
XXX XXX XXX XXX XXX, VOL. 1, NO. 1, JUNE 2012 1

Multi-Resolution Explicit Model Predictive

Control: Delta-Model Formulation and

Approximation
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Abstract

This paper deals with the explicit solution and approximation of the constrained linear finite time

optimal control problem for systems with fast sampling rates. To this aim, the recently developed

explicit model predictive control (eMPC) is reformulated and characterized using the δ-operator to

enjoy its promising advantages compared to the time-shift operator. Using the proposed δ-model eMPC

formulation, a systematic method is proposed for first designing a low-complexity approximate eMPC

solution and then improving its closed loop action without first determining an exact optimal solution

that might be of prohibitive complexity. It is shown that the stability and feasibility of the proposed

sub-optimal solution is guaranteed.

Index Terms

Explicit Model Predictive Control, Delta-operator, Multi-resolution MPC, Approximate explicit

MPC, Multi-Parametric Programming.

I. INTRODUCTION

Model Predictive Control (MPC) has proved its ability to handle constrained optimal control

problems in which mathematical models play a crucial role in the design and analysis of the

control system. Often such a model is derived from physical laws resulting in continuous-

time descriptions. In general it is well known that using continuous-time models gives realistic
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insight into the system due to the fact that the physical systems typically evolve continuously.

Unfortunately, the continuous-time models cannot be used directly for implementation in digital

computers. A well-known and widely used method for describing discrete-time models is the

time-shift operator which is described by xk+1 = qxk. In [1] it is shown that not only is there no

intuitive connection between discrete-time and continuous-time models but also serious numerical

problems arise at the high sampling rate when the shift operator is used to describe a discrete-

time model. To overcome this limitation, a very simple but powerful affine mapping named the

δ-operator is introduced in [1] as q = Tsδ+1. Based on the results in [1]-[3] the main properties

of the δ-model are: (i) the δ-operator offers a model with almost the same degree of flexibility

and simplicity as the shift operator, (ii) the δ-operator provides a more direct insight into the

discrete-time system, (iii) the implementation is almost as simple as the shift operator, (iv) many

results with the δ-model can be seen as an approximation for continuous-time systems with

approximation error of order O(Ts), (v) the δ-model makes it possible to avoid non-minimum-

phase sampling zeros arising in high sampling rates when using the shift operator, (vi) there

are numerical advantages compared to the shift operator since not only a finite word-length is

required in practice but also fixed point arithmetic is sometimes preferred.

It is well known that the online MPC is mainly limited to the systems with relatively low sampling

rate. Recently in order to extend the applicability of MPC for systems with high sampling rate,

the power of multi-parametric programming (mpQP) [4] has been exploited to solve the MPC

problem offline, so-called explicit MPC [5], [6]. In [5] it has been proved that such a solution

is a piecewise affine (PWA) function defined over a polyhedral subdivision of feasible states,

mapping the current state to the optimal control. Thus, the complexity of online computation at

each time instant mainly depends on how fast one can identify the region in which the current

state lies, the so called point location problem (see [7], [8] and references therein). Operating

at high sampling rates along with the mentioned characteristics of the δ-operator motivates

us to invoke the δ-model description to reformulate and solve the explicit MPC problem which

naturally inherits the mentioned advantages. In this regard, many works ([9]-[12]) have exploited

the δ-model to solve unconstrained generalized predictive control (GPC). Reference [9] utilizes

the δ-model to solve continuous-time emulator-based GPC. Extension of the output end-point

weighted GPC of SISO systems to the δ-domain is addressed in [10]. Reference [12] considers

δ-domain GPC for both minimum and non-minimum phase linear SISO systems considering
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nominal stability and performance. In the recent work [11] an exact discrete-time formulation

is obtained to solve the unconstrained δ-GPC problem.

