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Abstract

We investigate detection and localization of high-frequency intercep-
tion signals underwater using a fairly new framework known as Compres-
sive Sensing. Within this framework we can sample at sub-Nyquist rate
and still be able to reconstruct the signal. Compressive methods are pro-
posed as an alternative to traditional methods to lever the computational
burden by reducing the data rate by a significant amount. We use ex-
isting theory and develop methods to apply Compressive Sensing to the
case of detection and localization of high-frequency interception signals.
Provided simulations on synthetic and real data verifies the existence of
this use.

Sammendrag

Vi undersøker deteksjon og lokalisering av høy-frekvente intercep-
tion signaler under vann ved å bruke en relative ny metode kjent som
Compressive Sensing. Compressive Sensing tillater oss å rekonstruere et
signal selv om det er sterkt undersamplet. Reduksjonen i data raten gjør
at Compressive Sensing kan være et reelt alternativ til vanlige metoder
med tanke p̊a prosesserings kraft. Vi bruker ekisterende teori og utvikler
metoder for å lokalisere og bestemme peileretning p̊a interception sig-
naler ved bruk av Compressive Sensing. Simuleringer p̊a syntetiske og
ekte data blir brukt for å bekrefte bruksomr̊adet.
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Preface

During my stay as an employee at Kongsberg Defence and Aerospace, subdi-
vision Naval Systems and Surveillance, I was given the opportunity to finalize
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Thesis in cooperation with KDA. With strong interest in signal processing and
sonar systems, it was only natural to pursue these topics.

Compressive Sensing is a relatively new field and unknown for many. I have
been given the opportunity and pleasure of investigating this exciting branch
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Compressive Sensing to detect and localize high-frequency interception signals
for sonar applications is an intriguing idea and could not be left untouched.
Since its proposal by my supervisor Fredrik Hekland, extensive work have been
deployed to justify its existence with the general aim to be comparable to or
supersede existing methods. A major challenge with real-time processing is the
demand for efficient methods and algorithms. Effort has been directed into
applying an efficient solution for detection and localization of high-frequency
interception signals.

As of today, Compressive Sensing is still an active field of study, and there is
an ever-growing significant amount of literature. The peculiar features of Com-
pressive Sensing have been throughly examined in this thesis, with the objective
gradually shifting over to an actual application of the theory. Attempting to
get an overview and still restricting myself to focus on the important features
have been a personal challenge; I love exploration and have learned far more
than what is being presented in this humble paper. Of the challenges I have
encountered on my journey, most of them been particularly insightful and en-
joyable, some have been stressful and put me in despair and yet a few which
left me wondering.

I would like to thank my supervisors Fredik Hekland at KDS and Alex Hansen at
NTNU for their support during this journey. I also wish to thank my superior
Eileen Frydenberg for encouraging me to write this thesis. Finally, Kristin
Omre at NTNU has earned my gratitude for her willingness and support with
the administrative perspective of the thesis.
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1 Introduction

1.1 Introduction

Underwater warfare heavily relies on the use of sonar1 to detect, track and
engage hostile targets. A sonar can operate in two basic modes: passive and
active. Passive sonars are utilized on surface vessels and with more success on
submarines with the purpose to detect other vessels based on their noise emis-
sions. Unlike the completely silent operation of passive sonars, active sonars
will actively ping the ocean in an attempt to detect targets in the returning
echoes. Due to their noisy operation, active sonars are primarily found on
frigates and other vessels intended for anti-submarine warfare, see figure 1.1 for
an illustrative image.

An active sonar can in principle transmit any desired waveform, however, in
practice only a small class of waveforms are used due to their superior theoret-
ical capabilities in various situations. The three most commonly encountered
waveforms are linear frequency modulation (LFM), hyperbolic frequency mod-
ulation (HFM) and continuous wave (CW). See figure 1.2 for plots of these
waveforms and the corresponding one-sided Fourier spectrum. Without going
into too many details regarding these waveforms, it is sufficient to mention that
LFM and HFM exhibits high pulse compression2 capabilities and can resolve
closely spaced targets while CW offers much better capabilities for detecting
Doppler shift induced by target movement. See appendix A for additional
details.

1Originally an acronym for SOund NAvigation and Ranging.
2Performing a matched filter with a waveform that permits pulse compression will result

in a tall and narrow peak. Two closely spaced echoes can be resolved and the signal to noise
ratio is increased.

Figure 1.1: A frigate sends out a ping (black wavefronts) which is reflected from
the submarine (red wavefronts) and finally detected by the towed array.
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(a) LFM (b) HFM (c) CW

(d) LFM (e) HFM (f) CW

Figure 1.2: The three most commonly encountered waveforms (a)-(c) and the
corresponding frequency spectrum (d)-(e).

There are several distinct aspects with regard to this game of anti-submarine
warfare. Firstly, it is advantageous for active sonar to emit the ping as loud as
possible to enhance the returned echoes, often limited only by cavitation or the
surroundings3. Secondly, the emitted waveform may reach a potentially high
frequency as is the case for torpedoes which can operate in tens of kHz due to
their limited size. Thirdly, knowing the direction of the pinger is vital for the
survival of the submarine.

These considerations led most modern submarines to be equipped with a high-
frequency interception array specialized for detecting such waveforms. The
signal processing can be heavy; extremely high sampling rates combined with
conventional beamforming to estimate the direction of arrival claims its toll on
the available hardware.

We will attempt to address these issues by presenting a relatively new method
known as Compressive Sensing where the number of samples can be dramati-
cally decreased while offering a substantially better estimation of the direction-

3Active sonars can be notoriously difficult to operate in shallow waters due to reverbera-
tion. Increasing the transmission power may not even work under these conditions.

2



of-arrival (DOA). In particular we will consider a method where it is sufficient
with only one sensor to be sampled at the Nyquist rate while all others can
be substantially downsampled. The validity and efficacy of the method will be
evaluated and simulation results presented. Two scenarios will be investigated
using this method: passive sonar detecting a ping from a hostile pinger or an
active sonar detecting return echoes. In both scenarios we will assume the
signal-to-noise ratio to be relatively high.

1.2 Organization of the Thesis

In chapter 2 we will describe the framework of Compressive Sensing, including
behavior under noise and applications for estimating direction-of-arrival. The
following chapter 3 will depict a method to solve the aforementioned issues using
the framework of Compressive Sensing, with the simulation results presented
in chapter 4. Finally we do a small discussion of future work in chapter 5, only
to be quickly followed up by concluding remarks in chapter 6.

1.3 Notation

The notation should be fairly straightforward, but to avoid any ambiguities we
will detail the symbols used and their significance. Unless specified otherwise,
scalars will be denoted in lower case, e.g. x, vectors f in bold-face and matrices
A in capitals. We use R to represent the real numbers, C the complex numbers
and N the natural numbers. The notation A ∈ RM×N represents a matrix A
with M rows and N columns whose entries are real numbers. The transpose and
conjugate transpose (Hermitian conjugate) is denoted as .T and .H respectively.
The identity matrix is simply taken as I and its size is determined from the
context.

The length of a vector x = {x1, x2, . . . , xn} ∈ RN in space `p is given by the
associated norm ‖x‖p where p ≥ 1. In most instances p = 2 and the norm is
the usual Euclidean distance. In the context of Euclidean space, we let 〈., .〉
denote the inner product. This thesis will also make heavily use of p = 1,
or the Manhattan distance. We will also encounter the p = 0 “norm” which
simply counts the number of non-zero entries in x. Take care not to confuse
the notation for the absolute value |.| with the norm.

As for probability distributions, we will let N (µ, σ2) denote the normal distri-
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bution with mean µ and variance σ2, and U(a, b) is the uniform distribution
with constant, non-zero value on the interval [a, b] only. Random variables are
written in upper case and the realization of a random variable is written in
lower case. E[.] represents the expectation value of a random variable.

2 Compressive Sensing and Applications

2.1 Introduction to Compressive Sensing

This short summary outlines the basics of Compressive Sensing. Subsequent
sections will in detail investigate various aspects which is only briefly covered
here.

For decades the Nyquist-Shannon sampling theorem [11, 12] stood as firm as a
mountain in the field of signal processing. The theorem gave relief and support
in stating what minimum rate a signal should be sampled for accurate recon-
struction. However, it was also an impenetrable barrier for those who wished
to do with fewer samples and still be able to reconstruct the signal accurately;
the theorem did not allow any such extravagance.

The advent of Compressive Sensing shook the conception of the sampling the-
orem. Based on the groundbreaking work of Candès, Romberg, Tao [2, 3, 4, 5]
and not to mention Donoho [6, 7, 8, 9, 10] a robust framework for sampling a
broad class of signals with far fewer samples proved its existence. By no means
did it invalidate the sampling theorem, but merely paved a path for signals
whose underlying representation is known to be sparse.

Let {ψn}Nn=1 be a set of N orthonormal basis vectors for the space RN . Given
an orthonormal representation basis Ψ = {ψ1, . . . ,ψN}, Ψ ∈ RN×N , any signal
f ∈ RN can be expressed by4

f =
N∑
i=1
ψixi = Ψx, x ∈ RN (2.1)

The vector x, often referred to as the coefficient vector, is said to be K-sparse
when at most K entries of x are non-zero. If all but the K largest entries of x

4For easier theoretical treatment we will mostly consider real valued signals and orthonor-
mal bases, although these restrictions can be greatly relaxed to include complex and over-
complete bases.
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are comparably small, x is said to be approximately K-sparse. By keeping only
the K largest entries and setting the others to zero we denote the approximate
vector for xK .

In the framework of Compressive Sensing, sensing is accomplished by linear
measurements of f with respect to an orthonormal measurement basis Φ ∈
RM×N .

y = Φf , y ∈ RM (2.2)
From these M < N measurements Compressive Sensing guarantees exact re-
covery of x with high probability provided M is large enough and that Φ and
Ψ are sufficiently incoherent [1].

The coherency between two sets of basis vectors is defined to be
µ(Φ,Ψ) =

√
N max

1≤m≤M,1≤n≤N
|〈φm,ψn〉| (2.3)

This is merely the largest correlation between any two elements of Φ and Ψ.
As for how large or how small, linear algebra gives the answer µ ∈ [1,

√
N ].

Sparsity and incoherence stand as the pillars of Compressive Sensing; both de-
termine the number of samples needed for faithful reconstruction. Contemplate
on their significance and one might see the workings behind Compressive Sens-
ing. Sparsity indicates the actual information level is much lower than first
anticipated, sparking a hope that one should only need about O(K) samples.
This, however, requires all coefficients to be represented in the few samples
taken; exactly the job of incoherence. Incoherence makes the measurement ma-
trix dense in the representation basis, ensuring that the few samples taken of
x in the “dense domain” cover most of the sparse domain, thereby capturing
the coefficients of x in the sparse domain with high probability.

As a prime example consider the extreme case with maximum coherency be-
tween the measurement and representation bases. For simplicity choose Φ =
Ψ = I and thus µ =

√
N . Each measurement yields ym = φmΨx = xm and we

see that exactly N measurements are necessary; nothing is gained as each mea-
surement only conveys information about a single coefficient. Choose instead a
measurement basis incoherent to the representation basis; e.g Φ consisting of or-
thonormalized vectors sampled independently and uniformly on the unit sphere.
With high probability µ =

√
2 logN [1]. Each measurement is guaranteed to

contain information about almost all the coefficients and fewer measurements
are needed to uniquely determine the solution. As for how many measurements,
Candès and Romberg provides the follow bound [2]

M ≥ C · µ2 ·K logN (2.4)
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where C is a (small) constant. More accurate and improved bounds are pre-
sented in section 2.4 and section 2.5.

Wind back a moment and embrace the role randomness played in the previous
example. A random measurement basis is universal in the sense it will with high
probability possess low coherence with any representation basis, thus sensing
with randomness ought to do the trick and is shown to be near-optimal [3, 6].
This does not exclude deterministic designs however. In particular, it is shown
that a Fourier basis and Dirac spikes are maximally incoherent with respect to
each other [1], and in section 2.5 we briefly mention a particular combination
of bases which exhibits extreme performance.

All that is left is to reconstruct the data with the following convex optimization
program [4, 10] with A ≡ ΦΨ ∈ RM×N

min ‖x̃‖1 , subject to y = Ax̃ (P1)

Of all possible solutions f̃ = Ψx̃ that are consistent with the data we choose the
one whose coefficients has the smallest `1 norm. This program can be recast
as a linear program making available a host of ever more efficient solution
algorithms [13, 14]. This can be done by defining x+ and x− such that

x+
i = max{xi, 0}
x−i = max{−xi, 0}

The problem now becomes

min 1T
(

x+

x−

)
, subject to (A −A)

(
x+

x−

)
= y,

(
x+

x−

)
≥ 0

and can be solved efficiently.

Under the influence of noise in the sampling process, the following mixed pro-
gram is proposed for reconstruction

min ‖x̃‖1 , subject to ‖y− Ax̃‖2 ≤ ε (P2)

where ε bounds the amount of noise in the data. This is again a convex problem,
refered to as LASSO (see [10]) and can be solved efficiently [14, 34].

There is much to gain by comparing with lossy compression. A signal is sam-
pled at its full rate and all coefficients are computed to determine the K largest
ones. These coefficients are then transmitted and the rest of data discarded;
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a computational intensive method, yet common in image and audio process-
ing. Compressive Sensing challenges this by measuring just what is needed and
shifting the computational burden onto the receiver; only a few samples are
measured and transmitted, and the receiver has the job with reconstruction.
This does not replace traditional compression techniques, but paves way for
applications where it can be expensive to perform high-rate sampling or trans-
mitting large amounts of data, such as sonobuoys, distant sensor nodes and
MRI.

2.2 Sparsity Revisited

This section attempts to give an intuitive explanation of why sparsity is vital for
reconstruction and how `1 enters the picture as a sparsity-promoting function.

