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Abstract: This paper presents a nonlinear numerical observer for accurate position, velocity
and attitude (PVA) estimation including the accelerometer bias and gyro bias estimation. The
Moving Horizon Observer (MHO) processes the accelerometer, gyroscope and magnetometer
measurements from the Inertial Measurement Unit (IMU) and the position and velocity
measurements from the Global Navigation Satellite System (GNSS). The nonlinear measurement
equations with the rotation matrix, expressed through the quaternion parametrization, in
combination with the state-space rigid body kinematic model of translational and rotational
motion is the subject of optimization defined on a receding data window. The gradient-based
trust-region method is applied to solve the MHO’s nonlinear least-squares criterion. The MHO
is tesed off-line in the numerical experiment involving the experimental flight data from a light
fixed-wing aircraft. This study demonstrates the quality of the MHO computations with the
comparison of the reference filter, the multiplicative Extended Kalman Filter (EKF).
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1. INTRODUCTION

Integrating a Global Navigation Satellite System (GNSS)
with an Inertial Navigation System (INS) is the state-of-
the-art in the navigation systems and this topic has been
studied intensively in the literature. The formulation of
attitude estimation is known as the Wahba problem, de-
fined as the batch vector-data estimation problem Wahba
(1965). Commonly used algorithms, Crassidis et al. (2007)
to solve for the attitude estimation problem (the Wahba
problem) are QUEST-based algorithms Shuster and Oh
(1981); Bar-Itzhack (1996); Psiaki (2000); Christian and
Lightsey (2010), Extended Kalman filtering (EKF) algo-
rithms Lefferts et al. (1982); Markley (2003); Markley and
Sedlak (2008), Unscented Kalman filtering (UKF) algo-
ritms Crassidis and Markley (2003), Rhudy et al. (2013)
or more computationally advanced particle filters (PF)
Cheng and Crassidis (2004), Carmi and Oshman (2009)
based on the Bayesian theory. Recently also nonlinear
observers are developed in Grip et al. (2013) and further
discussed in references therein.
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work is also supported by the Research Council of Norway through
the Center of Excellence on Autonomous Marine Operations and
Systems (AMOS), grant 223254, and project grant 221666.

The moving horizon observer (MHO), Rao et al. (2003);
Alessandri et al. (2008), is an interesting and potentially
attractive alternative to the EKF and particle filter sta-
tistical methods, Cheng and Crassidis (2004); Carmi and
Oshman (2009). Like the EKF method, MHOs are usually
based on a least squares (minimum variance) cost function.
While the EKF leads to recursive update equations for
the estimate and its error covariance matrix based on
the most recent measurement of output and inputs, the
MHO differs in two important ways. First, it considers
a finite moving window (horizon) of data when updating
the estimates rather than just the most recent sample.
Second, it directly minimizes the least squares cost func-
tion using nonlinear programming rather than deriving
a recursive update formula based on linearization. MHO
may be considered more powerful than EKF since it is less
dependent on linearization, it may be able to capture non-
white noise characteristics due to its moving window of
measurements that will make correlations apparent, and
due to its ability to directly incorporate constraints on the
estimate, Haseltine and Rawlings (2005). In the meaning
of MHO, batch estimation with trust-region algorithm has
been proposed in Psiaki and Hinks (2012) where the idea
of outer numerical solution for the angular velocity vector
updates the inner analytical solution for the quaternion.



The MHO has been recently studied for the attitude esti-
mation in Vandersteen et al. (2013).

The main contribution of this paper is the formulation of a
MHO for the position, velocity and attitude computation,
combining the GNSS, magnetometer and IMU sensors and
the experimental evaluation of such formulation, whereas
Vandersteen et al. (2013) uses only the gyroscope and
magnetometer information. The Global Positioning Sys-
tem (GPS) is used by the GNSS receiver, measuring the
position and velocity, while the accelerometer, gyroscope
and magnetometer represent the IMU measurements. The
method is experimentally off-line tested on the aircraft
data and compared with the performance of the multiplica-
tive Extended Kalman Filter, Markley (2003). It is shown
that the MHO converges faster than the multiplicative
EKF from the incorrect initial conditions and that the
MHO with a moderately precise MEMS IMU can perform
equivalently to the multiplicative EKF using the gyroscope
and accelerometer data set from a relatively more precise
MEMS IMU, where both, the EKF and the MHO use the
same GNSS measurements.

