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Abstract

In this thesis we will study the structure of quark stars using different models to mimic the
interactions of quantum chromodynamics (QCD). We will first derive the pressure, energy
density and particle number density to one-loop for free Dirac fermions from the grand
partition function. Then we will derive the Tolman-Oppenheimer-Volkoff equation, which
is used to describe the structure of spherically symmetric and static stars.

We will first study quark stars in the MIT bag model, where we assume that decon-
fined strange quark matter is absolutely stable. The strange quark matter hypothesis will
also be discussed in the chapter concerning the MIT bag model. The results show that the
maximum mass of a quark star described using the MIT bag model ranges from 1.6M� to
2.0M�, with M� being the solar mass, depending on the chosen bag constant.

The last models we study are the two- and three-flavour linear sigma models with
quark degrees of freedom. We calculate the thermodynamical potential in these models
and extract an effective, density dependent bag constant which we use as a replacement
for the MIT bag constant. Both of these models lead to unphysical results and cannot be
used to study the structure of quark stars near the surface. We conclude that the these
models can only be used in high density regions inside hybrid stars. The maximum stars
found in the three-flavour linear sigma model with quarks reach high enough densities for
strange quarks to appear.
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Chapter 1
Introduction

The birth of stars begins in nebulae; large, dense clouds made mostly of hydrogen. Grav-
itational forces pulls regions of the cloud together and form protostars. The protostar will
slowly heat up by particle collisions and gravitational energy transforming into kinetic en-
ergy. When the core of the protostar is hot enough to burn hydrogen to helium, the star
will reach an equilibrium where the pressure arising from the hydrogen and helium fusion
counterbalances the gravitational pressure. It has now become a main sequence star, and
will stay this way for the main part of its lifespan. How long the star will live, and what it
will turn into after its death is believed to be determined solely by the star’s initial mass.
A heavy star lives shorter than a light one. When a star dies it becomes a compact star or a
black hole, depending on the mass of the core at the time of death. A light star, with a less
massive core than the Chandrasekhar limit, M ≈ 1.44M�, will become a white dwarf.
More massive stars but lighter than about 3M� will become neutron stars, and the most
massive stars will collapse into singularities, or black holes. In this thesis we will study a
certain type of neutron stars called quark stars.

1.1 Neutron stars
Neutron stars are the second densest objects in the universe and are only beaten by black
holes. The typical radius of a neutron star is 10 km, and with a mass of about 1.5M� we
get the extreme density ρ ≈ 7 ·1011 kg/cm3. This is even larger than the typical density of
a heavy atomic nucleus, ρ0 ≈ 2.5 · 1011 kg/cm3[1]. However, the density inside the star
is not constant, but depends highly on the distance to the center. Due to this, some neutron
stars are believed to have a core made of quark matter which is surrounded by nuclear mat-
ter. Such a star is called a hybrid star. Recent measurements of the pulsar1 PSR J0348+043
indicates a mass of 2.01 ± 0.04M� [2], which is the highest measured mass of a neutron
star so far. The pulsar is in orbit with a white dwarf of mass 0.172 ± 0.003M�, which
makes the measurements of the pulsar mass more accurate. The second most massive star

1A pulsar is a rotating neutron star with a strong magnetic field that emits a beam of electromagnetic radiation.
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Chapter 1. Introduction

Figure 1.1: The Helix Nebula lies 650 light-years away and is a dying star which eventually will
become a white dwarf. Credit: NASA, JPL-Caltech
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1.2 Quark stars

with an accurate measured mass is PSR J1614-2230 with a mass of 1.97 ± 0.04M� [3].
Both of these pulsars are strong candidates for hybrid stars, and have led to new studies of
quark matter in compact stars [4, 5, 6].

Neutron stars are considered as cold objects and are often studied at zero temperature,
even though their actual temperatures can be up to 1011 K [1]. This might seem like
a daring approximation, but 1011 K ∼ 10MeV in natural units where kB = 1, and is
therefore negligible compared to the baryon chemical potential which, due to the star’s
high density, is of the order 103 MeV. Neutron stars also constantly cools down during its
lifespan as a consequence of neutrino radiation. The neutrinos are made in weak processes
known as β-decay and inverse β-decay, or electron capture.

1.2 Quark stars
A neutron star is produced when the gravitational force is so strong that the electron de-
generacy pressure coming from Pauli’s exclusion principle is not enough to counterbalance
the gravitational pressure, and hence electrons merge with protons to form neutrons. If the
gravitational pressure is strong enough, the neutrons might even break down into their
constituent up and down quarks. Such stars are hypothetical and known as quark stars or
strange stars. The term strange star is used because some of the up and down quarks can be
converted into strange quarks. However, this might not be the only way for quark stars to
be produced. If a hypothesis called the strange quark matter hypothesis is true, quark stars
might be formed by converting an ordinary neutron star into a pure quark star by injecting
a strangelet into the neutron star. The strange quark matter hypothesis will be discussed in
section 6.2.2.

Since quark stars are almost like gigantic hadrons, we will make use of both general
relativity and quantum field theory (QFT) as well as statistical mechanics when studying
them. Neutron stars usually also have a huge magnetic field with B ∼ 1012 G, so electro-
dynamics certainly plays a role too[1]. Even weak interactions must be included to achieve
equilibrium in the star. Due to the wide range of fields needed to understand quark stars,
we will make several assumptions and start with a very simple model of a quark star and
gradually build our way up to more realistic models. We will, however, neglect the influ-
ence of the magnetic field throughout this thesis, and always work in the zero-temperature
limit.

3
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Chapter 2
Preliminaries

2.1 Euler-Lagrange equation
From classical mechanics we remember the Lagrangian defined as L = T − V , where
T and V are the kinetic energy and potential energy respectively. In field theory, the
Lagrangian density L is a more useful quantity and is related to the Lagrangian L by

L =
∫
d3xL. (2.1)

L(φ, ∂µφ) is a funciton of the fields φ and their derivatives ∂µφ. Furthermore, the time-
space integral of L,

S ≡
∫
d4xL, (2.2)

is called the action and is the most fundamental quantity in classical field theory. Using
the priciple of least action, we can derive the well known Euler-Lagrange equations of
motion. This principle states that when a physical system evolves from one given state to
another one it does so along the path that minimises the action. This is the same as saying
that δS = 0 when δS is an infinitesimal change in the action arising from an infinitesimal
change in the fields, φ→ φ+ δφ. Using this, we get constraints on the fields,

0 = δS

=
∫
d4x

[
∂L
∂φ

δφ+ ∂L
∂(∂µφ)δ(∂µφ)

]
=
∫
d4x

[
∂L
∂φ

δφ− ∂µ
(

∂L
∂(∂µφ)

)
δφ+ ∂µ

(
∂L

∂(∂µφ)δφ
)]

=
∫
d4x

[
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)]
δφ+

∫
Ω
dS nµ

[(
∂L

∂(∂µφ)δφ
)]
. (2.3)

In the last line we used the divergence theorem to rewrite the volume integral to a surface
integral over the surface Ω. The last term of this equation vanishes due to the fact that

5



Chapter 2. Preliminaries

δφ = 0 on the surface of the time-space region. We know that δφ(Ω) = 0 because the
initial and the final states are known. As δφ generally is different from zero when the
system is in a state between the inital and final states, the only way for eq. (2.3) to hold is
if

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0. (2.4)

This is the Euler-Lagrange equations of motion.

2.2 Noether’s theorem
Noether’s theorem states that for every continuous symmetry in the Lagrangian there exists
a corresponding conserved current [7]. A continuous transformation on the fields φ can be
written in infinitesimal form as

φ(x)→ φ̃(x) = φ(x) + α∆φ(x), (2.5)

where α is some infinitesimal parameter and ∆φ is some deformation of the field con-
figuration. If the equations of motion are invariant under this transformation, we have a
symmetry. This is the same as requiring that the Lagrangian is invariant under the trans-
formation (2.5) up to a 4-divergence, because such a surface term will vanish in the action
and leave the Euler-Lagrange equation invariant,

L → L+ α∂µJ µ. (2.6)

We can now perform the transformation (2.5) on the Lagrangian and compare the result
with eq. (2.6),

L(φ̃, ∂µφ̃) =L(φ, ∂µφ) + ∂L
∂φ

(α∆φ) + ∂L
∂(∂µφ)∂µ(α∆φ)

=L(φ, ∂µφ) + α∂µ

(
∂L

∂(∂µφ)∆φ
)

+ α

[
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)]
∆φ. (2.7)

The third term is the Euler-Lagrange equation and is consequently zero. If we have a
symmetry we therefore must have

∂µj
µ(x) ≡ ∂µ

[(
∂L

∂(∂µφ)∆φ
)
− J µ

]
= 0. (2.8)

This equation states that jµ is a conserved current. Moreover, integrating this equations
over x yelds ∫

d3x
[
∂0j

0 −∇ · j
]

= 0, (2.9)

which by the divergence theorem gives

∂0

∫
d3x j0 =

∫
Ω
dS n · j. (2.10)

6



2.3 Grassmann numbers

In the limit x→∞ we must have j→ 0 as the current must be zero at infinity. Hence, the
total charge

Q =
∫
j0d3x, (2.11)

must be constant in time.

2.3 Grassmann numbers

Later in this thesis we will deal with fermionic fields. These fields anticommute and will
therefore make some integrals impossible to calculate using real, commuting numbers. To
calculate such integrals, we must represent these fields by anticommuting numbers known
as Grassmann numbers. The fundamental feature of Grassmann numbers is of course that
they anticommute, so for any two Grassmann numbers η and θ, we have

ηθ = −θη. (2.12)

This implies that the square of a Grassmann number is zero, and the product of two such
numbers will commute with another anticommuting number, ξ

η2 = 0, (ηθ)ξ = ξ(ηθ). (2.13)

The integral of a general function f of a Grassmann variable η is defined as∫
dηf(η) =

∫
dη(A+Bη). (2.14)

Here we used that f(η) can be expanded in a Taylor series and the only terms surviving is
of order η or less according to eq. (2.13). We will demand that integrals over Grassmann
numbers should be invariant under shifts of the integration variable, in the same way as
ordinary functional integrals. If we now let η → η + θ we get the condition∫

dη(A+Bη) =
∫
dη(A+Bθ +Bη). (2.15)

As the linear term Bη is left unchanged and the constant term changed, we know that the
integrals cannot depend on the constant term, but must be equal to B (times a constant
which we set to 1), ∫

dη(A+Bη) = B. (2.16)

So far we have only looked at integration over a single variable. If we deal with more
than one integration variable, we must choose which integral we should perform first. The
common convention for this is choosing∫

dη

∫
dθ θη =

∫
dη dθ (θη) = +1, (2.17)

7



Chapter 2. Preliminaries

i.e. computing the inner integral first. When we start working with complex fermionic
fields, we also need complex Grassmann numbers. We will define the complex conjugate
of a product of Grassmann numbers to reverse the order of the product,

(ηθ)∗ = θ∗η∗. (2.18)

To make sure that η and η∗ are independent numbers, which must be the case if we inte-
grate over both, we can define

η = η1 + iη2√
2

, η∗ = η1 − iη2√
2

. (2.19)

Later we will encounter Gaussian integrals over complex fermionic fields. We will there-
fore investigate how such integrals are evaluated over complex Grassmann variables:∫

dη∗dη e−η
∗aη =

∫
dη∗dη (1− η∗aη) =

∫
dη∗dη (1 + ηη∗a) = a. (2.20)

In the first equality we expanded the exponential and used η2 = 0. The last equality is
found by combining eqs. (2.16) and (2.17). We now generalise the integral to 2N variables
and change a into an N ×N Hermitian matrix A,

N∏
i=1

∫
dη∗i dηi e−η

∗Aη. (2.21)

η and η∗ are now of course vectors with lenght N . As A is a Hermitian matrix it can
be diagonalised, A = U†ΛU , and we can rewrite η∗Aη in terms of new, transformed
Grassmann variables ξ = Uη and ξ∗ = η∗U†:

η∗Aη = η∗U†ΛUη = ξ∗U†UΛUU†ξ (2.22)

= ξ∗Λξ =
∑
i

ξ∗i λiξi.

Here U is a unitary matrix composed of the eigenvectors of A as columns and Λij = δijλi
(no summation over i here) is a diagonal matrix with the eigenvalues of A on the diagonal.
The integrand in (2.21) expressed in the new variables is thus

e−η
∗Aη =

∏
i

e−ξ
∗
i λiξi =

∏
i

(1− ξ∗i λiξi). (2.23)

Now that we have rewritten the integrand, we must investigate how the integral changes
under this unitary transformation. We have

N∏
i=1

ηi = 1
N !ε

ij...kηiηj · · · ηk

= 1
N !ε

ij...kU†ii′ξi′U
†
jj′ξj′ · · ·U

†
kk′ξk′

= 1
N !ε

ij...kU†ii′U
†
jj′ · · ·U

†
k′ξi′ξj′ · · · ξk′ , (2.24)

8



2.4 Path integral formalism

and

ξi′ξj′ · · · ξk′ = εi
′j′...k′

N∏
i=1

ξi. (2.25)

By using that
detU† = εij...kU†1iU

†
2j · · ·U

†
Nk, (2.26)

where we sum over all the indicies i, j, ..., k from 1 to N , we find

N∏
i=1

ηi = 1
N !N !detU†

N∏
i=1

ξi

= detU†
N∏
i=1

ξi. (2.27)

Following the same procedure we get1

N∏
i=1

η∗i = detU
N∏
i=1

ξ∗i . (2.28)

We are now finally ready to calculate the integral (2.21):∏
i

∫
dη∗i dηi e−η

∗Aη = detUdetU†
∏
i

∫
dξ∗i dξi

∏
k

(1 + λkξkξ
∗
k)

=
∏
k

λk = detA. (2.29)

This result will be useful when calculating the partition function for an ideal gas of free
fermions.

2.4 Path integral formalism
A fundamental task in quantum physics is to find the probability for a particle at position
qi at time ti to be at position qf at time tf . From quantum mechanics we know that the
answer to this is the transition amplitude

〈qf | e−iHT |qi〉 , (2.30)

whereH is the hamiltonian and T = tf−ti is the time it takes for the particle to move from
its inital position to its final position. We are intrested in an integral form of this amplitude,
so let us start by dividing the time T into N infinitesimal time intervals δt. Furthermore,
we require that our states are normalised, 〈qf | qi〉 = δ(qf − qi), where δ(x) is the Dirac

1The eqs. (2.27) and (2.28) actually shows that any functional integral over Grassmann numbers is invariant
under unitary transformations: A general integrand f(η) can be expressed as

∏
i
ηi
∏
i
η∗i which after the

transformation gives rise to a factor (detU)(detU†) = 1 and transforms the variables ηi → ξi. But since∏
i
dη∗i dηi transform accordingly, the integral is unchanged.

9



Chapter 2. Preliminaries

delta function, and that |qa〉 form a complete set of states, i.e. that
∫
dqa |qa〉 〈qa| = 1.

Our amplitude now reads

〈qf | e−iHT |qi〉 =
N−1∏
j=1

∫
dqj 〈qf | e−iHδt |qN−1〉

× 〈qN−1| e−iHδt |qN−2〉 · · · 〈q2| e−iHδt |q1〉 〈q1| e−iHδt |qi〉 . (2.31)

Since δt is small, we can expand the exponentials to first order in δt, so that a single factor
〈qj+1| e−iHδt |qj〉 becomes

〈qj+1| e−iHδt |qj〉 = 〈qj+1| qj〉 − iδt 〈qj+1|H |qj〉+O(δt2). (2.32)

The first term is a delta function and can be rewritten as an integral:

〈qj+1| qj〉 =
∫
dpj
2π eipj(qj+1−qj). (2.33)

The second term can be manipulated by inserting momentum eigenstates on the form∫ dpj
2π |pj〉 〈pj | = 1 and using H = p̂2

2m − V (q̂) :2

〈qj+1|H |qj〉 = 〈qj+1|
∫
dpj
2π |pj〉 〈pj |

(
p̂2

2m − V (q̂)
)
|qj〉

=
∫
dpj
2π

(
p2
j

2m − V (qj)
)
〈qj+1| pj〉 〈pj | qj〉. (2.34)

From quantum mechanics we know that the momentum eigenstate in the coordinate rep-
resentation is a plane wave, that is 〈q| p〉 = eipq , so the product of bra-kets in the last line
equals eipj(qj+1−qj). Combining eqs. (2.33) and (2.34) we find

〈qj+1| e−iHδt |qj〉 =
∫
dpj
2π

[
1− iδt

(
p2
j

2m − V (qj)
)]

eipj(qj+1−qj) +O(δt2)

=
∫
dpj
2π e−iδt(p

2
j/2m−V (qj))eipj(qj+1−qj) +O(δt2). (2.35)

As we only write out δt to first order, we rewrote the parenthesis as an exponential. Next,
we can simplify the rightmost exponential by setting ∆qj = (qj+1 − qj)/δt:

〈qj+1| e−iHδt |qj〉 =
∫
dpj
2π e−iδtH(pj ,qj)eiδtpj∆qj +O(δt2). (2.36)

The amplitude (2.31) now becomes

〈qf | e−iHT |qi〉 =
∫ N−1∏

j=1

dqjdpj
2π dp0 exp

[
N−1∑
k=0

iδt[pk∆qk −H(pk, qk)]
]

+O(δt2). (2.37)

2Note the difference in inserting this factor of 1 left or right of H . If we inserted the integral before H we
would get V (qj+1) instead of V (qj). The difference of these two cases will however vanish when we take the
continuum limit N →∞.
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2.4 Path integral formalism

Now we take the continuum limit N →∞. The integral is then over all functions q(t) and
p(t) that satisfy the boundary conditions. This can be written more elegantly by defining∫ N−1∏

j=1

dqjdpj
2π dp0 ≡

∫
DqDp. (2.38)

Moreover, we get
∑N−1
k=0 δt→

∫ tf
ti
dt and ∆q → q̇. Eq. (2.37) now reduces to

〈qf | e−iHT |qi〉 =
∫
DqDp exp

{
i

∫ tf

ti

dt [pq̇ −H(p, q)]
}
. (2.39)

We can calculate the integral over Dp using [15]∫
dp

2π eiδt(pq̇−p
2/2m) =

( m

2πiδt

)1/2
eiδtmq̇

2/2. (2.40)

Since we have N such integrals, we get a total factor
(

m
2πiδt

)N/2
, which we just absorb

into Dq. The amplitude finally takes the form

〈qf | e−iHT |qi〉 =
∫
Dq e

i
∫ tf
ti

dt [ 1
2mq̇

2−V (q)]
=
∫
Dq e

i
∫ tf
ti

dt L(q,q̇)

=
∫
Dq eiS[q]. (2.41)

This is the path integral in quantum mechanics. In quantum field theory (QFT), the par-
ticles are not described as point particles at position q(t), but insead as fields ϕ(x) =
ϕ(t,x). The action S is now, as mentioned in section 2.1, the space-time integral of the
Lagrangian density L, which in D spatial dimensions becomes

S[ϕ] =
∫
dt

∫
dDxL(ϕ, ∂µϕ). (2.42)

L(ϕ, ∂µϕ) is the field theoretical analogue to the quantum mechanical Lagrangian L(q, q̇),
and the path integral in QFT simply becomes

Z ≡
∫
Dϕ eiS[ϕ] =

∫
Dϕ ei

∫
ddxL(ϕ,∂µϕ). (2.43)

In the next chapter we will make use of this result when deriving the path integral repre-
sentation of the grand canonical partition function.
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Chapter 3
Thermodynamics

In our study of quark stars, we need to know some thermodynamical quantities such as
the pressure, energy density and particle density. The relation between the pressure and
the energy density, known as the equation of state (EoS), is especially important. Why the
EoS is so crucial will be clear when we study the Tolman-Oppenheimer-Volkoff (TOV)
equation in chapter 5. These thermodynamical quantities can be found if we know the
grand canonical partition function Z (from now on simply referred to as the partition
function), which is a function used to describe a system in thermodynamical equilibrium.
Actually, every thermodynamical quantity can be derived fromZ . This makes the partition
function the most fundamental quantity in equilibrium statistical mechanics.