In contrast to the mentioned works, this paper deals with the explicit solution to the general

constrained linear model predictive control and its approximation based on the δ-model represen-

tation (δ-eMPC). Recently there is also a growing interest in approximation of eMPC controllers,

and several approaches with different points of view have been reported [13]-[27].In [13] by

relaxing the first order Karush-Kuhn-Tucker optimality conditions, an approximate solution

to mpQP is proposed. In [14] a suboptimal solution is computed based on sub-division of

hypercubes and minimizing the loss in the cost function over hypercubes which provides a

priori stability guarantee and performance bound. Also, in [21] the concept of Input-to-State-

Stability Lyapunov function is exploited to obtain a priori conditions for asymptotic stability and

feasibility of the approximate controller. The interpolation idea is used in [15]-[19]. In [20] an

approximate solution is obtained using bilevel optimization with no need to compute the optimal

explicit MPC first. However, it can be computationally expensive in certain cases, as an iterative

solution of MILP problems in each step is required. Besides, only an a posteriori stability test

is provided. In [22] a polynomial approximation of the optimal control law is presented which

requires computation of stability tubes to ensure stability and constraint satisfaction. Recently,

canonical PWA functions are employed in [23] to obtain an approximate eMPC controller suitable

for implementing on chips. However, only a posteriori checks for stability are provided.

The main contribution of this paper is that using the close connection between δ-model and

continuous-time system, a multi-resolution design method is introduced which enables us to sys-

tematically design a stable low-complexity approximate eMPC solution without first determining

an exact high-complexity optimal solution. The key feature of this approach is that the structure

of the controller is predetermined using coarse design parameters leading to a low-complexity

controller and then an approximate controller is redesigned by solving an optimization problem.

Stability and feasibility of the closed loop system with the proposed sub-optimal low-complexity

solution is guaranteed a priori.
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II. PROBLEM FORMULATION

A. δ-Model Specifications

Consider a continuous-time LTI system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(1)

Where x ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. Using the δ-domain

representation proposed in [28], the corresponding state space formulation is given by:

δx(t) = Aδx(t) +Bδu(t)

y(t) = Cδx(t)
(2)

Where δ = q−1
Ts

and Ts represents the associated sampling time. Based on this definition it is easy

to verify that the system matrices are related to the continuous time model as Aδ = eTsA−I
Ts

, Bδ =∫ Ts
0 eA(Ts−τ)Bdτ

Ts
and Cδ = C. Hereafter to simplify notation we use xt instead of x(tTs).

Lemma 1 ([2]): The quantities appearing in the δ-domain representation converge to the

corresponding continuous time quantities; i.e. (i) lim
(TsA)→0

Aδ = A, and (ii) lim
(TsA)→0

Bδ = B.

Remark 1: The slight modification in lemma 1 is that, we have replaced (Ts → 0) by (TsA→ 0)

to emphasize that the high sampling rate assumption does not refer to its literal (Ts → 0) but

could be measured relative to the system bandwidth, i.e. (TsA→ 0). Using Taylor expansion

formula one easily obtains Aδ = A(I +
∞∑
j=1

(TsA)
j

(j+1)!
), then it is obvious that Aδ → A as (TsA)→ 0.

B. δ-model based explicit MPC (δ-eMPC)

Consider the problem of regulating to the origin the LTI δ-model (2) with constraints ymin ≤

yt ≤ ymax and umin ≤ ut ≤ umax, ∀t ≥ 0. Then, δ-model based MPC solves the following

optimization problem, where J∗(xt) = min
U
J (xt):

J∗(xt) = min
U

{
‖xt+N‖Pδ2 +

N−1∑
k=0

‖xt+k‖Q2 + ‖ut+k‖R2
}

s.t. ymin ≤ yt+k ≤ ymax, k = 1, ..., N

umin ≤ ut+k ≤ umax, k = 0, ..., N − 1

xt+N ∈ O∞δ , ut+k = Kδxt+k, k ≥ N

δxt+k = Aδxt+k +Bδut+k,

yt+k = Cδxt+k, k ≥ 0

(3)

December 1, 2012 DRAFT



XXX XXX XXX XXX XXX, VOL. 1, NO. 1, JUNE 2012 5

where U =
[
uTt ,u

T
t+1,· · · ,uTt+N−1

]
T

∈ RmN is the optimization vector, ‖xt‖Q2 = xTt Qxt,

O∞δ = {xt ∈ Rn|Gfxt ≤ hf} indicates the maximal output admissible set associated with the

infinite horizon LQR controller (see e.g. [32]), and Pδ � 0 is the solution of the following

algebraic Riccati equation:

Kδ = −R̂−1BT
δ Pδ (I + TsAδ)

0 = Q+ AT
δ Pδ + PδAδ + TsAT

δ PδAδ −KT
δ R̂Kδ

(4)

where R̂ = (R + TsBT
δ PδBδ) (see theorem 11.2.1 in [1] and letting N →∞).