The following system of linear equations

y = Ax (2.5)

is in general ill-posed since A ∈ RM×N and M < N . To circumvent this issue
another restriction on (2.5) is needed to obtain a unique solution. Following
the principle of Occam’s razor [15] to choose the solution that describes the
data best in the simplest possible way, we enforce a sparsity constraint on (2.5)
to obtain this unique solution among all possible solutions.

The function counting the number of non-zero components of a vector is the
Hamming distance, often denoted for `0 “norm” (we abuse terminology and
discard quotation marks for better readability, see [16] for why this is not a
proper norm). The `p-norm is defined by [16]

‖x‖p ≡

∑
i∈N
|xi|p

 1
p

from which we obtain the `0 norm by taking the resulting limit as p→ 0

‖x‖0 = lim
p→0

∑
i∈N
|xi|p

 1
p

Unfortunately the following program

min ‖x̃‖0 , subject to y = Ax̃ (P0)

7



(a) p = 0 (b) p = 1/2 (c) p = 1

(d) p = 2 (e) p = ∞

Figure 2.1: The `p-norm ball (red) scaled to intersect with a linear constraint
(blue). Sparse solutions are achieved in (a)-(c), while (d) and (e) produce
non-sparse solutions.

requires a combinatorial search and is proven to be NP hard. Another sparsity-
promoting function is desired.

For many decades the `1 norm has been used as a sparsity-promoting function
with great success and important theoretical results supports this use [8]. This
can be easily understood from figure 2.1 which shows the smallest `p-norm
ball for a linear equality constraint. Intersection at an axis forces all other
components to zero and sparsity is obtained. As indicated, 0 ≤ p ≤ 1 produces
sparse solutions while p > 1 does in general not. Despite `1 is bordering as
a sparsity-promoting function, substitution of `0 with `1 is near-optimal for
recovering sparse solutions after a result of Donoho [6]. Choosing `1 ensures
that the resulting minimization program is convex and that we are guaranteed
to arrive at the global optimum. Better reconstruction quality can be obtained
by using IRLS5 with p < 1, however the program is no longer convex and the
solver may only reach a local optimum.

A final example of the significant difference in solution between minimization of

5IRLS = Iterative Reweighted Least Squares
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`1 and `2 is shown in figure 2.2. Two completely different solutions are obtained
and it is clear that `1 enhances sparsity while `2 does not.

2.3 Performance Guarantees

The universality of random sensing and general performance of `1 minimization
are important topics covered by this section.

The work of Donoho [6] and Candès and Tao [3] give important answers to these
topics. Consider the coefficients of a compressible signal6 sorted in decreasing
order of magnitude |xn| > |xn+1|. If

xn ≤ R · n−1/p (2.6)

for some R > 0 and 0 < p < ∞ then the following bound on reconstruction
error by keeping only the K largest coefficients of x holds

‖x− xK‖2 ≤ C ·R ·K−r, r = 1
p
− 1

2 (2.7)

for some constant C.

Following Donoho [6] let F be the class of signals f for which the sparse repre-
sentation obeys (2.6) for a given R and p. Let IM : F 7→ RM be an information
operator that samples M pieces of information about x ∈ RN in the following
fashion

IM(x) = (〈ξ1,x〉, . . . , 〈ξM ,x〉)
where the sampling kernels ξm are nonadaptive, i.e. independent of x.

An approximate reconstruction is offered by an unspecified, possibly non-linear
algorithm P : RM 7→ RN , and the reconstruction performance is measured by
the minimax `2 error

EM(F ) = inf
PM ,IM

sup
x∈F
‖x− PM (IM(x))‖2

So far all possible methods of nonadaptive sampling are allowed and all possible
methods of reconstruction are allowed. At this stage Donoho provides the
following result (modification of Theorem 1 in [6])

EM(F ) ≤ C ·R · (M/ logN)−r (2.8)
6These are signals for which ordinary compression techniques works well due to the rapid

decay of coefficients.
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(a) `1 solution

(b) `2 solution

Figure 2.2: Differences in solution by `1 (a) and `2 (b) minimization. Exact so-
lution is indicated by red crosses while blue circles shows the recovered solution.
The recovered solution in (a) is exact.
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for some constant C and sufficiently large N . Direct comparison with (2.7)
seems to indicate that having M ∼ K logN pieces of nonadapative informa-
tion provided by IM is equivalent with direct knowledge of the K largest co-
efficients. A similar result was also discovered independently by Candès and
Tao [3], which also confirmed the optimality of the information operator by ar-
guing that one cannot, in general, design a set of K measurements that would
allow significantly better reconstruction error by any method, no matter how
intractable.

Earlier literature on sparse reconstruction suggested the required number of
samples to be M ∼ K2 for accurate reconstruction, which is, ultimately, dis-
appointingly small. The bound by Donoho, Candès and Tao greatly improved
upon this for large systems.

In section 2.4 we will see that at least M = 2K samples are required to avoid
two vectors x1 and x2, x1 6= x2, to be mapped to the same output values,
Ax1 6= Ax2. This requirement can be elevated to M = K + 1 and most K-
sparse vectors can still be distinguished, something that will become evident in
the discussion on phase transitions in section 2.5.

A more surprising implication of (2.8) is that we do not know in advance which
coefficients are likely to be the important ones, yet the optimal information
operator is nonadaptive and depends on most of the class F and not on the
specific signal. Indeed, if the information operator was changed to be adaptive
in the sense that each sampling kernel ξm could depend on the previous samples,
the following result (Theorem 2 in [6]) shows that this is of little help

EM(F ) ≤ 2 · EAdaptive
M (F )

A similar result disencouraging adaptive sampling schemes was discovered by
Arias-Castro, Candès and Davenport [17].

A natural question arises on how to construct this optimal information op-
erator. Equation (2.4) provides a clue by requiring low-coherence pairs, e.g.
Fourier basis and spikes constitutes a low-coherence pair, wavelets and noise-
lets another. As already implied in section 2.1 random sensing provides a gen-
eral answer. The following result by Donoho shows that sensing with random
matrices sampled independently and uniformly on the unit sphere yields near-
optimal information operators with overwhelming high probability (Theorem 5
in [6])

EM(Irandom
M , F ) ≤ C · EM(F )

11



where C > 0 is some constant and EM(Irandom
M , F ) is

EM(Irandom
M , F ) ≡ inf

PM
sup
x∈F

∥∥∥x− PM (
Irandom
M (x)

)∥∥∥
2

This result is also supported by the work of Candes and Tao [3]. In addition
Theorem 10 in [6] shows that nearly all random matrices satisfies (2.3).

Turn the attention onto the reconstruction algorithm P . A comforting result
by Donoho is that `1 minimization (P1) is also near-optimal for reconstruction
(Theorem 5 in [6])

EM(P `1
M , I

random
M , F ) ≤ C · EM(F )

where C > 0 is some constant and EM(P `1
M is

EM(P `1
M , I

random
M , F ) ≡ sup

x∈F

∥∥∥x− P `1
M

(
Irandom
M (x)

)∥∥∥
2

Finally, if x has at most C ·M/ logN non-zeroes for some constant C, then re-
construction by `0 and `1 minimization has the same unique solution (Theorem
8 in [6]). Compare this with (2.4).

The emphasis on random measurement matrices and recovery by `1 minimiza-
tion so far is due to the two being near-optimal, universal and tractable. An
exact quantification of ’near-optimal’ is shown in section 2.5. Implementation
wise there can be a penalty in both storage and computational performance by
choosing random matrices over deterministic designs which can be computed
in real time and efficient algorithms exists.

2.4 Restricted Isometry Property

This section outlines a popular tool that is related to incoherence and has
its purposes for theoretical results on the robustness and stability of encod-
ing/decoding pairs.

Not every combination of measurement and representation matrices can pro-
vide good compressive capabilities with an `1 solver. The process of acquiring
compressive samples must also ensure that all relevant information is not only
conserved (see the example in section 2.1), but also be well distanced in mea-
surement space. As a result of this Candès and Tao proposed a key notion that
is useful for studying the robustness of Compressive Sensing, dubbed Restricted
Isometry Property (RIP)[1, 18].

12



Definition 2.1. For each integer K = 1, 2, . . ., define the restricted isometry
constant 0 ≤ δK ≤ 1 of a matrix A ∈ RM×N as the smallest number such that

(1− δK) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δK) ‖x‖2 (2.9)

holds for all K-sparse vectors x.

An equivalent statement is to require all sub matrices ATKAK derived from A
by taking K columns to be positive definite with eigenvalues in [(1− δK)2, (1 +
δK)2] [20, 21]. A matrix is said to obey the RIP of order K if δK is not too
close to one [1]. When it holds, the Euclidean length of any K-sparse vector
is approximately conserved. This in turn implies no K-sparse vector can be
located in the null space of A. If it did, no reconstruction algorithm, no matter
how intractable, would be able to recover these vectors. In particular, Gaussian
and other well behaved random matrices are shown to satisfy the RIP of order
K given [1, 35]

M ≥ C ·K log M
K

(2.10)

where C is some constant.

To avoid the potential disastrous case of degeneracy, that is, two sparse vectors
being mapped to the same values, δ2K must be sufficiently smaller than one. In
other wording, any pairwise distance between two K-sparse vectors must also
be well preserved (see figure 2.3)

(1− δ2K) ‖x2 − x1‖2 ≤ ‖Ax2 − Ax1‖2 ≤ (1 + δ2K) ‖x2 − x1‖2

The implications of RIP are delightful. Assume δ2K <
√

2 − 1 and we are
guaranteed tractable, robust and stable recovery (see e.g. [19, 20] and the
references therein). Tractable recovery is provided in the sense that all K-
sparse vectors are perfectly recovered by `1 minimization.

Let x̃ be the solution from (P1), and xK be the vector x with all but the
largest K components set to zero. Robust recovery then follows from the next
two bounds

‖x− x̃‖1 ≤ C ‖x− xK‖1 (2.11)

‖x− x̃‖2 ≤ C
‖x− xK‖1√

K
(2.12)

for some constant C. The implications are astounding; x is not necessarily a
sparse signal, but (2.11) and (2.12) asserts that the quality of reconstruction
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Figure 2.3: Mapping from RN to RM by a matrix that satisfies the RIP property.

is just as good as knowing the K largest components of x in advance (in the
event x happens to be K-sparse, the recovered solution is of course exact).

Assume we were to measure the signal in addition to some noise ‖e‖2 ≤ ε

y = Ax + e (2.13)

and x̃ is the solution by mixed norm minimization (P2), then the following
bound holds for all x ∈ RN

‖x− x̃‖2 ≤ C
‖x− xK‖1√

K
+ C1ε (2.14)

where C and C1 are some constants. The quality of reconstruction is bounded
by two terms; the first term corresponds to near sparse data and the second term
is just proportional to the noise level. This result assures Compressive Sensing
degrades gracefully in the event of noise and provides stable reconstruction.

The RIP is a popular tool used to establish theoretical performance guarantees
for a broad range of encoding/decoding pairs under influence of noise. However,
while the implications of RIP are excellent, it suffers from two major drawbacks.
To start with, it is difficult (NP hard) to tell whether a matrix obeys the RIP
or not as it requires checking the eigenvalues of each sub matrix [19, 21] or a
combinatorial search over all possible K-sparse vectors. A workaround is pro-
vided by using random matrices which almost always provides good restricted
isometry constants, thus the emphasis on randomness. Secondly, and more
importantly as shown in subsequent chapters, the RIP is too strict to be of
practical use [21, 22, 24].
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2.5 Donoho-Tanner Phase Transition

Several reconstruction algorithms, including `1 minimization, features a phase
transition where the probability of recovery drops sharply from near unity to
near zero. This section investigates this exotic and surprising behavior.

Donoho and Tanner spent their time counting faces of polytopes in high-
dimensional geometry and that with great success. The surprising connection
between random matrices, probability and high-dimensional geometry resulted
in what is known as the Donoho-Tanner phase transition [22, 24]. As mentioned
previously, replacing `0 with `1 is near-optimal; Donoho-Tanner phase transi-
tion shows for which matrices (P1) solves (P0). What is more surprising is that
Donoho and Tanner investigated the phase transition for multiple probability
distributions and discovered that the underlying distribution is irrelevant as
long as it is well behaved; the phase transition is in this sense universal (see
also [23]).

To continue and be able to interpret this result we must define the under- and
over-sampling ratios respectively. The undersampling ratio is defined as

δ = M

N
, δ ∈ [0, 1] (2.15)

while the oversampling ratio takes the form

ρ = K

M
, ρ ∈ [0, 1] (2.16)

Although both are assumed in the limit N →∞ we will still use these for finite
(and often very small) values of N .

There are two phase transitions of importance in the limit N →∞: the strong
and the weak, both are depicted in figure 2.4. The strong phase transition is
the boundary where exact recovery is guaranteed for all random matrices (no
probability of failure), while the weak phase transition is where the probability
for recovery is 1

2 . The rapid decay of the transition region (it decays with N− 1
2

as the problem size increases [24]) indicates that the weak phase transition
boundary is the most interesting feature when designing Compressive Sensing
applications. By accepting a negligible probability of failure, this phase tran-
sition boundary sets the limitation for reconstruction by (P1) and so replaces
“the rule of thumb” (2.4) for a more accurate measure on the number of sam-
ples needed for reconstruction in the noise-less case. Approximate formulas are
[25, 31]

M ≥ 2K log N
M
, M << N (S1)
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Figure 2.4: The strong phase transition (green) and the weak phase transition
(black). S1 (blue) and S2 (red) are approximate formulas presented in the
paper. Data with courtesy of J. Tanner [26].

for small values of δ and with a slight difference

M ≥ 2K log N
K

(S2)

which holds more generally over a broad range of δ. See figure 2.4.