3.1 The grand canonical partition function
Assume that we have a system with a constant volume V which can exchange energy E
and particles N with a heat reservoir at constant temperature T . This system can then be
described as a grand canonical ensamble, and the partition function describing the system
is [10]

Z = Tr e−β(H−µiQ̂i). (3.1)

Here H is the Hamiltonian, β = 1/T is the inverse temperature and µi is the chemical
potential corresponging to the conserved chargeQi. In principle, Qi can be any conserved
charge that is Hermitian and commutes with H and Qj , and not only the particle number
like here. This is the quantum mechanical version of the partition function. However, we
will use a field theoretical approach and use the path integral formalism to calculate the
thermodynamical functions we need. We can start by rewriting eq. (3.1), replacing the
trace with a sum over states:

Z =
∑
n

〈n| e−β(H−µiQ̂i) |n〉. (3.2)

Comparing this equation to eq. (2.41) in the previous section, we see that the partition
function is very similar to the transition amplitude in quantum mechanics. If we absorb
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Chapter 3. Thermodynamics

µiQ̂i into H and set β = iT (here T is time, and not temperature), the exponentials in
the two expressions are identical. Let us see what happens with eq. (2.41) if we set the
initial and final states equal and Wick rotate the integration contour, i.e. change the time t
to imaginary time τ = it. We also for simplicity set ti = 0 and tf = T = −iβ, implying
that τ ranges from 0 to β:

〈n| e−iHT |n〉 =
∫

q(0)=q(β)

Dq exp
{∫ β

0
dτ

[
−1

2m
(
dq

dτ

)2
− V (q)

]}

=
∫

q(0)=q(β)

Dq exp
{
−
∫ β

0
dτ LE(q, q̇)

}
. (3.3)

Here LE is the Euclidean Lagrangian corresponding to the Hamiltonian H in Euclidean
time τ . The boundary conditions q(0) = q(β) appears because we require the particle
to return to its initial state after a time β when |qi〉 = |qf 〉 = |n〉. The only difference
between eq. (3.2) and eq. (3.3) is now the sum over n, which simply means that we have a
set of particles and need to integrate over all paths qa(t) for every particle a. We are now
ready to write down the path integral version of the partition function in field theory. The
result is as follows:

Z =
∫
BC

Dϕ e−
∫ β

0
dτ
∫
dDx LE(ϕ)

. (3.4)

BC is the Boundary Conditions, which are periodic, ϕ(x, 0) = ϕ(x, β), for bosons and
antiperiodic, ϕ(x, 0) = −ϕ(x, β), for fermions, see appendix A.1. The integral is written
in compact notation; ϕ is a collection of all the fields present, so Dϕ = Dϕ1Dϕ2 · · · Dϕn
and LE(ϕ) is a function of all the fields ϕa. LE is the Euclidean Lagrangian density
corresponding to the shifted hamiltonian densityH = H0 − µiρi given by

H = πiϕ̇i − L0 − µiρi = ∂L0

∂ϕ̇i
ϕ̇i − L0 − µiρi. (3.5)

Here, ρi is the conserved charge density corresponding to j0 in eq. (2.11). We sum over
repeated indices, so if the Lagrangian depends on more than one field, we get seperate
contributions from each field ϕi. Eq. (3.4) will be our starting point for calculating the
thermodynamical functions in the next chapter.

3.2 Relations betweenZ and thermodynamical quantities

We will not derive the relations between the different thermodynamical functions and the
partition function. For a detailed derivation of these, see [8]. The functions we need when
studying a quark star is the pressure p, the energy density ε and the number density ρ.
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3.2 Relations between Z and thermodynamical quantities

These functions are given by the following expressions in the infinite volume limit:

p = 1
β

∂ lnZ
∂V

, (3.6)

ρ = 1
βV

∂ lnZ
∂µ

, (3.7)

S = ∂(T lnZ)
∂T

, (3.8)

ε = µρ+ TS − 1
V

∂ lnZ
∂β

, (3.9)

Ω = −
∫
p dV . (3.10)

β = 1/T is again the inverse temperature, µ is the chemical potential, S is the entropy
and Ω is the Landau potential. In the introduction we mentioned that we would model the
quark star as zero temperature objects. In the next chapter, when we calculate the pressure
etc. from an ideal Fermi gas, we will take the zero-temperature limit and obtain the results
for a cold quark star of finite chemical potential.
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Chapter 4
Ideal Fermi gas

Our first model of a quark star will be very simple. We will neglect any interactions
between the quarks and describe the quark star using the EoS for a free gas of fermions
at T = 0. In this chapter we will calculate the thermodynamical quantities we need to
study the star within this model. We are especially interested in the pressure p, the energy
density ε and the particle density ρ. With these three functions alone, we can to a great
extent determine the structure of a quark star.

4.1 The partition function
As the partition function Z can be used to calculate all the thermodynamical quantities
we need, we will in this section find Z for an ideal gas of fermions. To do so, we see
from the path integral version of the partition function, eq. (3.4), that we need to know the
Euclidean Lagrangian for this system. The Lagrangian for free Dirac fermions1 is

L0 = ψ̄
(
i/∂ −m

)
ψ. (4.1)

ψ and ψ̄ = ψ†γ0 are treated as independent variables, and thus yields one corresponding
equation of motion each.
L0 is invariant under the global phase transformation

ψ → eiαψ (4.2a)

ψ̄ → e−iαψ̄, (4.2b)

where α is a constant in the interval [0, 2π). This is a U(1) symmetry, which according to
Noether’s theorem gives rise to a conserved quantity. The conserved quantity can be found

1A Dirac fermion is simply a fermion which is not its own antiparticle. So all fermions in the standard model
except possibly the neutrinos are Dirac fermions. Fermions that are their own antiparticle are called Majorana
fermions after Ettore Majorana. Dark matter have also recently been hypothesised as a Majorana fermion [11].
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Chapter 4. Ideal Fermi gas

from eq. (2.8) with J µ = 0,

∂µj
µ = ∂µ

(
∂L0

∂(∂µψi)
∆ψi

)
= 0. (4.3)

As there are no terms like ∂µψ̄ in L0, the only contribution to jµ comes from ψ. Now,
using ∆ψ = iαψ for small α, we get

jµ = ψ̄γµψ. (4.4)

As mentioned in the previous chapter, the conserved charge density is the zeroth compo-
nent of jµ. With ρ = ψ̄γ0ψ, we can now calculate the Hamiltonian density from eqs. (3.5)
and (4.1):

H = ψ̄
(
iγi∂i +m− µγ0)ψ. (4.5)

It is easy to check that the Lagrangian density corresponding to this Hamiltonian density
is L0 + ψ̄µγ0ψ,

L = ψ̄
(
iγµ∂µ −m+ µγ0)ψ. (4.6)

This Lagrangian is in Minkowski space, but the Lagrangian in eq. (3.4) is as mentioned
earlier the Euclidean Lagrangian. We must therefore perform a Wick rotation on L, i.e.
switch to imaginary time:

LE(τ) = −L(t→ −iτ) = ψ̄
(
γ0∂τ − iγi∂i +m− µγ0)ψ. (4.7)

Inserting this expression into (3.4) we get

Z =
∫
BC

Dψ̄Dψ e−
∫ β

0
dτ
∫
d3xψ̄(−γ0∂τ+iγi∂i−m+µγ0)ψ. (4.8)

As ψ̄ and ψ are fermion fields, the boundary conditions are antiperiodic,

ψ(0,x) = −ψ(β,x) (4.9a)

ψ̄(0,x) = −ψ̄(β,x). (4.9b)

The integral is easier to solve in (ωn,p, ) space than in (τ,x) space, so we Fourier trans-
form the fields and write

ψ(x, τ) = 1√
V

∞∑
n=−∞

∑
p

ei(p·x+ωnτ)ψ̃(p). (4.10)

ωn are the Matsubara frequencies and must be equal (2n + 1)πT since the conditions in
(4.9) must hold for all x. After this transformation we can make the replacement

ψ̄
(
−γ0∂τ + iγi∂i −m+ µγ0)ψ → ψ̄

(
−iγ0ωn − γ · p−m+ µγ0)ψ. (4.11)

18



4.1 The partition function

Now the exponentials in ψ̄ and ψ will cancel so that all the x and τ dependence vanish.
The integral over τ and x is then trivial and contributes with a factor βV . We are thus left
with2

Z =
∏
n,p

∫
BC

Dψ̄Dψ eψ̄Dψ, (4.12)

where
D = −βγ0 (µ− iωn − γ0γ · p−mγ0) . (4.13)

As free fermionic fields anticommute due to the Pauli exclusion principle, we can treat ψ̄
and ψ as Grassmann variables. The integral in eq. (4.12) is then a Gaussian integral over
Grassman variables, which we discussed in section 2.3. This is actually the same integral
as in eq. (2.29), so we find

Z =
∏
n,p

detD. (4.14)

The thermodynamical functions are related to the partition function through lnZ ,

lnZ =
∑
n,p

ln det
[
−β
(
µ− iωn − γ0γ · p−mγ0)]. (4.15)

Using the Dirac representation of the γ matrices, we have

γ0 =
(
I 0
0 −I

)
, (4.16)

γ0γ · p =
(

0 σ · p
σ · p 0

)
, (4.17)

where σ = (σ1, σ2, σ3) denote the Pauli matrices. Each element in the matrices are thus
2× 2-matrices themselves. The matrix D written out explicitly is

D = −β
(
µ− iωn −m −σ · p

σ · p −µ+ iωn −m

)
. (4.18)

The determinant can be evaluated in the same way as the determinant of a 2 × 2-matrix,
but here we must square the result since each elements counts twice,

detD = β4 {−(µ− iωn)2 +m2 + det
[
(σ · p)2]}2

. (4.19)

Using the anticommutation relation for the Pauli-matrices, {σi, σj} = 2δijI , we get

(σ · p)2 = piσipjσj = (2δijI − σjσi)pipj = 2p2 − (σ · p)2

⇒ (σ · p)2 = p2 (4.20)

2Here ψ and ψ̄ are the Fourier transformed fields ψ̃(p) and ˜̄ψ(p) respectively.
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Chapter 4. Ideal Fermi gas

Now we insert eqs. (4.19) and (4.20) into eq. (4.15) and set m2 + p2 = E2
p :

lnZ =
∑
n,p

ln
{
β4 [(µ− iωn)2 − E2

p

]2}
= 2

∑
n,p

ln
[
β2(µ− iωn + Ep)(µ− iωn − Ep)

]
= 2

∑
n,p

ln [β(µ− iωn + Ep)] + ln [β(µ− iωn − Ep)] . (4.21)

This expression can be further rewritten, using that
∑
n
ωn =

∑
n

(−ωn) because ωn =

(2n+ 1)πT and the sum over n goes from −∞ to +∞:

2
∞∑

n=−∞
ln [β(µ− iωn ± Ep)] =

∞∑
n=−∞

ln [β(µ− iωn ± Ep)] + ln [β(µ+ iωn ± Ep)]

=
∞∑

n=−∞
ln
[
β2(ω2

n + (µ± Ep)2)
]
. (4.22)

If we now take the continuum limit,
∑

p → V
∫

d3p
(2π)3 , we get

lnZ = V
∑
n

∫
d3p

(2π)3

{
ln
[
β2(ω2

n + (µ+ Ep)2)
]

+ ln
[
β2(ω2

n + (µ− Ep)2)
]}
.

(4.23)

To proceed, we have to evaluate the sum over n. These sums are the so-called Mat-
subara sums, and can be evaluated using contour integration. Let us take a closer look at
these sums:

σ ≡
∞∑

n=−∞
ln
[
β2(ω2

n + a2)
]
, (4.24)

where a = Ep ± µ. Differentiating σ with respect to a2 gives

dσ

da2 =
∞∑

n=−∞

β2

β2(ω2
n + a2) = −

∞∑
n=−∞

1
(iωn)2 − a2 . (4.25)

This sum can be rewritten as a contour integral using the identity

∞∑
n=−∞

1
(iωn)2 − a2 = 1

2πi

∮
C

1
z2 − a2h(z)dz, (4.26)

where h(z) is some function with simple poles and residue one at z = iωn, and C is the
contour enclosing the poles of h(z) [12]. A suitable function is h(z) = β

2 tanh βz
2 . We can

change the integration contour C to enclose the simple poles z = ±a instead of z = iωn,
as shown in Fig. 4.1.
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4.1 The partition function
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Figure 4.1: Deforming the contour from enclosing the poles z = iωn to enclosing the poles z = ±a

The contribution from the semicircles in figure (c) vanish as the radius of the semicir-
cles goes to infinity. Hence, after changing the contour, the integral in eq. (4.26) becomes

1
2πi

∮
C

1
z2 − a2h(z)dz = −β2

∑
z=±a

Res 1
z2 − a2 tanh βz2 . (4.27)

The (-)sign on the right-hand-side arises when we switch the integration direction as
showed in Figure 4.1b and Figure 4.1c. The residues are now easy to calculate and we
find

dσ

da2 = β

2

(
tanh βa

2
2a −

tanh βa
2

−2a

)

= β

2a tanh βa2 . (4.28)

Now we can find σ by integrating over a2 and making the substitution u = cosh βa
2 ,

σ = β

2

∫ tanh βa
2

a
da2 = 2

∫ 1
u
du = 2 ln

(
cosh βa2

)
+ C

= 2 ln
(
1 + e−βa

)
+ βa+ C ′. (4.29)

Remembering that a = Ep ± µ and omitting terms that do not depend on β, we insert eq.
(4.29) into eq. (4.23) and get

lnZ = 2V
∫

d3p

(2π)3

[
βEp + ln

(
1 + e−β(Ep−µ)

)
+ ln

(
1 + e−β(Ep+µ)

)]
. (4.30)

From this expression we can calculate all the thermodynamical quantities we need, so
we do not need to rewrite this any further. The first term is a divergent vacuum term,
and the two others are contributions from particles (second term) and antiparticles (third
term). We will see that the term coming from antiparticles will not contribute to any of the
thermodynamical quantities at zero temperature and positive chemical potential.
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Chapter 4. Ideal Fermi gas

4.2 The thermodynamical quantities
The thermodynamical relations are given by eqs. (3.6) to (3.9). The pressure becomes

p = 2
β

∫
d3p

(2π)3

[
βEp + ln

(
1 + e−β(Ep−µ)

)
+ ln

(
1 + e−β(Ep+µ)

)]
, (4.31)

which in the zero-temperature limit reduces to

2 · 4π
(2π)3

∫
dp p2 [θ(µ− Ep)(µ− Ep)] + 2

∫
d3p

(2π)3 Ep. (4.32)

Here we used that

lim
T→0

T ln
(

1 + e−(Ep±µ)/T
)

=
{

0 , Ep ± µ > 0
−(Ep ± µ) , Ep ± µ < 0 , (4.33)

which is the Heaviside step function multiplied with −(Ep ± µ). The contribution from
antiparticles in eq. (4.32) is zero becauseEp+µ is always larger than zero. The heavyside
step function θ(µ−Ep) is zero when the energy is larger than the chemical potential. Let
us therefore introduce the Fermi momentum pF which is the largest occupied momentum,
corresponding to the energy state Ep = µ. The first integral in eq. (4.32) will thus vanish
for momentum larger than pF . We then have µ =

√
p2
F +m2 = m

√
x2
F + 1, where

xF = pF
m . The divergent vacuum term of eq. (4.32) can be calculated using dimensional

regularisation, changing the dimension of the integral from d = 3 to d = 3 − 2ε where ε
is an infinitesimal number. In the limit ε→ 0 we obtain the physical result. To make sure
the action, and thus the Lagrangian still have the same dimension as before, we also have
to multiply the vacuum integral by the renormalisation scale

( eγ
4π
)ε Λ2ε with [Λ] = MeV.

The factor
( eγ

4π
)ε

is added for later convenience.3 Now

p = 1
π2

∫ pF

0
dp p2 [µ− Ep] + 2

(
eγ

4π

)ε
Λ2ε

∫
d3−2εp

(2π)3−2ε Ep

≡ I1 + I2. (4.34)

Let us start by integrating I1:

I1 = 1
π2

∫ pF

0
dp p2 [µ− Ep]

= m4

π2

∫ xF

0
dx x2

[√
x2
F + 1−

√
x2 + 1

]
= m4

24π2

[(
2x3

F − 3xF
)√

x2
F + 1 + 3 sinh−1 xF

]
= 1

24π2

[
µ
(
2µ2 − 5m2)√µ2 −m2 + 3m4 ln

(
µ+

√
µ2 −m2

m

)]
. (4.35)

3When we multiply the renormalisation scale Λ by the factor
(

eγ
4π

)ε
, we work in the MS scheme. In the

renormalisation procedure we then absorb the constant terms γ + ln 4π in addition to the divergent 1
ε

arising
from dimensional regulatisation. If we multiply only by Λ instead, we work in the MS scheme where solely the
divergent terms are absorbed.
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4.2 The thermodynamical quantities

Here we used the relations m2x2
f = µ2−m2 and sinh−1 x = ln

(
x+
√
x2 + 1

)
. We next

integrate I2, using that the surface area of the unit sphere in d dimensions is 2πd/2

Γ(d/2) , where
Γ(z) is Euler’s gamma function:

I2 = 2
(

eγ

4π

)ε
Λ2ε

∫
d3−2εp

(2π)3−2ε Ep

= 4
(

eγ

4π

)ε
π3/2−εΛ2ε

(2π)3−2εΓ
( 3

2 − ε
) ∫ ∞

0
dp p2−2ε

√
p2 +m2, (4.36)

and performing the momentum integral gives

I2 =
4
(
eγΛ2)ε

(4π)3/2Γ
( 3

2 − ε
)m4Γ

( 3
2 − ε

)
Γ(−2 + ε)

2m2εΓ
(
− 1

2
)

= m4

4π3/2

(
eγ Λ2

m2

)ε Γ(−2 + ε)
Γ
(
− 1

2
) . (4.37)

Using the identities Γ(1/2) =
√
π, zΓ(z) = Γ(z + 1) and Γ(ε) = 1

ε − γ + O(ε), where
γ ≈ 0.577 is the Euler-Mascheroni constant, we can expand I2 in orders of ε,

I2 = m4

4π3/2

(
eγ Λ2

m2

)ε Γ(−2 + ε)
Γ
(
− 1

2
)

= m4

4π3/2

[
1 + ε

(
γ + ln Λ2

m2

)
+O(ε2)

]
Γ(ε)

−2
√
π(−2 + ε)(−1 + ε)

= −m
4

8π2

[
1 + ε

(
γ + ln Λ2

m2

)
+O(ε2)

] [
1
ε
− γ +O(ε)

]
1
2

(
1− ε2 − 3ε

2 +O(ε2)
)

= −m
4

16π2

[
1
ε

+ ln Λ2

m2 + 3
2 +O(ε)

]
. (4.38)

Dropping terms of order ε, our final expression for the pressure reads

p = 1
24π2

[
µ
(
2µ2 − 5m2)√µ2 −m2 + 3m4 ln

(
µ+

√
µ2 −m2

m

)]

− m4

16π2

(
1
ε

+ ln Λ2

m2 + 3
2

)
. (4.39)

We have split the pressure into two parts; one density-dependent part and one vacuum part.
More interestingly, we get a negative pressure in vacuum (µ = 0). In chapter 6 we will
extract the vacuum term from the pressure and add it to an effective bag pressure, which
we will use to mimic quantum chromodynamics (QCD) interactions.