Remark 2: Based on the results in [2], [29]-[31], (4) can be seen as an approximation to the

continuous time LQR with approximation error of order O(TsA). More importantly, this feature

is not sensitive to the chosen sampling rate. Consequently, the approximation will remain accurate

for a wide range of sampling rates and is still valid for arbitrary sampling rate with approximation

error of O(TsA). Note that this is not true when using the time-shift operator.

Lemma 2 provides properties we need to adapt the optimization problem (3) to the mpQP

formulation studied in [5].

Lemma 2: Define X =
[
xTt+1, · · · , xTt+N

]
T , Y =

[
yTt+1, · · · , yTt+N

]
T , X̃ =

[
δ1xTt , · · · , δNxTt

]
T ,

Ỹ = [δ1yTt , · · · , δNyTt
]
T and Ũ =

[
δ0uTt , · · · , δN−1uTt

]
T , then the following properties are held.

(i) δkxt = Akδδ
0xt +

k−1∑
j=0

Ak−1−jδ Bδδ
jut, and δ0xt = xt, (ii) xt+k =

k∑
j=0

Υk
j δ
jxt, where Υk

j =

k!
j!(k−j)!T

j
s , (iii) X̃ = Ãδ0xt + B̃Ũ , and Ỹ = C̃X̃, (iv) X = Λ0δ

0xt + ΛxX̃, and Y = C̃X, (v)

U = ΛuŨ . Where In represents the identity matrix of dimension n, Λ0 = [In,· · · ,In]T ∈ RnN×n,

Ã ∈ RnN×n is a vertical block matrix where its i-th building block is Aiδ, C̃ = Ndiag(Cδ, N)1.

B̃ ∈ RnN×mN , Λx ∈ RnN×nN and Λu ∈ RmN×mN are lower triangular block matrices where the

(i, j)-th (i ≥ j) building blocks are Aδi−1Bδ, Υi
jIn, and Υi−1

j−1Im, respectively.

Proof: Since δ0xt = xt, the first proposition is immediate by forward multiplication of δ-

operator on δxt = Aδxt+Bδut and backward substitution for j = 1, ..., k. Definition q = Tsδ+1

yields xt+1 = (1 + Tsδ)xt and then xt+2 = (1 + Tsδ)xt+1 = (1 + Tsδ)
2xt. By similar successive

operations one can obtain xt+k = (1 + Tsδ)
kxt and invoking the binomial formula yields (ii).

Using (i) and (ii) for k = 1, ..., N it is straightforward to verify (iii) and (iv), noting that

δkyt = Cδδ
kxt. Finally with a same reasoning in (ii) one can obtain ut+k =

k∑
j=0

Υk
j δ
jut and then

use this to verify proposition (v).

1Ndiag(Q,n) indicates n times block diagonal concatenation of Q.
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Substituting xt+k in (3) by utilizing the results of Lemma 2, the optimization problem (3) can

by algebraic manipulations be reformulated as:

V ∗ (xt) = min
Ũ

1
2
Z̃T H̃Z̃

s.t. G̃Z̃ ≤ W̃ + S̃xt

(5)

where V ∗(xt) = J∗(xt) − xTt (Γ̃− 1
2
F̃ H̃−1F̃ T )xt, Z̃ = Ũ + H̃−1F̃ Txt, Γ̃ = Λ̄T

0 Q̄Λ̄0 + Q, H̃ =

2(Λ̄u + B̃T Λ̄xB̃), F̃ = 2(Λ̄T
0 Q̄ΛxB̃), Λ̄0 = Λ0 + ΛxÃ, Λ̄x = ΛT

x Q̄Λx, Λ̄u = ΛT
u R̄Λu, R̄ =

Ndiag(R,N), Q̄ = diag(Ndiag(Q,N − 1), Pδ)
2, G̃ = [(C̃ΛxC̃B̃)T , (−C̃ΛxC̃B̃)T , (Λu)

T ,

(−Λu)
T , (GfΛxB̃)T ]T , W̃ = [Y T

max,−Y T
min, U

T
max,−UT

min, h
T
f ]T , S̃ = Ẽ + G̃H̃−1F̃ T , and Ẽ =

[(−C̃Λ̄0)
T , (C̃Λ̄0)

T ,0,0, (−Gf −GfΛxÃ)T ]T , Λx denotes the last n rows of Λx, and Ymax/min

(Umax/min) is similar to Y (U ), replacing all yt+k (δk−1ut) for all k = 1, ..., N , with ymax/min

(umax/min).