The Euclidean norm is denoted as ‖ · ‖2. For a vector
x ∈ R3, S(x) denotes the skew-symmetric matrix

S(x) =

[

0 −x3 x2
x3 0 −x1
−x2 x1 0

]

A unit quaternion q = [sqrq ]
T is defined by a scalar part

sq ∈ R and a vector part rq ∈ R3. A multiplication of
the quaternions q and p is defined through the quaternion
product

q ⊗ p =

[

sqsp − r
T
q rp

sqrp + sprq + rq × rp

]

For a vector x ∈ R3, x̃ denotes the quaternion with
scalar part zero and vector part x, i. e., x̃ = [0, x]T . A
vector x ∈ R3 decomposed in the coordinate system a is
denoted xa. The same vector decomposed in the coordi-
nate system b is denoted xb. The rotation between these
coordinate systems is expressed through a unit quaternion
qba = [sqbarqba ]

T . The rotation matrix R(qba) ∈ SO(3) is

given as R(qba) = I + 2sqbaS(rqba ) + 2S(rqba)
2 such that

R(qba)x
a = xb. The rate of rotation of the coordinate

system marked with the subscript b with respect to the
coordinate system a, decomposed in c, is symbolized
by ωc

ab. Four coordinate systems are going to be re-
ferred in this paper: Earth-Centered Inertial (ECI), Earth-
Centered Earth-Fixed (ECEF), North-East-Down (NED),
and Body-Fixed (BODY) coordinate systems, with corre-
sponding indices i, e, n, and b.

2. BASIC MODEL FORMULATION

In the next section the MHO is formulated to estimate
the PVA based on the kinematic equations of the body in
motion, Bekir (2007) (pp. 75-85), and measurements.

The system equations for translational rigid body dynam-
ics are given as

ṗe = ve (1)

v̇e =−2S(ωe
ie)ve + ae + ge(pe) (2)

where pe is the position in ECEF coordinates, ve is the lin-
ear velocity in ECEF coordinates, ae is linear acceleration
in ECEF coordinates and ge is the gravity vector in ECEF
coordinates. The gravity vector is a function of the position
and it is modeled using the J2 gravity model, Hsu (1996).
The known Earth’s angular velocity around the ECEF z-
axis is represented by vector ωe

ie. The system equations for
rotational rigid body dynamics are represented as

q̇eb =
1

2
qeb ⊗ ω̃

b
ib −

1

2
ω̃e
ie ⊗ q

e
b (3)

The position and velocity are considered in the ECEF
frame and the rotation vector, the unit quaternion, is
representing the rotation from BODY to ECEF frame.

The measurement equations with measurement noise are

ωb
m = ωb + α+ εω (4)

abm = R(qeb )
T ae + β + εa (5)

mb
m = R(qeb )

Tme + εm (6)

pem = pe + εp (7)

vem = ve + εv (8)

The biases are assumed to satisfy

α̇ = 0 (9)

β̇ = 0 (10)

The position pe, linear velocity ve and magnetic field mb

are assumed to be measured without bias.