We take a step back to compare the RIP with the strong Donoho-Tanner phase
transition as shown in figure 2.5 (note the change of vertical axis units). Despite
the obvious pessimistic nature, the RIP still stands as a viable (and sometimes
the only) tool for analysis of stability bounds under the influence of noise.

The phase transition does not only depend on the encoding matrix, but also on
the recovery algorithm used. Over time multiple recovery algorithms have been
proposed that can potentially outperform the Donoho-Tanner Phase Transition
by exploiting different heuristics than (P1). We will briefly consider the Ap-
proximate Message Passing (AMP) algorithm originally proposed by Donoho,
Maleki and Montanari [32] which yields a computationally attractive solution
to (P2) in the presence of noise while being robust to the signal distribution.
It is proven that in the large systems limit, N → ∞, AMP does coincide
with LASSO and thus possesses the same phase transition as described above
[32, 33]. Better performance can be obtained by exploiting the underlying sig-
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Figure 2.5: Comparing the RIP with the strong phase transition shows it is too
pessimistic for practical purposes. See [27].

nal distribution (e.g. Bernoulli-Gaussian) through a Bayesian approach known
as belief propagation (BP), see figure 2.6 [34].

Krzakala et al. recently showed that by using spatially-coupled matrices, the
upper theoretical limit on exact reconstruction, M = K + 1 or ρ = 1, could be
achieved in the noise-less case [28, 29]. Donoho et al. further improved on this
work and also proved its robustness to noise [31]. However, enforcing A to be
band diagonal implies no universal Φ exists and this approach has its uses for
specialized designs only.

2.6 Robust Reconstruction

Rarely a signal goes undistorted by noise. This section will summarize and
point out important aspects of noise. A major conclusion is the inefficiency of
Compressed Sensing under the influence of noise.

Noise can be introduced into the process in two ways: the original signal is con-
taminated with noise before sampling or the measurements are contaminated
by noise during transmission

y = A (x + z) + w (2.17)
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Figure 2.6: Phase transition for AMP based algorithms which exploits the
underlying signal distribution compared with `1 minimization (dashed). Note
the upper theoretical limit for exact reconstruction, ρ = 1, can be achieved
in combination with a special class of spatially-coupled matrices. Data with
courtesy of F. Krzakala [30].
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Both forms of noise are shown to be essentially equivalent, with the exception
the former can potentially have a much larger impact than the latter. Assume
for a moment that z ∼ N (0, σ2

0) and w ∼ N (0, σ2) then (2.17) is equivalent to
(2.13) with e ∼ N (0, σ2 +σ2

0/δ). This is known as noise folding and the result is
a significant lower signal-to-noise ratio (SNR) [37, 38]. As it is often desired to
keep δ rather small, this can potentially degrade the reconstruction completely.
It appears the only solution is to increase the number of measurements, which
incidentally conflicts with the idea of Compressive Sensing.

Furthermore, how to handle sparse reconstruction under the influence of noise?
Sparsity is crucial for reconstruction and algorithmic stability is required to
handle noise. As elaborated by Xu et al. [36], these two desired properties
for robust Compressive Sensing are fundamentally at odds with each other:
sparse algorithms cannot be stable and vice versa. This implies `1 minimization
cannot be stable, while `2 minimization, which is known to have strong stability
properties, cannot produce sparse solutions (see section 2.2 and in particular
figure 2.2). A trade off between sparsity and stability has to be made. Proposed
is reconstruction by (P2) and under the assumption the RIP is satisfied, the
stability bound (2.14) follows. Another, much more interesting bound also
exists for reconstruction by (P2). Let e ∼ N (0, σ2I), and M ≥ C ·K log N

K
for

some constant C, then with high probability the solution x̃ has the following
bound (see [38] and the references within)

1
N
‖x̃− x‖2

2 ≤ C · Kσ
2

M
logN (2.18)

where C is some constant. Note how the error scales with δ = M/N . This
effect is sometimes cited as a drawback of the compressive sensing framework
and can be understood intuitively. If each measurement has a constant SNR,
then taking more measurements should reduce the estimation error.

Candés and Davenport raise an important concern regarding (2.18) [38]. A
randomly generated matrix A will be almost orthogonal to the signal x, leading
to a tremendous SNR loss. Compare (2.18) with an oracle which can design A
with vectors localized to the support of x. The oracle would be able to generate
an estimate obeying

E
[ 1
N
‖x̃− x‖2

2

]
≤
(
Kσ2

M

)(
K

N

)
Comparing these two shows that the performance of (2.18) is worse than what
would be possible with an oracle by a factor of (N/K) logN . For small values
of K, this factor can be quite large. It is natural to ask whether (2.18) can
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be improved upon. Specifically, is there a more intelligent choice of A and an
accompanying efficient recovery algorithm that can give a fundamentally better
bound? The answer is negative [38].

These results combined indicates Compressive Sensing performs subpar under
noise.

Exact quantification of LASSO under the influence of noise has been studied
by both Donoho et al and Wainwright. Wainwright considered signed support
recovery and provides an exact inequality on the number of samples required
for reconstruction, assuming one solves an equivalent variant of (P2) with a
specified regularization parameter [39]. Of much more interest is the result
by Donoho et al [40]. Let y = Ax + e with e ∼ N (0, σ2I). Consider the
mean-squared error of reconstruction by (P2)

MSE = 1
N
‖x̃− x‖2

2

From this we define the noise sensitivity

NS(ρ, δ) = inf
α

sup
σ>0

sup
G

MSE(ρ, δ, α, σ,G)
σ2

where α is the tuning parameter of the recovery algorithm, σ2 is the noise
variance and G denotes the marginal distribution of x. This can be restated
as choosing the least favorable distribution and noise level while tuning the
algorithm optimally considering these choices; this is doing the best out of the
absolutely worst. By choosing this error measure we ensure that any other
choice of underlying probability distribution or noise variance will only lead
to a more favorable result. See figure 2.7 for contour plots of NS. If the
noise sensitivity is large, then the measurement noise may severely degrade the
reconstruction.

2.7 Detection Theory

Here we will consider classical detection theory and compare with compressive
detection theory.
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Figure 2.7: Contour lines of the Noise Sensitivity in the (δ, ρ) plane. The
black line is the Donoho-Tanner phase transition and corresponds with a noise
sensitivity of infinity.

2.7.1 Classical Detection Theory

We wish to differentiate between the two hypotheses

H0 : y = n
H1 : y = s + n

where s ∈ RN is a known signal and n ∼ N (0, σ2I) is the noise. We are mainly
interested in the false alarm rate and the detection rate probability measures

PF = Pr(H1 givenH0 is true)
PD = Pr(H1 givenH1 is true)

It is often desired to control the probability of false alarm rate, PF = α, and
maximize the probability of detection, PD, given this constraint. This is known
as the Neyman-Pearson (NP) detector and the optimal rule can be shown to
be the likelihood ratio test

Λ(y) = f1(y)
f0(y)

H1
>
<
H0

η (2.19)
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where η is chosen such that

PF =
∫

Λ(y)>η

f0(y) dy = α

For our hypotheses the likelihood functions are

f0(y) = (2πσ2)−N2 e−
‖y‖22
2σ2

f1(y) = (2πσ2)−N2 e−
‖y−s‖22

2σ2

As it is easier to work with the logarithm of these functions we take the loga-
rithm of (2.19) to obtain an equivalent test that simplifies to

t = 〈s,y〉
H1
>
<
H0

σ2 log η + 1
2 ‖s‖

2
2 = γ

It can be shown that t is a sufficient statistic for our detection problem and
contains enough information to differentiate between H0 and H1. In the signal
processing literature, t is often referred to as the matched filter. It is easy to
see that t behaves like

t ∼ N (0, σ2 ‖s‖2
2) under H0

t ∼ N (‖s‖2
2 , σ

2 ‖s‖2
2) under H1

and thus

PF = Pr(t > γ|H0) = Q

(
γ

σ ‖s‖2

)

PD = Pr(t > γ|H1) = Q

(
γ − ‖s‖2

2
σ ‖s‖2

)

where 1−Q(z) is the cumulative probability distribution of the standard normal
distribution

Q(z) = (2π)− 1
2

∫ ∞
z

e−
u2
2 du

Returning to the constraint PF = α and solving for γ yields

γ = σ ‖s‖2Q
−1(α)

and the probability of detection is readily found to equal

PD(α) = Q
(
Q−1(α)−

√
SNR

)
where we have defined SNR = ‖s‖22

σ2 .
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2.7.2 Compressive Detection Theory

The classical detection scheme can be extended to handle compressive measure-
ments [41, 42, 43, 44, 45]. In this case the hypotheses are

H0 : y = Φn
H1 : y = Φ(s + n)

where Φ ∈ RM×N is a known measurement matrix. The likelihood functions
take upon the form

f0(y) = e−
1
2 yT(σ2ΦΦT)−1

y

|σ2ΦΦT| 12 · (2π)M2

f1(y) = e−
1
2 (y−Φs)T(σ2ΦΦT)−1

(y−Φs)

|σ2ΦΦT| 12 · (2π)M2

and taking the logarithm of the likelihood ratio tests then gives

t = yT(ΦΦT)−1Φs
H1
>
<
H0

σ2 log η + 1
2sTΦT(ΦΦT)−1Φs = γ

From this we easily deduce the behavior of t

t ∼ N
(
0, σ2sTΦT(ΦΦT)−1Φs

)
under H0

t ∼ N
(
sTΦT(ΦΦT)−1Φs, σ2sTΦT(ΦΦT)−1Φs

)
under H1

and thus

PF = Pr(t > γ|H0) = Q

 γ

σ
√

sTΦT (ΦΦT)−1 Φs



PD = Pr(t > γ|H1) = Q

γ − sTΦT
(
ΦΦT

)−1
Φs

σ
√

sTΦT (ΦΦT)−1 Φs


Controlling the probability of failure by setting PF = α allows us to solve for γ

γ = σ
√

sTΦT (ΦΦT)−1 ΦsQ−1(α)

and the probability of detection is readily found to equal

PD(α) = Q

Q−1(α)−

√
sTΦT (ΦΦT)−1 Φs

σ


23



Figure 2.8: Probability of detection PD as a function of downsampling ratio
δ. The false alarm probability has been set to α = 0.001. Classical detection
theory occurs at δ = 1.

These expressions can be reduced in the case of Φ being an orthonormal mea-
surement basis. Inserting ΦΦT = IM allows us to write

t = 〈Φs,y〉

for the sufficient statistic and

PD(α) = Q

(
Q−1(α)− ‖Φs‖2

σ

)

for the detection probability. Assuming Φ is drawn on random, then with high
probability

PD(α) = Q
(
Q−1(α)−

√
M/N

√
SNR

)
as compared with the classical detector. The reduction in detection perfor-
mance scales directly with the number of samples taken as noted in section
2.6. See figure 2.8 for comparison between compressive detector and classical
detector. For sufficiently high signal-to-noise ratio the compressive detector is
seen to be essentially equal to the classical detector in performance even for a
significant downsampling ratio.
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2.7.3 Compressive Estimation

While the theory on detection is all sound, the test t
H1
>
<
H0

γ requires knowledge
of the signal level in advance and must be estimated from the data itself.

Specifically, suppose we observe the data y = Φs and we wish to simultaneously
estimate a set S of linear functions 〈si, s〉 from the measurements y. Assuming
Φ is orthonormal, a natural estimator from the preceding section would be

N

M
〈y,Φsi〉, i = 1, 2, . . . , |S|

Provided Φ is random and sufficiently well behaved, then Davenport et al [41]
provides the following bound on estimation error with probability at least 1− r∣∣∣∣NM 〈Φs,Φsi〉 − 〈s, si〉

∣∣∣∣ ≤ κr
‖s‖2 ‖si‖2√

M

where κr = 2
√

12 log
(

4|S|+2
r

)
. The bound is seen to grow only sub-linearly with

the set size |S|, however it decays rather slowly as a function of M .

2.8 Direction of Arrival Estimation

Direction of arrival (DOA) estimation is an important aspect in sonar process-
ing. The number of sources is ultimately sparse in the bearing space and the
framework of Compressive Sensing can be applied. The literature describes
two models for estimating direction of arrival: the widely common narrowband
model [46, 47, 48, 49] and a more general model by Gürbüz, McClellan and
Cevher [50]. The subsequent chapters will detail both models.

2.8.1 The Narrowband Model

Assume a narrowband source emits a signal of the following form

x(t) = v(t)eiωt

namely a plane wave with angular frequency ω modulated by a signal v(t) whose
bandwidth is small compared to ω such that the narrowband approximation
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holds. Allowing the source to be located sufficiently distanced away from the
observer ensures the validity of the plane wave model. The observer consists of
L sensors in an array capable of measuring the attenuated and delayed signal.
For simplicity we restrict ourselves to two dimensions such that the angle θ ∈
[−π, π) is sufficient to denote the arrival of the plane wave. The geometry of
the array is of little importance; common models are the uniform linear array,
the cylindrical array and random positioning. To obtain meaningful results we
must assume the design frequency of the array equals or exceeds the plane wave
frequency ω or grating lobes can be induced and give rise to incorrect estimates.

Neglect the attenuation factor7 and consider only the relative time-differences
between sensors as the signal arrives onto the array. The l-th sensor measures
the signal

yl(t) = x(t− τl)
= v(t− τl)eiω(t−τl)

≈ v(t)eiωt · e−iωτl

= x(t)e−iωτl

and τl is the time-difference for the signal to reach sensor l compared with a
reference point in space and depends on the incident angle of arrival. A time-
delay is seen to correspond to a phase shift. Collecting these phase delays gives
rise to the array response vector8

a(θ) = [e−iωτ1 , . . . , e−iωτL ]T

Adding noise e(t) to the equation the system model takes the following form
for a single plane wave incident onto the array

y(t) = a(θ)x(t) + e(t)

This model can easily be extended to multiple sources impinging from different
directions. Assume the number of sources to equal K and collect the array
response vectors into the following fashion

A = [aT
1 , . . . , aT

K ]T

and the source signals into the following vector

x(t) = [x1(t), . . . , xK(t)]T

7The attenuation factor is taken to be equal for all sensors in the array. This approximation
is valid when the distance to the source is much greater than the spatial extent of the array.