The proof of derivation is omitted due to the lack of space and its similarity to that of [5].

Theorem 1 fully describes the solution characteristics of the δ-eMPC problem (5).

Definition 1 (feasible set Xfeas): The feasible set Xfeas ⊂ Rn is defined as the set of all

states xt ∈ Rn for which the optimization problem (5) is feasible, i.e. Xfeas = {xt ∈ Rn|∃Z̃ ∈

RmN , G̃Z̃ ≤ W̃ + S̃xt}. The feasible is naturally computed by orthogonal projection of polytope

{G̃Z̃ − S̃xt ≤ W̃} onto the x-coordinate. More computationally efficient approach is proposed

in [33] to compute exact and inner approximate feasible set.

Theorem 1: Consider the mpQP (5) with H̃ � 0. Suppose G̃ has full row rank. Then, (i)

the feasible set Xfeas is convex, (ii) the optimal solution Z̃∗(xt) (and Ũ∗(xt)) is continuous

PWA function of xt, (iii) J∗ (xt) is a convex and continuous PWQ function on Xfeas, and

(iv) the critical region CR ⊂ Xfeas where the solution is optimal is given by CR = {x ∈

Xfeas|G̃H̃−1G̃T (G̃βH̃−1G̃T )−1(W̃ β + S̃βxt) ≤ W̃ + S̃xt,&− (G̃βH̃−1G̃T )−1(W̃ β + S̃βxt) ≥ 0},

and (G̃β, W̃ β, S̃β) be the rows of active constraints.

Proof: The proof is direct implication of the results, mutatis mutandis, in [5] (theorems 2

and 4) to the underlying optimization problem given in (5).

2diag(Q,P ) indicates block diagonal concatenation of Q and P .
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III. APPROXIMATION OF THE δ-EMPC

A. Approximate δ-eMPC

The main drawback of explicit MPC is that the number of polyhedral regions in the partition

may increase rapidly when the number of constraints involved in the mpQP is large. Several

references attempt to handle complexity of eMPC via approximation [14]-[19]. In contrast to the

existing works, in this paper a different framework and approximation criterion is proposed. To

this aim, taking the physical system information in the continuous MPC into account, we assume

that an appropriate prediction horizon is known and is about T time units. Then we approximate

the continuous model with a corresponding δ-model as characterized in chapter II. Then we

will propose a two-steps multi-resolution δ-eMPC solution which provides a trade-off between

complexity and optimality. At the first step, we choose the time prediction horizon (Th ≈ T )

and assume that if the sampling interval is chosen equal or less than a certain value Tf , then

a favorable approximation is achieved (i.e. fine solution with desired performance). This fine

δ-model is represented as:

∆f :

 δfxt = Aδfxt +Bδfut

yt = Cδfxt
(6)

Note that, in general achieving a desirable fine model may lead to a high complexity solution

of the corresponding mpQP problem. To handle this limitation we may need to approximate

the solution using a coarse sampling time Tc > Tf to achieve less complexity. To parameterize

the level of approximation, we define a parameter α denoting the approximation level and let

2Tf < 2Tc < Th. Then for given parameters (Th, Tf , α) we have Nf = dTh/Tfe + 1 fine

discretization points on the horizon while the coarse approximation is characterized by:

(i)Nc = dNf

α
e+ 1, (ii)Tc =

Th
Nc − 1

. (7)

Then, the coarse model (∆c) is represented by (Aδc , Bδc , Cδc). Assume the coarse optimal solution

Z̃∗c (xt) (and Ũ∗c (xt)) defined on the bounded polyhedral regions {X c
j }

NP
j=1 is obtained using the

coarse model ∆c and leading to a stable closed loop system. In the following we introduce a

procedure which takes the information of a finite number of optimal control inputs corresponding

to the fine controller to improve the coarse controller gains while preserving the simpler structure

of the coarse controller, feasibility and stability.
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Remark 3: Note that, in the following in order to handle infeasibility of QPs when Z̃∗f (vji )

is calculated (see Theorem 2), we spilt the coarse model critical region X c
j as {

_

X c
j = X c

j ∩

X f
feas,

^

X c
j = X c

j \
_

X c
j },∀j = 1, ..., Np when X c

j 6⊂ X
f
feas (or X c

j \X
f
feas 6= ∅). Note that if

^

X c
j is

not a convex region then it is naturally split to a union of some convex regions with the same

affine control gains. Then Xc =
_

Xc∪
^

Xc where
_

Xc =
{

_

X c
j

}Np
j=1

,
^

Xc =
{

^

X c
j

}Np

j=1
and Np denotes

all regions including those regions added when
^

X c
j is not convex.