As Z is proportional to V , we found p = lnZ
βV . From eq. (3.7) we then get ρ = ∂p

∂µ ,
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Chapter 4. Ideal Fermi gas

which is straightforward to calculate using eq. (4.34). The particle density is thus

ρ = ∂p

∂µ
= 1
π2

∫ xF

0
dx x2

= m3

3π2x
3
F

= 1
3π2

(
µ2 −m2)3/2 . (4.40)

We see from this expression that no particles are present as long as µ ≤ m i.e. the vacuum
persists until the chemical potential of a particle is larger than its mass. The energy density
is given by eq. (3.9). However, it is easy to verify that the term TS is zero when T = 0,
so we are left with

ε = µρ− 1
V

∂ lnZ
∂β

= µρ− 1
π2

∫
dp p2

[
Ep + −(Ep − µ)e−β(Ep−µ)

1 + e−β(Ep−µ)

]
. (4.41)

In the zero-temperature limit this reduces to

ε = µ

3π2

(
µ2 −m2)3/2 − 1

π2

∫
dp p2(µ− Ep)θ(µ− Ep)−

1
π2

∫
dp p2Ep. (4.42)

Here we used that

lim
T→0

e−(Ep−µ)/T

1 + e−(Ep−µ)/T =
{

0 , Ep ± µ > 0
1 , Ep ± µ < 0 , (4.43)

which is just another representation of the Heaviside step function. We recognise the
integrals in eq. (4.42) as I1 and I2, so the final expression for the energy density is

ε = µρ− p

= 1
24π2

[
µ
(
6µ2 − 3m2)√µ2 −m2 − 3m4 ln

(
µ+

√
µ2 −m2

m

)]

+ m4

16π2

(
1
ε

+ ln Λ2

m2 + 3
2

)
. (4.44)

With the pressure and energy density determined, we can find the equation of state,
ε(p). We cannot find the EoS analytically from the general expressions (4.39) and (4.44),
but both are parameterised by µ, so we can find out how they are related numerically.
However, if we look at the ultrarelativistic limit wherem2/µ2 � 1, the expressions (4.39),
(4.40) and (4.44) simplify to

p→ µ4

12π2 , (4.45)

ρ→ µ3

3π2 , (4.46)

ε→ µ4

4π2 , (4.47)
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4.2 The thermodynamical quantities

and we obtain the simple EoS ε = 3p. As quark stars are extremely dense objects, taking
the ultrarelativistic limit will be a good approximation to the more general expressions
(4.39), (4.40) and (4.44). Our effort and work for finding the pressure, number density and
energy density will be made useful in the section 5.2.2, where we solve the TOV equation
using the ultrarelativistic EoS ε = 3p.
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Chapter 5
The Tolman-Oppenheimer-Volkoff
equation

Due to the extreme density of the quark star, the gravitational field is so strong that general
relativity plays a central role in the physics describing them. However, as we in this
thesis focus on particle physics and use quantum field theory to study the star, a detailed
derivation of the Tolman-Oppenheimer-Volkoff (TOV) equation is not our main concern.
We will thus assume that the reader is familiar with the basics of general relativity and
derive the TOV equation accordingly. For a detailed introduction to general relativity we
refer to e.g. [13] or [14].

5.1 Deriving the TOV equation
The TOV equation is derived under the following assumptions:

1. The star is spherically symmetric and the gravitational field is static and isotropic.
We can then write the metric as

ds2 = A(r)dt2 −B(r)dr2 − r2 (dθ2 + sin2 θdφ2) . (5.1)

2. Matter constitutes a perfect fluid. The energy-momentum tensor is then [15]

Tµν = (ε+ p)uµuν − pgµν , (5.2)

where p, ε and uµ are the pressure, energy density and four-velocity of the fluid
respectively, and gµν is the metric tensor.

3. The system is in hydrostatic equilibrium, i.e. the fluid is at rest or moving with a
constant velocity. This implies that u and the time derivatives of p, ε and gµν are
zero.
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Chapter 5. The Tolman-Oppenheimer-Volkoff equation

In addition, gµν is related to Tµν and the Ricci tensorRµν by the Einstein’s field equations,

Rµν −
1
2gµνR = 8πGTµν . (5.3)

Here, R ≡ gµνRµν is the Ricci scalar, or curvature scalar, and G is the gravitational
constant. Assumption 2 and 3 imply that only the diagonal components of the energy-
momentum tensor are nonzero,

T =


εA 0 0 0
0 pB 0 0
0 0 pr2 0
0 0 0 pr2 sin θ

 . (5.4)

Here we also used that gµνuµuν = 1, and since u = 0 we must have u0u0 =
(
g00)−1 =

A. It follows from the last assumption that the only nonzero components of the Ricci
tensor is on the diagonal. These four components can be found using the definition of the
Ricci tensor [15]:

Rµν = ∂αΓαµν − ∂νΓαµα + ΓαµνΓβαβ − ΓβναΓαµβ , (5.5)

where Γµνα are the Christoffel symbols defined as

Γµνα = 1
2g

µβ (∂νgβα + ∂αgνβ − ∂βgνα) . (5.6)

The calculation of these components is quite involved, so I will not go through the details
here. After some tensor calculations the various components read

R00 = A′′

2B −
A′

4B

(
A′

A
+ B′

B

)
+ A′

rB
(5.7)

R11 = −A
′′

2A + A′

4A

(
A′

A
+ B′

B

)
+ B′

rB
(5.8)

R22 = 1− r

2B

(
A′

A
− B′

B

)
− 1
B

(5.9)

R33 = sin2 θR22, (5.10)

where the prime denotes differentiation with respect to r. We will use these equations
together with eq. (5.3) to find the unknown functions A(r) and B(r). Let us start by
isolating B(r) by writing out a sum of the eqs. (5.7) to (5.10):

R00

2A + R11

2B + R22

r2 = B′

rB2 −
1
r2B

+ 1
r2 . (5.11)

We also notice that the left hand side of this equation can be rewritten in the same form as
Einstein’s field equations,

R00

2A + R11

2B + R22

2r2 + R33

2r2 sin2 θ
= R00

A
− 1

2R

= 1
A

(
R00 −

1
2g00R

)
= 8πεG. (5.12)
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5.1 Deriving the TOV equation

The last equality we recognised as eq. (5.3) with µ = ν = 0 and T00 = εA. Now, setting
the right hand side of eq. (5.11) and eq. (5.12) equal, we get an equation for B(r):

8πεG = B′

rB2 −
1
r2B

+ 1
r2 . (5.13)

This yields

1− 8πr2εG = 1
B
− B′r

B2

=
( r
B

)′
. (5.14)

Furthermore, the mass inside a sphere of radius r is1

M(r) =
∫ r

0
4πr̃2ε(r̃) dr̃, (5.15)

so integrating eq. (5.14) gives

B(r) =
(

1− 2GM(r)
r

)−1
. (5.16)

To determine A(r), we need the equation for energy and momentum conservation,

0 = Tµν;µ ≡ ∂µTµν + ΓαµαTµν + ΓναµTµα

= 1√
−g

∂µ
(√
−gTµν

)
+ ΓναµTµα. (5.17)

Here we used the relation Γαµα = 1√
−g∂µ

√
−g derived in Appendix A.2. Inserting the

energy-momentum tensor for perfect fluids, eq. (5.2), yields

0 = −∂µ (pgµν)− pgµν√
−g

∂µ
√
−g + Γναµ

[
(ε+ p)uµuα − pgµα

]
. (5.18)

Note that we used assumption 3 here by setting uµ∂µ
√
−g = 0 and ∂µ(ε + p)uµuν = 0.

This equation must hold for each index ν. If we multiply both sides by gνβ and set ν = 1,
our equation reduces to (see appendix A.3 for a derivation)

p′ = −1
2(p+ ε)A

′

A
, (5.19)

or
A′

A
= − 2p′

p+ ε
. (5.20)

1Note that ε(r) is only a function of r, or else the star would not be spherically symmetric and assumption 1
would be violated.
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Since R22 only depends on A through A′/A, we can eliminate the A dependence from eq.
(5.9). We can also eliminate B from R22 by using eq. (5.16) and

B′

B2 = −
(

1− 2GM
r

)−2(
−2G
r

4πr2ε+ 2GM
r2

)(
1− 2GM

r

)2

= 2G
(

4πrε+ M

r2

)
. (5.21)

R22 can now be written as

R22 = 1 +
(
rp′

p+ ε
− 1
)(

1− 2GM
r

)
+G

(
4πr2ε+ M

r

)
. (5.22)

Furthermore, multiplying eq. (5.3) by gµν , we get

R− 4
2R = 8πGTµµ , (5.23)

where we used gµνgµν = δµµ = 4. Evaluating the trace, we obtain

⇒ R = −8πG(ε− 3p). (5.24)

Using this result and eq. (5.3), we can also express R22 as

R22 = 1
2g22R+ 8πGT22

= 4πGr2(ε− 3p) + 8πGpr2

= 4πGr2(ε− p). (5.25)

Combining eq. (5.22) and eq. (5.25) gives

4πGr2(ε− p) = 1 +
(
rp′

p+ ε
− 1
)(

1− 2GM
r

)
+G

(
4πr2ε+ M

r

)
. (5.26)

The 4πGr2ε terms cancels, and by rearranging we find

rp′

p+ ε
− 1 = −

4πGr2p+ 1− GM
r

1− 2GM
r

. (5.27)

Finally, isolating p′(r) on the left hand side yields

p′(r) = −
[
p+ ε

r

] 4πGr2p+ 1− GM
r − 1 + 2GM

r

1− 2GM
r

= −G
r

[p(r) + ε(r)]4πr
4p(r) +M(r)
r − 2GM(r) , (5.28)

which is the Tolman-Oppenheimer-Volkoff equation. The importance of the EoS becomes
clear now, as we can use it to eliminate ε in favour of p.
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5.2 Solving the TOV equation

5.2 Solving the TOV equation
In this thesis we will solve the TOV equation numerically using Mathematica [16]. As
the TOV equation is a differential equation containing two unknown functions, p(r) and
M(r), we have to couple it with another equation involving one or both of these functions.
We already know that M ′(r) = 4πr2ε from eq. (5.15) and can thus use this as the second
equation. Up until now we have used natural units where all quantities are expressed in
units of MeV. When describing a quark star, however, it is disconvenient to express the
mass in MeV and radius in (MeV)−1. Hence, we will not use natural units when solving
the TOV equation, but rather express the mass in terms of solar masses M� and radius
as km. Furthermore, numerical calculations are easier to perform using dimensionless
variables. We therefore introduce the dimensionless variables M̃(r) ≡ M(r)

M�
, p̃ ≡ p(r)

ε0

and ε̃(r) ≡ ε(r)
ε0

for the mass, pressure and energy density respectively. Here ε0 is some
free parameter with dimension energy density. The two coupled equations can now be
written as

dp̃

dr
= −R0

r
[p̃(r) + ε̃(r)] M̃(r) + αr3p̃(r)

r − 2R0M̃(r)
(5.29)

dM̃

dr
= αr2ε̃(r), (5.30)

where we introduced the constant R0 = GM�
c2 = 1.477 km and α = 4πε0

M�c2 . Because ε0 is

a free parameter, so is α. Both eqs. (5.29) and (5.30) are written in dimension km−1 since
[α] = km−3.

5.2.1 Finding the mass-radius relation
To solve the TOV equation we need two initial conditions in addition to the EoS. One
of these is intuitive; the mass at the center of the star must be zero, m(0) = 0. The
second initial condition is p(0) = pc, where pc is the pressure at the center. Because we
do not know central pressure, the solution of the TOV equation will be parameterised by
pc. Varying pc will thus give different masses and radii of the star. With Mathematica
we can solve coupled differential equations using the built-in function NDSolve. Solving
the TOV equation gives p(r) and m(r), where r is the distance to the center of the star.
The radiusR of the star is defined as the distance to the center where the pressure becomes
zero, p(R) = 0, and the mass of the star is defined asM ≡M(R). If we solve the coupled
eqs. (5.29) and (5.30) for successive values pc, we can find approximations of the radius
and mass of the star as functions of pc. These functions can be used to find a relation
between the mass of a star and its radius. The procedure for doing this is as follows:

1. Make a loop that goes from i = 1 to i = N .

2. Solve the coupled eqs. for pc = pc,i, and find the radius and mass of the star corre-
sponding to this central pressure. Now, make two arrays with N × 2 components;
one for saving mass values, and one for saving values of the radius. R and M̃ is writ-
ten in component [i, 2] of its corresponding array, and pc is written in component
[i, 2].
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3. Increase pc by a small amount, say pc = pc,i + pc,max−pc,min
N−1 , where pc,min ≡ pc,1

and pc,max ≡ pc,N are the smallest and largest central pressures the TOV eq. is
solved for. Also increase i by one and close the loop.

4. Use the built-in Mathematica function Interpolation on the two arrays. This
will give approximations of the mass and radius as functions of the central pressure.

5. Finally, plot the mass as function of radius using e.g. Mathematicas ParametricPlot.

A full Mathematica code where this procedure is included can be found in Appendix B.

5.2.2 Ideal Fermi gas revisited
In the previous chapter we found the pressure, energy density and particle density for an
ideal Fermi gas and saw that the EoS in the ultrarelativistic regime is ε = 3p. When study-
ing a quark star, we have to take into account that quarks have some additional properties
other than half integer spin. First of all, there are several different quark flavours, each with
a unique mass mf and chemical potential µf . The flavour of a quark simply tells us what
type of quark it is, e.g. up (u) or down (d) quark. We therefore have to sum eqs. (4.45) to
(4.47) over all flavours f . Another important property to account for is the colour charge,
which is a property assigned to quarks and gluons to explain why quarks never have been
observed as free particles.2 Quarks carries one out of three types of colours, and antiquarks
carries one out of three anticolours, which simply is negative colourcharge. To account for
all the different colours the quarks can have, we have to multiply the eqs. (4.45) to (4.47)
by the number of colours Nc = 3. For quarks, the pressure, particle density and energy
density thus becomes

p = Nc
12π2

∑
f

µ4
f , (5.31)

ρ = Nc
3π2

∑
f

µ3
f , (5.32)

ε = Nc
4π2

∑
f

µ4
f = 3p. (5.33)

We now solve the TOV equation using this EoS. The result is shown in Fig. 5.1. We see
that the pressure never becomes zero, and that the mass diverges as the radius of the star
goes to infinity. Since all compact stars obviously have finite radii and finite mass, these
results are unphysical.

2It is believed that only colour singlet states can exist as free particles [17], however, there is still ongoing
a lot of research in the field of colour confinement, see e.g. [18]. Baryons are made up of three quarks with
different colour. The three colours combined will neutralise and make the baryon colourless. Mesons consists of
one quark and one antiquark. The antiquark carries the anticolour corresponding to the quark’s colour, making
the meson colourless as well.
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(a) Pressure distribution inside the star.
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(b) Mass distribution in terms of solar masses

Figure 5.1: A quark star described using the EoS for an ultrarelativistic ideal Fermi gas.
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Chapter 6
Effective Bag models

So far we have treated the quarks as free particles. However, we saw in the previous
chapter that neglecting quark interactions gave unphysical results, as we got no constraints
on the mass of the star and an infinite radius. Now it is time to introduce interactions
between the particles. This can be done in several different ways, but in this thesis we
will restrict ourselves to using bag models and a quark-meson model. The first bag model
was invented at MIT by Chodos et al. in 1974 [19]. Later, several other bag models have
been used to describe quark confinement and asymptotic freedom. We will first briefly
consider the original bag model proposed by Chodos et al., and later, we will consider a
quark-meson model.

6.1 Equilibrium requirements
When stars are born they are almost exclusively made out of hydrogen and helium. This
makes stars globally electrically neutral objects. The electrical neutrality is also assumed
to be valid after the star’s death, as there would be an energy penalty for the quark star
to carry charge after the supernova event. We therefore implement the charge neutrality
condition for quark stars by demanding

0 =
∑
f

Qfρf − eρe, (6.1)

where Qf is the electrical charge of quark flavour f , ρe is the electron number density and
e is the elementary charge. Note that we also demand local charge neutrality with eq. (6.1).
In addition to the required charge neutrality, neutron stars must be in chemical equilibrium
with respect to β-decay and electron capture mentioned in the introduction. This balances
the amount of protons, electrons and neutrons in the star via the weak processes

n→ p+ e+ ν̄e, (6.2a)
p+ e→ n+ νe. (6.2b)
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After the phase transition to quark matter, the corresponding processes for three-flavour
quark matter read [1]

d↔ u+ e+ ν̄e, (6.3a)
s↔ u+ e+ ν̄e, (6.3b)

s+ u↔ d+ u. (6.3c)

We will assume that the neutrinos and anti-neutrinos leave the star without further inter-
actions, i.e. that µνe = µν̄e = 0. This might, however, be a daring approximation due to
the uncertainty of the neutrino mean free path (MFP) in compact stars. Studies indicate a
MFP in neutron stars of the order 10−100 m [20, 21], which is a few times lower than the
radii of compact stars. Ignoring the effects this might have, we get the following relations
between the quark and electron chemical potentials

µd = µe + µu, (6.4a)
µs = µe + µu, (6.4b)
µs = µd. (6.4c)

Moreover, we can use eqs. (6.1) and (6.4) to express all the chemical potentials in terms
of a single chemical potential µ. In this thesis, we will mostly set µ = µB , where µB ≡∑
f µf for three flavours and µB ≡ µu + 2µd for two flavours, is the baryon chemical

potential. We thus use µB as the only independent chemical potential. These relations
can generally not be found analytically, but as a starting point we can express the quark
chemical potentials in terms of two independent chemical potentials, µe and µB , as follows

µu = 1
3µB −

2
3µe, (6.5a)

µd = µs = 1
3µB + 1

3µe. (6.5b)

As an example of an analytic relation between the quark chemical potentials, we have for
three flavours, in the ultra relativistic regime, µu = µd = µs = 1

3µB and µe = 0.

6.2 MIT bag model

The phenomenon that quarks are never found isolated is called quark confinement. One
model which tries to describe quark confinement and asymptotic freedom is the MIT Bag
Model. This is a simple model which imposes that quarks move freely inside a finite
region with a constant energy per unit volume B, called the bag constant. This finite
region, which visually can be thought of as a bag, will restrict further stretching as this
will cost energy proportional to the bag constant. The bag will thus also act as an external
pressure in addition to the internal energy density, providing an energy difference between
the inside and outside of the bag. We can now directly write down the pressure and energy
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density from eqs. (5.31) and (5.33)

p = Nc
∑
f

µ4
f

12π2 −B, (6.6)

ε(p) = 3Nc
∑
f

µ4
f

12π2 +B = 3p+ 4B. (6.7)

Using eq. (6.7) as equation of state, the coupled equations from section 5.2 become

dp̃

dr
= −4R0

[
p̃(r) + B̃

r

] [
M̃(r) + αr3p̃(r)
r − 2R0M̃(r)

]
, (6.8)

dM̃

dr
= αr2

[
3 ˜p(r) + 4B̃

]
, (6.9)

where B̃ = B
ε0

.

6.2.1 The bag window
Before we can solve these equations, we need to know what values B can take. Ordinary
nuclear matter (matter made out of neutrons and protons) is seen in nature, but two-flavour
deconfined quark matter is not. We can use this to find a minimum value of B. The most
stable nuclei is 56Fe, with an energy per nucleon of about 930 MeV [22]. Hence, at zero
external pressure, p = 0, the energy E per nucleon number A for two-flavour deconfined
quark matter must be larger than 930 MeV, i.e.

E

A

∣∣∣∣
Nf=2

= ε(0)
ρB

> 930 MeV, (6.10)

where ρB ≡ 1
3
∑
f

ρf is the baryon number density and Nf is the number of flavours. For

simplicity we shall now assume that all the quarks are massless (ultrarelativistic regime)
and that no electrons are present. We will then have ρd = 2ρu to satisfy the charge
neutrality condition, which in turn implies that µd = 21/3µu. The energy density and
baryon number density can now be found using eqs. (4.46) and (6.7), and reads

ρB = µ3
u

π2 , (6.11)

ε(0) = 4B. (6.12)

Moreover, from eq. (6.6) the bag constant at zero external pressure and equal chemical
potentials becomes

B =
(
1 + 24/3)µ4

u

4π2 . (6.13)

Combining eqs. (6.10) – (6.13), we have

E

A

∣∣∣∣
Nf=2

=
(
4π2)1/4 (1 + 24/3

)3/4
B1/4 > 930 MeV, (6.14)
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i.e. B1/4 > 144.4 MeV.
Following the same procedure as above for three flavour quark matter, still assuming

massless quarks, we find ρu = ρd = ρs and thus µu = µd = µs ≡ µ. Hence, for Nf = 3,
eqs. (6.11) – (6.13) reads

ρB = µ3

π2 , (6.15)

ε(0) = 4B, (6.16)

B = 3µ4

4π2 . (6.17)

We now obtain the energy per nucleon

E

A

∣∣∣∣
Nf=3

=
(
4π2)1/4 33/4B1/4. (6.18)

As
(
4π2)1/4 33/4 ≈ 5.714 < 6.441 ≈

(
4π2)1/4 (1 + 24/3)3/4, the energy per nucleon is

lower for three flavour deconfined quark matter than for two flavours. This is also expected
from the Pauli exclusion principle, as adding a particle species while keeping the total
number of particles constant makes new low-energy eigenstates available, reducing the
total energy of the system. Thus, if the bag constant is slightly larger than 144.4 MeV, but
low enough for three-flavour deconfined quark matter to have a lower energy per baryon
than 56Fe, deconfined quark matter would be absolutely stable for three flavours at zero
external pressure. The upper limit of the bag constant for this to be the case is found using

E

A

∣∣∣∣
Nf=3

< 930 MeV, (6.19)

which yields
B1/4 < 162.8 MeV. (6.20)

6.2.2 Strange quark matter hypothesis
The hypothesis that three flavour quark matter, or strange quark matter, is absolutely sta-
ble were suggested by Bodmer [23] and Witten [24] and is called the strange quark matter
hypothesis. It would be realised if the bag constant is in the interval 144.4 MeV < B1/4 <
162.8 MeV. The phase transition from ordinary nuclei to strange quark matter will, how-
ever, require a huge amount of energy because a large number of the u and d quarks in the
nucleons must simultaneously be converted into s quarks via the weak interaction. As this
is practically impossible, the observation of ordinary nuclei does not rule out the strange
quark matter hypothesis. In order for strange matter to exist, it must thus be created in
some other way. Assuming that the hypothesis is true, if a neutron star is hit by a large
enough strangelet (a “lump” of strange quark matter), the conversion from u and d quarks
to s quarks would increase the size of the strangelet. Thus, we would not need the large
amount of simultaneous conversions described above. This process would not reverse, as
this would require simultaneous conversions of the s quarks in the strangelet via the weak
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interaction. Hence, the strangelet would successively convert the whole neutron star into
a pure quark star.

