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Abstract 

In this paper, theoretical models are developed and numerical methods are used to analyze the loads, 

motions and cavity dynamics for freefall wedges with different deadrise angles vertically entering the 

water surface at Froude numbers: 1 ≤ ݊ܨ < 9. The time evolutions of the penetration depth, the 

velocity and the acceleration are analyzed and expressed explicitly. The maximum and average 

accelerations are predicted. The theoretical results are compared with numerical data obtained through 

a single-fluid BEM model with globally satisfactory agreement. The evolution of the pressures on the 

impact side is investigated. Before flow separation, gravity and the acceleration of the wedge have 

negligible influence on the pressure on the impact side for large Froude numbers or small deadrise 

angles; with increasing the deadrise angle or decreasing Froude number, the effects of gravity and the 

acceleration of the wedge tend to become more important. Global loads, with the main emphasis on the 

drag coefficient, are also studied. It is found that for the light wedge, the transient drag coefficient has 

slow variation in the first half of the collapse stage and rapid variation in the last half of the collapse 

stage. For the heavy wedge, the transient drag coefficients vary slowly during the whole collapse stage 

and can be treated as constant. The characteristics of the transient cavity during its formation are 

investigated. The non-dimensional pinch-off time, pinch-off depth and submergence depth at pinch-off 

scale roughly linearly as the Froude number.  
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1. Introduction 

   When a freefall wedge vertically enters the water surface, it may experience slamming, transition, 

collapse, and post-closure stages [1]. The slamming stage is the initial stage of the wedge penetrating 

the water surface. During this stage, the water rises up, jets are formed at the body sides and impulse 

loads may occur. By impulse loads we mean that the local pressures on the impact side (the side 

contacting the water) of the wedge and the global vertical load acting on the wedge is impulsive in time. 

The pressure distribution on the impact side is also spatially ‘impulsive’ with a localised region of high 

pressure. The magnitude of the impulse loads and the pressure distribution on the impact side are also 

of interest. By assuming a constant entry speed and neglecting the effect of the gravity, Dobrovol’skaya 

[2] presented similarity solutions for the water entry of a wedge with any deadrise angle ߚ. The 

similarity solution is not available in explicit form and numerical results were only presented for 

ߚ ≥30º. Zhao & Faltinsen [3] developed advanced numerical methods and presented numerical results 

for deadrise angles from 4ºto 81º. Zhao and Faltinsen concluded: when ߚ ≥45º, the maximum 

pressure is at the apex of the wedge; when  ߚ is less than 30ºapproximately, high impulse pressures are 

concentrated on a small area near the root of the jet. Carcaterra et al. [4, 5] developed analytical models 

for the hydrodynamic force and wedge motion during the slamming stage, which assumes a constant 



 

 

entry speed and neglects gravity force. During the water entry of freefall wedges, both gravity force 

and wedge acceleration influence the wedge motion and/or the hydrodynamic force. For a low-speed 

water entry, the gravity force is comparable to or even larger than the hydrodynamic force and 

therefore have an important influence on the wedge motion; for a high-speed water entry, the freefall 

wedge experiences large vertical accelerations and therefore the added mass force becomes important. 

In the present paper, the effects of gravity and accelerations are taken into account. Special attention is 

given on how gravity and the vertical acceleration influence the pressures on the impact side of the 

wedge. When the jet reaches the knuckle of the wedge, non-viscous flow separation occurs. The jet 

breaks up into spray. When the root of the jet/spray leaves the knuckle of the wedge, a strong drop of 

the slamming force occurs and the transition stage starts. It is interesting how the pressures on the 

impact evolve during the transition stage. When the root of the spray is far away from the knuckle, an 

open cavity is formed on the top of the wedge which then collapses. The collapse stage ends at closure 

(pinch-off) of the cavity during which the hydrodynamic loads change slowly [1]. The evolution of the 

global hydrodynamic loads, the wedge motions and the evolution of the cavity are of particular interest. 

Wang & Faltinsen [6] investigated the evolution of the cavity numerically showing that: the cavity 

closure period is independent of the initial entry speed of the wedge; the submergence depth of the 

wedge at pinch-off increases approximately linearly with respect to the initial entry speed; and the 

cavity size is highly dependent on the mass with a larger mass causing a larger cavity. Here, we will 

discuss the mechanics behind these numerical findings. 

   In this paper, theoretical models are developed to describe the wedge motions and cavity dynamics 

of a freefall wedge vertically entering the water surface. The present study is focused on the kinematics 

and dynamics of the freefall wedge until the closure of the cavity. No consideration is given to the 

post-closure stage where air compressibility matters [1]. The time evolutions of the penetration depth, 

the velocity and the acceleration are analyzed and expressed explicitly. The maximum and average 

accelerations of the wedge are predicted. The theoretical analyses show the existence of a critical 

Froude number: for Froude number less than the critical Froude number the velocity of the wedge 

increases after the slamming stage; for Froude number larger than the critical Froude number the 

velocity decreases after the slamming stage. This is accordance with Wang et al.´s experiments [1]. An 

approximate cavity evolution model is proposed. The non-dimensional pinch-off time of the cavity 

scales linearly as the Froude number. Further, the characteristics of the transient cavity are predicted 

and it is found that the non-dimensional pinch-off depth and submergence depth (the distance from the 

still water level to the top side of the wedge) at pinch-off scale roughly linearly as the Froude number. 

The evolution of the pressures on the impact side and the drag coefficients are also extensively studied. 

It is found that for the light wedge the transient drag coefficients (see Eq. (21)) have slow variation in 

the first half of the collapse stage and rapid variation in the last half of the collapse stage; for the heavy 

wedge the transient drag coefficients vary slowly during the whole stage and can be treated as constant. 

Note that the numerical results presented in this paper are obtained by using the single-fluid BEM 

described in [1].  

 

2. Loads and motions 

   A two-dimensional wedge with mass M, deadrise angle β, beam 2c0 vertically impacts the still 

water surface with initial entry speed V0 as shown in Fig. 1. The surface tension ߪ can be neglected 

provided that the Weber number ܹ = ߩ ଴ܸ
ଶܿ଴/ߪ ≫ 1. Viscous effects may be excluded within the short 

duration of the impact and for high Reynolds number ܴ݁ = ߩ ଴ܸܿ଴/ߤ. Further, we neglect the influence 



 

 

of the air flow. This assumption is in accordance with the study of Wang et al. [1]: for closure of 2D 

cavity, the air flow starts to play an important role just before the closure but its influence is very 

limited. Then the impact is characterized by the Froude number ݊ܨ = ଴ܸ/ඥ݃ܿ଴, the mass ratio, and 

the deadrise angle β. Here, the mass ratio could be defined as the hydrostatic mass ratio ܦଵ =

ଶܦ or the hydrodynamic mass ratio ܯ/଴ℎ଴ܿߩ = ଴ܿߨߩ0.5
ଶ/M. The hydrostatic mass ratio is the ratio 

between the mass of water displaced by the fully-submerged wedge and the mass of the wedge, and the 

hydrodynamic mass ratio is the ratio between the added mass of the wedge (the high frequency added 

mass of a flat plate approximation is 0.5ܿߨߩ଴
ଶ) and the mass of the wedge. The latter is more suitable 

to represent the mass ratio since the water impact is a dynamic process. 