Theorem 2: Given the PWA solution Z̃∗c (xt) = Kcj[xTt , 1]T ,∀xt ∈ X c
j , where Kcj = [F c

j , G
c
j]

denotes the optimal coarse gain. Assume any bounded polyhedral region
_

X c
j ∈

_

Xc with vertices

{vj1, ..., v
j
Mj
} and a tolerance ξ ≥ 0. Then, the improved gain obtained from the least-square

optimization problem (8) guarantees the solution ˆ̃Zc(xt, ξ) = K̂cj[xTt , 1]T ,∀xt ∈
_

X c
j is feasible.

Ψ(ξ) = arg min
K̂cj

Mj∑
i=1

LTi WLi

s.t. G̃K̂cjV
j
i ≤ [S̃, W̃ ]Vji , i ∈ {1, ...,Mj} I ĤK̂cj

(ĤK̂cj)
T KH

 � 0,

 ξI (K̂cj −Kcj)T

K̂cj −Kcj I

 � 0,

(8)

Where K̂cj = Ψ(ξ),Vji = [(vji )
T , 1]T , and Li = Z̃∗f (vji )−K̂jV

j
i is the error of vertex i. H̃ = ĤT Ĥ

and KH = ‖Kcj‖H̃2 .

Proof: Note that (8) is itself feasible, since ˆ̃Zc(xt, ξ) = Z̃∗c (xt) = Kcj[xTt , 1]T ,∀xt ∈
_

X c
j

is a feasible but not necessarily optimal solution for (8). When K̂cj = Kcj , then using the Schur

complement lemma it is straightforward to check that the second and third constraints are satisfied

for any ξ ≥ 0. This implies that the non-improved controller gain Kcj is itself feasible. On the

other hand, expanding first constraint reveals that the feasibility of the K̂cj is explicitly imposed

for all vertices {vj1, ..., v
j
Mj
} for each region

_

X c
j ⊂ X c

feas, i.e. G̃(F̂ c
j v

j
i + Ĝc

j) ≤ W̃ + S̃vji ,∀i ∈

{1, ...,Mj}. Also, by convexity of regions, any state vector xt ∈
_

X c
j can be represented by a

convex combination of the associated vertices as xt =
∑Mj

r=1 µrv
j
r where

∑Mj

r=1 µr = 1. Then we

obtain ˆ̃Zc(xt, ξ) = F̂ c
j

∑Mj

r=1 µrv
j
r + Ĝc

j =
∑Mj

r=1 µrF̂
c
j v

j
r +

∑Mj

r=1 µrĜ
c
j =

∑Mj

r=1 µr(F̂
c
j v

j
r + Ĝc

j).

Accordingly we get G̃ ˆ̃Zc(xt, ξ) =
∑Mj

r=1 µrG̃(F̂ c
j v

j
r + Ĝc

j) ≤
∑Mj

r=1 µr(W̃ + S̃vjr) = W̃ + S̃xt.

This implies the feasibility of ˆ̃Zc(xt, ξ) = K̂cj[xTt , 1]T ,∀xt ∈
_

X c
j .

Remark 4: We emphasize that, knowing the complete fine explicit solution in Theorem 2

is not required, which may be computationally very expensive. Rather, one needs to compute
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optimal fine solutions in some finite points {vj1, ..., v
j
Mj
} using numerical QP solvers. Then the

convex optimization problem (8) can be solved by of-the-shelf software, like CVX [34].

Remark 5: The parameter ξ in (8) enables us to control deviation of the suboptimal gain K̂cj
from the optimal gain Kcj , where smaller ξ implies less deviation permission and vice versa.

We also note that, although the second and third convex constraints in (8) may make the gain

computations conservative, but are introduced for reasons that will be clear later (Theorem 4).

Remark 6: Since in the MPC law, only the first m elements of Ũ∗f (xt) (or Z̃∗f (xt)) are applied

to the system, then a sensible choice forW is diag(ρIm,0) which takes only the effect of u∗f (xt)

into account.