If the strange quark matter hypothesis is true, a quark star can in theory have less mass
than neutron stars, because a pure quark star will then be bound by the strong force, and
not gravitationally bound like ordinary neutron stars are. A quark star will also have a
smaller radius than a neutron star with equal mass and can possibly rotate faster than al-
lowed for a neutron star. Two possible quark star candidates discussed in the literature are
SAX J1808.4-3658 and RX J1856.5-3754 [25, 26, 27]. They seem to have a smaller radius
than allowed by an ordinary neutron star.

Strangelets could e.g. be created in the early universe during the QCD phase transi-
tion, via heavy ion collisions, or in the core of neutron stars. However, if strangelets are
in fact stable, and there is enough large strangelets to convert neutron stars into quarks
stars, all neutron stars would eventually be converted into quark stars. This implies that
the observation of a single pure neutron star would rule out the strange quark matter hy-
pothesis. Bauswein et al. [28] discussed that there may not be enough strangelets around
to convert all neutron stars into quark stars, and that more compact quark stars could coex-
ist with neutron stars even if the strange quark matter hypothesis is wrong. For a detailed
discussion of strange quark matter, see Weber [26] or Glendenning [22]. Weber et. al. also
discuss the possibility of quark stars with a crust of nuclear matter in [29].

6.2.3 Mass-radius relation

Solving the coupled eqs. (6.8) and (6.9) by following the procedure described in section
5.2.1, we get a plot for the relation between the mass and radius of the quark star. The
result is shown in Fig. 6.1. The central pressure is smallest in the lowest and leftmost
point, and increases along the curve from there. We see that including the bag-constant to
the ideal Fermi gas EoS gave us finite radii and masses of the star. The maximum masses
and corresponding radii are listed in Table 6.1.

B1/4 [MeV] Mmax [M�] R [km]
145 2.00 10.9
155 1.75 9.57
162 1.61 8.76

Table 6.1: Maximum masses with corresponding radii for different values of B.

In the next section we will extract a density dependent bag pressure from a quark-
meson model. This bag pressure will give us a different EoS than those we have studied
so far.
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Figure 6.1: The mass - radius relation when using the MIT bag model with different values for B.

6.3 Two-flavour quark-meson model
In 1960, Gell-Mann and Lévy proposed the linear sigma model (LSM), which tries to
describe the strong interaction at low energies [30]. At low energies, i.e. long distances, the
degrees of freedom are the baryons and mesons, and at the time the LSM was developed,
it was believed that the strong interactions were between hadrons [9]. Hence, the LSM
originally describes interactions amongst mesons, but can be coupled to quarks by the
Yukawa interaction. The Lagrangian of the LSM with two quark flavours (quark-meson
model, or LSMq) is

L = Tr
[
(∂µΦ)2]+m2Tr

[
Φ2]+ λ

3 Tr
[
Φ2]2 − 1

2hTr
[
Φ† + Φ

]
+ q̄[i/∂ + µfγ

0]q − gq̄[σ + γ5τ · π]q, (6.21)

where Φ = 1
2 (σ + τ · π) is a linear combination of the sigma field (or f0(500) [31]), and

the three pions π−, π0 and π+. Moreover, τ are the Pauli matrices and q̄ and q denotes
the quark fields. The first line of the Lagrangian, (6.21), is the ordinary LSM. The first
term on the second line is the quark term, describing free quarks with a chemical potential
µf , and the last term is the Yukawa interaction term. If h = 0 this Lagrangian is invariant
under SU(2)L × SU(2)R × U(1)B × U(1)A [32], while h 6= 0 explicitly breaks chiral
symmetry, reducing the symmetry to SU(2)V × U(1)B × U(1)A.

6.3.1 The thermodynamical potential
The meson part of eq. (6.21) written in terms of the sigma and pion fields is

Lmeson = 1
2[(∂µσ)2 + (∂µπ)2] + 1

2m
2(σ2 + π2) + λ

24(σ4 + π4) + λ

12σ
2π2 − hσ

= 1
2[(∂µσ)2 + (∂µπ)2] + V (σ,π). (6.22)
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If the mass parameter m2 is negative, the tree-level potential1 V (σ,π) have a minimum.
With no loss of generality, we can choose the minimum of the potential to point in the
direction of σ, orthogonal to πi. If we then expand σ around the classical vacuum expec-
tation value 〈σ〉0 = v,

σ → v + σ̃, (6.23)

where σ̃ is quantum fluctuations, we have 〈σ̃〉0 = 〈π〉0 = 0, and the expression for V in
vacuum becomes

V0 = 1
2m

2v2 + λ

24v
4 − hv. (6.24)

The value of v that minimises V0 is equal to the pion decay constant (divided by
√

2,
depending on convention), fπ = 93 MeV, which is measured experimentally [31].2 We
thus get a relation between the coupling constant λ, the negative mass parameter m2 and
the symmetry breaking term h,

λ = 6
f3
π

(h− fπm2). (6.25)

By taking the second derivative of V (σ,π) in eq. (6.22) with respect to σ or πi and
inserting their expectation values, we get the tree-level masses squared for the sigma and
pion fields respectively,

m2
σ = ∂2V (σ,π)

∂σ2

∣∣∣∣
σ=〈σ〉,π=〈π〉

= m2 + λ

2 〈σ〉
2 + λ

6 〈π〉
2
, (6.26)

m2
πi = ∂2V (σ,π)

∂π2
i

∣∣∣∣
σ=〈σ〉,π=〈π〉

= m2 + λ

6 〈σ〉
2 + λ

2 〈π〉
2
. (6.27)

In the vacuum eqs. (6.26) and (6.27) read

m2
σ = m2 + λ

2 v
2, (6.28)

m2
πi = m2 + λ

6 v
2. (6.29)

In the vacuum minimum, v = fπ , and we see from eq. (6.25) that h = fπm
2
π . Note that the

pion becomes massless when h = 0, i.e. when chiral symmetry is not explicitly broken.
As mentioned earlier, when h = 0, Lmeson is invariant under SU(2) × SU(2) ∼= SO(4)
[33]. However, as the vector (v, 0, 0, 0) is only symmetric under rotations of the last three
indices, the symmetry is broken down to SO(3) by the nonzero vacuum minimum. As
SO(4) got 4(4 − 1)/2 = 6 generators while SO(3) only got 3(3 − 1)/2 = 3 generators,
this leads to three broken generators, which according to Goldstone’s theorem yields three
massless particles [34]. Thus, the three pions are recognised as the massless goldstone
bosons. The bare mass m2 and the bare coupling constant λ in eqs. (6.28) and (6.29) are

1Here, the potential actually is an energy density, which is easily seen asL in (6.21) is the Lagrangian density.
2An explanation of this non-intuitive equality, can be found in [9], p. 341–342.
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given by the sigma and pion masses as

m2 = −1
2(m2

σ − 3m2
π), (6.30)

λ = 3
f2
π

(m2
σ −m2

π). (6.31)

We have now determined the constants we need in the tree-level vacuum potential
(6.24), so it is time to include the contribution from the quarks. In section 4.2 we calculated
the pressure from free Dirac fermions to one-loop. If these fermions are quarks we just
multiply eq. (4.39) by the number of colours, Nc, and sum over all the flavours involved.
The contribution from the quarks to the thermodynamical potential is given by eq. (3.10)
which reduces to Vq = −p. We can rewrite Vq as a function of v and the chemical potential
µf . To find Vq(v), we read from the Lagrangian (6.21) that the quark mass-term is gσ = gv
if we neglect the quantum fluctuations of the meson fields. Combining eq. (4.39) and
(6.24) and adding electrons we obtain the thermodynamical potential,

V =1
2m

2v2 + λ

24v
4 − hv − µ4

e

12π2 + NcNf
16π2 m

4
q

(
1
ε

+ ln Λ2

m2
q

+ 3
2

)

− Nc
24π2

∑
f

(2µ2
f − 5m2

q

)
µf

√
µ2
f −m2

q + 3m4
q ln


√
µ2
f −m2

q + µf

mq

,
(6.32)

where Nf is the number of flavours. Note that we neglected the electron mass, which is
more than justified, as me = 0.51 MeV while µf ∼ 102 MeV. For simplicity, we only
included the one-loop contribution from the quarks. This potential is divergent due to the
1/ε term coming from the sea quarks.3 This divergence is removed by renormalising the
coupling constant by taking λ→ λ+ δλ in the Lagrangian (6.21). Choosing

δλ = −3NcNfg4

2π2ε
, (6.33)

will remove the divergence. We are now left with a convergent potential which can be
written as a function of the vacuum expectation value v and the chemical potentials µf ,

V =1
2m

2v2 + λ

24v
4 − hv − µ4

e

12π2 + NcNf
16π2 m

4
q

(
ln Λ2

m2
q

+ 3
2

)

− Nc
24π2

∑
f

(2µ2
f − 5m2

q

)
µf

√
µ2
f −m2

q + 3m4
q ln


√
µ2
f −m2

q + µf

mq

.
(6.34)

3Sea quarks are virtual quarks in hadrons and do not contribute to any quantum numbers.
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The renormalisation scale Λ can be determined by requiring that the minimum of the
potential (6.34) in vacuum, µ = 0, remains at v = fπ = 93 MeV:

0 = 4
(

ln Λ2

(gfπ)2 + 3
2

)
+ fπ

(
−2
fπ

)
= ln Λ2

(gfπ)2 + 1. (6.35)

The Yukawa coupling constant g is fixed by the vacuum constituent quark mass m̃q by
g = m̃q/fπ . We will set m̃q = 300 MeV throughout this thesis. This yields

Λ = 182MeV. (6.36)

Let us take a look at the potential in the simple case of equal chemical potentials and
no electrons present. Then, µu = µd ≡ µ and µe = 0. This will obviously break
charge neutrality since two down quarks are needed to neutralise one up quark. We will
set mσ = 800 MeV throughout this thesis unless otherwise stated. The pion mass will
be fixed at either 0 MeV (chiral limit) or 138 MeV (physical point). Fig. 6.2 shows the
potential (6.34) for different values of the quark chemical potential in the chiral limit (Fig.
6.2a) and at the physical point (Fig. 6.2b). In the chiral limit the global minimum jumps
to v = 0 for chemical potentials larger than a critical value µ = µc. The metastable
state which in vacuum is centered around v = fπ thus disappears for µ > µc and a new
metastable state is occur at v = 0. This is a first order phase transition [35]. The critical
value of the chemical potential is µc = 322.137 MeV. When h 6= 0, the minimum goes
continuously to zero when increasing µ as shown in Fig. 6.2b. The phase transition is now
a crossover, as the minimum never reaches zero. Hence, the stable state is always located
at v > 0.

6.3.2 The two-flavour effective bag pressure
In section 6.2 we saw how the MIT bag constant could be used to mimic QCD interactions.
We will adopt the same idea in this section, but now the bag pressure will appear more
naturally. Since we already have a nonzero energy density in the vacuum from eq. (6.34),
we can use the vacuum part of this potential as a bag pressure. However, as we saw in
Fig. 6.2, the location of the minimum of V (v) varies with µ, and the bag pressure must
always be evaluated in the minimum of the thermodynamical potential, as this is the only
physically stable configuration. Hence, we obtain the bag pressure

B(v0) = 1
2m

2v2
0 + λ

24v
4
0 − hv0 + NcNf

16π2 m
4
q

(
ln Λ2

m2
q

+ 3
2

)
, (6.37)

where v0 is the value of v that minimises V (v) for some baryon chemical potential µB . In
this way, the bag pressure is indirectly dependent on µB and thus also all the thermody-
namical functions. It is important to remember that the quark masses mq is also a function
of v, mq = gv. In addition to this complication, we have to satisfy the charge neutral-
ity condition (6.1) and the equilibrium condition (6.5) at every minimum. Moreover, the
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(a) We have a first order phase transition at µ = 322.137 MeV in the chiral limit.
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Figure 6.2: The normalised thermodynamical potential V/f4
π for different values of µ and mπ .
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charge neutrality condition is dependent of v through the quark masses which appear in
ρf . In other words, we must solve the coupled equations

∂V (v)
∂v

= 0, (6.38a)

2
[
µ2
u −mq(v)2]3/2 − [µ2

d −mq(v)2]3/2 − µ3
e = 0 (6.38b)

simultaneously to find the minimum of the potential and the last independent chemical
potential µe. The procedure for finding the bag pressure as a function of e.g. the baryon
number density ρB is similar to that described in section 5.2.1.

1. Choose a starting value for the baryon chemical potential µB = µB,min. To avoid
numerical problems, this value should be close to the largest value of µB that still
describes the vacuum, ρB = 0.4

2. Make a loop that goes from i = 1 to i = N .

3. Solve the coupled equations (6.38). Calculate B(v0) and insert the value in com-
ponent (i, 2) of and N × 2 array. In component (i, 1) we insert the baryon number
density.

4. Increase µ by a small amount, say µB = µB,i + µB,max−µB,min
N−1 , where µB,min ≡

µB,1 and µB,max ≡ µB,N are the smalles and largest physically relevant chemical
potentials. Choosing µB,max in the range 1500 − 1800 MeV should hold. Increase
i by one and close the loop.

5. Use the built-in Mathematica function Interpolation on the array. This will
produce an approximation of the function B(ρB).

But how shall we normalise the bag pressure in the vacuum? For simplicity, we can rewrite
B slightly by subtracting the non-normalised vacuum value,

B(v0)→ B(v0)−B(fπ). (6.39)

This will only change the normalisation of B by giving the actual vacuum value Bvac
of the bag pressure when solving the inequality equivalent to (6.14) for the two-flavour
quark-meson model. In the MIT bag model we chose the bag constant in such a way that
strange quark matter is absolutely stable at zero pressure while two-flavour deconfined
quark matter is unstable. We will do the equivalent here, but now it cannot be done analyt-
ically, as B is not an analytic function of any thermodynamical quantity. However, to find
the upper limit of Bvac for strange quark matter to be absolutely stable, we need to know
the thermodynamical potential for three flavours. Nevertheless, for structural purposes of
this thesis, we will simply state the interval of which Bvac can take values from here, and
paste the Mathematica code used to find the interval in App. B. The result is

27.1 MeV < B1/4
vac < 48.2 MeV. (6.40)

4If you choose the starting value at e.g. µB = 0 so that the next value of µB is less than what is required for
ρB to be positive, you end up with an array which might contain slightly different values for Beff at the same
point, v = fπ . This is due to the uncertainties numerical calculations involve.

45



Chapter 6. Effective Bag models

This is the bag-window for the most general systems we will discuss in this thesis. In
these systems, electrons are included and the quarks have nonzero masses. Moreover, the
up and down quarks have equal masses, mq , and the strange quark have a mass ms 6= mq .
This in turn implies that for three flavours, µu 6= µd = µs 6= µe and for two flavours,
µu 6= µd 6= µe. Including the vacuum renormalisation of B, we can write the effective
bag pressure Beff as

Beff(v0) = B(v0)−B(fπ) +Bvac. (6.41)

Note that we model the compact star as a pure quark star, with no quark confinement, even
though we require that two-flavour quark matter is unstable with respect to hadronic matter
at zero pressure. However, at high enough pressures, two-flavour deconfined quark matter
will take over as the stable state. We will come back to some of the problems in this model
later.

Fig. 6.3 shows the two-flavour effective bag pressure, with a chosen vacuum nor-
malisation of Bvac = (40 MeV)4, as a function of dimensionless baryon number density
ρB/ρ0. The nuclear matter saturation density ρ0 is the number density of the ground
state of nuclear matter at a fixed proton ratio [36]. We will set ρ0 = 0.17 (fm)−3 =
1.306 · 106 (MeV)3, which is the normal nuclear density. We know from Fig. 6.2a that in
the chiral limit, the minimum at v > 0 disappears for values of µB above a certain certain
limit, and a new global minimum appears at v = 0. The consequence of this, is that several
thermodynamical functions become discontinuous in the chiral limit, as we can see from
Beff and ρB in figure 6.3a. The consequence of this is that the interface between the two
phases is sharp. Moreover, the density of the phase on one side of the interface is different
from the density of the phase on the other side of the interface. Furthermore, the potential
has two extrema in the chiral limit (in addition to the one at v = 0) when the chemical
potential is close to the critical value at which the phase transition occurs. One must there-
fore be careful that the bag pressure and the thermodynamical functions are evaluated at
the minimum of the thermodynamical potential, and not the local maximum. At the physi-
cal point, none of these issues are a problem, as the minimum v0 goes continuously to zero
as µB increases, and there is always only one extremum. The dashed line is the limiting
value of Beff as µB →∞.

6.3.3 Mass-radius relation
It is time to finally calculate the mass-radius relation we obtain using this model of quark
matter. For this we need the EoS, which is easy to find numerically using the procedure
described in the previous section. The only adjustments we must do, is swappingBeff with
ε + Beff , and ρB with p− Beff , in accordance with eqs. (6.6) and (6.7). Fig. 6.4 shows a
plot of the EoS for the two-flavour quark-meson model compared to the MIT bag model
EoS. Both the pressure and the energy density are normalised by ε0; the energy density
parameter introduced in section 5.2. The curve is very steep around p = 0. This is due to
the rapid increase in the bag pressure at low densities seen in Fig. 6.3b. For high pressures
(or equivalently, high densities),Beff is approximately constant, and the two-flavour quark-
meson EoS approaches to the ordinary MIT bag model EoS, ε = 3p+4B. To use this EoS
in the TOV equation, we have to tell the program that the pressure is a function of r, that
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Figure 6.3: The effective bag pressure as a function of the baryon number density divided by the
nuclear saturation density ρ0 = 0.17(fm)−3 = 1.306 · 106(MeV)3 at the physical point and in the
chiral limit.
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Figure 6.4: The EoS for the quark-meson model and the MIT bag model compared. For the quark-
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B
1/4
vac [MeV] Mmax [M�] R [km]

28 1.77 11.1
35 1.77 10.8
48 1.76 10.3

Table 6.2: Maximum masses with corresponding radii for different values of Bvac
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Figure 6.5: The mass-radius relation using the two-flavour quark-meson EoS with different normal-
isations of the effective bag pressure. Maximum masses with corresponding radii is shown in Table
6.2.

is ε(p) = ε(p(r)). In Mathematica, this can be done using the With command. Exactly
how this is done is shown in Appendix B. The mass-radius relation obtained by using the
two-flavour quark-meson EoS is shown in Fig. 6.5, and the maximum masses obtained
for the different vacuum normalisations of the bag pressure is written in Table 6.2. We
see that the maximum masses are less dependent on the vacuum renormalisation in the
quark-meson model than in the MIT bag model, see Table 6.1 and Fig. 6.1. For a vacuum
normalisation close to the lowest values in the bag intervals, the MIT bag model clearly
predicts a greater maximum mass than the quark-meson model. However, for vacuum
normalisations around the midpoint of the bag intervals, the two models predict a very
similar maximum mass. When we choose the vacuum normalisation close to the largest
values in the bag intervals, the quark-meson model predicts the largest maximum mass.
We also note that the quark-meson model predicts a larger radius of the maximum-mass
star for all three vacuum normalisations.
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6.4 Three-flavour quark-meson model
The Lagrangian for the three-flavour quark-meson model is [37]

L = Lmeson + Lquark + LYukawa, (6.42)

where

Lmeson = Tr
[(
∂µΦ†

)
(∂µΦ)

]
−m2Tr

[
Φ†Φ

]
− λ1

[
Tr
(
Φ†Φ

)]2
− λ2Tr

[(
Φ†Φ

)2]+ Tr
[
H
(
Φ† + Φ

)]
, (6.43)

Lquark = q̄
(
i/∂ + µfγ

0) q, (6.44)

LYukawa =− gq̄ Ta(σa + iγ5πa)q. (6.45)

IfH = 0, this Lagrangian is symmetric under SU(3)V ×SU(3)A×U(1)B×U(1)A. Here,
Φ = TaΦa = Ta(σa + iπa) is a complex 3× 3-matrix and Ta = λa/2 with a = 0, 1, ..., 8
are the nine generators of the U(3) symmetry, where λa are the eight Gell-Mann matrices

and λ0 =
√

2
3I . Moreover, σa are the scalar fields and πa are the pseudoscalar meson

nonet. q = (u, d, s) is a column vector denoting the quark fields and H = Taha is a
term for explicitly breaking chiral symmetry, corresponding to h in the two-flavour quark-
meson model. The U(3) algebra which Taobey, is given by

[Ta, Tb] = ifabcTc, {Ta, Tb} = dabcTc, (6.46)

with fabc and dabc being the antisymmetric and symmetric structure constants of the
SU(3) group respectively. When one of the indices in the structure constants is zero,
we have the identities

fab0 = 0, dab0 =
√

2
3δab. (6.47)

The generators are normalised to Tr [TaTb] = δab/2. In analogy with the two-flavour
quark-meson model, a nonzero vacuum expectation value 〈Φ〉 of the field Φ spontaneously
breaks the chiral symmetry [38]. Because of this, only the diagonal ofH is nonzero. As λa
has nonzero elements off the diagonal for a 6= 0, 3, 8, and all λa are independent, the only
surviving components are h0, h3 and h8. These components correspond to the vacuum
expectation values 〈σ〉0 ≡ v0, 〈σ〉3 ≡ v3 and 〈σ〉8 ≡ v8 of the scalar fields. We will
again assume that the mass, mq , of the u and d quarks are equal. This is the equivalent
of assuming isospin symmetri SU(2)V , and since the current quark masses of the u and
d quarks differ only by a few MeV, this is a good approximation. However, the strange
quark mass,ms is different from the light quark massmq . The term for explicitly breaking
isospin symmetry is h3. Assuming isospin symmetry, we must thus have h0 6= 0, h3 = 0
and h8 6= 0 (or equivalently, swap h with 〈σ〉). The SU(3)V symmetry now breaks down
to SU(2)V isospin symmetry.