8Another popular name is the steering vector as it “steers” the array to look in the direction
of θ.
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then the model changes accordingly as we incorporate multiple sources

y(t) = Ax(t) + e(t) (2.20)

By no coincidence is the notation quite similar to the one used previously in
this thesis. To employ the Compressive Sensing framework we need to know all
the entries of A and the vector x must be sparse. This is not the case as the
source directions are unknown. To overcome these issues the bearing space is
discretized into N >> K entries and the vector x corresponds to these discrete
bearings. Most of the entries in x will be zero as the number of directions where
a source exists are few. By discretizing the bearing space we are now able to
populate the matrix A accordingly with one column vector for each discretized
bearing in x. As a result, the problem is now in a familiar form and can be
solved by (P2) to determine the non-zero bearing locations.

A note or two is worth mentioning about the method just described. Unlike
the emphasis on random vectors throughout this paper, this method uses a pair
of Fourier9 and spike bases, which exhibits maximum incoherence as briefly
mentioned earlier [1]. As (2.20) stands, only a single (complex) sample from
each sensor is needed to obtain the DOA estimate. Extension to broadband
sources can be easily made by solving for each frequency independently and then
combining the results. This approach can be used in compressive beamforming
[51], see figure 2.9.

2.8.2 The Gürbüz-McClellan-Cevher Model

This model works with any signal, not necessarily restricted to narrowband
signals. For the method to work a reference signal must be known in advance.
This will be the case for active sonars where the emitted ping will serve as
the reference signal. For passive applications one sensor can be used as a
reference sensor to obtain the reference signal. With a single source impinging
onto the sensors the reference signal will be readily available, but in the event
of multiple sources Gürbüz, McClellan and Cevher showed that this situation
could be modeled as noise on the reference signal from the other sources.

Again the bearing space is discretized into N directions and the entries of x will
correspond with the discrete bearings. Consider a collection of T time samples
from the l-th sensor

sl = [sl(t0), . . . , sl(tT−1)]T

9Take care to note that the representation basis will in general be overcomplete, complex
and consist of the array response vectors.
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(a) Conventional Beamformer

(b) Compressive Beamformer

Figure 2.9: Conventional beamforming compared with compressive beamform-
ing in a linear, unscaled plot. An uniform linear array of 40 elements was used.
Three broadband targets of opportunity at 60◦, 70◦ and 108◦. In addition a
fourth, previously unknown target actively pings with HFM followed by CW
at 150◦. The compressive beamformer clearly produces narrower tracks, with
the HFM slightly spread out.
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The vector x can then be related to the signal sl from the l-th sensor as follows

sl = Ψlx

where the n-th column of the representation basis for the l-th sensor consists
of time shifts of the reference signal s(t) corresponding with the discretized
bearings

[Ψl]n = [s(t0 + τl,n), . . . , s(tT−1 + τl,n)]T

From each sensor Ml noisy compressive samples are taken with a random mea-
surement basis Φl as previously described

yl = ΦlΨlx + el
where el denotes the noise in the compressive measurements. Finally data from
each sensor is stacked

y = [yT
1 , . . . ,yT

L]T, y ∈ RLMl×1

e = [eT
1 , . . . , eT

L]T, e ∈ RLMl×1

Φ =


Φ1 0

. . .
0 ΦL

 , Φ ∈ RLMl×LT

Ψ =
[
ΨT

1 , . . . ,ΨT
L

]T
, Ψ ∈ RLT×N

and setting A = ΦΨ we arrive at the familiar form y = Ax + e.

The advantage of this method is the clear reduction in data rate. In passive
applications one sensor is still required to be sampled at the Nyquist frequency
to obtain the reference signal while all the other sensors can be sub-sampled.
Compare this with the narrowband model where all sensors must be sampled at
the Nyquist frequency for a faithful recovery of broadband signals. The intrin-
sic disadvantages of the Gürbüz-McClellan-Cevher method is the modeling of
other sources as noise and the rather large system which must be solved. The
inability of obtaining beam data directly may be another obstacle for certain
applications.

3 Detection and Localization of Interception
Signals

In this chapter we will outline the general strategy to detect and localize high-
frequency interception signals using the theory from the preceding sections.
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Two scenarios will be considered as briefly noted in the introduction section:

• Passive sonar detecting a ping from a hostile pinger.

• Active sonar detecting return echoes.

These two scenarios are very similar with two subtle differences. In the first
scenario, we do not know the waveform in advance and we are mainly interested
in direct path of propagation; all other echoes are of no interest to us (however
multiple echoes can enable estimation of range to the pinger or be used for
bi-static detection). The second scenario has the advantage of knowing the
transmitted waveform, but the number of returned echoes can be significant,
although still assumed to be sparse in time and bearing. In general the array
configurations and properties (such as sampling frequency) would be different
for each scenario, but for practical reasons and comparability we use the same
aperture for both scenarios.

The actual interception array will in both scenarios be modeled as circular
in the plane of interest and with a reference sensor in the middle. To avoid
ambiguities in direction-of-arrival estimation at least three sensors in addition
to the reference sensor is needed. We fix the number of sensors to equal 8 in the
simulations, and will investigate the number of compressive samples required.
We might as well utilize the concept of Compressive Sensing completely and
sub-sample the reference sensor as well. Empirical testing indicates compressive
beamforming achieves a better resolution while being robust when the design
frequency is exceeded, encouraging to distance the sensors further apart than
conventional use would dictate. Examples of this claim will be presented in the
simulations section.

The general strategy for both scenarios is as follows:

• A basis of interception signals must be constructed.

• A detection must be made.

• An estimate of the signal origin must be found.

The general procedure will be to apply compressive detection combined with
estimation and then use Gürbüz-McClellan-Cevher (GMC) method to estimate
the direction of arrival. For the GMC method to work, the waveform parameters
must be known. Subsequent sections will discuss the required steps in detail.
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3.1 Constructing the Basis

The challenge with passive sonar is foremost to detect and estimate the wave-
form. This also applies to a certain degree for active sonar, albeit we possess
clues about the waveform and the required basis size can be made significantly
smaller. The reference sensor is proposed to be sub-sampled as this will reduce
the computational burden if the set of interception signals is large.

Constructing a basis of the interception signals is a daunting task as the pa-
rameter space is multidimensional and infinite. The parameters that need to
be estimated are

• Amplitude

• Phase factor

• Start frequency

• Band width

• Pulse duration

• Pulse type

The following strategies are proposed to reduce the parameter set as much as
possible. To start with, a valid assumption will be to assume the pulse duration
greatly exceeds whatever processing block length is in use. This ensure we are
not troubled with the additional issue of estimating the onset of the pulse and
we can expect better correlation between the measured waveform and our basis
of interception signals.

Furthermore, employing a basis of complex signatures will capture both quadra-
ture components of the waveform. Following the section on compressive esti-
mation this will provide an estimate on both the amplitude and phase factor.
This estimate will then be used to aid the detection procedure by providing
both an estimate of the signal strength and noise level (which we consider to
be everything not explained by the estimated waveform) so that the test t

H1
>
<
H0

γ

can be done, see section 3.3 for detailed description.

Unfortunately, the other parameters cannot be estimated in a similar fashion. A
multitude of strategies exists however, only limited by imagination. These range
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from brute force approaches using a sufficiently dense basis of waveforms at
various parameters to more elaborate divide-and-conquer approaches involving
estimating one parameter and then use a second basis centered around this
parameter. No matter which strategy we choose to pursue, the basis must
be sufficiently dense to capture all possible waveforms, or the set of the most
likely ones. This raises an important question: how dense should the basis
be sampled? There is a clear trade-off between using longer block lengths for
enhanced detection versus short blocks where the uncertainty principle ensures
few basis vectors are needed. To answer this question we will first investigate
the instantaneous frequency for HFM and its approximation LFM, described
by two parameters f and k.

f(t) = f

1− kt ≈ f + fkt, 0 ≤ t ≤ T

Depending on the value of k this either increases, stays constant or decreases
in frequency. The initial frequency is limited by 0 < f < fs

2 where fs is the
sampling frequency. From this we can work out the bounds on k. This results
in the following bounds

−∞ < k <
fs − 2f
Tfs

(HFM)

− 1
T
< k <

fs − 2f
2fT (LFM)

Note that both HFM and LFM are unbounded. HFM is unbounded from below
when the final frequency f1 → 0 and LFM is unbounded from above when the
initial frequency f → 0. The divergence in k is only superficial; it is the choice
of initial and final frequencies that has an impact as the phase is continuous and
bounded despite the divergences in k. Yet we cannot ignore the divergence as it
affects the sampling density. Restricting the ratio f

f1
will provide finite bounds.

A particular choice is 1
2 <

f
f1
< 2, which we will use throughout the thesis. This

seemingly restrictive choice is justified by the assumption of pulse length greatly
exceeding the block length. The consequence of this assumption is exponential
coverage as the pulse length increases, ensuring almost every possible pulse will
in turn be detected. The bounds then take upon the following forms

− 1
T
< k < min

{
1

2T ,
fs − 2f
Tfs

}
(HFM)

− 1
2T < k <

1
T

(LFM)

This should cover most waveforms encountered. We then return to the question
about sampling the (f, k) space. The density hinges critically on the block
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length used and we are interested in this relation. As a first approximation
we treat the two parameters f and k independently. We can then obtain an
estimate of the required density in f -space by setting k = 0 and correlating
two LFM waveforms spaced ∆f apart in frequency. This gives rise to the
well-known sinc function.

α = 1
N

∣∣∣∣∣
N−1∑
n=0

e2πi∆f
fs
n

∣∣∣∣∣ =

∣∣∣∣∣∣
sin πN

2
∆f
fs

N sin π
2

∆f
fs

∣∣∣∣∣∣
where we have used that the assumption that the pulse duration exceeds the
block length, allowing us to insert T = N

fs
where N is the block length. Using

the approximation sin x ≈ x− 1
3x

3 then yields for values of α close to unity

∆f
fs
≈

2
√

3(1− α)
πN

The parameter α controls the minimum value of correlation between two wave-
forms and thus the loss in SNR due to misalignment in frequency between the
two waveforms. Allowing a loss of maximum 3 dB is a common choice (anal-
ysis of how well a random vector correlates with the basis will be presented
later) and corresponds to α = 1√

2 . For this particular choice of α we obtain the
approximation

∆f
fs
≈ 1

2N
Thus, we must sample at twice this spacing, resulting in a spacing of ∆f ≈ fs

N
in

f -space, a well-known result from Fourier analysis. The corresponding analysis
for k-space using LFM is slightly more complex.

α = 1
N

∣∣∣∣∣
N−1∑
n=0

e
2πi f2 ∆k n

2
f2
s

∣∣∣∣∣
There is no known closed form of this summation. By controlling the phase
such that it does not exceed the corresponding linear phase in the previous
case, we can assume the sums to be approximately equal

f

2 ∆kN
2

f 2
s

≈ ∆f
fs
N

Inserting ∆f = fs
2N then results in

∆kLFM ≈ f 2
s

fN2
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Thus, we must sample at twice this spacing. By noting that k is bound by a
limit that depends on N−1, this means on the order of N grid points in k-space
is sufficient to capture all LFM waveforms. A similar analysis can be done for
the HFM. Again we employ the assumption of matching phases

−f log


(
1− (k − ∆k

2 )N
fs

) 1
k−∆k/2

(
1− (k + ∆k

2 )N
fs

) 1
k+∆k/2

 ≈ ±∆f
fs
N (3.1)

For k → 0 we expect the result to coincide with LFM. For k 6= 0 we apply a
linear approximation

∆kHFM = ∆kLFM + ∂∆kHFM
∂k

∣∣∣∣∣
k=0

k

Differentiating (3.1) with respect to k and setting k = 0 results in the exact
expression

∂∆kHFM
∂k

∣∣∣∣∣
k=0

=
2 (1− η2) log

(
1+η
1−η

)
− 4η

(1− η2) log (1− η2) + 2η2

where we have set η = ∆kLFMN
2fs . This expression can be greatly simplified by

using the approximations log(1 + x) ≈ x and log
(

1+x
1−x

)
≈ 2x + 2

3x
3. Keeping

the terms to leading order in η then results in the final expression

∆kHFM ≈ ∆kLFM − 8
3

∆kLFMN
2fs

k

We note the value of k for which ∆kHFM(k) = 0 is k = 3
4T > 1

2T , thus the
step size will always be positive and non-zero on the defined interval. The
approximations used above perform well as shown in figure 3.1. The correlation
is seen to be generally slightly less than 1√

2 , however not by a large amount.
Thus, aboutN grid points in k-space is sufficient to capture all HFM waveforms,
albeit non-uniform sampling should be utilized. Denote k0 for the starting
point, then to cover the k-space neatly the next sample point k1 > k0 is related
to k0 by k1 = k0 + ∆kHFM(k0) + ∆kHFM(k1). Solving for k1 results in

k1 = k0 + ∆kHFM(k0) + ∆kLFM
1−∆kHFM(1) + ∆kLFM

The opposite rule k1 < k0 is easily found to equal

k1 = k0 −∆kHFM(k0)−∆kLFM
1 + ∆kHFM(1)−∆kLFM
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(a) Phase matching and resulting ∆k

(b) Correlation using ∆k

Figure 3.1: Plot (a) shows the resulting ∆k from phase matching, while (b)
shows the amount of correlation using the specified ∆k. The term linear refers
to the linear approximation. The parameters used to create these plots are
N = 1024, f = fs/4 and fs = 200 kHz.
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These formulas are prone to numerical instabilities however and care must be
taken when dealing with small frequencies. To avoid this we suggest to start
sampling at the largest possible value of k and work backwards. This will just
slightly oversample the k-space, but not by a large amount.