B. Bounds on the sub-optimality and stability

We emphasize that the suboptimal controller (i.e. ˆ̃U c) does not naturally inherit the nominal

stability properties of the optimal solution (i.e. Ũ∗c ) although its feasibility is guaranteed as

shown in Theorem 2. However, since the optimal coarse controller Ũ∗c (xt) is stabilizing and

the associated optimal cost J∗c (xt) is a Lyapunov function, then the distance from this stabiliz-

ing solution might be used as a measure to guarantee stability of the approximate controller.

To this aim, let Z̃∗c (xt) denotes the the optimal solution of an arbitrary region
_

X c
j ⊆

_

Xc.

The corresponding optimal cost is given by J∗c (xt) = 0.5Z̃∗c (xt)H̃Z̃
∗
c (xt) + xTt Pδxt. For the

same region, assume ˆ̃Zc(xt, ξ) is any feasible approximate solution obtained from (8) with the

suboptimal cost Ĵc(xt, ξ) = 0.5 ˆ̃Z
T

c (xt, ξ)H̃
ˆ̃Zc(xt, ξ) + xTt Pδxt. Define the upper cost tolerance

εJ(ξ) = max
xt∈X cj

(Ĵc(xt, ξ)− J∗c (xt)). Then, the asymptotic stability of the origin under the approx-

imate δ-eMPC controller given in Algorithm 1 can be guaranteed by imposing conditions on the

tolerance εJ similar to the results in [14] (Theorem 5) and [13] (Theorem 5.2).

Theorem 3: Consider the mpQP problem (5) with H̃ � 0. Define Σ = Q+KT
δ RKδ, assume

Σ � 0, and let γ > 0 be the largest number for which the ellipsoid E =
{
xt ∈ X c

feas|xTt Σxt

≤ γ} is contained in O∞δ for the coarse problem. If in the proposed Algorithm 1, at each step

corresponding to the region X0, the error tolerance εJ is less than ε̄ = 0.5
(
γ + xT0 Σx0

)
, where

x0 = arg minxt∈X0x
T
t Σxt, then the approximate controller makes the origin asymptotically stable

for all xt ∈ X c
feas, while guaranteeing the feasibility of the state and input trajectories.

Theorem 4: Assume any approximate solution K̂cj = Ψ(ξ) obtained from (8) for a given

ξ ≥ 0. Then, (i) the optimization problem εJ(ξ) = max
xt∈X cj

(Ĵc(xt, ξ) − J∗c (xt)) is guaranteed to
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be concave, and (ii) the following optimization problem is feasible and the associated solution

K̂cj = Ψ(ξ0) is asymptotically stabilizing:

ξ0 = max
ξ≥0

ξ

s.t. εJ(ξ) ≤ ε̄
(9)

Proof: Since Z̃∗c (xt) and ˆ̃Zc(xt) belong to the same region
_

X c
j , then Ĵc(xt) and J∗c (xt)

are quadratic and convex ∀xt ∈
_

X c
j . This implies the difference is also quadratic and εJ(ξ) =

0.5 max
xt∈X cj

( ˆ̃Z
T

c (xt, ξ)H̃
ˆ̃Zc(xt, ξ) − Z̃∗c (xt)H̃Z̃

∗
c (xt)). Substituting from Theorem 2 gives εJ(ξ) =

0.5 max
xt∈X cj

([xTt , 1]Hε[x
T
t , 1]T ), where Hε = (K̂cjT H̃K̂cj −KcjT H̃Kcj). On the other hand, using the

Schur complement of the second constraint in (8) results (KH − (ĤK̂cj)T I−1(ĤK̂cj)) � 0.

Equivalently, (KcjT H̃Kcj − K̂cjT H̃K̂cj) � 0, where H̃ = ĤT Ĥ and KH = KcjT H̃Kcj . Comparing

this with Hε implies Hε � 0 which proves (i). The feasibility of (9) can be easily verified

by choosing ξ0 = 0. Then, using the Schur complement of the third constraint in (8) results

0 − (K̂cj − Kcj)T I−1(K̂cj − Kcj) � 0. This evidently implies K̂cj = Kcj and thus εJ(0) = 0 ≤ ε̄.