The scalar fields v0 and v8 are a mixture of strange and non-strange parts. However,
it is more convenient to separate the strangeness into a non-strange part vx and a strange
part vy . This is done by the orthogonal basis transformation [37](

vx
vy

)
= 1√

3

(√
2 1

1 −
√

2

)(
v0
v8

)
. (6.48)
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With this transformation, we can find the quark masses in terms of the expectation values
vx and vy . The quark-mass term is

gTa 〈σa〉 = 1
2(λ0v0 + λ8v8), (6.49)

where

λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 . (6.50)

After transforming v0 and v8 and inserting λ0 and λ8, we obtain

g

2 q̄ Ta 〈σa〉 q = g

2(vxu2 + vxd
2 +
√

2vys2), (6.51)

so the quark masses read

mq = g

2vx, (6.52a)

ms = g√
2
vy. (6.52b)

6.4.1 The thermodynamical potential

In Appendix A.4, we show that the tree-level meson potential in the three-flavour quark-
meson model reads

U(σa, πa) =1
2m

2 (σ2
a + π2

a

)
+ λ1

4
(
σ2
aσ

2
b + 2σ2

aπ
2
b + π2

aπ
2
b

)
− haσa

+ λ2

8 (σa − iπa)(σb + iπb)(σc − iπc)(σd + iπd)Fabcd, (6.53)

where the tensor Fabcd is defined as

Fabcd ≡ [ifabe(ifcde + dcde) + iface(−ifbde + dbde) + dade(ifbce + dbce)] . (6.54)

Written in terms of the vacuum expectation values vx and vy , the classical (tree-level)
meson potential is

U(vx, vy) =1
2m

2 (v2
x + v2

y

)
+ λ1

2 v2
xv

2
y + 1

8 (2λ1 + λ2) v4
x

+ 1
8(2λ1 + 2λ2)v4

y − hxvx − hyvy, (6.55)

where h0 and h8 have been transformed into hx and hy according to eq. (6.48). The com-
plete thermodynamical potential is again achieved by adding the one-loop quark potential
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Vq = −p to the meson potential,

V (vx, vy) =1
2m

2 (v2
x + v2

y

)
+ λ1

2 v2
xv

2
y + 1

8 (2λ1 + λ2) v4
x + 1

8(2λ1 + 2λ2)v4
y

− hxvx − hyvy −
µ4
e

12π2 + Nc
16π2

∑
f

m4
f

(
1
ε

+ ln Λ2

m2
f

+ 3
2

)
(6.56)

− Nc
24π2

∑
f

(2µ2
f − 5m2

f

)
µf

√
µ2
f −m2

f + 3m4
f ln


√
µ2
f −m2

f + µf

mf

.
To eliminate the divergent 1/ε-term, we must renormalise the coupling constants. The
divergent term reads

Nc
16π2ε

∑
f

m4
f = Nc

16π2ε

(
2m4

q +m4
s

)
= Ncg

4

16π2ε

(
1
8v

4
x + 1

4v
4
y

)
, (6.57)

which is similar to the term involving λ2. Thus, by making the substitution λ2 → λ2 +δλ2
with

δλ2 = − Ncg
4

16π2ε
, (6.58)

the divergences are cancelled. We thus end up with the finite, renormalised thermodynam-
ical potential

V (vx, vy) =1
2m

2 (v2
x + v2

y

)
+ λ1

2 v2
xv

2
y + 1

8 (2λ1 + λ2) v4
x + 1

8(2λ1 + 2λ2)v4
y

− hxvx − hyvy −
µ4
e

12π2 + Nc
16π2

∑
f

m4
f

(
ln Λ2

m2
f

+ 3
2

)
(6.59)

− Nc
24π2

∑
f

(2µ2
f − 5m2

f

)
µf

√
µ2
f −m2

f + 3m4
f ln


√
µ2
f −m2

f + µf

mf

.
In the next section we discuss how to fix the parameters in V (vx, vy).

6.4.2 Parameter fitting

The mesonic part of the thermodynamical potential has five parameters,m2, λ1, λ2, hx and
hy , which must be fixed by five experimentally measured quantities. In analogy with the
two-flavour quark-meson model, we will use the sigma mass mσ , the pion mass mπ and
the pion decay constant fπ as three of these quantities. For the two other experimentally
measured quantities, we choose the kaon mass mK , and the kaon decay constant fK . In
addition we must fix the Yukawa-coupling g which occurs in the quark masses, and the
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values ṽx and ṽy of vx and vy which minimises the potential in the nonstrange and strange
directions respectively, i.e.

∂U(vx, vy)
∂vx

∣∣∣∣
vx=ṽx,vy=ṽy

= ∂U(vx, vy)
∂vy

∣∣∣∣
vx=ṽx,vy=ṽy

= 0. (6.60)

In Ref. [39] the authors show that ṽx and ṽy is related to the decay constant fa of the
pseudoscalar meson nonet by

fa = daabṽb, (6.61)

where the summation is over the index b, but not over a. The pion and kaon decay constants
are given by

fπ ≡ f1 = d11aṽa =
√

2
3 ṽ0 + 1√

3
ṽ8, (6.62)

fK ≡ f4 = d44aṽa =
√

2
3 ṽ0 −

1
2
√

3
ṽ8. (6.63)

Here we used the relations (6.47) and (A.24). Using these relations, we can express ṽ0, ṽ8,
ṽx and ṽy in terms of fπ and fK as follows

ṽ0 = fπ + 2fK√
6

, ṽ8 = 2√
3

(fπ − fK), (6.64)

ṽx = fπ, ṽy = 1√
2

(2fK − fπ). (6.65)

For simplicity, we will use ṽ0 and ṽ8 when fixing the parameters involved in the thermo-
dynamical potential. The mass matrices identified with the scalar and pseudoscalar meson
nonets are defined as (

M2
σ

)
kl
≡ ∂2U(σa, πa)

∂σk∂σl

∣∣∣∣
σa=ṽa,πa=0

, (6.66)

(
M2
π

)
kl
≡ ∂2U(σa, πa)

∂πk∂πl

∣∣∣∣
σa=ṽa,πa=0

. (6.67)

Since only the expectation value of σa is nonzero, terms proportional to πa vanish in(
M2
σ

)
kl

. As explained in Appendix A.4, the last term of eq. (6.53) can be simplified by
noting that the only contributing term from Fabcd is dadedbce. Furthermore, since dabc is
symmetric under permutations of the indices, we find

∂

∂σk
(σaσbσcσd)dadedbce = 4σaσbσcdabedcke. (6.68)

When taking the derivative of this with respect to σl, we must be more careful. Now it
does matter if the index l is in dabe or dcke, because we do not sum over k. We thus find

λ2

8
∂2

∂σk∂σl
(σaσbσcσd)dadedbce = λ2

2 σaσbGabkl, (6.69)
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where
Gabkl ≡ dabedkle + 2dakedble. (6.70)

Furthermore, we have

∂2

∂σk∂σl

(
λ1

4 σ2
aσ

2
b

)
= ∂

∂σk

(
λ1σ

2
aσl
)

= λ1σ
2
aδkl + 2λ1σkσl, (6.71)

and
∂2

∂σk∂σl

(
1
2m

2σ2
a

)
= m2δkl. (6.72)

Combining all the contributions to the scalar mass matrix, we obtain(
M2
σ

)
kl

= m2δkl + λ1ṽ
2
aδkl + 2λ1ṽkṽl + λ2

2 ṽaṽbGabkl. (6.73)

When calculating
(
M2
π

)
kl

, the only terms contributing are terms proportional to πaπb.
Our argument that the only term contributing from Fabcd is dadedbce is not valid for the
pseudoscalar mass matrix. Now, terms of the form σaσbπcπdfacefbde also contribute as
the indices of the scalar fields are not both in the same structure constant. The contributing
terms proportional to λ2 become (see the end of Appendix A.4 for details)

λ2

4 σaσbπcπdHabcd, (6.74)

where
Habcd = facefbde + fadefbce + dabedcde. (6.75)

Differentiating eq. (6.74) with respect to πkπl yields

λ2

4 σaσb (Habkl +Hablk) = λ2

2 σaσbHabkl. (6.76)

Furthermore, we have

∂2

∂πk∂πl

(
1
2m

2π2
a + λ1

2 σ2
aπ

2
b

)
= m2δkl + λ1σ

2
aδkl. (6.77)

Hence, the pseudoscalar mass matrix is(
M2
π

)
kl

= m2δkl + λ1ṽ
2
aδkl + λ2

2 ṽaṽbHabkl. (6.78)

In general, the mass matrices
(
M2
π

)
kl

and
(
M2
σ

)
kl

are not diagonal. This implies that
the fields σa and πa are not mass eigenstates [39]. Nevertheless, the mass matrices are
symmetric and real, so they can be diagonalised by an orthogonal transformation,

σ̃i = O
(σ)
ia σa, (6.79a)

π̃i = O
(π)
ia πa, (6.79b)(

M̃2
σ,π

)
i

= O
(σ,π)
ai

(
M2
σ,π

)
ab
O

(σ,π)
bi . (6.79c)
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In Appendix A.5, we calculate the nonzero components of the scalar mass matrix and find

(
M2
σ

)
00 = m2 + λ1

(
3ṽ2

0 + ṽ2
8
)

+ λ2
(
ṽ2

0 + ṽ2
8
)
, (6.80a)(

M2
σ

)
11 =

(
M2
σ

)
22 =

(
M2
σ

)
33

= m2 + λ1
(
ṽ2

0 + ṽ2
8
)

+ λ2

(
ṽ2

0 + 1
2 ṽ

2
8 +
√

2ṽ0ṽ8

)
, (6.80b)(

M2
σ

)
44 =

(
M2
σ

)
55 =

(
M2
σ

)
66 =

(
M2
σ

)
77

= m2 + λ1
(
ṽ2

0 + ṽ2
8
)

+ λ2

(
ṽ2

0 + 1
2 ṽ

2
8 −

1√
2
ṽ0ṽ8

)
, (6.80c)

(
M2
σ

)
88 = m2 + λ1

(
ṽ2

0 + 3ṽ2
8
)

+ λ2

(
ṽ2

0 + 3
2 ṽ

2
8 −
√

2ṽ0ṽ8

)
, (6.80d)

(
M2
σ

)
08 =

(
M2
σ

)
80 = 2λ1ṽ0ṽ8 + λ2

(
− 1√

2
ṽ2

8 + 2ṽ0ṽ8

)
. (6.80e)

The mass, mσ , of the sigma meson is defined as the zeroth component of the diagonalised
matrix

(
M̃2
σ

)
,

m2
σ ≡

(
M̃2
σ

)
0 = O

(σ)
a0
(
M2
σ

)
ab
O

(σ)
b0 . (6.81)

We define O(σ)
00 ≡ cos θσ and O(σ)

80 ≡ sin θσ . Since the only nonzero components off the
diagonal of

(
M2
σ

)
is component (08) and (80), we have Oi0 = 0 for i 6= 0, 8. The sigma

mass is thus given by

m2
σ = O

(σ)
00

[(
M2
σ

)
00O

(σ)
00 +

(
M2
σ

)
08O

(σ)
80

]
+O

(σ)
80

[(
M2
σ

)
80O

(σ)
00 +

(
M2
σ

)
88O

(σ)
80

]
=
(
M2
σ

)
00 cos2 θσ +

(
M2
σ

)
88 sin2 θσ + 2

(
M2
σ

)
08 cos θσ sin θσ. (6.82)

To find θσ , we use the eigenvector equation[(
M2
σ

)
− λ0

]
Oa0 = 0, (6.83)

where λ0 is the egeinvalue of
(
M2
σ

)
, corresponding to the eigenvector Oa0. This gives[(

M2
σ

)
00 − λ0

]
cos θσ = −

(
M2
σ

)
08 sin θσ, (6.84a)[(

M2
σ

)
88 − λ0

]
sin θσ = −

(
M2
σ

)
08 cos θσ. (6.84b)

From these eqs., we obtain the relations

sin θσ = −
(
M2
σ

)
00 − λ0

(M2
σ)08

cos θσ, (6.85a)

sin θσ = −
(
M2
σ

)
08

(M2
σ)88 − λ0

cos θσ, (6.85b)

sin2 θσ =
(
M2
σ

)
00 − λ0

(M2
σ)88 − λ0

cos2 θσ. (6.85c)
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Hence, θσ is determined by the equation

tan 2θσ = 2 sin θσ cos θσ
cos2 θσ − sin2 θσ

=
−2
(
M2
σ

)
08

(M2
σ)88 − λ0 − (M2

σ)00 + λ0

=
2
(
M2
σ

)
08

(M2
σ)00 − (M2

σ)88
. (6.86)

Eq. (6.82) is one of the three equations needed to determine m2, λ1 and λ2. The two other
equations are found from the pseudoscalar mass matrix. In Appendix A.5, we calculate
the nonzero components of

(
M2
π

)
and find(

M2
π

)
00 = m2 + λ1

(
ṽ2

0 + ṽ2
8
)

+ λ2

3
(
ṽ2

0 + ṽ2
8
)
, (6.87a)(

M2
π

)
11 =

(
M2
π

)
22 =

(
M2
π

)
33

= m2 + λ1
(
ṽ2

0 + ṽ2
8
)

+ λ2

3

(
ṽ2

0 + 1
2 ṽ

2
8 +
√

2ṽ0ṽ8

)
, (6.87b)(

M2
π

)
44 =

(
M2
π

)
55 =

(
M2
π

)
66 =

(
M2
π

)
77

= m2 + λ1
(
ṽ2

0 + ṽ2
8
)

+ λ2

3

(
ṽ2

0 + 7
2 ṽ

2
8 −
√

2
2 ṽ0ṽ8

)
, (6.87c)

(
M2
π

)
88 = m2 + λ1

(
ṽ2

0 + ṽ2
8
)

+ λ2

3

(
ṽ2

0 + 3
2 ṽ

2
8 −
√

2ṽ0ṽ8

)
, (6.87d)

(
M2
π

)
08 =

(
M2
π

)
80 = −λ2

3
(
ṽ2

8 − 2ṽ0ṽ8
)
. (6.87e)

The pion mass and kaon mass are related to the pseudoscalar mass matrix by m2
π ≡(

M2
π

)
11 and m2

K =
(
M2
π

)
44 respectively. Hence, the final two equations needed to deter-

mine m2, λ1 and λ2 are

m2
π = m2 + λ1

(
ṽ2

0 + ṽ2
8
)

+ λ2

3

(
ṽ2

0 + 1
2 ṽ

2
8 +
√

2ṽ0ṽ8

)
, (6.88)

m2
K = m2 + λ1

(
ṽ2

0 + ṽ2
8
)

+ λ2

3

(
ṽ2

0 + 7
2 ṽ

2
8 −
√

2
2 ṽ0ṽ8

)
. (6.89)

If we subtract eq. (6.88) from eq. (6.89), we get an analytically solvable equation for λ2,

m2
K −m2

π = λ2

3

(
3ṽ2

8 −
3
√

2
2 ṽ0ṽ8

)
. (6.90)

Solving this equations for λ2 and inserting eqs. (6.64) yields

λ2 = m2
K −m2

π

ṽ2
8 −

√
2

2 ṽ0ṽ8

= m2
K −m2

π

(2fK − fπ)(fK − fπ) . (6.91)
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The coupling constant λ1 and the mass parameter m2 can in general not be solved ana-
lytically, but are related to each other from eqs. (6.88) and (6.89). Moreover, λ1 is fixed
by the value of the sigma meson mass through eq. (6.82). Knowing λ2 and the relation
between m2 and λ1, we find the explicit symmetry breaking terms hx and hy analytically
from eqs. (6.60),

hx = fπm
2
π, (6.92)

hy = 1√
2
(
2fKm2

K − fπm2
π

)
. (6.93)

Note that hx is identical to the explicit symmetry breaking term for two flavours, h.

We can now find numerical values for all the parameters in the meson potential. Using
the experimental values

fπ = 93 MeV, mπ = 138 MeV, (6.94)
fK = 113 MeV, mK = 496 MeV, (6.95)
mσ = 800 MeV, (6.96)

we get

λ1 = −6.19, λ2 = 85.3, (6.97)

hx = (121.0 MeV)3, hy = (336.4 MeV)3, (6.98)

m2 = −(491.7 MeV)2. (6.99)

In analogy with the two-flavour quark-meson model, the Yukawa coupling constant g is
fixed from the constituent quark mass of the u and d quarks,

g = 2m̃q

ṽx
= 6.45. (6.100)

The only parameter that is not yet fixed is the renormalisation scale Λ from the quark
contribution to V . In the two-flavour quark-meson model we fixed the renormalisation
scale by requiring that the minimum of the thermodynamical potential in vacuum is located
at v = fπ . The corresponding requirement in the three-flavour quark-meson model is that
eqs. (6.60) should still be valid if we swap U(vx, vy) by V (vx, vy) and set µf = 0. This is,
however, impossible to accomplish solely by fixing Λ, since the values of Λ that minimises
the potential in the nonstrange and strange directions are not equal. We minimise the
vacuum part of V (vx, vy) in the nonstrange direction by solving

∂V (vx, vy)
∂vx

∣∣∣∣
µf=0,vx=ṽx,vy=ṽy

= 0. (6.101)

This yields the same renormalisation scale as in the two-flavour quark-meson model, be-
cause the strange-part of the potential vanishes when differentiating with respect to vx.
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The value of Λ which minimises the potential in the nonstrange direction is therefore
Λ = 182 MeV ≡ Λx. When minimising V (vx, vy) in the strange direction, i.e. solving

∂V (vx, vy)
∂vy

∣∣∣∣
µf=0,vx=ṽx,vy=ṽy

= 0, (6.102)

we obtain
Λ = 260 MeV ≡ Λy. (6.103)

Since the renormalisation scale can only have one value, we choose the average value

Λ ≡ 2Λx + Λy
3 ≈ 208 MeV, (6.104)

where the nonstrange part counts twice; once for the u quark and once for the d quark.
Now that we have all the parameters fixed, it is time to look at the three-flavour effective
bag pressure.