2.1 Global load and wedge motion 

2.1.1 Slamming stage and transition stage 

   During the slamming stage, the water rises up due to the impact of the wedge, and jets are formed 

at the body sides as shown in Fig. 1. The penetration depth of the wedge satisfies 

dh
V

dt
 .                                                                         (1) 

Based on the conservation of fluid momentum, the slamming force (see page 299 in [7]) can be 

expressed as 

33( )
d

A V
dt

 . 

Here A33 is the vertical added mass of the wedge, which can be represented as ܣଷଷ =  ଶ. c isܿߨߩ0.5

regarded as the equivalent half-wetted breadth and can be expressed as a water rise-up ratio ߣ times 

the measurement on the still water surface, i.e. 

ܿ =  (2)                                                                   .(ߚ ℎ/tan)ߣ

Note that ߣ = ߣ corresponds to Wagner’s approach [8] and 2/ߨ = 1 von Kármán’s approach [9]. If 

the Wagner-Sydow approximation [10] is used, the water rise-up ratio may be written as 

ߣ = ߚ2/ߨ) −  (3)                                                              .ߚ݊ܽݐ(1

Further, by neglecting the buoyancy and following Newton’s second law the equation of motion of the 

wedge can be expressed as 

33( )
dV d

M A V Mg
dt dt

   .                                                          (4) 

We define the following non-dimensional variables: ̃ݐ = ଴, ℎ෨߬/ݐ = ℎ/ܿ଴, ܿ̃ = ܿ/ܿ଴, and ෨ܸ = ܸ/ ଴ܸ. 

Here ߬଴ = ܿ଴/ ଴ܸ. The equations of motion of the wedge are written in non-dimensional form as  

dh
V

dt






                                                                          (5)                                                                                                                             

and 

2
2 2

1
(c )

dV d
D V

dt dt Fn
  




 
.                                                          (6)                           

Integrating (6) from 0 to t yields 

2 2
2

1 1
(1 )

1
V t

D c Fn
 


 


.                                                            (7) 

From (6), we can get 
1 2

2
2 2 2

2 2

2 tan ( ) 1 1

1 1

D c VdV

dt D c D c Fn

 

  
 

 

  
.                                             (8) 



 

 

Substituting (7) into (5) and integrating from 0 to ̃ݐ, the following relation between  ܿ̃ and ̃ݐ is 

obtained 
2

3 1
2 2

1
tan

3 2

t
c D c t

Fn
     

 


  .                                                    (9)  

When the root of the jet reaches the knuckle of the wedge, the slamming stage ends and the transition 

stage starts. This can be regarded to occur at ܿ̃ = 1. The corresponding time *t can be expressed as 

2 1 2
* 2

2 tan
1 1 (1 )

3

D
t Fn

Fn

  
      

 
 ,                                               

(10) 

when the velocity of the wedge is 

1 2
* 2

2

1 2 tan
1 (1 )

1 3

D
V

D Fn

   


 .                                                  (11) 

The acceleration of the wedge at *t corresponds to the peak acceleration 
1 2

2 *
2

2 2

2 tan ( ) 1 1

1 1peak

D V
a

D D Fn

 

  
 


 .                                              (12) 

Due to flow separation, the slamming force drops dramatically during the transition stage. Neglecting 

the rate of change of the half-wetted breadth at this stage, Eq. (6) becomes 

2
2

1 1

1

dV

dt D Fn







.                                                                (13) 

It can be shown that, when the wedge reaches h=h0, its velocity becomes 

1
1 22

2

1 2 tan 2
1 1 (1 )

1 3
V D

D Fn

         
 .                                            (14) 

Based on Eqs. (12) and (14), we can conclude that:  

(i) A wedge with small mass (ܦଶ ≫ 1) results in ෨ܸଵ ≈ 0 , i.e. after the impact its velocity is 

significantly reduced.  

(ii) A small deadrise angle ߚ means that tan is small and D2 may be large. It also implies ෨ܸଵ ߚ ≈ 0. 

(iii) A high speed impact, i.e. ݊ܨ ≫ 1, results in 

1 21/ (1 )V D                                                                     (15) 

and 

2
3

2

2

tan(1 )peak

D
a

D




 


 .                                                           (16)                                                                                          

The dimensional form,  

22
3

2

2

tan(1 )peak

D
a Fn g

D




 


,                                                      (17)                                                                                                     

shows the peak value of the acceleration grows quadratically with respect to Fn. 

   When ߚ → 0, the water rise-up ratio ߣ under the approximation of (3) becomes 2/ߨ, which is 

consistent with the Wagner’s [8] inner flow solution; when ߚ →  it becomes 1, which corresponds ,4/ߨ

to no water rise-up assumption [9]; when ߚ >  it becomes less than 1, which is inconsistent with ,4/ߨ

physics. Eq. (3) shows that the water rise-up ratio ߣ decreases with increasing the deadrise angle. For 

ߚ > ߣ .no water rise-up approximation, i.e , 4/ߨ = 1 could be safely used. 



 

 

   Assuming no water rise-up, the high-frequency added mass of the wedge with the deadrise angle 

ߚ >  can be expressed as an added mass coefficient times the high-frequency added mass of the 4/ߨ

flat plate [11] 

2
33 33

1

2
A k c                                                                   (18) 

with 

   
   33 2

3 / 2 / /1 sin 2
1

/ 1/ 2 1 / cos
k

    
     
   

       
.                                        (19) 

Here, Γ denotes Gamma function. Then, the mass ratio should be modified as 

*
2 33 2D k D                                                                       (20) 

The modified mass ratio is more suitable to characterize the impact for the deadrise angle larger 

than 4/ߨ. By setting ߣ = 1 and replacing ܦଶ with ܦଶ
∗, Eqs. (9)-(17) are still valid under the no water 

rise-up assumption. 

   Fig. 2 compares the theoretically predicted ෨ܸଵ with the numerical results (of the single-fluid BEM 

[1]) and good agreements are obtained. Fig. 3 compares the theoretically predicted peak accelerations 

with the numerical results (of the single-fluid BEM [1]). The theoretical values agree with the 

numerical simulations except for the case corresponding to the light wedge with deadrise angle ߚ =30

º, for which the theoretical model underestimates the numerical result by 16% for large Froude 

numbers. Note that no peak acceleration occurs when a freefall wedge with a large deadrise angle 

enters the water surface at low speed. 