To summarize; capturing most waveforms requires on the order of N points
in f -space combined with N points in k-space, for a total of N2 points. As
the basis size is seen to grow quite rapidly, we might be forced to work with
short block lengths. One issue that would be of interest is how well LFM and
HFM correlates. This has direct impact on the estimation of pulse type and
may reduce the basis size if these two waveforms correlate well. A proposed
preliminary method is to remove highly correlated entries from the precomputed
basis. Some simulations will be presented, but we leave the theory open for
future research.

3.2 Random Vector Correlation

In section 3.1 we accepted a loss of maximum 3 dB for a waveform correlated
with a basis of the same type. This loss should be compared with how well a
random vector correlates with the basis, and in particular, ensure any correla-
tion with a waveform exceeds random correlations by a significant amount. It
should be obvious that increasing the block length should reduce the correla-
tion with random vectors. On the other hand, increasing the number of basis
vectors will tend to increase the maximum correlation factor as there are more
possibilities. Realizing that this is a complex issue, we take on a probabilistic
view and investigate this behavior.

To ease the analysis we assume the basis to be real and contain B vectors. Let
the random vector be normal distributed N (0, 1

N
) where N is the processing

block length. By construction, the random vector will on average have unit
norm and can be compared with results from section 3.1 and simulations. The
correlation coefficient between this random vector and the b-th basis vector
will also be normal distributed Cb ∼ N (0, 1

N
), b ∈ {1, . . . , B} since the basis is

normalized. The detection procedure chooses the largest correlation value in
magnitude, Y , and we are interested in finding the distribution of this value
from the independent correlation factors

Y = max{|C1|, |C2|, . . . , |CB|}

It is trivial to see that the random variable |Cb| is distributed with a one-sided
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normal distribution and has the probability distribution function

f|C|(c) =


√

2N
π
e−c

2N
2 c ≥ 0

0 c < 0

The cumulative probability distribution follows immediately by integration and
is seen to be related to the error function

F|C|(c) =

erf(
√

N
2 c) c ≥ 0

0 c < 0

The cumulative probability distribution of the maximum of correlation values
is trivial to obtain. In fact,

FY (y;B) = P ((C1 ≤ y) ∩ (C2 ≤ y) ∩ . . . ∩ (CB ≤ y)) = F|C|(y)B

The probability distribution of Y is thus seen to be well concentrated and
the variance is correspondingly small, see figure 3.2. In fact, as N → ∞ the
limiting probability distribution is a Dirac delta function, and we can use the
expectation value as a measure for comparison. Since the random variable Y
has a non-negative support we can determine the expectation value from

E{Y } =
∫ ∞

0
1− FY (y;B) dy

The expected correlation magnitude is seen to depend on the block length and
basis size as elaborated earlier, see figure 3.3. Values for the expected maximum
correlation magnitude will be tabulated in the simulations section together with
block lengths and the corresponding basis sizes.

3.3 Handling Detections

Here we combine the theory of compressive detection and estimation to handle
detections of interception signals. Estimates of the test statistic and γ must
be found to decide whether the interception signal is detected or not. We will
assume a properly normalized complex basis of interception signatures is used
for the treatment to follow. Note that the norm of the real and imaginary parts
of the basis vectors separately are in general not equal, although we will assume
this is the case.

Let {si}, si ∈ CN denote the basis of interception signals whose vectors are
constructed from the complex exponential. Assume the signal received on the
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(a) N=128

(b) N=256

Figure 3.2: The probability distribution function (pdf) of the maximum cor-
relation magnitude as a function of block length N and basis size B. In (a)
N = 128 and in (b) N = 256.
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Figure 3.3: Contour plot showing the expected random vector correlation mag-
nitude. Note that both axes are logarithmic.

reference sensor consists of the i-th basis vector with a complex amplitude βi
hidden in Gaussian noise.

y = Φ (<{βisi}+ n) , n ∼ N (0, σ2I)

where < denotes the real part and Φ ∈ RM×N is an orthonormal measurement
basis whose entries are normal distributed φij ∼ N (0, 1

N
). We compute the

inner product between the compressive measurements and the basis vector

t̃ = 〈y,Φsi〉

This may resemble the test statistic, but this is not the case as si is com-
plex and the amplitude is unknown. Our goal is to provide estimates of the
noise variance, σ̂2, and the complex amplitude, β̂i, from t̃, and then ultimately
find estimates of the test statistic t̂ and level γ̂ so that the test t̂

H1
>
<
H0

γ̂ can be
performed.

The estimate of βi follows directly from the chapter on compressive estimation

β̂i = 2N
M
〈y,Φsi〉 = 2N

M
t̃

where the factor of two is entirely due to only the real part being represented
in y. Let ys denote y in the noise-less case. An estimate of ys then follows
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readily as
ŷs = <{β̂iΦsi}

and after some manipulations we obtain an estimator for the signal norm

∥∥∥ŷs∥∥∥2

2
= 1

2<
{

(β̂H
i )2∑

m

(Φsi)2
m + |β̂i|2

∑
m

|Φsi|2m

}

Although seemingly complex, this form has the advantage of not requiring any
sums to be computed during runtime as both sums can be precomputed and
stored in advance. The estimate of the test statistic t follows once ŷs is known

t̂ = 〈y, ŷs〉
= β̂H

i t̃

where we used the definition of ŷs and β̂i to arrive at the final form.

Assuming the residual y − ŷs then represents the noise, a biased estimate of
the noise variance is found by

σ̂2 = 1
M

∑
m

(ym − ŷsm)2

as we can safely assume y and ys both have a mean of zero. If the set of
basis vectors is large, this can become a rather computational intensive task.
Expanding the square allows us to write after some manipulations

σ̂2 = 1
M

∑
m

y2
m + 1

M

∥∥∥ŷs∥∥∥2

2
− 2
M
t̂

and the number of operations needed is dramatically reduced. Knowing σ̂ and∥∥∥ŷs∥∥∥
2

readily gives us an estimate for γ

γ̂ = σ̂
∥∥∥ŷs∥∥∥

2
Q−1(α)

and finally the test t̂
H1
>
<
H0

γ̂ can be performed.

As a final note, only the compressive measurements of the basis is required to
be stored, providing a small bonus to memory consumption.
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3.4 Estimating Direction-of-Arrival

Once we have obtained a detection and the corresponding waveform we think
resembles the actual data well enough, the next step is to estimate the direction
of arrival by using the GMC method. The system matrix in GMC method
can be poorly conditioned. To improve general reconstruction performance we
propose to factorize the system matrix A using the singular value decomposition
in the following way

A = U · S · V T

By keeping the r largest eigenvalues we do not only improve the condition
number, but also the reconstruction time as the system matrix is smaller. The
new system then takes the form

Ã = UT
r UrSrV

T

ỹ = UT
r y

and we proceed with GMC as usual.

The choice of reconstruction algorithm should reflect the desired combination of
computational effort, the number of compressive samples and sensors required
and the number of source directions in case of echoes. Greedy algorithms excels
in the case of passive sonar as we are then mainly interested in the direct path
of propagation, which also carries most energy and will be picked by the first
step of the algorithm. Greedy algorithms pursues another heuristics than `1
minimization and the phase transition will be correspondingly different. They
are also simpler in nature and can be terminated rather quickly. The general
procedure of a greedy algorithm is to minimize the residual by selecting vectors
that contributes the most, from which they derive their name. In the case
of active sonar, we propose an AMP-based based algorithm, although greedy
algorithms can still be used.

3.5 Scenario Challenges

Each scenario has its challenges. Here we list the challenges and the proposed
solutions.
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3.5.1 Scenario 1: Passive Sonar

As noted earlier, passive sonar is mainly faced with the challenge of detecting
and estimating the waveform. Having no clues on the waveform (except it
can be CW, LFM or HFM) provides no reduction in the basis of interception
signals. Requiring the basis to be sufficiently dense indicates of the order of
N2 vectors from sampling the (f, k)-space. As the processing block length, N
increases, memory consumption and computational effort grows as N3 in the
detection step. Already at N = 1024 will most computers have exhausted all
their memory. The computational limit is much more severe however. The
number of blocks per second is fs

N
, and assuming N3 operations per block this

results in fsN
2 operations per second. Simple mathematics reveals N ∼ 128

marks the limit for a single core when we assume a sampling frequency of
200 kHz. Due to these considerations we proposed to subsample the reference
sensor to reduce both memory usage and computational effort. Using a greedy
algorithm instead of a fully fledged `1 minimization algorithm to obtain a DOA
estimate should also improve the situation as the algorithm can be terminated
almost immediately.

3.5.2 Scenario 2: Active Sonar

Even though the waveform is known, the assumption that the pulse greatly
exceeds the block length used indicates a basis constructed from subdividing
the waveform is still required. Only a single entry should be sufficient in the
case of CW pulse, but to detect anything useful like a Doppler shift, a multitude
of CW waveforms closely spaced around the transmitted frequency is needed.
The basis for active sonar can and will be significantly smaller than what was
the case for passive sonar.

We then perform compressed detection and all detections will be pursued since
we are interested in multiple echoes. The detection step essentially works to
filter out the possible basis vectors as the next step can be computational in-
tensive. Estimating the phase of the detected basis vectors would certainly
be advantageous, but in this case we cannot due to the possibility of multiple
echoes of the same basis vector arriving simultaneously with different phases.
To work around this issue we propose to use the complex basis vector directly in
the GMC method. This should allow us to detect the same waveform, but with
different phase and amplitude from multiple directions simultaneously. Output
of the beamformer can be used to estimate the signal strength if needed. As
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elaborated in section 2.6 on the topic of noise folding, adding noise directly
into the system matrix resulted in an amplification of the noise inversely pro-
portional to the downsampling factor. This could have severe effect on the
direction-of-arrival estimation performance.

As a signal could imping on the array from multiple locations simultaneously,
the reconstruction algorithm is required to fully complete, which can require a
significant computational effort.

4 Simulations

An overview over simulations is presented in table 1. Unless specified otherwise,
the default set of parameters for all simulations are

• Speed of sound is set to c = 1500 m/s.

• Sampling frequency is fs = 200 kHz.

• Cylindrical array with 8 sensors and a reference sensor in the middle.

• Array spacing will be 8 times the conventional spacing.

• Processing block length is 256 samples.

• Reference sensor is downsampled by a factor of 4.

• Ten compressive samples per block length from every other sensor.

• Measurement bases are drawn on random to ensure good RIP constants.

• Probability of false alarm is set to α = 0.001.

• GMC is solved using a greedy algorithm known as Orthogonal Matching
Pursuit (OMP).

• In SVD precondition step, all eigenvalues smaller than a hundredth of the
largest eigenvalue are discarded.

• Noise will not be added.

• Any noise added is normal distributed and uncorrelated.

• Bearing grid is uniform with a resolution of 1o.
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Simulation description Section
Reconstruction probability for `1, OMP and AMP based algo-
rithms.

section 4.1

Counting the number of basis vectors of a dense basis. section 4.2
Correlating random vector with basis. section 4.2
Basis coverage in (f, k)-space for LFM and HFM. section 4.3.1
Basis coverage in (f, f1)-space for LFM and HFM. section 4.3.2
Basis correlation between LFM and HFM. section 4.3.3
Probability of detection using detecting procedure. section 4.4.1
Classification performance using detector procedure. section 4.4.2
DOA accuracy improvement and robustness when exceeding the
design frequency.

section 4.5.1

Accuracy of passive DOA estimation under noise and downsam-
pling.

section 4.5.2

Accuracy of complex DOA estimation under noise and down-
sampling.

section 4.5.3

Examples of passive sonar usage. section 4.6
Examples of active sonar usage. section 4.7
Active and passive sonar usage with real data. section 4.8

Table 1: Table of simulations done.

• Only one target will be assumed.
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4.1 Phase Transition Simulations

There has been a lot of talk of reconstruction algorithms and the correspond-
ing phase transitions. We will obtain reconstruction probability for three al-
gorithms using Monte Carlo simulations and compare these with theoretical
phase transitions. These algorithms are LASSO (`1-minimization), Orthogonal
Matching Pursuit (OMP, greedy algorithm) and EMBP (an AMP based solver
[30]). The following steps were taken

1. Choose δ and ρ on random.

2. Construct orthonormal system matrix with random entries.

3. Reconstruction using the three algorithms.

4. Define success as relative reconstruction error less than 0.001.

5. Go to step 1 and repeat until sufficiently many trials are concluded.

On average 650 trials were obtained per data point. The theoretical phase tran-
sition for reconstruction by LASSO (P1) is seen to coincide well with simulated
data as shown in figure 4.1. As the theoretical phase transition was derived
assuming infinitely large system, this indicates N = 256 is already considered
to be be large enough in such sense. Comparing reconstruction probability for
OMP in figure 4.2 with LASSO indicates OMP performs better for low δ’s.
The theoretical phase transition for EMBP is seen to be slightly higher than
what simulated data indicates in figure 4.3. One possible reason for this is the
termination of the solver after maximum 1000 steps. EMBP is nonetheless seen
to outperform both L1 and OMP.
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Figure 4.1: Reconstruction probability for reconstruction by `1 minimization
compared with theoretical phase transition.

Figure 4.2: Reconstruction probability for reconstruction by OMP. Theoretical
phase transition is unavailable.
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Figure 4.3: Reconstruction probability for reconstruction by EMBP compared
with theoretical phase transition.
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Block length LFM HFM
32 71 86
64 269 308
128 1052 1160
256 4149 4496
512 16485 17694
1024 65729 70185
2048 262534 279566
4096 1049362 1115908

Table 2: Number of basis vectors as function of block length and waveform.