6.4.3 The three-flavour effective bag pressure
In section 6.3.2 we showed how to extract an effective bag pressure from the two-flavour
thermodynamical potential. We will follow the same procedure here, but now the thermo-
dynamical quantities are functions of two variables instead of one variable. Extracting the
vacuum part of the thermodynamical potential, the non-normalised bag pressure becomes

B(v̄x, v̄y) =1
2m

2 (v̄2
x + v̄2

y

)
+ λ1

2 v̄2
xv̄

2
y + 1

8 (2λ1 + λ2) v̄4
x + 1

8(2λ1 + 2λ2)v̄4
y

− hxv̄x − hy v̄y + Nc
16π2

∑
f

m4
f

(
ln Λ2

m2
f

+ 3
2

)
, (6.105)

where v̄x and v̄y are the values of vx and vy that minimise V (vx, vy) for a given chemical
potential µB . It is important to remember that the quark masses are dependent on v̄x or
v̄y by eqs. (6.52). To determine v̄x, v̄y and the chemical potential µe, we must solve
three coupled equations simultaneously for a chosen baryon chemical potential µB . These
equations are

∂V (vx, vy)
∂vx

= 0, ∂V (vx, vy)
∂vy

= 0, (6.106a)

2
[
µ2
u −mq(vx)2]3/2 − [µ2

d −mq(vx)2]3/2 − [µ2
d −ms(vy)2]3/2 − µ3

e = 0. (6.106b)

Note that we replaced µs by µd, according to eq. (6.4c). When we know µB and µe the
quark chemical potentials µf are given by eqs. (6.5). We will normalise the three-flavour
bag pressure in the same manner as done for the two-flavour bag pressure. Hence, we
define

Beff(v̄x, v̄y) = B(v̄x, v̄y)−B(ṽx, ṽy) +Bvac, (6.107)

where ṽx and ṽy are given in eqs. (6.65), and Bvac takes values from the bag-window
(6.40). To find the effective bag pressure as a function of ρB , we follow the exact same
procedure as given in section 6.3.2,
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1. Choose a starting value for the baryon chemical potential µB = µB,min. To avoid
numerical problems, this value should be close to the largest value of µB that still
describes the vacuum, ρB = 0. For the set of parameter values used here (found in
the previous section), µB,min ≈ 860 MeV is a fitting starting value.

2. Make a loop that goes from i = 1 to i = N .

3. Solve the coupled equations (6.106). Calculate Beff(v0) and insert the value in
component (i, 2) of and N × 2 array. In component (i, 1) we insert the baryon
number density.

4. Increase µ by a small amount, say µB = µB,i + µB,max−µB,min
N−1 , where µB,min ≡

µB,1 and µB,max ≡ µB,N are the smalles and largest physically relevant chemical
potentials. Choosing µB,max in the range 1500 − 1800 MeV should hold. Increase
i by one and close the loop.

5. Use the built-in Mathematica function Interpolation on the array. This will
produce an approximation of the function Beff(ρB).

We have plotted the effective bag pressures for both two and three flavours as functions
of the baryon number density in Fig. 6.6. Again, we chose to normalise the bag pressure
at Bvac = (40 MeV)4, as this is a convenient number close to the midpoint of the bag-
window. We see that for ρB . 4ρ0, the two- and three-flavour bag pressures are almost
identical. Hence, the strange quarks are not present for baryon number densities smaller
than about four times the nuclear saturation density. However, they do increase the bag
pressure significantly at high densities. This implies that three-flavour quark matter is
bound tighter together than two-flavour quark matter. In Fig. 6.7 we see the quark and
electron distributions as functions of the baryon number density. Here, ρtot ≡ ρu + ρd +
ρs + ρe is the total number density. Indeed, we see that the strange quarks first appear at
baryon number densities ρB ≈ 4ρ0. The density of the u quarks remains almost constant
at ρtot/3 in all baryon number density regimes. This is the exact density of the up quarks
if there are no electrons present. In addition, we see that the electron density is very small
(but not zero, see Fig. 6.8b) compared to ρtot for ρB > 0. Worth noticing is also the
relation between the densities of the d and s quarks. Summed up, they always amount
to about two-thirds of the total number density. This is expected from the equilibrium
requirement (6.3c). At very high densities, the strange quark mass will be small compared
to it’s chemical potential µs. The three-flavour quark matter will then be composed of
almost an equal amount of up, down and strange quarks. This describes the colour-flavour
locked (CFL) phase [26], where no electrons are needed to maintain charge neutrality.
If the strange quark matter hypothesis is true, the CFL phase will be absolutely stable.
Strangelets may thus be formed in the high-density regions of a hybrid star and convert the
entire star into a pure quark star, as discussed in section 6.2.2.

Fig. 6.8a shows the quark masses as functions of the baryon number density. The
quark masses are given by eq. (6.52) with vx and vy replaced by v̄x and v̄y respectively.
Therefore we also find a mass of the strange quark in the low-density region where the
strange quarks do not exist. However, this will not affect any thermodynamical quantities
as the contribution from the s quark in this region will be imaginary. The u and d quark
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Figure 6.6: The effective bag pressures for two- and three-flavour quark matter as functions of the
dimensionless baryon number density. The dotted and dashed lines are the asymptotes of B1/4

eff for
two and three flavours respectively. To show the ultra high density regimes, we have included baryon
chemical potentials up to 2.0 GeV.
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Figure 6.7: The quark and electron number densities as functions of the baryon number density.
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masses decrease quite rapidly for low densities, and approaches zero as the density goes to
infinity. Comparing Fig. 6.8a with 6.8b, we see that m2

q � µ2
u,d for ρB & 5ρ0, implying

that the u and d quarks appear approximately massless even for moderate densities. The
strange quark mass will, however, never become negligible compared to µs in the density
region covered in Fig. 6.8. Note that none of the quantities described in Figs. 6.7 and 6.8
depends on Beff , so these plots are unaffected by the bag pressure.
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(a) The quark masses as functions of the baryon number density.
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(b) The quark and electron chemical potentials as functions of the baryon number density.

Figure 6.8: The quark masses and chemical potentials as functions of the dimensionless baryon
number density. The baryon chemical potential ranges from 860 MeV to 1800 MeV.
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Figure 6.9: The EoS for the quark-meson model and the MIT bag model compared. For the quark-
meson model the bag-pressure is normalised to 40 (MeV)4 in the vacuum, while the MIT bag con-
stant is the limiting value of Beff as µB goes to infinity, BMIT = Bvac −B(fπ) ≈ (156.7 MeV)4.

6.4.4 Mass-radius relation

The EoS we obtain for the three-flavour quark-meson model using an effective bag pres-
sure is showed in Fig. 6.9. Due to the similar form of the two-flavour bag pressure and the
three-flavour bag-pressure for ρB . 4ρ0, the three-flavour EoS is almost identical to the
two-flavour EoS for p . 0.1ε0. Note the similarities between the EoS and the shape of the
curve in Fig 6.6. This is expected since ε =

∑
f εf +εe+Beff and p =

∑
f pf +pe−Beff ,

where εe and pe are the electron energy density and electron pressure respectively. The
mass-radius relation obtained by using the three-flavour EoS in the TOV equation is shown
in Fig. 6.10. The maximum masses with corresponding radii for the different normalisa-
tions of the bag pressure is written in Table 6.3. Comparing Table 6.2 with Table 6.3,
we see that the maximum masses are just slightly larger for three flavours than for two
flavours. The radii, however, are increased by over a km for these bag normalisations. It
seems like the maximum mass and the corresponding radius varies slightly more with the
bag normalisation for three flavours than for two flavours.

B
1/4
vac [MeV] Mmax [M�] R [km]

28 1.79 13.1
35 1.78 12.5
48 1.76 11.6

Table 6.3: Maximum masses with corresponding radii for different values of Bvac
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Figure 6.10: Various mass-radius relations using the three-flavour quark-meson EoS with different
normalisations of the effective bag pressure. Maximum masses with corresponding radii are shown
in Table 6.3.

Since we studied how some physical quantities in the three-flavour quark-meson model
varied with the baryon number density in the previous section, it is interesting to see how
the baryon number density varies with the distance from the center of the maximum mass
star. This is shown for Bvac = (48 MeV)4 in Fig. 6.11. For this star, the baryon number
density ranges from 0.17ρ0 at the surface, r = R = 11.6 km, to 6.0ρ0in the center. Since
strange quarks appear at ρB & 4ρ0 in this model, the star will be made out of strange
quark matter from the center of the star and about 4 km out from the center. For distances
larger than 4 km from the center, the quark star described will be made of deconfined two-
flavour quark matter. The importance of this result cannot be ignored: We find that the
quark star is consists of two-flavour deconfined quark matter close to the surface of the
star, even though we renormalised the bag pressure assuming that two-flavour deconfined
quark matter is unstable at zero pressure, i.e. at the surface. Hence, we cannot describe
a pure quark star by assuming that the strange quark matter hypothesis is true using the
three-flavour quark-meson model with an effective bag pressure, as this results in a con-
tradiction. Once again, this can be explained by the rapid increase of the effective bag
pressure. Because Beff increase so fast at low densities, the pressure from the quarks and
electrons are counterbalanced by the bag pressure before ρB reach high enough densities
for strange quarks to be made. In this way, both the upper and lower limits in the bag-
window (6.40), are effectively found from two slightly different two-flavour models. The
relatively large bag-window (which is roughly the same size as the bag-window found in
the MIT bag model) might be explained by the impossibility of requiring that the minimum
of the vacuum quark contribution to the thermodynamical potential should be located at
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Figure 6.11: The baryon number density distribution inside the maximum mass star for B1/4
vac =

48 MeV. This quark star has a mass of M = 1.76M� and a radius of R = 11.6 km.

vx = ṽx and vy = ṽy , discussed at the end of section 6.4.2. When the minimum of the
potential is changed, so are all the physical quantities we study. Hence, changing the the
minimum of the thermodynamical potential in the vacuum will e.g. also change the vac-
uum constituent quark mass m̃f . From Fig. 6.8a we see that this is in fact the case. The
light quark mass is only 286 MeV for ρB = 0, where it should have been 300 MeV. More-
over, trying to fix this problem by setting m̃q = 286 MeV and fixing the Yukawa coupling
g = 2m̃q/ṽx = 6.14, will not solve anything, as this will in turn change the value for Λ,
and thus change the minimum of the potential again. If this problem is fixable or not is
hard to say, but if one could assign a different renormalisation scale for the light quarks
and the s quark, i.e. using Λx in the vacuum term involving mq , and using Λy in the
vacuum term involving ms, the potential would be minimised at (ṽx, ṽy) and the problem
would be fixed.

We show various mass-radius relations for bag pressure normalisations larger than
what is required for the strange quark matter hypothesis to be true in Fig. 6.12. The
maximum masses with corresponding radii are shown in Table 6.4 and the baryon number
densities as functions of the radius for the maximum mass stars are showed in Fig. 6.13.

Another way to use the three-flavour quark-meson model to describe a quark star, is
by swapping the effective bag pressure used up till now with a constant bag pressure, in
analogy with the MIT bag model. We must then calculate a new interval of which the bag
constant can take values from, assuming the strange quark matter hypothesis to be true.
For this model, the bag-window becomes

30.4 MeV < B1/4 < 70.6 MeV. (6.108)
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Figure 6.12: Various mass-radius relations using the three-flavour quark-meson EoS with normali-
sations of the effective bag pressure outside the bag-window (6.40). Maximum masses with corre-
sponding radii are shown in Table 6.4.
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Figure 6.13: The baryon number density distribution inside the maximum mass stars found using
various bag normalisations outside the bag-window. The maximum and minimum densities of each
star is shown in Table 6.4 together with the mass and radius of the corresponding star.
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B
1/4
vac [MeV] Mmax [M�] R [km] ρB(R) [ρ0] ρB(0) [ρ0]

60 1.73 10.9 0.33 6.1
100 1.55 9.2 1.6 7.0
140 1.18 7.4 2.5 9.5

Table 6.4: Maximum masses with corresponding radii for values of Bvac outside the bag-window.
The maximum and minimum baryon number densities for the corresponding maximum mass star
are also included.
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Figure 6.14: The EoS for the three-flavour quark-meson model and the MIT bag model compared.
In both models the bag constant is B1/4 = 50 MeV.

The EoS in this model is shown in Fig. 6.14. Maximum masses with corresponding radii
and maximum and minimum baryon number densities are shown in Table 6.5 for various
bag constant in the bag-window. We see that the maximum masses and radii become
extremely large in this model. Moreover, the density inside the maximum mass stars never
reaches values high enough for strange quarks to be made. Hence, this model cannot be
used to describe quark stars.
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B
1/4
vac [MeV] Mmax [M�] R [km] ρB(R) [ρ0] ρB(0) [ρ0]

30.5 4.1 24.5 0.038 2.8
50 4.0 22.0 0.12 2.8

70.5 3.7 19.7 0.29 2.5

Table 6.5: Maximum masses with corresponding radii for various bag constants. The maximum and
minimum baryon number densities for the corresponding maximum mass star are also included.
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Chapter 7
Conclusion and outlook

7.1 Conclusion

In the first chapters of this thesis, we derived some of the thermodynamical functions
needed to study quark stars, and in chapter 5 we derived the all-important TOV equation.
Solving the TOV equation for the free Fermi gas EoS gave the unphysical result of un-
limited radius and mass. When using the MIT bag model to mimic QCD interactions, we
could predict quark stars with maximum masses ranging from 1.6M� to 2.0M�, assum-
ing that strange quark matter is absolutely stable at zero pressure. The corresponding radii
of these maximum mass stars were estimated to be between 8.7 km to 11 km.

Later we extracted a density dependent bag pressure from the two- and three-flavour
linear sigma model with quark degrees of freedom, which we used as an alternative to
the MIT bag constant. This resulted in the description of unphysical quark stars with
deconfined two-flavour quark matter at the surface. For two flavours, the maximum masses
of such stars were found to be slightly less than 1.8M�, and the corresponding radii ranged
from 10.3 km to 11.1 km. For three flavours, the maximum masses were also slightly
less than 1.8M�, but the radii of the maximum mass stars now ranged from 11.6 km to
13.1 km. We can conclude that using the EoS obtained by extracting an effective bag
pressure from the two- and three-flavour quark-meson models are not fitted to describe
pure quark stars. This is because we cannot achieve a stable strange quark matter at zero
pressure using the bag pressure extracted from the three-flavour quark-meson model.

Swapping the effective, density dependent bag pressure with a constant bag pressure
in the three-flavour quark-meson model neither gave a physical description of a quark star.
The same problem arose for the constant bag pressure as with the density dependent bag
pressure; the quark star which we assumed were made out of stable strange quark matter,
did not have large enough densities at the surface for strange quarks to exist. Moreover, in
the model with a constant bag pressure, the maximum mass stars did not even reach high
enough densities in their center for strange quarks to exist.

We also studied some properties of the three-flavour quark-meson model and found
that at very high densities, there is roughly the same number of u, d and s quarks. This is
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known as the CFL phase, which is absolutely stable if the strange quark matter hypothesis
is true. It might therefore be possible for quark stars to be formed if a hybrid star is dense
enough in it’s center for strangelets to be produced.

7.2 Outlook

Even though our final results were unphysical, the three-flavour quark-meson model with
an extracted bag pressure can be used to describe deconfined quark matter inside of hy-
brid stars. The EoS obtained from the three-flavour model discussed in this thesis can be
used in the inner regions of the star, where the density is high enough for quark matter
to be deconfined. At which densities the phase transition from confined hadronic matter
to deconfined quark matter occurs is still uncertain, but it occurs where the pressure of
the quark phase (QP) and the hadronic phase (HP) are equal. Following a crude estimate
by [26] and [22], we can find an approximation of the baryon number density at which
the deconfinement may occur: The typical radius of a nucleon is rN ∼ 1 fm, which cor-
respond to a volume of VN = 4πr3

N/3. Hence, the nuclei begin to touch at densities
ρB ∼

(
4πr3

N/3
)−1 ≈ 0.24 (fm)−3. This is less than twice the nuclear saturation den-

sity ρ0 = 0.16 (fm)−3. From Figs. 6.11 and 6.13, we see that such densities are easily
reached inside the unphysical quark stars described in these figures. One can also expect
that a neutron star can reach such densities near the center. A simple model of a hybrid
star could thus be made by using an EoS for the three-flavour quark-meson model with
an effective, density-dependent bag pressure for baryon number densities higher than e.g.
2–3 times the nuclear saturation density, and for the lower density regions using an EoS
describing hadronic matter. Schertler and Leupold modelled a hybrid star in a similar way,
by using the Nambu-Jona-Lasinio (NJL) model instead of the quark-meson model [40].
These models (our and Scherler’s) will, however, have a sharp interface between the QP
and HP, because the pressure of the models can be parametrised by a single chemical po-
tential, µB . Hence, the pressure of the QP and HP will be equal for one chemical potential
only, excluding a mixed phase where both confined and deconfined quark matter could
exist. This also imply that the density will be discontinuous at the interface, because the
two phases have a different EoS. The exclusion of the mixed phase is a direct consequence
of eq. 6.1, where we demand local charge neutrality instead of global charge neutrality.
Quark stars must be globally charge neutral and not locally, so in reality we will have two
independent chemical potentials, which implies that the pressures of the MP and HP will
be equal in a range of chemical potentials. For a throughout discussion about the phase
transition in neutron stars, see e.g. [22].

It would also be interesting to study the effects of rotation on the mass-radius relation
of neutron stars. Several pulsars are known to rotate extremely fast, for example does the
Crab pulsar rotate 30 times per second [22]. Since the TOV equation is derived under the
assumption of spherically symmetric and static stars, one must then derive a new equation
describing the structure of the star from a more general metric,

ds2 = A(r, θ)dt2 −B(r, θ)dr2 − C(r, θ)
[
r2dθ2 + r2 sin2 θ(dφ− ω(r, θ)dt)2] . (7.1)
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In addition, we did not include the magnetic field in our calculations. How much a strong
magnetic field affects our results would also be interesting to study.
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Appendix A
Analytical calculations

A.1 The periodicity of fields
The Green’s function for fermions is defined as [10]

GF (x,y; τ1, τ2) = Z−1Tr
{

e−βHTτ
[
ψ̂(τ1,x)ψ̂(τ2,y)

]}
, (A.1)

where Tτ is the imaginary time ordering operator. For fermions Tτ is given by

ψ̂(τ1,x)ψ̂(τ2,y)θ(τ1 − τ2)− ψ̂(τ2,x)ψ̂(τ1,y)θ(τ2 − τ1). (A.2)

As Tτ commutes with e−βH , we can manipulate the trace in eq. (A.1):

GF (x,y; τ, 0) = Z−1Tr
{

e−βH ψ̂(τ,x)ψ̂(0,y)
}

= Z−1Tr
{
ψ̂(0,y)e−βH ψ̂(τ,x)

}
= Z−1Tr

{
e−βHeβH ψ̂(0,y)e−βH ψ̂(τ,x)

}
= Z−1Tr

{
e−βH ψ̂(β,y)ψ̂(τ,x)

}
= −Z−1Tr

{
e−βHTτ

[
ψ̂(τ,x)ψ̂(β,y)

]}
= −GF (x,y; τ, β). (A.3)

In the third line we inserted a factor 1 = e−βHeβH and used the Heisenberg time evolution
eβH ψ̂(0,y)e−βH = ψ̂(β,y). We also used the cyclic property of the trace and that 0 <
τ < β. The result implies that fermionic fields are antiperiodic, i.e. that

ψ(0,x) = −ψ(β,x). (A.4)

For bosons, the time ordering operator Tτ have a (+) sign instead of a (−) sign between
the two terms, and following the same steps as in eq. (A.3) we find for bosonic fields
φ(τ,x)

φ(0,x) = φ(β,x). (A.5)
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A.2 The contracted Christoffel symbol
The contracted Christoffel symbol is defined as Γµνµ. It can be rewritten using some matrix
properties and by swapping indices. The components of a square matrix A wich have an
inverse matrix B can be determined by the relation

Aij = ∂ detB
∂Bij

detB. (A.6)

As gµν is the inverse of the metric tensor gµν , we thus have

gµν = 1
g

∂g

∂gµν
, (A.7)

where g is the determinant of gµν . Now, multiplying both sides of this equation by ∂gµν
∂xα

we get

gµν∂αgµν = 1
g
∂αg = ∂α ln |g| (A.8)

The left hand side of this equation is on the same form as one of the terms in the contracted
Christoffel symbol:

Γµνµ = 1
2g

µα(∂νgµα + ∂µgνα − ∂αgµν). (A.9)

Since we sum over the indices µ and α, and therefore it does not matter what they are
called, we can swap these indices in the last term. As the metric is diagonal, the two last
terms will then cancel and we are left with

Γµνµ = 1
2g

µα∂νgµα = 1
2∂ν ln |g|

= 1√
−g

∂ν
√
−g. (A.10)

Note that |g| = −g for a metric with signature −2.
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A.3 The derivation of equation (5.19)

Our starting equation is

0 = −∂µ (pgµν)− pgµν√
−g

∂µ
√
−g + Γναµ [(ε+ p)uµuα − pgµα] . (A.11)

As p = p(r) is only a function of r, we have

− ∂µ (pgµν) = 1
B

(
p′ − pB

′

B

)
δν1. (A.12)

The second term becomes

−pgµν√
−g

∂µ
√
−g =−pg

µν

−2g ∂µ(−g)

= p

2BABr4 sin2 θ
(A′Br4 +AB′r4 + 4ABr3) sin2 θδν1

+ p

2r2ABr4 sin2 θ
2ABr4 sin θ cos θδν2

= p

2B

(
A′

A
+ B′

B
+ 4
r

)
δν1 + p cos θ

r2 sin θ δ
ν2. (A.13)

Furthermore, since only the zeroth component of uµ is the only nonvanishing component,
the third term reduces to

Γναµ(ε+ p)uµuα = Γν00(ε+ p)(g00)−1

= ε+ p

2A gνβ(2∂0gβ0 − ∂βg00)

= ε+ p

2A
A′

B
δν1. (A.14)

Finally, the fourth and last term becomes

−Γναµpgµα = −p2 gνβ(∂αgµβ + ∂µgβα − ∂βgµα)gµα

= −pgνβgµα(∂αgµβ −
1
2∂βgµα)

= −pgνβ
[
B′

B
δβ1 −

1
2

(
A′

A
+ B′

B
+ 4
r

)
δβ1 −

cos θ
sin θ δβ2

]
= p

2B

[(
B′

B
− A′

A
− 4
r

)
δν1 − 2B cos θ

r2 sin θ δ
ν2
]
. (A.15)

Now inserting eqs. (A.12) to (A.15), into eq. (A.11) and setting ν = 1, we end up with

−p
′(r)
B

= p

2B

(
−2B

′

B
+ A′

A
+ B′

B
+ 4
r

+ B′

B
− A′

A
− 4
r

)
+ ε+ p

2A
A′

B

= ε+ p

2A
A′

B
. (A.16)
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Now, multiplying both sides with B, we end up with eq. (5.19),

p′ = −1
2(p+ ε)A

′

A
. (A.17)
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A.4 The three-flavour meson potential
The meson potential written in terms of the field Φ is

U(Φ†,Φ) = m2Tr
[
Φ†Φ

]
+ λ1

[
Tr
(
Φ†Φ

)]2 + λ2Tr
[(

Φ†Φ
)2]− Tr

[
H
(
Φ† + Φ

)]
.