2.1.2 Collapse stage 

   The coordinate system used for the collapse stage is shown in Fig. 4.    

   For a floating body, the classical technique decomposes the hydrodynamic force acting on the 

floater into added mass force, wave damping, restoring force and other components. However, this 

technique can not be applied to the water entry of a freefall object because during water entry, a cavity 

may be formed on the top of the object. The cavity significantly influences the hydrodynamic 

coefficients of the falling object, which are essentially transient. This suggests the need for more 

suitable methods to describe the motion of the wedge. For a sphere, Lee et al. [12] describe the 

deceleration equation as  

2 *
0

*

0.5 2D

dF

dV
M Mg V C c

dt
 

 .                                                       (21) 

Here ܨௗ
∗ denotes the drag force，and ܥ஽

∗  denotes the drag coefficient. ܥ஽
∗  is typically taken to be 

constant for subsonic water entry [12,13]. Then the question is raised: how does the drag coefficient 

behave for the water entry of a freefall wedge. By denoting ݐ௭ as the time when the top of the wedge 

reaches z, we introduce  ̅ݐ = ݐ) −  ௣̅௜௡௖௛ the pinch-off time of the cavity. Fig. 5 shows theݐ ௭)/߬଴ andݐ

time evolution of ܥ஽
∗  for a light and a heavy freefall wedge with deadrise angle  ߚ =30º as predicted 

numerically by using single-fluid BEM [1]. For the light wedge, the drag coefficient ܥ஽
∗  varies slowly 

for approximately up to the half of the pinch-off time and during this period it can be taken to be 

constant; from the half of the pinch-off time until the pinch-off occurs, ܥ஽
∗

 grows rapidly and obviously 

cannot be treated as constant. For the heavy wedge, ܥ஽
∗  varies slowly during the whole collapse stage 

and it can be safely taken to be constant. Note that the drag coefficient ܥ஽
∗  for freefall wedges with 



 

 

other deadrise angles has similar behaviors. Fig. 6 shows the mean drag coefficient ܥ஽̅
∗ , which is 

obtained by averaging  ܥ஽
∗

 over the first half of the collapse stage. It can be seen that the mean drag 

coefficient decreases by increasing the Froude number or deadrise angle and is weakly dependent on 

the mass ratio. The following equations represent the fitting of numerical mean drag coefficients for 

D2=1/6: 

* 1 2 2 3

3 4 4 5 5 6

3.4412 1.2738 3.9159 10 7.5198 10

8.7112 10 5.5594 10 1.4985 10

DC Fn Fn Fn

Fn Fn Fn

 

  

     

     
   for 30  

              (22.a) 

* 1 2 2 3

3 4 4 5

2.8878 0.86795 2.0779 10 2.8769 10

2.1192 10 6.4198 10

DC Fn Fn Fn

Fn Fn

 

 

     

   
  for 40  

             (22.b) 

* 1 2 2 3

3 4 5

2.4269 0.62201 1.2017 10 1.2532 10

0.62892 10 1.0637 10

D

5

C Fn Fn Fn

Fn Fn

 

 

     

   
   for 50  

             (22.c) 

* 1 2 2 3

3 4

2.0176 0.45667 0.71632 10 0.55431 10

0.16663 10

DC Fn Fn Fn

Fn

 



     

 
 for 60  

             (22.d) 

These equations are valid for 0.5<Fn <9 and can be used as an approximation for other mass ratios 

(since the mean drag coefficient is weakly dependent on the mass ratio). Eq. (21) is used to study the 

motion of the wedge during the first half of the collapse stage. Its dimensionless form is 

* 2
2 2

2 1
D

dV
C D V

dt Fn
  .                                                           (23) 

By defining the critical speed 
* 2

2/ (2 )C DV C D Fn , the solution of Eq. (23) can be expressed as 

*
2

*
2

4

1 1
4

1 1

( ) ( )

( ) ( )

C D

C D

V C D t

C C
C

V C D t

C C

V V e V V
V V

V V e V V





  


  
.                                                 (24) 

Here, തܸଵ ≡ ෨ܸଵ. Eq. (24) shows that തܸ → തܸ஼ when ̅ݐ → ∞. If തܸଵ is smaller than തܸ஼, the velocity of 

the body will monotonically increase to the critical speed; if തܸଵ is larger than തܸ஼, the velocity of the 

body will monotonically decrease to the critical speed. This indicates that there exists a critical Froude 

number Fncr: if the Froude number is less than the critical Froude number, the velocity of the wedge 

will increase during the first half of the collapse stage; if the Froude number is larger than the critical 

Froude number, the velocity of the wedge will decrease during the first half of the collapse stage. Using 

Eq. (14), the critical Froude number is approximated as  

 2

2 1
2*

2

1 2
2 1 (1 ) tan

2 3Cr
D

D
Fn D

C D

        
 

.                                      (25) 

From Wang et al. (2014)’s [1] experiments, the critical Froude number is calculated to be 1.4. The 

experimental and numerical results shown in Fig. 7 confirm the above analysis.  

Integrating expression (24) with respect to time, we will get the expression of the submergence depth 

(see Fig. 4), i.e. 

*
2

4

1 1
*

2

( ) ( )
ln

22

C DV C D t

C C
C

CD

V V e V V
H V t

VC D


 

       
  

.                                   (26) 



 

 

Fig. 8 illustrates the submergence depth and the velocity predicted by Eqs. (24) and (26) and compared 

against the numerical results (of the single-fluid BEM [1]).   



 

 

Inserting / /dV dt VdV dH into Eq. (23) and solving the transformed equation, we obtain:  
*

2
4

2 2 2 2
1

DD C H

C CV V V V e 


     .                                                      (27) 

Differentiating expression (27) with respect to time, gives the acceleration: 

*
2

4
* 2 2

2 1

2 DD C H

D C

dV
D C V V e

dt





     .                                                  (28)  

Thus, the average acceleration over the whole collapse stage is 

*
2

4
2 2

1

0

1 1
( 1)

2

pinch
D pinch

H
D C H

C
pinch pinch

dV
dH V V e

H dt H



       .                               (29) 

Here, pinchH  denotes the submergence depth at the pinch-off as shown in Fig. 4. The average 

acceleration over the first half of the pinch-off time is 

*
2 1/2

4
2 2

1/2 1
1/2 1/20

1 1
( 1)

2

pinch
D

H
D C H

C

dV
dH V V e

H dt H



       .                                (30) 

Here, 1/2 ( 0.5 )pinchH H t t  . 