Finally, any feasible solution ξ0 obtained from (9) guarantees that εJ(ξ0) ≤ ε̄. Choosing ε̄ as in

Theorem 3, guarantees the asymptotic stability of the approximate controller.

Theorem 5: Algorithm 1 terminates after a finite iterations resulting in a feasible sub-optimal

solution ˆ̃Zc(xt)∀xt ∈
_

Xc with associated cost Ĵc(xt) that satisfies 0 ≤ Ĵc(xt)− J∗c (xt) ≤ ε̄.

Proof: The finite termination of the algorithm is immediate implication of the fact that the

corresponding polyhedral partition has finite number of regions. Also, the feasibility guarantee

of all improved controllers is explicitly imposed in the least squares problem (8) (see Theorem

2). Finally, since the cost J∗c (xt) is optimal, Ĵc(xt) is itself an upper bound on J∗c (xt) and the

error upper bound is explicitly enforced in Alg.1 step (v), such that 0 ≤ Ĵc(xt)−J∗c (xt) ≤ ε̄.

Remark 7: Note that the proposed low-complexity control law is continuous (see Theorem 1)

while the resulting improved control law is possibly discontinuous as some other approximate

approaches [14], [21]. However, since the asymptotic stability of 0 ∈ O∞δ and the final set

constraint xt+N ∈ O∞δ are guaranteed, then the control signal would not chatter for a long time

(i.e. > NcTc).
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Algorithm 1 : Approximate δ-eMPC
Given a coarse optimal solution Z̃∗c (xt), xt ∈ Xc.

i: Calculate X c
feas and X f

feas as in Definition 1 and O∞δ for the coarse solution. Then calculate

γ as in Theorem 3.

ii: For j = 1, ..., Np, if X c
j 6⊂ X

f
feas, then update Xc and X c

j according to Remark 3 as Xc =
_

Xc ∪
^

Xc. Then suppose without loss of generality that
_

X c
1 is associated with the unconstrained

LQR controller and 0 ∈
_

X c
1 . Mark

_

X c
1 as explored and all other regions

_

X c
j ∈

_

Xc as unexplored.

iii: Select any unexplored region X0 ∈
_

Xc with vertices {v1, ..., vM}, mark this region as

explored. If there is no such a region, go to step vi.

iv: Solve the QP (5) considering the fine model for all xt ∈ {v1, ..., vM}. Then calculate

corresponding optimal fine solution Z̃∗f (xt). Also calculate ε̄ as in Theorem 3.

v: Solve the optimization problem (9) together with (8) to obtain ξ0 and then K̂c0 = Ψ(ξ0). Go

to step iii.

vi: Collect and return all approximate controllers’ gain, then terminate.

C. Simulation Example

Consider the second order system y(s) = 1.01s+1.515
s2+0.7s+1.11

u(s) with the fine parameters (Th, Tf , α) =

(0.2, 0.01, 2). Then, using (7) the corresponding coarse δ-model is obtained as

δx(t) =

−0.5068 0.9936

−1.0035 −0.2088

x(t) +

−0.9863

1.0173

u(t), (10)

Where y(t) = x2(t). The employed design parameters are Q = I2×2, R = 0.1, ρ = 10, ‖u(t)‖∞
≤ 1, ‖y(t)‖∞ ≤ 1, Pδ is obtained using (4) and γ = 0.179 associated with the coarse model is

obtained from Theorem 3. The exact solution to the coarse δ-eMPC problem contains 729 poly-

hedral regions having overlap with the fine feasible region. In order to compare, the exact Fine

δ-eMPC solution is also computed which contains 2739 polyhedral regions. It can be seen that in

the cost of sub-optimality the complexity of the coarse solution has been reduced to a large extent

(≈ 70%) compared to the fine solution. Note that, this complexity reduction costs performance

degradation which can be moderated in the next step by applying the proposed improvement

procedure in Algorithm 1. To verify efficiency of the improvement procedure, control actions

corresponding to the coarse and improved-coarse controllers are calculated for 3759 feasible
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state variables and compared to the fine controller. According to the results in this case (α = 2),

the mean square error in the improved control law is about 50% less than the original coarse

solution. Despite the fact that the complexity reduction is achieved in the cost of performance

degradation, we observe that the closed loop action in the improved controller is fairly close to

the fine controller. This fact is illustrated and compared in Fig.1 for x(0) = [−1,−1]T . Also, the

output trajectory difference is compared in Fig.2 for the same simulation. Several simulations are

employed to illustrate how the reduction factor (α) affects the complexity of solution. In Table 1

the simulation results are given for different values of α and also for two extra MIMO examples.