Block length LFM HFM
32 0.465 0.477
64 0.382 0.387
128 0.305 0.307
256 0.238 0.239
512 0.182 0.183
1024 0.139 0.139
2048 0.105 0.105
4096 0.079 0.079

Table 3: Expected maximum correlation magnitude between random vector
and the basis as a function of block length and waveform.

4.2 Random Vector Correlation Values

The number of basis vectors as function of block length and waveform for the
passive case is tabulated in table 2. As seen, the number of basis vectors grows
rapidly with increasing block length.

The tabulated values of the expected maximum correlation magnitude between
a random vector and a given basis are given in table 3. The correlation value
is seen to decrease with increasing block length, but since the basis size also
grows with increasing block length, the decay is not as rapid as one could
expect. Improved noise rejection capability follows with decreasing correlation
value.
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4.3 Basis Coverage

Passive detection of unknown interception signals require the basis to be suffi-
ciently dense. The following three simulations ensures this is the case.

4.3.1 Coverage in (f, k)-space

We start by investigating the density in (f, k)-space. The steps taken are listed
below as we run Monte Carlo simulations to verify the coverage. Both HFM
and LFM will be considered and the resulting density plotted. Specifically, the
following will be done for both HFM and LFM independently

1. A basis will be created using estimates from section 3.1.

2. Waveform with random parameters in (f, k)-space will be correlated with
basis vectors.

3. The largest correlation coefficient will be recorded.

4. Go to step 2 and repeat until (f, k)-space is sufficiently covered.

If successful, this simulation aims to verify that treating f and k separately
and using phase-matching are valid approximations. An important underlying
assumption is that the pulse duration equals the block length used. Note that
any combination of (f, k) values resulting in a final frequency outside [0, fs2 ] will
be removed from the construction of the basis.

Simulations results of coverage in (f, k)-space for LFM and HFM waveforms
are shown in figure 4.4 and figure 4.5 respectively. Blue areas indicates com-
binations of (f, k) pairs that would result in a final frequency exceeding half
the Nyquist frequency and thus is excluded. As indicated from the figures,
the bases are shown to be sufficiently dense in the sense that any waveform
in (f, k)-space is well correlated (typically less than 3 dB loss) with a basis
vector. The high correlation factors indicate treating f and k separately and
using phase-matching were reasonable approximations.

There is a peculiar break of symmetry for HFM at f = 0.25fs. Despite thor-
ough investigation, the origin behind this feature is still unknown. It has been
hypothesized to be caused by aliasing, but no proof of this has been concluded.
This feature will also be presented in subsequent plots, but only when HFM
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is used as a basis, suggesting perhaps an error in the code. Double and triple
checking the code and verifying the basis vectors with FFTs gave no conclusive
answers. In addition, in figure 4.9b this feature take upon a slightly curved
appearance.
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(a) N=128

(b) N=256

Figure 4.4: Coverage of LFM basis in (f, k)-space. The blocklengths used are
N = 128 and N = 256 respectively. Horizontal axis is in units of the sampling
frequency.
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(a) N=128

(b) N=256

Figure 4.5: Coverage of HFM basis in (f, k)-space. The blocklengths used are
N = 128 and N = 256 respectively. Horizontal axis is in units of the sampling
frequency.
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4.3.2 Coverage in (f, f1)-space

We then investigate the density in (f, f1)-space. Recall the restriction 1
2 <

f
f1
< 2. A question then naturally arises: how well does the basis correlate with

waveforms which disobeys this restriction? We attempt to answer this question
with the following procedure

1. A basis will be created using estimates from section 3.1.

2. Waveform with defined start and stop frequencies will be correlated with
basis vectors.

3. The largest correlation coefficient will be recorded.

4. Go to step 2 and repeat until all start and stop frequencies are iterated
over.

Simulation results of coverage in (f, f1)-space for LFM and HFM waveforms are
shown in figure 4.6 and figure 4.7 respectively. As indicated from the figures,
the bases are shown to be sufficiently dense in the sense that any waveform in
(f, f1)-space is well correlated (typically less than 3 dB loss) with a basis vector
when 1

2 < f
f1
< 2 is satisfied. The high correlation factors indicates treating

f and k separately and using phase-matching were reasonable approximations.
Outside the range 1

2 < f
f1

< 2 correlation is seen to be greatly reduced as
anticipated. LFM is seen to correlate about as good as random noise (see table
3) outside this range, while HFM achieves a relatively high correlation and
outperforms random noise. Implications are we might be able to detect HFM
waveforms outside the defined range, but LFM waveforms will not.
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(a) N=128

(b) N=256

Figure 4.6: Coverage of LFM basis in (f, f1)-space. The blocklengths used are
N = 128 and N = 256 respectively. Axes are in units of the sampling frequency.
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(a) N=128

(b) N=256

Figure 4.7: Coverage of HFM basis in (f, f1)-space. The blocklengths used are
N = 128 and N = 256 respectively. Axes are in units of the sampling frequency.
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4.3.3 HFM and LFM correlation

Although not covered by any previous theory, we will also investigate how well
HFM and LFM correlates with each other.

1. An LFM basis will be created using estimates from section 3.1.

2. HFM waveform with defined start and stop frequencies will be correlated
with basis vectors.

3. The largest correlation coefficient will be recorded.

4. Go to step 2 and repeat until all start and stop frequencies are iterated
over.

5. Repeat this procedure with an HFM basis correlated with LFM wave-
forms.

We should expect high correlation between LFM and HFM waveforms. In
particular, these waveforms coincide when k = 0 as they both reduce to CW.
Deviations should thus appear as the initial and final frequency differ by a
significant amount. As the bases are different, we should expect some variations
depending on the basis used.

Simulation results of the LFM basis correlated with HFM waveforms is shown
in figure 4.8. The corresponding plot for an HFM basis correlated with LFM
waveforms is shown in figure 4.9. We expected LFM and HFM to correlate
well when k = 0 and this is seen to be indeed the case as the largest deviations
appear at the edges of the cone. Reduction in coverage is seen to increase as
the block length increases. This is expected as longer correlation lengths will
more efficiently filter out non-matching vectors. The effect of reduction near
the edges is equivalent with tightening the bound on f

f1
. For sufficiently small

block lengths we see only one basis is sufficient to capture both waveforms.
Classification of pulse type can then be done by temporal means, e.g. tracking
detections in a time-frequency plot.

Even outside the defined frequency range, HFM waveforms are seen to correlate
notably better with an LFM basis than what random noise does (see table 3).
The same cannot be stated for LFM waveforms correlated with an HFM basis
where the gain is only marginally better.
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(a) N=128

(b) N=256

Figure 4.8: Correlation between an LFM basis and HFM waveforms in (f, f1)
space. The blocklengths used are N = 128 and N = 256 respectively. Axes are
in units of the sampling frequency.
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(a) N=128

(b) N=256

Figure 4.9: Correlation between an HFM basis and LFM waveforms in (f, f1)
space. The blocklengths used are N = 128 and N = 256 respectively. Axes are
in units of the sampling frequency.
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4.4 Detector Simulations

The theory on compressive detection assumes the signal- and noise levels are
known in advance. Here we investigate the detector performance by using esti-
mates from section 3.3. The system performance hinges on the very important
downsampling factor, yet not a word of it has been mentioned so far. This is
about to change as we measure detector performance while tuning this param-
eter.

4.4.1 Probability of Detection

We begin by investigating the behaviour of probability of detection while the
downsampling factor and noise levels are varied. The basis will consist of a
single predefined waveform, and the signal is a combination of this waveform
with additive Gaussian noise. Specifically, the following steps will take place

1. Construct the basis from one CW waveform.

2. Construct signal from the basis vector and additive Gaussian noise.

3. Create a random orthonormal measurement basis.

4. Obtain compressive measurements of basis and noisy signal.

5. Detection procedure as described in section 3.3.

6. Record if detection is successful or not.

7. Go to step 2 and repeat until sufficiently many trials are concluded.

Simulation results of the probability of detection as a function of SNR and
downsampling ratio is shown in figure 4.10. Simulated results are compared
with theoretical values from section 2.7.2. There is a relatively good comparison
between simulated values and theoretical values, suggesting that the detection
procedure performs well. However, some comments are in order.

There seem to be a slight tendency of over-detecting a signal when noise is
present. This can be understood from tracing the estimation procedure. The
noise will inherently force the estimation of signal level upwards since we at-
tempt to fit with the best possible complex factor (over-fitting). As a result

59



Figure 4.10: Probability of detection as a function of signal-to-noise and down-
sampling ratio. A total of 10000 trials were performed for each data point.
Theoretical values are shown for comparison using thin line width.

the noise level will be under-estimated and subsequently the probability of de-
tection increases. This effect becomes more pronounced for low downsampling
ratios as the noise will be less restrictive when fitting (a kind of uncertainty
principle). This can be seen as the slight upshot to the left in the plot when
noise is present. A direct consequence of the over-detecting is the increased
probability of false alarms. When specifying the system this parameter should
be adjusted accordingly.

The rapid decay in detection probability as function of downsampling ratio in-
dicates the reference sensor should not be severely downsampled for practical
applications. Some leeway are allowed however as we assume a high signal-
to-noise ratio for incoming interception signals and that we are given several
opportunities to detected the signal as it greatly exceeds the processing block
length. Under these considerations a downsampling ratio around 0.2− 0.3 may
be acceptable. The performance implications follow immediately: memory con-
sumption and computational effort reduced by the same factor for the detection
step.
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4.4.2 Classification Performance

The detector is also a classifier, attempting to differentiate between all the
possible basis vectors. We then investigate the accuracy of classification while
the downsampling factor and noise levels are varied. The basis will be created
from section 3.1, and the signal consists of a random waveform (not necessarily
in the basis, but of the same type) in additive Gaussian noise. The accuracy
will be measured as root-mean-squared (see appendix C) distances in both f
and k space between the strongest detection and actual waveform. The steps
are as follows for HFM and LFM independently

1. Construct a basis following the rules in section 3.1.

2. Create a random waveform with additive uncorrelated noise.

3. Create a random orthonormal measurement basis.

4. Obtain compressive measurements of basis and noisy signal.

5. Detection procedure as described in section 3.3.

6. Choose the strongest detection.

7. Compute distances in (f, k)-space and record these values.

8. Go to step 2 and repeat until sufficiently many trials are concluded.

Take care to note that we set the detector performance parameter α = 1 to
ensure we always have a detection.

The obtained values of root-mean-squared classification error in (f, k)-space
for LFM and HFM are shown in figure 4.11 and figure 4.12 respectively. There
are three main contributions to the non-zero classification error at infinite SNR.
Independent of the downsampling factor is the finite basis resolution. If this was
the single source of error (and the only parameter) we would expect a frequency
error around fs/2N√

3 ≈ 225 Hz. The second effect involves the assumption of
real and imaginary parts of complex basis vector contributing equally to the
norm. Ensuring longer correlation lengths (that is, larger downsampling factor)
should help reduce this error and this is indeed seen to be the case. Finally,
using random measurement matrices may introduce large errors as elaborated
in section 4.5.1.
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At significant levels of noise, the simulated values for f error is found to border
the theoretical RMS value, which lies just around fs/2√

6 ≈ 40 kHz . Thus, little
classification capabilities can be provided in a noisy environment. This is the
manifiestation that classification and parameter estimation is a difference and
harder problem than detection.

Again we note the significant deterioration of detector performance for low
downsampling factors. As such, the reference sensor should not be severely
downsampled as mentioned in the previous section.

This is a two-parameter problem with high correlation between f and k and
care must be taken when considering one parameter at time. To ease our
understanding we assume for the moment we can treat them separately. From
comparing the error in f between LFM and HFM we see that HFM performs
slightly better than LFM. Since this is a two-parameter problem we should
expect such outcome as LFM is more linearized than HFM and could possibly
align better with multiple combinations of f and k than HFM.

Unlike f which is treated equally for both HFM and LFM, comparing the k
plots with each other is difficult as they span different ranges. As such we
comment individual features only. There is a curious behavior for high SNRs
in k-space for LFM. The error is actually seen to increase for very low levels
of noise as the number of compressive measurements taken increases. There is
currently no good explanation for this behavior.

62



(a) f -space

(b) k-space

Figure 4.11: RMS classification error in (f, k)-space for LFM as a function of
signal-to-noise and downsampling ratio. A total of 10000 trials were performed
for each data point. Frequency axes are in units of the sampling frequency.

63



(a) f -space

(b) k-space

Figure 4.12: RMS classification error in (f, k)-space for HFM as a function of
signal-to-noise and downsampling ratio. A total of 10000 trials were performed
for each data point. Frequency axes are in units of the sampling frequency.
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4.5 Direction-of-Arrival Simulations

There are several effects we wish to investigate with respect to bearing esti-
mation. These include exceeding the design frequency and variance in bearing
estimates.

4.5.1 Stretching the Design Frequency

We briefly noted that compressive sensing is apparently robust with regard
to exceeding the design frequency and we wish to investigate this effect [51].
Knowledge from conventional beamforming states that the beam width de-
creases as the aperture size increases and thus the resolution increases. Ex-
ceeding the design frequency of the aperture, however, will introduce grating
lobes and give rise to false targets. We compare this with compressive beam-
forming using the GMC method while the number of sensors is fixed and the
aperture size increases. In detail, the following steps will be taken

1. Choose cylindrical sensor configuration.

2. Set sensor spacing.

3. Add narrowband target with random frequency and bearing.

4. Add noise on each sensor.

5. Obtain compressive measurements of pulse and noisy signal.

6. Obtain estimates using GMC method.

7. Compute performance indicators.

8. Go to step 2 and repeat until sufficiently many trials are concluded.

We note that it is physically impossible to avoid grating lobes and in particular
uniform linear arrays are the most vulnerable. Any gain must thus appear
from using a different sensor configuration. Conventional beamforming done
on a cylindrical arrangement is also prone to grating lobes. As not all sensor
will necessarily be in sync from the incoming wave, we expect the effect to be
reduced (this we will denote as semi-grating lobes). We can expect compressive
beamformer to perform even better by rejecting these semi-grating lobes in its
quest for obtaining the sparsest solution of them all. Performance indicators
for this simulation are
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• RMS difference between strongest DOA estimate and actual bearing to
verify the accuracy gain by increased aperture size.