   Figs. 9-10 compare the theoretical predictions of Λ and Λଵ/ଶ with the corresponding numerical 

results (of the single-fluid BEM [1]). In general, the theoretical predictions of Λଵ/ଶ  are in a 

satisfactory agreement with the numerical results. For the cases corresponding to light wedges with low 

Froude numbers, discrepancy between the theoretical result and the numerical result are observed. The 

discrepancy increases with increasing the deadrise angle and can reach 0.06 for the case corresponding 

to ߚ =30º and Fn=1 . Eq. (29) can well predict Λ of heavy wedges but fails in predicting Λ of light 

wedges with low Froude numbers. This is not surprising; according to the results of Fig. 5 the drag 

coefficient ܥ஽
∗
 of the light wedge varies dramatically with respect to time during the last half of the 

collapse stage and it cannot be assumed constant. The rapid variation of ܥ஽
∗
 for the light wedge during 

the last half of the collapse stage occurs because the hydrostatic component of the drag force becomes 

dominant. This increases the difficulties for a reliable theoretical model. To get slowly-varying drag 

coefficients, one must include the hydrostatic force in the definition of the drag coefficient as follows 

[14, 15] 
*

**
2

0 02
d

D

F
C

V c gH c 



.                                                           (31) 

   Figs. 11 illustrate the time evolutions of ܥ஽
∗∗  for a freefall wedge with deadrise angle  ߚ =30º 

vertically entering into water. By including the hydrostatic force, ܥ஽
∗∗

 also for the light wedge varies 

slowly during the last half of the collapse stage and therefore can be taken to be constant. Note that the 

drag coefficient ܥ஽
∗∗ for freefall wedges with other deadrise angles has similar behaviors. 

   Fig. 12 shows the mean value, ܥ஽̅
∗∗

, of ܥ஽
∗∗

over the last half of the collapse stage by numerical 

simulations. The mean drag coefficient ܥ஽̅
∗∗

decreases with increasing the Froude number and is weakly 

dependent on the mass ratio and the deadrise angle. The following equations represent the fitting of 

numerical mean drag coefficients (obtained by using the single-fluid BEM [1]) for D2=1/6: 

** -1 2 2 3 3

5 4

0.9347 -1.3437 10 2.202 10 2.0006 10

7.3756 10

DC Fn Fn Fn

Fn

 



     

 
     for 30  

        (32.a) 



 

 

** 1 2 2 3 3

5 4

0.8849 1.1242 10 1.5825 10 1.2213 10

3.8229 10

DC Fn Fn Fn

Fn

  



      

 
    for 40  

        (32.b) 

** -1 2 2 3 3

5 4

0.83774 - 0.96671 10 1.1735 10 0.74929 10

1.8423 10

DC Fn Fn Fn

Fn

 



     

 
   for 05  

       (32.c) 
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      (32.d) 

These equations are valid for 0.5<Fn <9 and can be used as an approximation for other mass ratios. 

Under the new definition of the drag coefficient, the deceleration of the wedge becomes 

** 2
2 2 2

2 2 1
D

dV H
C D V

dt Fn Fn
 

   
 

.                                                   (33) 

This equation can be solved numerically, for instance using a Runge-Kutta method. Eq. (23) is used to 

describe the deceleration of the wedge for the first half of the collapse stage and Eq. (33) for the last 

half of the collapse stage. The solution of Eq. (23) matches that of Eq. (33) when 

 * 2 ** 2 2
2 2

2 2
2 /D DC D V C D V H Fn

 
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is satisfied. Fig. 13 compares the time evolutions of the submergence depth and the velocity for the 

light wedge entering the water. By matching Eq. (23) with Eq. (33), the theoretical predictions have 

been significantly improved especially for the evolution of the velocity. 

2.2 Pressure evolution 

   Zhao & Faltinsen [3] investigated the water entry of the wedge with constant entry speed in a 

zero-gravity environment before flow separation. They concluded: (i) when ߚ ≥45º, the maximum 

pressure is at the apex of the wedge; (ii) when  ߚ is less than 30ºapproximately, high impulse pressures 

are concentrated on a small area near the root of the jet. In this section, we use the single-fluid model [1, 

6] to investigate the evolution of the pressures on the impact side before and after flow separation, 

which takes into account the effect of gravity and the acceleration of the wedge. Fig. 14 illustrates the 

evolution of the pressure and free surface on the impact side before flow separation for the water entry 

of a freefall wedge with a deadrise angle of 30°, ܦଶ = 1/3, and Fn=1. At the jet the pressure is very 

close to atmospheric pressure; a peak pressure occurs at the root of the jet; towards the apex of the 

wedge, the pressure decreases and tends to be flat. Such a pressure distribution is similar to the water 

entry of a wedge with constant speed in a zero-gravity environment [16, 3]. Fig. 15 compares the 

numerical results of the single-fluid model with the similarity solution [3] for the peak pressure 

coefficient (݌ܥ௠௔௫ = ௠ܲ௔௫/(0.5ܸߩଶ)) on the impact side before the flow separation: the numerical 

peak pressure coefficient is about 6.8, which is quite close to the value of 6.9 predicted by the 

similarity solution.  

   Fig. 16 illustrates the evolution of the free surface and the pressure distribution on the impact side 

during the slamming, transition and collapse stages.When the jet reaches the knuckle of the wedge, 

non-viscous flow separation occurs. The jet breaks up into spray. However, since the pressure in the jet 

or in the spray is almost equal to the atmospheric pressure, the jet or the spray does not influence the 

overall flow and the pressure distribution along the impact side. When the root of jet is close to the 

knuckle of the wedge, the peak pressure starts to vanish and the transition stage starts. When the root of 

the spray is away from the knuckle, the pressure distribution on the impact side is changed to a new 



 

 

configuration (the pressure varies strongly around the knuckle point and the maximum pressure is at 

the apex of the wedge) and the transition stage is ended. During the collapse stage, the maximum 

pressure on the impact side may grow with increasing the penetration depth of the wedge. 

   Fig. 17 illustrates the evolution of the pressure on the impact side before flow separation for the 

water entry of a freefall wedge with a deadrise angle of 60° and ܦଶ = 1/3. The peak pressure occurs at 

the apex of the wedge. When the initial entry speed is relatively small, the pressure distribution on the 

impact side is significantly different from the similarity solution. It indicates that gravity and/or the 

acceleration of the wedge play an important role. For relatively large entry speeds, the pressure 

distribution on the impact side is close to the similarity solution. This is not surprising since a larger 

Froude number (݊ܨ = ଴ܸ/ඥ݃ܿ଴ ) the effect of gravity less important. Fig. 18 shows the coefficients of 

the peak pressure (at the apex) against Froude number, which confirms that the pressure tends to the 

similarity solution with increasing Froude number. So far, we may conclude that during the water entry 

of a freefall wedge with a relatively small deadrise angle, gravity and the acceleration of the wedge 

have a negligible influence on the pressure distribution on the impact side of the wedge before flow 

separation and the pressure distribution on the impact side is close to the similarity solution. With 

increasing the deadrise angle or decreasing the initial entry speed, the effects of gravity and/or the 

acceleration of the wedge tend to become more important.  