Therein Nv denotes the number of feasible points and Mean (J) denotes the normalized mean

value of all cost functions in (3) associated with all regions. The results illustrate that the

parameter α can be used as a tuning knob to trade-off between complexity and performance of the

resulting controller. The last column in the Table 1 denotes the performance of the improvement

procedure in the sense of objective function (3) when applied to the sub-optimal coarse solution

to make its action as close as possible to the fine optimal solution. The design parameters

associated with the next two examples are as follows. In example 2 a second order MIMO

system is considered as y1(s) = 1
p(s)

[(7.5s− 46.87)u1(s) + (22.5s + 18.76)u2(s)] , y2(s) =

1
p(s)

[(7.497s + 9.373)u1(s) + (−0.0012s + 18.76)u2(s)] , where p(s) = s2 + 1.249s + 6.252.

The corresponding design parameters are (Th, Tf ) = (0.4, 0.02) , Q = 0.3I2, R = I2, ρ =

0.1, ‖u(t)‖∞ ≤ 10, ‖y(t)‖∞ ≤ 5, and γ = 0.198 is obtained using Theorem 3. The last example

deals with the so-called Ball & Plate system of [35] in the form of regulating to the origin.

The design parameters are (Th, Tf ) = (0.2, 0.03) , Q = diag ([6, 0.1, 500, 100]) , R = 1, ρ =

0.1, ‖u(t)‖∞ ≤ 10, |y1| ≤ 30, |y2| ≤ 15, |y2| ≤ 15, |y3| ≤ 0.26, |y4| ≤ 1, and γ = 0.264 is

obtained using Theorem 3.

IV. CONCLUSIONS

In this paper the explicit MPC problem is reformulated and characterized using the δ-model. It

is discussed in section II that in the proposed method the system model and solution properties

have close connections to the continuous-time system, which is not the case in the explicit

MPC based on the shift operator. Using this close connection to the continuous-time domain,

an approximation and improvement procedures were proposed, leading to a low complexity

PWA controller. Two features of the current method comparing to some existing approximate
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approaches is that, the final structure of the approximate controller in this method is already

known thanks to the coarse polyhedral partition. Moreover, the constraints satisfaction and

stability of the proposed approximate controller were guaranteed a priori and does not require

post-processing of cost functions. Extensive simulation results illustrate the potential abilities and

performance of the proposed method. It is worthwhile remarking that the proposed improvement

procedure can be used, mutatis mutandis, to recover approximate solution of other existing

approximate methods. Finally, we would remark that the proposed δ-eMPC framework can

be extended naturally to handle situations where reference tracking, disturbance rejection, soft

constraints and variable constraints are required.

TABLE I

SIMULATION RESULTS OF PROPOSED APPROACH COMPARED TO THE FINE SOLUTION.

E
xa

m
pl

e

α Nv

Regions

√√√√Nv∑
i=1

∥∥∥∥∥u∗
f
(xi)−u(xi)

‖u‖∞

∥∥∥∥∥
2

2
Nv

Mean(J)

Fine Coarse
Coarse Improved Coarse Improved

(u = uc) (u = ûc) (J = Jc)(J = Ĵc)

#1

2 3759

2739

729 0.0011 0.0006 0.0206 0.0018

3 2039 387 0.0030 0.0009 0.0264 0.0022

4 1165 213 0.0059 0.0021 0.0428 0.0031

5 801 141 0.0073 0.0031 0.0338 0.0037

6 509 83 0.0117 0.0044 0.0604 0.0078

8 317 45 0.0201 0.0080 0.1283 0.0201

11 167 15 0.0336 0.0275 0.4334 0.2841

#2

2 1399

1349

279 0.0793 0.0312 0.1146 0.0163

3 1239 247 0.0914 0.0391 0.1324 0.0338

4 1109 221 0.1042 0.0577 0.1669 0.0589

5 959 191 0.1233 0.0799 0.1865 0.0787

6 779 155 0.1561 0.1188 0.2554 0.1291

#3

2 13121

10993

8830 0.0515 0.0397 0.0524 0.0479

3 4874 4182 0.1184 0.0991 0.0678 0.0631

4 1904 1346 0.1765 0.1746 0.1997 0.1972
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