(A.18)
We will show how this can be written in terms of vx and vy as in eq. 6.55, but before we
start, let us summarise some useful relations:

Φ = TaΦa = Ta(σa + iπa), Tr [TaTb] = 1
2δab, (A.19)

[Ta, Tb] = ifabcTc, {Ta, Tb} = dabcTc, (A.20)

fab0 = 0, dab0 =
√

2
3δab, (A.21)

v0 = 1√
3

(
√

2vx + vy), v8 = 1√
3

(vx −
√

2vy), (A.22)〈
Φ†
〉

= 〈Φ〉 = Ta 〈σa〉 = T0v0 + T8v8. (A.23)

The nonzero components of the structure constants are

f123 = 1, f458 = f678 =
√

3
2 , (A.24a)

f147 = −f156 = f246 = f257 = f345 = −f367 = 1
2 , (A.24b)

d118 = d228 = d338 = −d888 = 1√
3
, (A.24c)

d448 = d558 = d668 = d778 = − 1
2
√

3
, (A.24d)

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 = 1
2 , (A.24e)

where fijk and dijk are antisymmetric and symmetric under permutations of the indices
ijk respectively. We will calculate each term in the potential one by one, starting with the
first term, m2Tr

[
Φ†Φ

]
. For simplicity we will skip the parameters in front of the traces.

We thus have

Tr
[
Φ†Φ

]
= Tr [(σa − iπa)TaTb(σb + iπb)]

= (σaσb + iσaπb − iπaσb + πaπb) ·
1
2δab

= 1
2
(
σ2
a + π2

a

)
. (A.25)

By inserting the expectation values, we obtain

Tr
[
〈Φ〉2

]
= 1

2
(
v2

0 + v2
8
)

= 1
2
(
v2
x + v2

y

)
. (A.26)
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Furthermore, we find

[
Tr
(
Φ†Φ

)]2 =
[

1
2
(
σ2
a + π2

a

)]2
, (A.27)

which yields [
Tr
(
〈Φ〉2

)]2
= 1

4
(
v2
x + v2

y

)2
. (A.28)

The most involved calculation is the calculation of Tr
[(

Φ†Φ
)2]

, as this includes a product
of four SU(3) generators. Let us begin by calculating the trace of a product of three SU(3)
generators. Using eq. (A.20), we find

Tr [TaTbTc] = Tr [(ifabeTe + TbTa)Tc]

= ifabe
δec
2 + Tr [Tb(dacfTf − TcTa)]

= ifabe
δec
2 + dacf

δbf
2 − Tr [TaTbTc] . (A.29)

We thus get

Tr [TaTbTc] = 1
4(ifabc + dabc). (A.30)

By using eq. (A.20) the product of four SU(3) generators can be written as

Tr [TaTbTcTd] =ifabeTr [TeTcTd] + ifacfTr [TbTfTd]
+ dadgTr [TbTcTg]− Tr [TbTcTdTa] , (A.31)

implying that

Tr [TaTbTcTd] = 1
8 [ ifabe(ifcde + dcde) + iface(−ifbde + dbde)

+ dade(ifbce + dbce) ] . (A.32)

Furthermore, by using

Tr
[(

Φ†Φ
)2] = Tr [(σa − iπa)TaTb(σb + iπb)]2

= (σa − iπa)(σb + iπb)(σc − iπc)(σd + iπd)Tr [TaTbTcTd] , (A.33)

we find

Tr
[(

Φ†Φ
)2] =1

8(σa − iπa)(σb + iπb)(σc − iπc)(σd + iπd)

× [ ifabe(ifcde + dcde) + iface(−ifbde + dbde)
+ dade(ifbce + dbce) ] . (A.34)
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Hence, by inserting the expectation values, we obtain

Tr
[(
〈Φ〉2

)2
]

= 1
8vavbvcvd [ ifabe(ifcde + dcde) + iface(−ifbde + dbde)

+ dade(ifbce + dbce) ] . (A.35)

The term vavbfabc is nonzero only if a 6= b and a, b 6= 0 in accordance with eqs. (A.21)
and (A.24). However, as vi = 0 for i 6= 0, 8 this is impossible. Thus, the only term in
the [ ]-brackets contributing, is the term dadedbce. Nevertheless, this term is very time-
consuming to calculate. Therefore we will simply state the result and save the calculations
for the especially interested reader. The surprisingly simple result is

Tr
[(
〈Φ〉2

)2
]

= 1
8
(
v4
x + 2v4

y

)
. (A.36)

Luckily, the last term of eq. (A.18) is straightforward to calculate, since both ha and
va transform under the same orthogonal transformation. The general expression for this
term is

Tr
[
H
(
Φ† + Φ

)]
= Tr [Taha(Tbσb + σbTb)]

= 2haσb
δab
2

= haσa. (A.37)

Inserting the expectation values, gives

Tr
[
H
(
〈Φ〉† + 〈Φ〉

)]
= h0v0 + h8v8

= hxvx + hyvy. (A.38)

By combining eqs. (A.26), (A.28), (A.36) and (A.38), we finally obtain

U(vx, vy) =1
2m

2 (v2
x + v2

y

)
+ λ1

2 v2
xv

2
y + 1

8 (2λ1 + λ2) v4
x

+ 1
8(2λ1 + 2λ2)v4

y − hxvx − hyvy, (A.39)

which is the tree-level meson potential in the three-flavour quark-meson model. The po-
tential written in terms of the fields σa and πa is

U(σa, πa) =1
2m

2 (σ2
a + π2

a

)
+ λ1

4
(
σ2
aσ

2
b + 2σ2

aπ
2
b + π2

aπ
2
b

)
− haσa

+ λ2

8 (σa − iπa)(σb + iπb)(σc − iπc)(σd + iπd)Fabcd, (A.40)

where we defined

Fabcd ≡ [ifabe(ifcde + dcde) + iface(−ifbde + dbde) + dade(ifbce + dbce)] . (A.41)
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Chapter A. Analytical calculations

When calculating the pseudoscalar mass matrix, only terms proportional to πaπb will
contribute. The contributing terms proportional to λ2 become

σaσbπcπd(facefbde + dadedbce) + σaσcπbπd(fabefcde − dadedbce)
+ σaσdπbπc(−fabefcde + facefbde + dadedbce)
+ σbσcπaπd(−fabefcde + facefbde + dadedbce)
+ σbσdπaπc(fabefcde − dadedbce) + σcσdπaπb(facefbde + dadedbce). (A.42)

Since we sum over all indices, this can be rewritten as

σaσbπcπd(facefbde + facefbde − fadefcbe + facefdbe − fcbefade
+ fcaefbde + fdbefcae + fdbefcae + dadedbce − dadedcbe
+ dabeddce + dcbedbae − ddaedbce + dcbeddae). (A.43)

Thus, the contribution to the pseudoscalar mass matrix proportional to λ2 is

λ2

4 σaσbπcπdHabcd, (A.44)

where
Habcd = facefbde + fadefbce + dabedcde. (A.45)

We have now isolated the contributing terms to the pseudoscalar mass matrix, and dis-
carded all terms that will vanish in the classical limit.
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A.5 Calculation of the scalar and pseudoscalar mass matrices

A.5 Calculation of the scalar and pseudoscalar mass ma-
trices

We will in this section show how the terms proportional to λ2 in eqs. (6.73) and (6.78) are
calculated. The nonzero components of ṽaṽbGabkl in eq. (6.73) read

ṽaṽbGab00 = ṽaṽb(dabed00e + 2da0edb0e)

=
(

2
3 + 2 · 2

3

)
ṽ2

0 +
(

2
3 + 2 · 2

3

)
ṽ2

8

= 2
(
ṽ2

0 + ṽ2
8
)
, (A.46a)

ṽaṽbGab11 = ṽaṽb(dabed11e + 2da1edb1e)

= 2ṽ2
0 +

(
2
3 −

1
3 + 2 · 1

3

)
ṽ2

8 + 2
(√

2
3 + 2 ·

√
2

3

)
ṽ0ṽ8

= 2ṽ2
0 + ṽ2

8 + 2
√

2ṽ0ṽ8 (A.46b)
= ṽaṽbGab22 = ṽaṽbGab33,

ṽaṽbGab44 = ṽaṽb(dabed44e + 2da4edb4e)

= 2ṽ2
0 +

(
2
3 + 1

6 + 1
6

)
ṽ2

8 − 2
(√

2
6 + 2 ·

√
2

6

)
ṽ0ṽ8

= 2ṽ2
0 + ṽ2

8 −
√

2ṽ0ṽ8 (A.46c)
= ṽaṽbGab55 = ṽaṽbGab66 = ṽaṽbGab77,

ṽaṽbGab88 = ṽaṽb(dabed88e + 2da8edb8e)

= 2ṽ2
0 + (1 + 2) ṽ2

8 − 2
(√

2
3 − 2 ·

√
2

3

)
ṽ0ṽ8

= 2ṽ2
0 + 3ṽ2

8 − 2
√

2ṽ0ṽ8, (A.46d)

ṽaṽbGab08 = ṽaṽb(dabed08e + 2da0edb8e)

= 0 · ṽ2
0 +

(
−
√

2
3 − 2 ·

√
2

3

)
ṽ2

8 + 2
(

2
3 + 2 · 2

3

)
ṽ0ṽ8

= −
√

2ṽ2
8 + 4ṽ0ṽ8 (A.46e)

= ṽaṽbGab80.
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By multiplying these eqs. by λ2/2, we get their contribution to the scalar mass matrix. We
thus have(

M2
σ

)
00 = m2 + λ1

(
3ṽ2

0 + ṽ2
8
)

+ λ2
(
ṽ2

0 + ṽ2
8
)
, (A.47a)(

M2
σ

)
11 =

(
M2
σ

)
22 =

(
M2
σ

)
33

= m2 + λ1
(
ṽ2

0 + ṽ2
8
)

+ λ2

(
ṽ2

0 + 1
2 ṽ

2
8 +
√

2ṽ0ṽ8

)
, (A.47b)(

M2
σ

)
44 =

(
M2
σ

)
55 =

(
M2
σ

)
66 =

(
M2
σ

)
77

= m2 + λ1
(
ṽ2

0 + ṽ2
8
)

+ λ2

(
ṽ2

0 + 1
2 ṽ

2
8 −

1√
2
ṽ0ṽ8

)
, (A.47c)

(
M2
σ

)
88 = m2 + λ1

(
ṽ2

0 + 3ṽ2
8
)

+ λ2

(
ṽ2

0 + 3
2 ṽ

2
8 −
√

2ṽ0ṽ8

)
, (A.47d)

(
M2
σ

)
08 =

(
M2
σ

)
80 = 2λ1ṽ0ṽ8 + λ2

(
− 1√

2
ṽ2

8 + 2ṽ0ṽ8

)
. (A.47e)
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The nonzero components of ṽaṽbHabkl in eq. (6.78) read

ṽaṽbHab00 = ṽaṽb(2fa0efb0e + dabed00e)

= 2
3 ṽ

2
0 + 2

3 ṽ
2
8 , (A.48a)

ṽaṽbHab11 = ṽaṽb(2fa1efb1e + dabed11e)

= 2
3 ṽ

2
0 +

(
2
3 −

1
3

)
ṽ2

8 + 2 ·
√

2
3 ṽ0ṽ8

= 2
3 ṽ

2
0 + 1

3 ṽ
2
8 + 2

√
2

3 ṽ0ṽ8 (A.48b)

= ṽaṽbHab22 = ṽaṽbHab33,

ṽaṽbHab44 = ṽaṽb(2fa4efb4e + dabed44e)

= 2
3 ṽ

2
0 +

(
2 · 3

4 + 2
3 + 1

6

)
ṽ2

8 − 2 ·
√

2
6 ṽ0ṽ8

= 2
3 ṽ

2
0 + 7

3 ṽ
2
8 −
√

2
3 ṽ0ṽ8 (A.48c)

= ṽaṽbHab55 = ṽaṽbHab66 = ṽaṽbHab77,

ṽaṽbHab88 = ṽaṽb(2fa8efb8e + dabed88e)

= 2
3 ṽ

2
0 +

(
2
3 + 1

3

)
ṽ2

8 − 2 ·
√

2
3 ṽ0ṽ8

= 2
3 ṽ

2
0 + ṽ2

8 −
2
√

2
3 ṽ0ṽ8, (A.48d)

ṽaṽbHab08 = ṽaṽb(2fa0efb8e + dabed08e)

= −
√

2
3 ṽ2

8 + 4
3 ṽ0ṽ8 (A.48e)

= ṽaṽbHab80.

Hence, the nonzero components of the pseudoscalar mass matrix, (6.78), are(
M2
π

)
00 = m2 + λ1

(
ṽ2

0 + ṽ2
8
)

+ λ2

3
(
ṽ2

0 + ṽ2
8
)
, (A.49a)(

M2
π

)
11 =

(
M2
π

)
22 =

(
M2
π

)
33

= m2 + λ1
(
ṽ2

0 + ṽ2
8
)

+ λ2

3

(
ṽ2

0 + 1
2 ṽ

2
8 +
√

2ṽ0ṽ8

)
, (A.49b)(

M2
π

)
44 =

(
M2
π

)
55 =

(
M2
π

)
66 =

(
M2
π

)
77

= m2 + λ1
(
ṽ2

0 + ṽ2
8
)

+ λ2

3

(
ṽ2

0 + 7
2 ṽ

2
8 −
√

2
2 ṽ0ṽ8

)
, (A.49c)

(
M2
π

)
88 = m2 + λ1

(
ṽ2

0 + ṽ2
8
)

+ λ2

3

(
ṽ2

0 + 3
2 ṽ

2
8 −
√

2ṽ0ṽ8

)
, (A.49d)

(
M2
π

)
08 =

(
M2
π

)
80 = −λ2

3
(
ṽ2

8 − 2ṽ0ṽ8
)
. (A.49e)
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Appendix B
Mathematica code

The first four pages contain the Mathematica code used to find the bag-window. The next
five pages shows an example code of how to produce a mass-radius plot.
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In[2253]:= Clear@"Global`*"D
Needs@"PlotLegends`"D
H*PARAMETER FITTING*L
mΣ := 800;

nc := 3;

mquark := 300;

fΠ := 93;

fK := 113;

mΠ := 138;

mK := 496;

v0 := 1 � Sqrt@6D HfΠ + 2 fKL;

v8 := 2 � Sqrt@3D HfΠ - fKL;

vx := fΠ;

vy := 1 � Sqrt@2D H2 fK - fΠL;

g := 2 mquark � vx;

mq@x_D := g x � 2;

ms@y_D := g y � Sqrt@2D;

VL@x_, y_D := H2 * 3 mq@xD^4 H+3 � 4 + 1 � 2 Log@L^2 � mq@xD^2DL +

3 ms@yD^4 H+3 � 4 + 1 � 2 Log@L^2 � ms@yD^2DLL;

vDx@x_, y_D = D@VL@x, yD, xD;

vDy@x_, y_D = D@VL@x, yD, yD;

lambdax = Solve@vDx@vx, vyD � 0, LD;

lambday = Solve@vDy@vx, vyD � 0, LD;

Lx = L �. lambdax@@1DD;

Ly = L �. lambday@@1DD;

L = H2 Lx + LyL � 3;

ms00@m2_, Λ1_, Λ2_D := m2 + Λ1 H3 v0^2 + v8^2L + Λ2 Hv0^2 + v8^2L;

ms88@m2_, Λ1_, Λ2_D := m2 + Λ1 Hv0^2 + 3 v8^2L + Λ2 Hv0^2 + 3 � 2 v8^2 - Sqrt@2D v0 v8L;

ms08@Λ1_, Λ2_D := 2 Λ1 v0 v8 + Λ2 H2 v0 v8 - 1 � Sqrt@2D v8^2L;

Θs@Λ1_, Λ2_D := 1 � 2 ArcTanB
2 ms08@Λ1, Λ2D

ms00@m2, Λ1, Λ2D - ms88@m2, Λ1, Λ2D
F;

sol =

Simplify@Solve@mΠ ^2 � m2 + Λ1 Hv0^2 + v8^2L + Λ2 � 3 Hv0^2 + 1 � 2 v8^2 + Sqrt@2D v0 v8L &&

mK^2 � m2 + Λ1 Hv0^2 + v8^2L + Λ2 � 3 Hv0^2 + 7 � 2 v8^2 - 1 � Sqrt@2D v0 v8L,

8Λ2, m2<DD;

Λ2 = Λ2 �. sol@@1DD;

m2 = m2 �. sol@@1DD;

sol2 = Solve@
mΣ ^2 � ms00@m2, Λ1, Λ2D Cos@Θs@Λ1, Λ2DD^2 + ms88@m2, Λ1, Λ2D Sin@Θs@Λ1, Λ2DD^2 +

2 ms08@Λ1, Λ2D Cos@Θs@Λ1, Λ2DD Sin@Θs@Λ1, Λ2DD, Λ1D;

Λ1 = Λ1 �. sol2@@1DD;

u@x_, y_D :=

m2 � 2 Hx^2 + y^2L + Λ1 � 2 x^2 y^2 + 1 � 8 H2 Λ1 + Λ2L x^4 + 1 � 8 H2 Λ1 + 2 Λ2L y^4 - hx x - hy y;

dux@x_, y_D = D@u@x, yD, xD;

duy@x_, y_D = D@u@x, yD, yD;

solx = Simplify@Solve@dux@vx, vyD � 0, hxDD;

soly = Simplify@Solve@duy@vx, vyD � 0, hyDD;

hx = hx �. solx@@1DD;

hy = hy �. soly@@1DD;

In[2293]:= H*Three flavours - finding maximum value of Bvac*L
Clear@ΜbD;
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In[2293]:=

n := 300;

k := 1;

Μbmin := 860;

Μbmax := 1500;

Φx := Array@fx, nD;

Φy := Array@fy, nD;

ΕΡ := Array@ER, 8n, 2<D;

mq@x_D := g x � 2;

ms@y_D := g y � Sqrt@2D;

Μu := Μb � 3 - 2 Μe � 3;