 

3. Cavity dynamics 

   The cavity dynamics of an object entering liquid surfaces have been investigated since the 

beginning of the 20th century. Worthington (1908) [17] discovered the cavity which follows the vertical 

entry of spheres into water, and he discussed qualitatively the splash, surface seal of the cavity and 

many other details of the cavity history. Gilbarg & Anderson [18] studied the influence of the 

atmospheric pressure on the phenomena accompanying the water entry of spheres. Their experiments 

showed that surface sealing of the cavity is a major factor in controlling cavity formation and is the 

factor most responsible for non-Froude scaling of cavity phenomena, and they concluded surface 

sealing is a function mainly of the atmospheric density and projectile velocity. After their work, May 

[19] carried out more detailed studies. He investigated experimentally several parameters (such as the 

density and pressure of the atmosphere, and the velocity and size of the sphere) on the time and place 

of occurrence of various events in the life of the cavity. Lee et al. [12] studied the cavity formation and 

collapse induced by high-speed impact and penetration of a rigid projectile into water. Duclaux et al. 

[20] proposed a theoretical model to describe the cavity dynamics of the sphere entering into water for 

‘low Froude numbers’. They approximated the near field flow (close to the cavity wall) as a 2D source 

flow and neglected the far field flow. The near field region is determined to be ܴ < ݎ < ܴஶ ≈ 2.7ܴ 

by an assumed energy relationship (here, R is the radius of the cavity wall). Then they derived an 

equation for the cavity dynamics, based on which the characteristics of the cavity such as the cavity 

depth and the time at pinching were analysed. Note that the Duclaux et al. ´s model assumes a 

constant water entry speed. Aristoff et al. [21] studied the effect of deceleration on the cavity dynamics 

during the water entry of spheres. First, they established the equations of motions of spheres by 

assuming a constant form drag coefficient. Then based on the Duclaux’s approximate expression for 

the evolution of the cavity surface, Aristoff discussed the cavity dynamics in detail. Glasheen & 

McMahon [15] performed an experimental study on vertical water entry of disks at low Froude 

numbers. They found a linear relationship between the cavity seal depth and the square root of the 

Froude number. In contrast, the cavity seal time is nearly independent of velocity. It has a linear 



 

 

relationship with the square root of the radius of disks. Later, Gaudet [14] performed the numerical 

simulation of disks entering the free surface from very low to moderate Froude numbers. He confirmed 

some parameter relationships found by Glasheen and McMahon [15], discussed the effects of the 

dimensionless disk mass on the cavity dynamics and found a bifurcation in the cavity seal mechanism 

from deep seal to surface seal at the critical Froude number, ଴ܸ
ଶ/ܴ݃଴ = 105 (ܴ଴ is the radius of disk). 

Recently, Bergmann et al. [22] studied the cavity dynamics for vertical water entry of disks with 

constant speed. They presented a free-parameter model and concluded that the closure depth and total 

depth of the cavity are both roughly dependent on the square root of the Froude number and gave the 

scaling of the entrained bubble volume. These works about the cavity dynamics are related to the water 

entry of spheres or disks and most of the works assumed constant entry speeds. Further, the theoretical 

models for the water entry of freefall objects did not take into account the effects of slamming 

stage(after this stage, the velocity of the falling objects may be significantly changed), and assumed 

constant drag coefficients (which may be not suitable for the falling objects with relatively small mass). 

Wang & Faltinsen [23, 4] investigated the evolution of the cavity during a freefall wedge vertically 

entering the water surface. They developed numerical methods and found: the cavity closure period is 

independent of the initial entry speed of the wedge; the submergence depth of wedge at pinch-off 

increases approximately linearly with respect to the initial entry speed; the cavity size is highly 

dependent on the mass and a larger mass leads to a larger cavity. In this section, we generalize Duclaux 

et al. ´s approach [20] from the three-dimensional water entry of spheres to the two-dimensional water 

entry of freefall wedges and develop a theoretical model to describe the cavity dynamics for the water 

entry of a freefall wedge. In our model, we include the far-field flow, which is neglected by Duclaux et 

al. [20] and seems to be the dominant flow for the water entry of freefall wedges. Based on the 

proposed cavity model, the pinch-off time ݐ௣̅௜௡௖௛ and the characteristics of the transient cavity, i.e. the 

pinch-off depth ݖ௣̅௜௡௖௛ (see Fig. 4) and the submergence depth at pinch-off ܪഥ௣௜௡  are investigated 

and the physics behind the numerical findings [6] are discussed. 

   Due to the short duration of the impact and the high Reynolds number (for instance, the Reynolds 

number corresponding to the water entry of a wedge with c0=0.1m at Fn=1 is approximately 106), 

viscous effects may be excluded. Euler equations are suitable to describe the flow. By assuming that the 

lateral (horizontal) flow velocity component is much larger than the vertical flow velocity component 

(this assumption is used by Duclaux et al.[20] for investigating the water entry of sphere and by 

Bergmann et al. [22] for the water entry of disk), we neglect the latter and its derivative in the Euler 

equations and reduce the problem to the equation of the lateral velocity 

1u u p
u

t r r
  

  
  

.                                                               (34) 

Here, r is the lateral coordinate as defined in Fig. 4. The problem can be solved by matching a 

near-field and far-field flow behavior. Based on the conservation of fluid mass, the flow behaves like a 

source in the region near the cavity surface. Therefore, at the near field the velocity of the fluid can be 

approximated by the expansion or contraction speed of interface, i.e. 

u R  . 

At large distance from the cavity surface, velocity should vanish. This means that we can express the 

velocity in terms of a power series of 1/r. Keeping the two lowest order terms, the far field solution of 

the horizontal velocity is approximated as 

1 2 2

1 1
u C C

r r
  .                                                                 (35) 



 

 

The first term on the right hand side of expression (35) will lead to infinite fluid momentum, 

1

R

dr
r



  , 

and therefore should vanish. The complete solution is obtained by matching the near field solution with 

the far field solution at some distance, i.e. 
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.                                                            (36) 

If Declaux et al´s theory [20] is applied to 2D water entry, the lateral velocity of water is expressed as 

, 3

0, 3

R R r R
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r R

  
 


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Let us investigate the lateral velocity profile during a freefall wedge entering the water surface. The 

parameters of the freefall wedge corresponds to the case 2 of Wang et al´s experiments [1]. By using 

the single-fluid BEM [1], we have the numerical distribution of u at the pinch-off depth along the r-axis, 

which is shown in Fig. 19. During the expansion of the cavity (see the black solid line), the near field 

behavior is observed. However, as the increasing of y, it quickly exhibits the far field behavior. During 

the contraction of the cavity (see the red solid line), it is difficult to observe the near-field behavior. It 

seems that our approximation of the lateral velocity is better than Declaux et al´s approximation . 

