E-01 0.75 8.89E-01 0.00E+00 0.00E+00 3.64E-40 3.95E-01
0.90 9.32E-01 2.67E-03 1.04E-02 7.96E-01 1.47E-07 0.90 9.48E-01 2.31E-06 1.03E-05 2.77E-01 1.19E-06
0.95 9.51E-01 9.25E-01 1.02E-01 6.39E-02 3.14E-11 0.95 9.48E-01 8.07E-01 9.70E-01 3.73E-01 8.06E-21
0.99 9.93E-01 3.62E-01 0.00E+00 1.00E+00 6.92E-05 0.99 9.93E-01 3.62E-01 0.00E+00 1.00E+00 5.26E-03

# Rejections 4 6 5 6 # Rejections 4 7 5 6

0.01 2.46E-02 8.10E-04 0.00E+00 3.35E-04 5.00E-08 0.01 2.05E-02 1.23E-02 0.00E+00 5.06E-04 6.74E-02
0.05 6.02E-02 2.20E-01 7.50E-02 1.40E-09 7.59E-01 0.05 5.75E-02 3.66E-01 7.23E-02 1.39E-07 6.63E-01
0.10 1.04E-01 7.22E-01 2.90E-01 2.97E-16 7.03E-01 0.10 1.09E-01 4.01E-01 6.33E-01 3.15E-22 5.63E-01

Hour 8 0.25 2.64E-01 3.84E-01 4.27E-12 1.34E-13 2.95E-02 Hour 8 0.25 2.56E-01 7.17E-01 3.33E-16 9.17E-18 2.67E-02
w = 730 0.50 4.79E-01 2.51E-01 2.22E-16 3.35E-57 2.99E-02 w = 913 0.50 4.73E-01 1.49E-01 2.49E-12 1.17E-52 1.65E-01

0.75 7.31E-01 2.27E-01 9.77E-12 1.05E-19 3.57E-02 0.75 7.51E-01 9.49E-01 1.05E-14 1.36E-25 2.47E-01
0.90 9.02E-01 8.92E-01 8.55E-12 2.44E-26 9.66E-03 0.90 8.88E-01 2.81E-01 2.27E-11 1.48E-27 5.66E-03
0.95 9.36E-01 8.88E-02 1.61E-05 1.35E-11 9.03E-03 0.95 9.33E-01 4.41E-02 2.93E-06 2.20E-11 4.72E-02
0.99 9.93E-01 3.62E-01 0.00E+00 2.36E-04 8.28E-01 0.99 9.97E-01 1.93E-02 0.00E+00 1.00E+00 7.93E-01

# Rejections 1 7 9 6 # Rejections 3 7 8 3

0.01 1.64E-02 1.11E-01 0.00E+00 2.34E-01 6.40E-01 0.01 1.23E-02 5.44E-01 0.00E+00 4.88E-02 5.38E-01
0.05 5.61E-02 4.58E-01 6.73E-02 2.48E-02 6.98E-01 0.05 5.47E-02 5.64E-01 4.25E-01 1.33E-01 5.34E-01
0.10 1.08E-01 4.72E-01 1.14E-01 1.58E-02 8.56E-01 0.10 9.85E-02 8.92E-01 7.78E-02 7.59E-03 9.06E-01

Hour 19 0.25 2.64E-01 3.84E-01 1.64E-01 9.64E-06 9.05E-01 Hour 19 0.25 2.49E-01 9.49E-01 4.92E-02 1.72E-06 8.82E-01
w = 730 0.50 4.94E-01 7.39E-01 7.59E-01 9.80E-01 2.10E-01 w = 913 0.50 4.91E-01 6.31E-01 8.89E-01 9.92E-01 1.90E-01

0.75 7.52E-01 8.81E-01 4.79E-01 7.67E-01 2.64E-02 0.75 7.69E-01 2.36E-01 3.60E-01 6.30E-01 1.11E-01
0.90 9.37E-01 3.68E-04 1.42E-03 9.17E-01 5.76E-01 0.90 9.34E-01 1.03E-03 4.07E-03 8.53E-01 4.03E-01
0.95 9.73E-01 2.20E-03 4.07E-06 2.56E-12 1.58E-01 0.95 9.77E-01 2.24E-04 8.21E-08 4.50E-18 2.10E-01
0.99 9.99E-01 3.19E-03 0.00E+00 1.00E+00 6.17E-01 0.99 9.99E-01 3.19E-03 0.00E+00 1.00E+00 6.16E-01

# Rejections 3 4 4 1 # Rejections 3 5 4 0

The table displays the p-values of the unconditional coverage test (UC), the conditional coverage test (CC), and the two dynamic conditional quantile tests (DQ1 and DQ2), as described in Section
5.2. P-values highlighted in red are significant at the 5% level, which implies poor model calibration.
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