• Measuring the average energy deposited in strongest DOA estimate versus
other estimates to verify neglectable grating lobe levels.

The GMC method will be run until 90% of the data has been accounted for.
By this procedure we intend to verify that compressive beamforming is robust
and perform better when the design frequency is exceeded. See appendix D for
details on how to add and subtract bearings in a consistent manner.

Simulation results on the root-mean-squared bearing error in degrees from ex-
ceeding the design frequency spacing is shown in figure 4.13. Two observations
immediately comes to mind. First is the apparent minimum in bearing error
at a sensor spacing of around 8 times the conventional spacing. This indicates
we can only gain this much in estimation accuracy by increasing the aperture
before the bearing estimate start to drift significantly, probably due to intro-
duction of grating lobes or system instabilities. The gain in estimation accuracy
from exceeding design frequency however is significant (about

√
8 ≈ 3).

The second observation is the level of estimation error. Under perfect condi-
tions the estimation error should be bounded by grid resolution, in this case
expected to equal 0.5◦√

3 ≈ 0.29◦ on the average in absence of noise. After some
investigation the main contribution to this discrepancy is found to stem from
using random measurement matrices; most matrices perform well, but a few do
not and significantly affect the final average estimation error. As the following
analysis shows, the number of failing matrices can be truly neglectable, yet have
a large impact: assume the root-mean-squared bearing estimation error for a
failing matrix is 180◦√

3 and for one that succeeds 0.5◦√
3 (both under the assumption

of uniform probability distribution, see appendix C). Then on the order of 1
out of 1000 matrices must fail to satisfy the requirements of compressive sens-
ing in order to produce the results in figure 4.13. We note that increasing the
number of compressive samples or choosing a matrix with better RIP constants
is expected to improve this situation.

There is an apparent paradox with the minimum at a sensor spacing of 8 times
the conventional spacing being achieved under noisy conditions. The exact
mechanism behind this effect is currently under investigation.

In figure 4.14 we attempt to show the relation between the strongest bearing
estimate and the additional (incorrect) estimates. There are several interesting
features that requires a comment or two. First thing we note is that intro-
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Figure 4.13: Average root-mean-squared error in degrees as the sensor spacing
increases in units of design frequency spacing. SNR denotes the signal-to-noise
ratio on each individual sensor. A total of 10000 trials were performed for each
data point. Note the vertical axis is logarithmic.

duction of noise will increase the strength of false estimates. This is hardly
a surprise however. Second thing to note is the clear tendency in increased
strength of false estimates as the sensor spacing increases. This effect is the
manifestation of grating lobes being introduced, not in the usual sense how-
ever. As noted earlier, these semi-grating lobes are likely to be rejected by
compressive methods and should thus be considered more as increased noise in
the system, which effect is to produce additional false estimates. As the graphs
show, compressive beamforming is not immune to grating lobes, however the
performance degrades gracefully and indicates robustness when exceeding the
design frequency, especially for good signal-to-noise environments.

We then compare GMC with conventional beamforming under equal conditions
in figure 4.15. The introduction of gating lobes for conventional beamformer is
evident from the figure. As the frequency increases (the main lobe beam width
becomes thinner) spurious peaks suddenly emerge out of nowhere, a certain sign
of a grating lobe. Compressive beamforming is seen to behave quite differently.
As the frequency increases, there is a tendency of the number of additional
estimates and their strengths to increase. This is the quantitative effect behind
figure 4.14. Note that a basis of LFM waveforms was used to obtain these
results.
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Figure 4.14: The average fraction of energy in additional estimates compared
with the strongest estimate as the sensor spacing increases in units of design
frequency spacing. SNR denotes the signal-to-noise ratio on each individual
sensor. A total of 10000 trials were performed for each data point.

To summarize; exceeding the design frequency to increase the aperture size
is seen to be advantageous in some situations, but in general care should be
taken. In particular, a passive sonar is seen to benefit greatly from doing this,
while an active sonar may struggle due to the sheer number of additional false
estimates. This is not an issue, however, as one could simply utilize more sensors
with fewer compressive measurements per sensor to increase the aperture size
and still meet the requirements of Compressive Sensing.
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(a) Conventional Beamforming

(b) GMC

Figure 4.15: Waterfall plot with a target located near 30◦ that pings with
HFM which increases in frequency. Conventional beamformer in (a) shows the
introduction of grating lobes as the frequency increases. GMC in (b) shows no
sign of such behavior. The SNR is 10 dB on sensor level, sensor spacing is 8
times the conventional sensor spacing and GMC has been run until 90% of the
energy is accounted for. Both plots are logarithmic.
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4.5.2 Passive DOA Estimation Accuracy

Controlling the error in the bearing estimate is important. We investigate
the relation between bearing estimation error and downsampling ratio under
the influence of uncorrelated noise. This will form the basis for choosing an
acceptable downsampling factor as more samples will generally improve the
result. Direction-of-arrival estimates will be obtained with a known waveform
to keep the detector performance out of the equation. Specifically, we do the
following steps

1. Choose cylindrical sensor configuration.

2. Add narrowband target with random frequency and bearing.

3. Add noise on each sensor.

4. Create a random orthonormal measurement basis.

5. Obtain compressive measurements of pulse and noisy signal.

6. Obtain DOA estimate using GMC method.

7. Record squared difference between DOA estimate and true bearing.

8. Go to step 2 and repeat until sufficiently many trials are concluded.

We terminate the GMC method after one iteration, keeping only the strongest
DOA estimate.

Simulation results are shown in figure 4.16. There is seen to be a general
tendency for improved accuracy in the estimator as the number of compres-
sive samples increases. This tendency is particularly evident when significant
amount of noise is present. From (2.18) under the discussion of noise we see
this behavior should indeed be the case. When less noise is present however,
this tendency seems to be somewhat less pronounced, a phenomenon described
in the following paragraph.

Assuming maximally sparsity in bearing space, the equation (S2) states a total
of about 16 samples should be required in the noise-less case, which equates to
2 compressive samples per sensors in our case. This corresponds to the low end
with δ ≈ 0.04 and ρ ≈ 0.06. Comparing with figure 2.5 shows we are within the
strong-phase transition region and should expect exact recovery. Increasing the
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number of samples should thus provide no significant gain. Comparing with
simulation results in figure 4.16 shows a significant improvement in estimation
accuracy when going from 1 to 2 compressive samples per sensor as in accor-
dance with theory. Going beyond this only results in small improvements in
estimation accuracy.

By no means can we expect to get away with using only 16 compressive mea-
surements in total. First and foremost, more samples would be required to
handle noise. Second, the finite (and rather small) dimension of our system
will necessarily result in a wide phase transition boundary (see e.g. [24]) and
we can expect some matrices to fail to comply with the requirements of Com-
pressive Sensing. This is hypothesized to be the main contribution to the rather
large estimation error. Knowledge from the previous section showed that only
a few matrices must fail in order to produce a large estimation errors.

We expect the total number of compressive measurements to be the decisive
factor in satisfying the criteria of Compressive Sensing. Thus the number of
sensors and measurements per sensor can be traded at will as long as the
total number of compressive measurements is kept constant. The advantage of
increasing the number of sensors is mirrored in improved DOA estimates that
follows from a larger aperture size. The penalty is paid with a slight increase
in additional computation being required when constructing the system matrix
for the GMC method. The advantage greatly outweighs the penalty, however
considerations from a hardware point of view, and perhaps economical as well,
can make this decision more complex.

4.5.3 Active DOA Estimation Accuracy

We proposed using complex waveforms in GMC for active sonar as the phase
is unknown. The following procedure will help with determine the efficiency of
this solution.

1. Choose cylindrical sensor configuration.

2. Add narrowband target with random frequency and bearing.

3. Add noise on each sensor.

4. Create a random orthonormal measurement basis.

5. Obtain compressive measurements of pulse and noisy signal.
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Figure 4.16: The root-mean-squared bearing error in estimation of DOA in
the passive scenario as a function of number of compressive measurements per
sensor. SNR denotes the signal-to-noise ratio on each individual sensor. A total
of 10000 trials were performed for each data point. Note the vertical axis is
logarithmic.
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Figure 4.17: The root-mean-squared bearing error in estimation of DOA in
the active scenario as a function of number of compressive measurements per
sensor. SNR denotes the signal-to-noise ratio on each individual sensor. A total
of 10000 trials were performed for each data point. Note the vertical axis is
logarithmic.

6. Obtain DOA estimate using GMC method with complex waveform.

7. Record squared difference between DOA estimate and true bearing.

8. Go to step 2 and repeat until sufficiently many trials are concluded.

Again we terminate the GMC method after one iteration, keeping only the
strongest DOA estimate.

Additional noise is introduced into the system matrix as we use a complex
waveform when estimating direction-of-arrival. Initial understanding suggests
this will be reflected in the accuracy of the estimator. Simulation results when
using a complex waveform is shown in figure 4.17. This figure should be com-
pared with figure 4.16 where the exact, and real, waveform is used for bearing
estimation. The results are dire news indeed; even a high signal-to-noise ratio
will require a substantial number of compressive measurements per sensor to
obtain comparable accuracy in the estimator. Even more measurements would
be required to handle multiple simultaneous incoming echoes. As a consequence
an active aperture cannot be downsampled as drastically as in the passive case.
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4.6 Passive Sonar Simulations

We construct a series of scenarios and display the performance of passive de-
tection and localization in each scenario. As shown by earlier simulations it is
sufficient to use a basis consisting of LFM waveforms only. The background
noise will be normal distributed and set to 0 dB in all scenarios, broadband
signatures will also be normal distributed and set to the appropriate level. Al-
though unrealistic background noise and broadband noise is used, they have
the advantage of being easy to work with. Several simplifications will be done,
e.g. echoes and reverberation are not taken into account.

1. scenario

• Broadband target at −50◦ with strength 5 dB.
• Broadband target at 20◦ with strength 0 dB.
• Hidden pinger at 30◦ with strength 20 dB (SNR ≈ 10 dB on sensor

level). Emitted pulse is HFM starting at 2 kHz and ending at 4 kHz,
lasting 5 seconds.

2. scenario

• Hidden pinger at 30◦ with strength 20 dB (SNR = 20 dB on sensor
level). Emitted pulse is HFM starting at 25 kHz and ending at
30 kHz, lasting 300 ms.

The first scenario is intended to resemble a distant frigate pinging a very deep
ocean. Simulation results are shown in figure 4.18. Despite the presence of two
additional targets, these do not show up in the detection plot nor the DOA
plot. From T = 0 s to T = 5 s only minor and random detections and DOA
estimates with no structure are obtained. From the onset of the pulse at T = 5 s
to its end at T = 10 s, a clear trace in the time-frequency plot can be seen. A
corresponding trace in the DOA plot is also observed.

The DOA estimates are seen to be roughly centered around 30◦ as expected,
however the variance in estimates is considerable. This stems from the relatively
low pulse frequency combined with noise. Indeed, as the frequency of the pulse
increases with time, the DOA estimates are seen to converge somewhat. Using
the DOA estimates we are able to obtain a mean of 30.07◦ and a standard
deviation of 6.0◦. Compare this with figure 4.16.
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The pulse type can barely be determined from the time-frequency plot: slight
curvature indicates HFM. From the time-frequency plot, we are able to deduce
the pulse start- and stop frequencies. These are found to be f = 1.5 kHz
and f1 = 3.9 kHz respectively. Despite the coarse resolution in frequency
(∆f = fs

N
≈ 800 Hz), we are able to obtain reasonable values.

The second scenario is intended to resemble a torpedo homing in on its target.
Simulation results are shown in figure 4.19. The frequency is into tens of kHz,
and the pulse duration is relatively short. As in the first scenario, only minor
and random detection and DOA estimates can be observed before the onset of
the pulse. The pulse itself is clearly visible in the time-frequency detection plot
and a clear trace is spotted in the corresponding DOA plot. As the frequency
is higher and the noise lower than compared with the first scenario, the DOA
estimates will also be correspondingly better localized around the mean.

The DOA estimates are seen to be roughly centered around 30◦ as expected,
and the variance is small. As the pulse length is significant shorter and the
increase in frequency is not as prominent as in the previous scenario (where
frequency was doubled and the pulse length 50 times longer), it can be harder
to observe the reduced variance with time. Using the DOA estimates we are
able to obtain a mean of 30.40◦ and a standard deviation of 1.7◦.

Determination of pulse type from the time-frequency plot is nearly impossible.
However a slight curvature suggests it might be HFM. From the time-frequency
plot, we are able to read of the pulse start- and stop frequencies. These are
found to be f = 25.0 kHz and f1 = 29.7 kHz respectively. As the frequency
is relatively high, the coarse resolution in time-frequency plot does not affect
these estimates considerably.
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(a) Detections

(b) Direction-of-arrival estimates

Figure 4.18: Detection data in a time-frequency plot is shown in (a) and the
DOA estimates in (b). Both plots are logarithmic, and the frequency axis in
(a) is in units of the sampling frequency.
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(a) Detections

(b) Direction-of-arrival estimates

Figure 4.19: Detection data in a time-frequency plot is shown in (a) and the
DOA estimates in (b). Both plots are logarithmic, and the frequency axis in
(a) is in units of the sampling frequency.
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4.7 Active Sonar Simulations

We construct a series of scenarios and display the performance of active detec-
tion and localization in each scenario. As noted earlier a basis constructed from
the transmitted waveform is sufficient. The background noise will be normal
distributed and set to 0 dB in all scenarios. Although unrealistic background
noise is used, it has the advantage of being easy to work with. Several simpli-
fications will be done, e.g. complex issues such as reverberation and multipath
echoes are nicely ignored or taken to be included into the background noise.
From previous simulations we know the number of compressive measurements
per sensor per block length must be increased, and we set this number to 30
for these simulation. We run GMC until 90% of the energy is counted for.