   Integrating Eq. (34) from R to infinity and using expression (36) yields 

1 1(2 ) 2
2

R
R R R R R gz    


    .                                                      (37) 

R1 can be expressed as ܴଵ =  may be called as ‘thickness ratio of near-field flow region’. It ߟ .ܴߟ

depends on the impact parameters, time and the vertical coordinate z. For simplicity, we assume ߟ 

constant during the evolution of the cavity. As a consequence, (37) becomes 
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Introducing തܴ = ܴ/ܿ଴ and ̅ݖ =  ଴, we get the non-dimensional form of Eq. (38)ܿ/ݖ
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Here /R dR dt  denotes the non-dimensional lateral velocity. Eq. (39) can be integrated once to 

obtain the lateral velocity.  
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Here 0 1R  and 0 ( 0)R R t    are the initial conditions. Let 
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Expression (40) can be rewritten as 
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At the initial stage, the water is pushed aside by the wedge and the cavity expands. The lateral velocity 

decreases with increasing the lateral breadth of the cavity. When ሶܴത decreases to zero, the maximum 

lateral breadth of the cavity is obtained, i.e. 

2 1

4 1
maxR C




 .                                                                    (42) 

At the maximum lateral breadth, the expansion stops and the cavity starts to contract. To obtain the 

analytical solution of Eq. (41), we perform the transformation തܴ = ߯ఔ  with ߥ = ߟ4) − ߟ8)/(2 − 3). 

Then Eq. (41) becomes 
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.                                                        (43) 

Integrating Eq. (43) once and transforming ߯ back to തܴ, we obtain the analytical expression of the 

~̅ݐ തܴ relationship 
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Here 2F1 represents the hypergeometric function. The duration for the cavity expansion is 
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The cavity takes the same time to contract from the maximum lateral breadth position to the initial 

position, i.e. the contraction time is ∆ݐ௖̅௧௥௔ଵ =  ௘̅௫௣௔. Then the contracting cavity accelerates towardsݐ∆

the singularity. This stage lasts ∆ݐ௖̅௧௥௔ଶ, which is expressed as 
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The total survival time st of the cavity is 
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To determine the evolution of the cavity, we need to know the parameter ߟ and the initial 

expansion velocity ሶܴ଴. The Froude number Fn, the deadrise angle β and the mass ratio D2 
can 

influence the value of ߟ. Besides, ߟ depends on the time and the vertical coordinate z so it is difficult 

to give a theoretical formula a ߟ(> 1). We assume ߟ = 1 which means that the inner flow is 



 

 

neglected. For the initial expansion velocity ሶܴ ଴ , a common assumption [20-22] is that ሶܴ ଴  is 

proportional to its downward velocity, i.e. 

0R V  or 0R V .                                                           (48) 

For the water entry of the wedge, numerical simulations (by using the single-fluid BEM [1]) found that 

σ is transient but varies slowly during the collapse stage. It is strongly influenced by the deadrise angle, 

and is also (weakly) influenced by the Froude number and the mass ratio.  

Now, we estimate the pinch-off time of the open cavity during the wedge entering into water. In 

general C is much larger than unity and therefore can be approximated by  

2
0 /C R A  . 

As a consequence, the total survival time of the cavity can be approximated by 
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Here ߚ = ߟ8) − ߟ8)/(3 − 2) ≈ 1 has been used. The pinch-off time is the minimum time over 

depths 0 < ̅ݖ < ∞ of the cavity collapse, 

0
min{ ( ) }pinch s z

z
t t z t

 
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Here, ݐ௭̅ ≡ ௭ݐ) − ௭ୀ଴)/߬଴. By assuming the constant acceleration Λ, we have തܸݐ = തܸଵ + Λݐ௭̅ and ̅ݖ =

തܸଵݐ௭̅ +
ଵ

ଶ
Λݐ௭̅

ଶ
. Here, തܸଵ = ෨ܸଵ. Therefore, the pinch-off time at a given depth ̅ݖ can be expressed by 
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with 
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, corresponding to the pinch-off, is the root of 
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and is denoted by 
pinch

zt . Then its first-order solution with respect to Λ is 

1/2 ( )pinch
zt f Fn  .                                                              (51)                                        

It is noted that the coefficient of Λ is zero, that is, the first-order solution coincides with the zero-order 

solution. Substituting expression (51) back into Eq. (50), we obtain the pinch-off time 
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Here the acceleration Λ has been discussed in the previous section and is a small parameter. Thus 
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is approximated to unity. The dimensional pinch-off time is therefore estimated as 
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02 ( ) * 2 ( )pinch

c
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g
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It is almost independent of the initial entry speed V0. This is consistent with the numerical finding by 

Wang & Faltinsen [6]. Further, the length of the cavity at pinch-off is calculated by 

pinch

pinch
z

t

t

Vdt . 

As shown in Fig. 2 and Fig. 9, a larger mass of the wedge leads to larger 1V and   and therefore 

largerV . This explains why a larger mass of the wedge leads to a larger cavity at pinch-off.  

   Fig. 20 illustrates the comparison of 
pinch

zt  and pincht  between the numerical results (of the 

single-fluid BEM [1]) and theoretical results for deadrise angle 30º. It is noted that the value of σ is 

estimated as 1.25 (for deadrise angle 30ºthe numerical experiments show σ varies within [1 1.5] during 

most of the collapse stage). The theoretical results does not include the effect of the mass ratio, but can 

be regarded as an approximation. The mass of the wedge has significant influence on 
pinch

zt  and pincht  

for high Froude number. It is noted that the use of ߟ = 1 may underestimate 
pinch

zt  and pincht . 

   Fig. 21 shows the numerical results of 
pinch

zt  and pincht for the mass ratios D2=1/3 and 1/12 and 

confirm that the deadrise angle has a negligible influence on the pinch-off time, as found by Wang & 

Faltinsen [6]. The solid lines denote a linear least-squares fitting of the numerical results , which can be 

expressed as 

1.6707* 0.80554pinch
zt Fn    for 2 1/ 3D                                       (53.a) 

1.8016* 1.1617pinch
zt Fn        for 2 1/ 6D                                       (53.b) 

1.8636* 1.3465pinch
zt Fn        for 2 1/ 9D                                       (53.c) 

1.8957* 1.4589pinch
zt Fn        for 2 1/12D                                      (53.d) 

and 

3.3690* 0.61837pincht Fn        for 2 1/ 3D                                       (54.a) 

3.7988* 0.99858pincht Fn        for 2 1/ 6D                                       (54.b) 

4.0571* 1.3062pincht Fn       for 2 1/ 9D                                       (54.c) 

4.2320* 1.5455pincht Fn        for 2 1/12D                                      (54.d) 



 

 

Eqs. (53) and (54) are valid for 2<Fn<9 and cover a wide range of mass ratio. For very light wedges 

(D2>2 approximately), the open cavity will not close [23, 6] and it is meaningless to discuss 
pinch

zt  and 

pincht . For 1/3<D2<2, Eqs. (53.a) and (54.a) could be used as an approximation. For 1/12<D2<1/3, 

interpolation may give a good approximation. D2>1/12 correspond to very heavy wedges (the mass of 

the wedge is over 12 times the added mass by a flat-plate approximation) and such wedges are seldom 

be encountered in ocean engineering contexts.  