Μd := Μb � 3 + Μe � 3;

Μs := Μb � 3 + Μe � 3;

B0@x_, y_D := u@x, yD + nc � H8 Pi^2L
Hmq@xD^4 H3 � 2 + Log@L^2 � mq@xD^2DL + ms@yD^4 H3 � 4 + 1 � 2 Log@L^2 � ms@yD^2DLL;

p@x_, y_D := nc � H24 Pi^2L HSum@HRe@Μ H2 Μ^2 - 5 mq@xD^2L HΜ^2 - mq@xD^2L^H1 � 2L +

3 mq@xD^4 HLog@1 � mq@xD HHΜ^2 - mq@xD^2L^H1 � 2L + ΜLDLDL,

8Μ, 8Μu, Μd<<D + Re@Μs H2 Μs^2 - 5 ms@yD^2L HΜs^2 - ms@yD^2L^H1 � 2L +

3 ms@yD^4 HLog@1 � ms@yD HHΜs^2 - ms@yD^2L^H1 � 2L + ΜsLDLDL +

Μe^4

12 Pi^2
;

Εxy@x_, y_D := - p@x, yD + nc � H3 Pi^2L HSum@Μ Re@HΜ^2 - mq@xD^2L^H3 � 2LD, 8Μ, 8Μu, Μd<<D +

Μs Re@HΜs^2 - ms@yD^2L^H3 � 2LDL +

Μe^4

3 Pi^2
;

ΡB@x_, y_D := nc � H9 Pi^2L HSum@Re@HΜ^2 - mq@xD^2L^H3 � 2LD, 8Μ, 8Μu, Μd<<D +

Re@HΜs^2 - ms@yD^2L^H3 � 2LDL;

V1@x_, y_D := -nc � H24 Pi^2 L
HSum@Μ H2 Μ^2 - 5 mq@xD^2L HΜ^2 - mq@xD^2L^H1 � 2L + 3 mq@xD^4

HLog@1 � mq@xD HHΜ^2 - mq@xD^2L^H1 � 2L + ΜLD - 3 � 4 - 1 � 2 Log@L^2 � mq@xD^2DL,

8Μ, 8Μu, Μd<<D + Μs H2 Μs^2 - 5 ms@yD^2L HΜs^2 - ms@yD^2L^H1 � 2L +

3 ms@yD^4 HLog@1 � ms@yD HHΜs^2 - ms@yD^2L^H1 � 2L + ΜsLD -

3 � 4 - 1 � 2 Log@L^2 � ms@yD^2DLL -

Μe^4

12 Pi^2
;

V@x_, y_D := u@x, yD + V1@x, yD;

ClearAll@Μb, Μe, x, yD
dVx@x_, y_D = Re@D@V@x, yD, xDD;

dVy@x_, y_D = Re@D@V@x, yD, yDD;

Μb := Μbmin;

While@k £ n, Clear@ΜeD;

solΜxy = FindRoot@8dVx@x, yD � 0, dVy@x, yD � 0,

2 * UnitStep@Μb � 3 - 2 Μe � 3 - mq@xDD HHΜb � 3 - 2 Μe � 3L^2 - mq@xD^2L^H3 � 2L -

UnitStep@Μb � 3 + Μe � 3 - mq@xDD HHΜb � 3 + Μe � 3L^2 - mq@xD^2L^H3 � 2L - UnitStep@
Μb � 3 + Μe � 3 - ms@yDD HHΜb � 3 + Μe � 3L^2 - ms@yD^2L^H3 � 2L - HΜe^2L^H3 � 2L � 0<,

88x, 90, 0.001, 250<, 8y, 100, 0.001, 250<, 8Μe, Μb � 10, 0, Μb<<,

MaxIterations ® 500, AccuracyGoal ® 6, PrecisionGoal ® 6D;

Μe = Re@Μe �. solΜxyD;

fx@kD = Re@x �. solΜxyD;

fy@kD = Re@y �. solΜxyD;

ER@k, 1D = HHp@fx@kD, fy@kDD - B0@fx@kD, fy@kDD + B0@fx@1D, fy@1DDLL^H1 � 4L;

ER@k, 2D = HΕxy@fx@kD, fy@kDD + p@fx@kD, fy@kDDL � HΡB@fx@kD, fy@kDDL;

Μb += HΜbmax - ΜbminL � Hn - 1L; k += 1D
ΕΡint = Interpolation@ΕΡD;

FindRoot@ΕΡint@sD � 930, 8s, 50<D

2   bag-windowny.nb
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Out[2318]= 8s ® 48.1607<

In[2319]:= H*Two flavours - finding minimum value of Bvac*L
ClearAll@Μe, ΜbD
k = 1;

Μbmin := 900;

Μbmax := 2000;

m2 := 1 � 2 H3 mΠ ^2 - mΣ ^2L;

Λ := 3 * HmΣ ^2 - mΠ ^2L � fΠ ^2;

g := 3.2258;

nf := 2;

L := 182;

h := mΠ ^2 fΠ;

Μu := 1 � 3 Μb - 2 � 3 Μe;

Μd := 1 � 3 Μb + 1 � 3 Μe;

ΕΡ2 := Array@ER2, 8n, 2<D;

mq@v_D := g v;

B0@Φ_D :=

1 � 2 m2 Φ^2 + Λ � 24 Φ^4 - h Φ + nc nf � H16 Pi^2L mq@ΦD^4 H3 � 2 + Log@L^2 � mq@ΦD^2DL;

p@v_D := nc � H24 Pi^2L Sum@ HRe@Μ H2 Μ^2 - 5 mq@vD^2L HΜ^2 - mq@vD^2L^H1 � 2L + 3 mq@vD^4

Log@1 � mq@vD HHΜ^2 - mq@vD^2L^H1 � 2L + ΜLDDL, 8Μ, 8Μu, Μd<<D +

Μe^4

12 Pi^2
;

Εv@v_D := - p@vD + nc � H3 Pi^2L Sum@Μ Re@HΜ^2 - mq@vD^2L^H3 � 2LD, 8Μ, 8Μu, Μd<<D +

Μe^4

3 Pi^2
;

ΡB@v_D := nc � H9 Pi^2L Sum@Re@HΜ^2 - mq@vD^2L^H3 � 2LD, 8Μ, 8Μu, Μd<<D;

V0@v_D := H1 � 2 m2 v^2 + Λ � 24 v^4 - h vL;

V1@v_D := -nc � H24 Pi^2 L Sum@Μ H2 Μ^2 - 5 mq@vD^2L HΜ^2 - mq@vD^2L^H1 � 2L +

3 mq@vD^4 HLog@1 � mq@vD HHΜ^2 - mq@vD^2L^H1 � 2L + ΜLD -

3 � 4 - 1 � 2 Log@L^2 � mq@vD^2DL, 8Μ, 8Μu, Μd<<D -

Μe^4

12 Pi^2
;

cond = Limit@V1@vD, v ® 0D;

V@v_D := V1@vD + V0@vD - cond;

ClearAll@Μb, ΜeD
dV@v_D = Re@D@V@vD, vDD;

Μb := Μbmin;

While@k £ n, Clear@ΜeD;

solΜv = Quiet@FindRoot@8dV@vD � 0, 2 * UnitStep@Μu - mq@vDD HΜu^2 - mq@vD^2L^H3 � 2L -

UnitStep@Μd - mq@vDD HHΜdL^2 - mq@vD^2L^H3 � 2L - HΜe^2L^H3 � 2L � 0<,

88v, 90, 0.001, 250<, 8Μe, Μb � 11, 0, Μb<<DD;

f@kD = Re@v �. solΜvD;

Μe = Re@Μe �. solΜvD;

ER2@k, 1D = Hp@f@kDD - B0@f@kDD + B0@f@1DDL^H1 � 4L;

ER2@k, 2D = HΕv@f@kDD + p@f@kDDL � ΡB@f@kDD;

Μb += HΜbmax - ΜbminL � Hn - 1L; k += 1D
ΕΡint2 = Interpolation@ΕΡ2D;

FindRoot@ΕΡint2@sD � 930, 8s, 50<D
Out[2346]= 8s ® 27.1091<

bag-windowny.nb  3
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In[2347]:= H*Bag Window:*L
Print@Hs �. FindRoot@ΕΡint2@sD � 930, 8s, 100<DL <

B < Hs �. FindRoot@ΕΡint@sD � 930, 8s, 100<DLD
27.1091 < B < 48.1607

4   bag-windowny.nb
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In[207]:= Clear@"Global`*"D
Needs@"PlotLegends`"D
H*PARAMETER FITTING*L
r0 := 1.477;

Α := 1 � H20 r0^3L;

sunm := 1.9885*^30;

c := 2.99792458*^5;

Ε :=

sunm c^2 Α

4 Pi
;

Ε0 := 4.79179*^-29 Ε;

bmitmev := H40L^4;

mΣ := 800;

nc := 3;

mquark := 300;

fΠ := 93;

fK := 113;

mΠ := 138;

mK := 496;

v0 := 1 � Sqrt@6D HfΠ + 2 fKL;

v8 := 2 � Sqrt@3D HfΠ - fKL;

vx := fΠ;

vy := 1 � Sqrt@2D H2 fK - fΠL;

g := 2 mquark � vx;

mq@x_D := g x � 2;

ms@y_D := g y � Sqrt@2D;

VL@x_, y_D := H2 * 3 mq@xD^4 H+3 � 4 + 1 � 2 Log@L^2 � mq@xD^2DL +

3 ms@yD^4 H+3 � 4 + 1 � 2 Log@L^2 � ms@yD^2DLL;

vDx@x_, y_D = D@VL@x, yD, xD;

vDy@x_, y_D = D@VL@x, yD, yD;

lambdax = Solve@vDx@vx, vyD � 0, LD;

lambday = Solve@vDy@vx, vyD � 0, LD;

Lx = L �. lambdax@@1DD;

Ly = L �. lambday@@1DD;

L = H2 Lx + LyL � 3;

ms00@m2_, Λ1_, Λ2_D := m2 + Λ1 H3 v0^2 + v8^2L + Λ2 Hv0^2 + v8^2L;

ms88@m2_, Λ1_, Λ2_D := m2 + Λ1 Hv0^2 + 3 v8^2L + Λ2 Hv0^2 + 3 � 2 v8^2 - Sqrt@2D v0 v8L;

ms08@Λ1_, Λ2_D := 2 Λ1 v0 v8 + Λ2 H2 v0 v8 - 1 � Sqrt@2D v8^2L;

Θs@Λ1_, Λ2_D := 1 � 2 ArcTanB
2 ms08@Λ1, Λ2D

ms00@m2, Λ1, Λ2D - ms88@m2, Λ1, Λ2D
F;

sol =

Simplify@Solve@mΠ ^2 � m2 + Λ1 Hv0^2 + v8^2L + Λ2 � 3 Hv0^2 + 1 � 2 v8^2 + Sqrt@2D v0 v8L &&

mK^2 � m2 + Λ1 Hv0^2 + v8^2L + Λ2 � 3 Hv0^2 + 7 � 2 v8^2 - 1 � Sqrt@2D v0 v8L,

8Λ2, m2<DD;

Λ2 = Λ2 �. sol@@1DD;

m2 = m2 �. sol@@1DD;

sol2 = Solve@
mΣ ^2 � ms00@m2, Λ1, Λ2D Cos@Θs@Λ1, Λ2DD^2 + ms88@m2, Λ1, Λ2D Sin@Θs@Λ1, Λ2DD^2 +

2 ms08@Λ1, Λ2D Cos@Θs@Λ1, Λ2DD Sin@Θs@Λ1, Λ2DD, Λ1D;

Λ1 = Λ1 �. sol2@@1DD;

u@x_, y_D :=

m2 � 2 Hx^2 + y^2L + Λ1 � 2 x^2 y^2 + 1 � 8 H2 Λ1 + Λ2L x^4 + 1 � 8 H2 Λ1 + 2 Λ2L y^4 - hx x - hy y;
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In[207]:=

dux@x_, y_D = D@u@x, yD, xD;

duy@x_, y_D = D@u@x, yD, yD;

solx = Simplify@Solve@dux@vx, vyD � 0, hxDD;

soly = Simplify@Solve@duy@vx, vyD � 0, hyDD;

hx = hx �. solx@@1DD;

hy = hy �. soly@@1DD;

In[254]:= n := 500;

k := 1;

Μbmin := 860;

Μbmax := 1800;

Φx := Array@fx, nD;

Φy := Array@fy, nD;

Εp := Array@E, 8n, 2<D;

Μu := Μb � 3 - 2 Μe � 3;

Μd := Μb � 3 + Μe � 3;

Μs := Μb � 3 + Μe � 3;

B0@x_, y_D := u@x, yD � Ε0 + nc � H8 Ε0 Pi^2L
Hmq@xD^4 H3 � 2 + Log@L^2 � mq@xD^2DL + ms@yD^4 H3 � 4 + 1 � 2 Log@L^2 � ms@yD^2DLL;

p@x_, y_D :=

nc � H24 Ε0 Pi^2L HSum@HRe@Μ H2 Μ^2 - 5 mq@xD^2L HΜ^2 - mq@xD^2L^H1 � 2L + 3 mq@xD^4

HLog@1 � mq@xD HHΜ^2 - mq@xD^2L^H1 � 2L + ΜLDLDL, 8Μ, 8Μu, Μd<<D +

Re@Μs H2 Μs^2 - 5 ms@yD^2L HΜs^2 - ms@yD^2L^H1 � 2L + 3 ms@yD^4

HLog@1 � ms@yD HHΜs^2 - ms@yD^2L^H1 � 2L + ΜsLDLDL +

Μe^4

12 Ε0 Pi^2
;

Εxy@x_, y_D :=

- p@x, yD + nc � H3 Ε0 Pi^2L HSum@Μ Re@HΜ^2 - mq@xD^2L^H3 � 2LD, 8Μ, 8Μu, Μd<<D +

Μs Re@HΜs^2 - ms@yD^2L^H3 � 2LDL +

Μe^4

3 Ε0 Pi^2
;

V1@x_, y_D :=

-nc � H24 Pi^2 L HSum@Μ H2 Μ^2 - 5 mq@xD^2L HΜ^2 - mq@xD^2L^H1 � 2L + 3 mq@xD^4

HLog@1 � mq@xD HHΜ^2 - mq@xD^2L^H1 � 2L + ΜLD - 3 � 4 - 1 � 2 Log@L^2 � mq@xD^2DL,

8Μ, 8Μu, Μd<<D + Μs H2 Μs^2 - 5 ms@yD^2L HΜs^2 - ms@yD^2L^H1 � 2L +

3 ms@yD^4 HLog@1 � ms@yD HHΜs^2 - ms@yD^2L^H1 � 2L + ΜsLD -

3 � 4 - 1 � 2 Log@L^2 � ms@yD^2DLL -

Μe^4

12 Pi^2
;

V@x_, y_D := u@x, yD + V1@x, yD;

ClearAll@Μb, Μe, x, yD
dVx@x_, y_D = Re@D@V@x, yD, xDD;

dVy@x_, y_D = Re@D@V@x, yD, yDD;

Μb := Μbmin;

bagvacuum := bmitmev � Ε0;

While@k £ n, Clear@ΜeD;

solΜxy =

2   QMwithbageffTOV3Q.nb

Printed by Mathematica for Students



In[254]:=

Quiet@FindRoot@8dVx@x, yD � 0, dVy@x, yD � 0, 2 * UnitStep@Μb � 3 - 2 Μe � 3 - mq@xDD
HHΜb � 3 - 2 Μe � 3L^2 - mq@xD^2L^H3 � 2L - UnitStep@Μb � 3 + Μe � 3 - mq@xDD
HHΜb � 3 + Μe � 3L^2 - mq@xD^2L^H3 � 2L - UnitStep@Μb � 3 + Μe � 3 - ms@yDD
HHΜb � 3 + Μe � 3L^2 - ms@yD^2L^H3 � 2L - HΜe^2L^H3 � 2L � 0<,

88x, 90, 0.001, 250<, 8y, 100, 0.001, 250<, 8Μe, Μb � 11, 0, Μb<<DD;

Μe = Re@Μe �. solΜxyD;

fx@kD = Re@x �. solΜxyD;

fy@kD = Re@y �. solΜxyD;

E@k, 1D = p@fx@kD, fy@kDD - B0@fx@kD, fy@kDD + B0@fx@1D, fy@1DD - bagvacuum;

E@k, 2D = Εxy@fx@kD, fy@kDD + B0@fx@kD, fy@kDD - B0@fx@1D, fy@1DD + bagvacuum;

Μb += HΜbmax - ΜbminL � Hn - 1L; k += 1D
Εint = Interpolation@ΕpD;

pmin := E@1, 1D;

pmax := E@n, 1D;

In[278]:= ShowLegend@Plot@8Εint@pD, 3 p + 4 * 156.654^4 � Ε0<, 8p, pmin, pmax<, PlotRange ® All,

Frame ® True, PlotStyle ® 88Thickness@0.004D<, 8Dashed, Thickness@0.003D<<,

FrameLabel ® 8Text@Style@"p�Ε0", FontSize ® 16DD,

Text@Style@"Ε�Ε0", FontSize ® 16DD<, FrameTicksStyle ® MediumD,

888Graphics@8ColorData@1D@1D, Thickness@0.06D, Line@880, 0<, 83, 0<<D<D,

Text@Style@"EoSQM", FontSize ® 15DD<,

8Graphics@8ColorData@1D@2D, Thickness@0.035D, Dashed, Line@880, 0<, 83, 0<<D<D,

Text@Style@"EoSMIT", FontSize ® 15DD<<,

LegendPosition ® 80.30, -0.3<, LegendSize ® 80.45, 0.3<, LegendShadow ® None<D
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In[328]:= H* Solving the TOV equation with the obtained EoS *L
ClearAll@pr, m, pc, r, bc, jD
rmax := 50;

n2 := 450;

j := 1;

massvec := Array@M, 8n2, 2<D;

rvec := Array@Rv, 8n2, 2<D;

Εr@r_D := With@8s = pr@rD<, Εint@sDD;

diffeq@pc_D :=

NDSolve@8pr'@rD � -UnitStep@- pr@rD + pmaxD UnitStep@pr@rDD * r0 � r Hpr@rD + Εr@rDL
Hm@rD + Α r^3 pr@rDL � Hr - 2 r0 m@rDL, m'@rD � Α r^2 Εr@rD, pr@10^-10D � pc,

m@10^-10D � 10^-14<, 8pr, m<, 8r, 10^-12, rmax<, MaxSteps ® 100 000D

pressure@r_, pc_D := First@Re@pr@rD �. diffeq@pcDDD;

mass@r_, pc_D := First@Re@m@rD �. diffeq@pcDDD;

R@pc_D := Last@Last@FindRoot@pressure@r, pcD, 8r, .1, rmax<, Method ® "Brent"DDD;

pcmin = 0.001;

pcmax = pmax;

pc = pcmin;

While@j £ n2 � 3,

Rv@j, 1D = pc;

Rv@j, 2D = Quiet@R@pcDD;

M@j, 1D = pc;

M@j, 2D = Quiet@mass@Rv@j, 2D, pcDD;

pc += Hpcmax - pcminL � H9 n2L; j++D
While@j £ 2 n2 � 3,

Rv@j, 1D = pc;

Rv@j, 2D = Quiet@R@pcDD;

M@j, 1D = pc;

M@j, 2D = Quiet@mass@Rv@j, 2D, pcDD;

pc += Hpcmax - pcminL � n2; j++D
While@j £ n2,

Rv@j, 1D = pc;

Rv@j, 2D = Quiet@R@pcDD;

M@j, 1D = pc;

M@j, 2D = Quiet@mass@Rv@j, 2D, pcDD;

pc += 17 Hpcmax - pcminL � H9 n2L; j++D
rint = Interpolation@rvecD;

mint = Interpolation@massvecD;

max = FindMaximum@8mint@xD, pcmin < x < pcmax<, xD;

4   QMwithbageffTOV3Q.nb
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In[354]:= ParametricPlot@8rint@pcD, mint@pcD<,

8pc, pcmin, pcmax<, PlotRange ® 889, 16<, 81.2, 1.85<<,

AspectRatio ® 0.6, PlotStyle ® 8Thickness@0.0030D<, FrameLabel ®

8Text@Style@"R @kmD", FontSize ® 12DD, Text@Style@"M�Msun", FontSize ® 12DD<,

FrameTicksStyle ® Medium, Frame ® TrueD
Print@"Mmaks = " Text@max@@1DDD, " R = " Text@rint@x �. max@@2DDDDD
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