1. scenario

• Emitted pulse is HFM starting at 2 kHz and ending at 4 kHz, lasting
5 seconds.
• Target at −50◦ with strength 20 dB on sensor level. Delay = 0 s.
• Target at 100◦ with strength 20 dB on sensor level. Delay = 0 s.
• Target at 30◦ with strength 20 dB on sensor level. Delay = 1.7 s.

2. scenario

• Emitted pulse is HFM starting at 25 kHz and ending at 30 kHz,
lasting 330 ms.
• Target at 30◦ with strength 20 dB on sensor level. Delay = 0.11 s.

The first scenario is intended to resemble a ping from a frigate, albeit the
receiving sensor aperture is unlikely to be used in this case. Two targets are very
close and equally distanced from the pinger, while the third target is slightly
further away. Simulation results are shown in figure 4.20. The basis is seen
to consist of very few vectors, in fact only three. Despite very strong returns
(20 dB on sensor level from each target), acquiring reasonable DOA estimates
is near impossible. The result of poor estimation accuracy origins from many
sources: low ping frequency range, significant noise level per target, complex
waveform in GMC method and still too few compressive measurements. The
two first echoes which occurs simultaneously cannot be differentiated among
the DOA estimates. The third echo, which has a delayed onset, only becomes
visible when the other two echoes have faded.
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(a) Detections

(b) Direction-of-arrival estimates

Figure 4.20: Detection data in a time-frequency plot is shown in (a) and the
DOA estimates in (b). Both plots are logarithmic.

79



The second scenario is intended to resemble a torpedo homing in on its target
and is more realistic than the previous scenario when considering the receiving
aperture. Simulation results are shown in figure 4.21. The frequency is into tens
of kHz, and the pulse duration is relatively short. With only one target and high
frequency range we are able to detect and localize the target presence based on
return echo. Using the DOA estimates we are able to obtain a mean of 29.74◦
and a standard deviation of 2.4◦. This is twice the standard deviation in the
corresponding passive scenario, yet the number of compressive measurements
is three times larger.

There is an very interesting feature at −150◦, which has been amplified by the
logarithmic nature of the plot. This feature was also present in figure 4.20,
albeit not that strongly. This ’shadow target’ originates from a combination
of the chosen aperture and waveform and always appears 180◦ shifted com-
pared with the real target as the array configuration has some trouble with
discriminating the ’left-right’ direction of an incoming plane wave. In practice
this effect is minimal; using more sensors, applying directivity on the sensors
(which is always the case in the real world), and using sensors within ∼ ±60◦
when estimating DOA or beamforming will all subdue this problem. We note
that using more compressive measurements also reduces the presence of this
’shadow target’.
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(a) Detections

(b) Direction-of-arrival estimates

Figure 4.21: Detection data in a time-frequency plot is shown in (a) and the
DOA estimates in (b). Both plots are logarithmic.
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Figure 4.22: Spectrogram of a real LFM pulse showing the linear increase in
frequency from 3 kHz up to 8 kHz.

4.8 Active and Passive Performance Using Real Data

We then we apply real sonar data to verify the performance in practice. The
receiving array is a linear uniform array consisting of 16 elements spaced 6.5 cm
apart. Each element is sampled at 16 kHz. To enable the framework of Com-
pressive Sensing, each sensor is downsampled by using a random orthonormal
basis to produce 10 compressive measurements per block length (approximately
96% data reduction). One of the sensors is used as reference sensor and down-
sampled by a factor of 4.

The sonar data was recorded at Langstein in Stjørdal in 2010. The pinger is
unfortunately positioned immediately in front of the array and we will not be
able to discern its DOA. However, we should be able to pinpoint some of the
possible echoes. The LFM ping sweeps from 3 kHz to 8 kHz during an interval
of 0.3 s as seen in figure 4.22.

Output from conventional beamformer and compressive beamformer using the
narrowband model are shown for comparison in figure 4.23. There seem to be
a trace at 90◦, most likely the pinger. Several prominent echoes can be spotted
immediately after the ping and up to four seconds after the ping (corresponds
to a range of approximately 3 km).
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(a) Conventional beamformer

(b) Compressive beamformer

Figure 4.23: Output from conventional beamformer and compressive beam-
former using real data. Data has been scaled and plotted in a logarithmic
manner (dB) to empathize the dynamics.
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For the active sonar usage, a basis was constructed using the LFM pulse, re-
sulting in 80 basis vectors. The results from the detection procedure with the
following DOA estimation using complex waveform are shown in figure 4.24.
The dots to the left and right in the detection plot indicates possible echoes,
discovered by observing detections with the same slope in time as the pulse
itself has (red dots). Many more echoes like this are likely to exist; we only
pointed out the most prominent ones. Comparing the positions of the dots with
features in figure 4.23 indicates the detection performance is satisfactory. The
corresponding DOA estimates are seen to somewhat resemble features figure
4.23, however not to a great satisfactory extent.

Despite this case is more suitable for active sonar, we attempt to compare
with passive sonar procedure. A basis consisting of LFM pulses was created,
resulting in 4152 basis vectors (see table 2). The results from the detection
procedure with the following DOA estimation are shown in figure 4.25. The
pulse itself is directly observable in the detection plot. From this we are able
to deduce the pulse shape to be LFM, starting at around 3 kHz and ending
around 8 kHz during roughly 0.3 seconds. After this we are unable to detect any
visible echoes. However, there are some patches of high-frequency detections
immediately after the pulse. These are also found in the detection plot for active
sonar. As time progresses beyond 2 s, detections of low frequency components
dominate the picture. Curiously enough, there seem to be traces of weak CW
lines at approximately 0.5 kHz and 1 kHz of unknown origin.

Looking at the DOA estimate plot we are able to correlate several features with
respect to the detection plot and figure 4.23. As the pinger is in near-field of
the receiving aperture, we are unable to disclose its direction of arrival. This is
seen as incoherent pattern during the pulse duration. A strong patch of high-
frequency detections after 1 s is seen to correlate well with a target normal to
the array at a range of approximately 1 km. This feature is also noticeable
in the other plots. Subsequent DOA estimates are seen to be mainly centered
around 90◦, assumed to be due to the pinger vessel, or near the left side of the
array (around 10◦) which could be due to wharf activity or nearby road traffic.

84



(a) Detections

(b) Direction-of-arrival estimates

Figure 4.24: Detections using an active basis is shown in (a) and the correspond-
ing DOA estimates in (b). Data has been scaled and plotted in logarithmic
manner (dB) to empathize the dynamics.
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(a) Detections

(b) Direction-of-arrival estimates

Figure 4.25: Detections using a passive basis is shown in (a) and the correspond-
ing DOA estimates in (b). Data has been scaled and plotted in logarithmic
manner (dB) to empathize the dynamics.
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5 Future work

Several ideas came to mind, yet have so far been unchallenged. These involve
investigating the following

• Correlation between LFM and HFM bases with aim to reduce basis size.

• Improving the detection procedure to produce better estimates.

• Model-based Compressive Sensing for enhanced detection and localiza-
tion.

• Using small blocks for detections and combine to a longer block for DOA
estimation.

6 Concluding remarks

Simulation results on basis coverage indicates the bases are sufficiently dense
using the proposed quantification. For small block lengths, HFM and LFM
bases are seen to correlate well and thus only one basis would be needed to
capture both waveforms for passive applications. Active transmissions can uti-
lize a significantly smaller basis size based on the transmitted ping.

The detection step can be computational intensive with large basis size. In
essence it equates to the first step in a greedy recovery algorithm. To im-
prove the situation we proposed to subsample the reference sensor. Simulations
showed limited freedom in choosing the downsampling ratio as the detector per-
formance quickly deteriorates. Estimation of signal strength and noise variance
is seen to be slightly biased with the proposed method, leading to a slight
over-detection which might need to be compensated for in real applications.

Passive direction-of-arrival estimation accuracy was verified to improve and be
robust when sensor spacing is increased somewhat beyond the conventional
spacing. Simulations showed what is conventionally perceived as grating lobes
could be viewed as an increased level of noise in compressive systems. Passive
applications allowed substantial downsampling of sensors; typically a factor of
tenth to a hundredth as compared with conventional sampling schemes, de-
pending on the robustness to noise.
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To handle the event of multiple simultaneously incoming echoes we proposed
to use the complex waveform in GMC method. This is particularly required
for active direction-of-arrival estimation. Using complex waveform is seen and
understood to correspond with additional noise, and consequently more com-
pressive measurements are required as opposed to the passive case.

Compressive Sensing is an active field of research and a lot of effort is put in
to improve the reconstruction efficiency. In the future we should expect better
algorithms in leveraging the phase-transition and improving the reconstruction
time. Greedy algorithms are particularly simple and efficient and little improve-
ment can be expected for this class of algorithms. As such the considerations
presented in this paper should be valid for the foreseen future.

Considering these aspects, Compressive Sensing stands as a strong alternative
to traditional methods for detecting and localization of high-frequency inter-
ception signals, in particular for passive applications.
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A Waveforms

Here we list the the instantaneous frequency evolution f(t) and the resulting
time-domain function for the phase φ(t) for LFM, HFM and CW respectively.
Additional notes about performance is given.

The simplest waveform of them all is the Continuous Wave (CW) waveform.

f(t) = f0, 0 ≤ t ≤ T

φ(t) = 2πf0t, 0 ≤ t ≤ T

The CW pulse is optimal in the sense of detecting Doppler shifts of radially
moving targets, but possesses no pulse compression capabilities and poor range
resolution. A waveform better suited for detection is the Linear Frequency
Modulation (LFM). As the name implies, the LFM has an instantaneous fre-
quency that increase linearly with time

f(t) = f0 + f1 − f0

T
t, 0 ≤ t ≤ T

φ(t) = 2π
(
f0t+ 1

2
f1 − f0

T
t2
)
, 0 ≤ t ≤ T

where f0 is the start frequency and f1 the end frequency during the pulse trans-
mission time T . The nature of LFM makes it excellent for detecting targets,
however the echo from radially moving targets will not line up correctly with
the matched form due to the Doppler shift. This is overcome by using the HFM
waveform which is insensitive to Doppler shifts. HFM can be defined by

f(t) = f0

1−
1− f0

f1
T
t

, 0 ≤ t ≤ T

φ(t) = −2π f0f1T

f1 − f0
log

1−
1− f0

f1

T
t

 , 0 ≤ t ≤ T

While the HFM excels in detecting targets, it fails to provide any information
about radial target movement.

Finally, these three waveforms are all related by observing the series expansions
of a hyperbola

f0

1− kt = f0 + f0kt+ . . .
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B Parametrization of the Phase Transition

The weak phase boundary curve admits the parametric expression [40]

δ = 2φ(τ)
τ + 2φ(τ)− 2τΦ(−τ)

ρ = 1− τΦ(−τ)
φ(τ)

for τ ≥ 0 and φ and Φ are the Gaussian and its integral

φ(τ) = 1√
2π
e−τ

2/2

Φ(τ) =
∫ τ

−∞
φ(z)dz

C Computing RMS Values

The root-mean-squared is, as the name implies, the square root of the mean of
the squares. In mathematical terms this is equivalent to

RMS =

√√√√ 1
N

N∑
n=1

x2
n

where xn is the n-th realization of the random variable X. In this form it can
also be perceived as a biased estimator to the standard deviation of a zero-mean
random variable. As such RMS is often frequently encountered, particularly in
relation with simulations and measurements.

Knowing the underlying probability distribution fX(x) of X enables direction
computation of the RMS once the distribution of Y = X2 has been worked out.

RMS =
√∫

y · fY (y) dy (C.1)

From probability theory we have the following relation between the cumulative
probability distributions FX(x) and FY (y).

FY (y) = P (X2 ≤ y)
= P (|X| ≤ √y)
= P (−√y ≤ X ≤ √y)
= FX(√y)− FX(−√y)
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Differentiating with respect to y results in the probability distribution

fY (y) = fX(√y) 1
2√y + fX(−√y) 1

2√y , y > 0 (C.2)

A couple of worked examples then follows. Let X ∼ U(0, a), i.e. drawn from a
uniform probability distribution on [0, a], and Y = X2. By definition

fX(x) =


1
a

0 ≤ x ≤ a

0 otherwise

The relation (C.2) can be used immediately to result in

fY (y) =


1

2a√y 0 ≤ y ≤ a2

0 otherwise

and the RMS follows trivially from (C.1)

RMS = a√
3

The next example considers the difference between two random variables drawn
from the same distribution, i.e. X = X1 − X2 and Y = (X1 − X2)2 with
X1, X2 ∼ U(0, a). Simple considerations shows X has a triangular distribution

fX(x) =


a+x
a2 −a ≤ x ≤ 0
a−x
a2 0 ≤ x ≤ a

0 otherwise

Using (C.2) immediately results in

fY (y) =


1

a
√
y
− 1

a2 0 ≤ y ≤ a2

0 otherwise

and the RMS value is easily obtained from (C.1)

RMS = a√
6
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(a) Adding bearings (b) Bearing distance

Figure D.1: Averaging bearings can be viewed as averaging of vectors (a), and
distances in bearing can be understood as finding the angle between two vectors
(b).

D Metrics in Bearing Space

Measuring distances and averaging in bearing space can be prone to errors if
not done in a consistent manner. The proposed method involves replacing the
bearing with a unit vector pointing in the correct direction. Averaging is done
by averaging such vectors and then convert back to bearing space to obtain an
average bearing. Measuring distances is also trivial and now corresponds with
computing the inner product and then finding the angle, see figure D.1.
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