Now, we can express the pinch-off depth 

( )pinch
pinch zz H t t  ,                                                              (55) 

and the submergence depth at pinch-off 

( )pinch pinchH H t t  .                                                             (56) 

Figs. (22)-(23) compare the theoretical results predicted by Eqs. (55)-(56) with numerical results (of 

the single-fluid BEM [1]). Satisfactory agreement is documented. The pinch-off depth ݖ௣̅௜௡௖௛ and the 

submergence depth at pinch-off ܪഥ௣௜௡  increase roughly linearly with respect to Fn. Both ݖ௣̅௜௡  and 
ഥ௣௜௡௖ܪ  increase with decreasing the mass ratio of wedge.  

 

4. Conclusion 

   Theoretical models are developed and numerical methods (the single-fluid BEM [1]) are used to 

analyze the loads, motions and cavity dynamics for freefall wedges with different deadrise angles (30º, 

40º, 50º and 60º) vertically entering the water surface at Froude numbers: 1 ≤ ݊ܨ < 9. Analytical 

expressions for the time evolutions of the penetration depth, the velocity and the acceleration are derived. 

The slamming stage, related to the rapid change of the wetted beam, will significantly reduce the velocity 

of the wedge with small deadrise angle and/or small wedge mass. The wedge velocity after the 

slamming stage is theoretically predicted and shows very good agreement with the results obtained by 

numerical simulations. The peak accelerations are also predicted and in general show good agreement 

with the numerical simulations (for the light wedge with the deadrise angle of 30º, the theoretical 

model gives slightly underestimated prediction compared to the numerical simulations). With 

increasing Froude number both the velocity after the slamming stage and the peak acceleration tend to 

be a constant depending on the mass ratio. There exists a critical Froude number: for Froude number 

less than the critical Froude number the velocity of the wedge is increasing after slamming stage; for 

Froude number larger than the critical Froude number the velocity is decreasing after slamming stage. 

The evolution of the pressures on the impact side is investigated. Before flow separation, gravity and 

acceleration of the wedge have negligible influence on the pressures on the impact side for large 

Froude number or small deadrise angles and the pressure distribution is similar to similarity solution; 

by increasing the deadrise angle or decreasing Froude number, the effects of gravity and the 

acceleration of the wedge tend to become more important. After flow separation, the pressure 

distribution on the impact side will be changed, the pressure varies strongly around the knuckle point 

and the maximum pressure occurs at the apex of the wedge. The transient drag coefficients during the 

collapse stage of the cavity are extensively studied. It is found that for the light wedge, the transient 

drag coefficients have slow variation in the first half of the collapse stage and rapid variation in the last 

half of the collapse stage, due to the dominant effect of the hydrostatic term in the drag force. For the 



 

 

heavy wedge, the transient drag coefficients vary slowly during the whole stage and can be treated as a 

constant. By assuming one-dimensional lateral flow and constant near field thickness ratio and 

neglecting higher-order terms in the far-field solution representing the flow behavior far from the 

cavity, a cavity model is established. The cavity closure period is independent of the initial entry speed 

of the wedge and a larger mass leads to a larger cavity. The characteristics of the transient cavity are 

investigated and it is found that the non-dimensional pinch-off time, pinch-off depth and submergence 

depth at pinch-off scale roughly linearly as the Froude number and they increase with decreasing the 

mass ratio. 
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Figures 

 
Fig. 1. Coordinate system and symbol definitions for the slamming stage. 

 

a) ߚ =30º 

 

b) ߚ =40º 

 

 

c) ߚ =50º 

 

d) ߚ =60º 

 

 

Fig. 2. The velocity of the wedge when h=h0. The solid lines denote the theoretical predictions. Symbols denote 

the numerical solution. The results refer to different mass ratios:  +, ܦଶ = ଶܦ ,* ;1/3 = 1/6; О, ܦଶ = 1/9;  , 

ଶܦ = 1/12. 



 

 

 

e) ߚ =30º 

 

f) ߚ =40º 

 

 

g) ߚ =50º 

 

h) ߚ =60º 

 

Fig. 3. The peak acceleration of the wedge. The solid lines denote the theoretical predictions. Symbols denote the 

numerical solution. The results refer to different mass ratios:  +, ܦଶ = ଶܦ ,* ;1/3 = 1/6; О, ܦଶ = 1/9;  , 

ଶܦ = 1/12. No numerical peak acceleration is observed during the freefall wedge with 60ºdeadrise angle entering 

the water surface at Fn=1. 



 

 

 

Fig. 4. Coordinate system and symbol definitions for the collapse stage. 

 

 

Fig. 5. The time evolution of ܥ஽
∗  for the wedge of 30° deadrise angle vertically entering into water. The left 

subfigure corresponds to ܦଶ = 1/3 (the light wedge) and right corresponds to ܦଶ = 1/12 (the heavy wedge). 

On the first half stage the solid lines from top to bottom correspond to Fn=1, 2, … , 8. 



 

 

 

Fig. 6. ܥ஽̅
∗  against Fn. ܥ஽̅

∗  is obtained by averaging ܥ஽
∗  over the first half of the collapse stage. Symbols denote 

the numerical solution. The results refer to different mass ratios:  +, ܦଶ = ଶܦ ,* ;1/3 = 1/6; О, ܦଶ = 1/9;  , 

ଶܦ = 1/12. The solid lines denote the fitting of the numerical results of ܦଶ = 1/6 in high-order polynomial. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

a) Fn=0.51 
 

b) Fn=1.02 

c) Fn=1.92 d) Fn=2. 

 

Fig. 7. Evolution of the velocity of the wedge during the water entry of the freefall wedge with a deadrise angle of 

30°, c0=83 mm and ܦଶ = 1/3. The numerical and experimental results refer to [1]. 

 

 

 

 

 

 



 

 

 

Fig. 8. The time evolutions of the submergence depth and the velocity for the wedge of 30o deadrise angle 

vertically entering into water. The mass ratio of the wedge is D2=1/9. The solid line represents the numerical 

results and the dashed line represents the theoretical predictions given by Eqs. (24) and (26). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

a) ߚ =30º 
 

b) ߚ =40º 

 

 

c) ߚ =50º 
 

d) ߚ =60º 

 

Fig. 9. Dimensionless average accelerations. The solid lines denote the theoretical predictions given by Eq. (29). 

Symbols denote the numerical solution and the results refer to different mass ratios: +, D2=1/3; *, D2=1/6; О, 

D2=1/9; , D2=1/12. 

 

 



 

 

 

a) ߚ =30º 

 

b) ߚ =40º 

 

 

c) ߚ =50º 

 

d) ߚ =60º 

 

Fig. 10. Dimensionless average accelerations of the first half of the collapse stage. The solid lines denote the 

theoretical predictions given by Eq. (30). Symbols denote the numerical solution and the results refer to different 

mass ratios: +, D2=1/3; *, D2=1/6; О, D2=1/9; , D2=1/12. 

 

 

 



 

 

 

 

Fig. 11. The time evolution of ܥ஽
∗∗ for the wedge of 30° deadrise angle vertically entering into water. The left 

subfigure corresponds to ܦଶ = 1/3 (the light wedge) and right corresponds to ܦଶ = 1/12 (the heavy wedge). 

On the first half stage the solid lines from top to bottom correspond to Fn=1, 2, … , 8. 

 

Fig. 12. ܥ஽̅
∗∗ against Fn. ܥ஽̅

∗∗ is obtained by averaging ܥ஽
∗∗ over the last half of the collapse stage. Symbols 

denote the numerical solution. The results refer to different mass ratios:  +, ܦଶ = ଶܦ ,* ;1/3 = 1/6; О, ܦଶ =

1/9;  ଶܦ , = 1/12. The solid lines denote the fitting of the numerical results of ܦଶ = 1/6 in high-order 

polynomial. 



 

 

 
 

Fig. 13. Time evolutions of the submergence depth and the velocity for the wedge of 30o deadrise angle vertically 

entering into water. The mass ratio of the wedge is D2=1/3, which represents the light wedge. The solid lines 

denote the numerical results, the dashed lines the theoretical predictions given by Eqs. (24) and (26), the dot lines 

the theoretical predictions by matching the solution of Eq. (23) with that of Eq. (33). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

a)  

 

 

b)  

 

 

Fig. 14. Evolution of the free surface and the pressure on the impact side before flow separation for the water entry 

of a freefall wedge with a deadrise angle of 30°, ܦଶ = 1/3, and Fn=1. Subfigure a) shows the evolution of the 

free surface and pressure. Subfigure b) shows the propagation of the non-dimensional pressure along the impact 

side: the solid lines denote the pressure distribution; the dashed line denotes the similarity solution of the peak 

pressure. 

 

 

 



 

 

 

Fig. 15. Coefficients of the peak pressure on the impact side before flow separation for the water entry of a freefall 

wedge with a deadrise angle of 30°. The solid line denotes the similarity solution. Symbols denote the numerical 

solution. The results refer to different mass ratios:  +, ܦଶ = ଶܦ ,* ;1/3 = 1/6; О, ܦଶ = 1/9;  ଶܦ , = 1/12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
a) slamming stage and transition stage 

 

b) collapse stage 

 

 

Fig. 16. Evolution of the free surface and the pressure on the impact side for the water entry of a freefall wedge 

with a deadrise angle of 30°, ܦଶ = 1/3, and Fn=1. The coefficient of the peak pressure ݌ܥ௠௔௫ = ௠ܲ௔௫/(0.5ܸߩଶ) 

of step 1 in the subfigure a) is about 6.8.  



 

 

 
c) slamming stage and transition stage 

 

d) collapse stage 

 

Fig. 17. Evolution of the pressure on the impact side for the water entry of a freefall wedge with a deadrise angle 

of 60° and ܦଶ = 1/3. The dashed lines denote the similarity solution of the coefficient of the peak pressure 

௠௔௫݌ܥ = ௠ܲ௔௫/(0.5ܸߩଶ), which is about 1.7 for the deadrise angle of 60°. 



 

 

 

Fig. 18. Coefficients of the peak pressure on the impact side before flow separation for the water entry of a freefall 

wedge with a deadrise angle of 60°. The solid line denotes the similarity solution. Symbols denote the numerical 

solution. The results refer to different mass ratios:  +, ܦଶ = ଶܦ ,* ;1/3 = 1/6; О, ܦଶ = 1/9;  ଶܦ , = 1/12.  

 

Fig.19. Lateral velocity along the r-axis at the pinch-off depth. The parameters of the freefall wedge correspond to 

the case 2 of Wang et al´s experiments [1]. The numerical pinch-off depth is 0.13 m below the still water surface. 

The black lines correspond to time=0.2 s, and the red lines time=0.304 s. The solid lines denote the numerical 

results, the dashed lines the present approximation by using ߟ = 1, and the dot lines the approximation of the 

generalized Declaux et al´s approach [20].  



 

 

 

Fig. 20. ݐ௭̅
௣௜௡

 and ݐ௣̅௜௡௖௛ for deadrise angle ߚ = 30୭
. Symbols denote the numerical results for different mass 

ratios: +, D2=1/3; *, D2=1/6; О, D2=1/9; , D2=1/12. The solid lines denote the theoretical prediction given by Eqs. 

௭̅ݐ : (52)-(51)
௣௜௡௖ = 1.6641 ∗ ௣̅௜௡௖௛ݐ and ݊ܨ = 3.3281 ∗ ߪ where) ݊ܨ = 1.25 and ߟ = 1 are used). 

 

Fig. 21. ݐ௭̅
௣௜௡௖௛ and ݐ௣̅௜௡  against Fn. Symbols denote the numerical solution. The results refer to different 

deadrise angles:  +, ߚ =30º; *, ߚ =40º; О, ߚ =50º;  ߚ , =60º. The solid lines denote the linear fitting of the 

numerical results. 



 

 

 

a) ߚ =30º 

 

b) ߚ =60º 

 

Fig. 22. The pinch-off depth. Symbols denote the numerical results for different mass ratios: +, D2 =1/3; *, D2 =1/6; 

О, D2 =1/9;  , D2 =1/12. The solid lines denote the theoretical predictions. Eqs. (53) and (55) are used in the 

theoretical predictions. 

 

 

c) ߚ =30º 

 

d) ߚ =60º 

 

Fig. 23. The submergence depth at pinch-off. Symbols denote the numerical results for different mass ratios: +, D2 

=1/3; *, D2 =1/6; О, D2 =1/9;  , D2 =1/12. The solid lines denote the theoretical predictions. Eqs. (54) and (56) 

are used in the theoretical predictions. 

                                                                                                                                       