For the convenience of a more compact notation the state
space model is written

ẋ = fc(x, u) (11)

where fc : R
nx×Rnu → R

nx represents the augmented dy-
namics Eq. (1)-(3) and Eq. (9)-(10), x = [pe, ve, qeb , α, β]

T

is the state vector and u = [ae, ωb]T is the input. The
observation Eq. (4)-(8) may be written as

y = hc(x, u) + ε (12)

where y ∈ R
ny is the vector of measurements y =

[ωb
m, a

b
m,m

b
m, p

e
m, v

e
m] and hc : R

nx × R
nu → R

ny is
a continuous measurement function. The measurement
errors are given in the vector ε = [εω, εa, εm, εp, εv] ∈
R

ny . The situation encountered in practice is when the
system is governed by continuous-time dynamics and the
measurements are obtained at discrete time instances.
For the MHO formulation, the Euler method discretized
nonlinear dynamic system is considered

pe(i) = pe(i − 1) + τve(i − 1) (13)

ve(i) = ve(i− 1) + τ [ae(i− 1) + ge − 2S(ωe
ie)v

e(i− 1)]
(14)

qeb (i) = qeb(i − 1)

+
τqeb (i − 1)

2

[

0 −ωb,T
ib

ωb
ib −S(ω

b
ib)

]

−
τqeb (i − 1)

2

[

0 −ωe,T
ie

ωe
ie S(ω

e
ie)

]

(15)

α(i) = α(i − 1) (16)

β(i) = β(i − 1) (17)

where i represents the numerical step index, and τ is the
numerical step size. Eq. (13)-(17) can be written in the
form



x(k + 1) = f(x(k), u(k)) (18)

y(k) = h(x(k), u(k)) + ε(k) (19)

for discrete time index k = 0, 1, . . ., where x(k) ∈ R
nx is

the augmented state vector and u(k) ∈ R
nu is the input

vector. The state vector is observed through the measure-
ment equation (19) where y(k) ∈ R

ny is the observation
vector and ε(k) ∈ R

ny is a measurement noise vector.
For convenience, it is assumed that all sensors operate
at the same rate, i. e. interpolated data are generated
for the slower sensors. The common discretization interval
(sampling period) is denoted Ts.

3. MOVING HORIZON OBSERVER

Assuming the quaternion parametrization of the rotation
matrix R(qeb), a least-squares criterion for the moving
horizon observer is formulated at time index k as mini-
mizing of J with respect to p̂e(k − N), v̂e(k − N), q̂eb(k −

N), {âe(t)}kt=k−N , {ω̂
b(t)}kt=k−N , α̂(k−N), β̂(k−N) where

J =
k

∑

t=k−N

||ωb
m(t)− ω̂b(t)− α̂(t)||2W1

+

k
∑

t=k−N

||R(q̂eb(t))a
b
m(t)− âe(t)−R(q̂eb(t))β̂(t)||

2
W2

+

k
∑

t=k−N

||R(q̂eb(t))m
b
m(t)−me||2W3

+

k
∑

t=k−N

||pem(t)− p̂e(t)||2W4
+

k
∑

t=k−N

||vem(t)− v̂e(t)||2W5

+ ||1− ||q̂eb (k −N)||22||
2
W6

+ ||ᾱ(k −N)− α̂(k −N)||2W7

+ ||β̄(k −N)− β̂(k −N)||2W8

+ ||āe(k −N)− âe(k −N)||2W9

+ ||ω̄b(k −N)− ω̂b(k −N)||2W10

+ ||p̄e(k −N)− p̂e(k −N)||2W11

+ ||v̄e(k −N)− v̂e(k −N)||2W12

+ ||q̄eb (k −N)− q̂eb (k −N)||2W13
(20)

is computed using forward-Euler numerical integration
of motion dynamics, Eq. (13)-(17), and the quaternion
constraints
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(21)

The cost function comprises of two kinds of terms. The
first kind of term is the one that considers the whole
horizon; this is characterized by the sum in front of the
norm. This kind of term is useful if new information from
sensors should have a dominant effect on the estimates.
The second kind of term is known as the regularizing
cost and in general introduces the cost of change of the
estimates at the beginning of moving horizon window in
the time instance k−N , where N is the length of horizon.
The regularizing term is useful for its filtration effect of
the estimates. Each term has its weight W that represents
the significance of each term value that builds the overall

cost function value. The length of horizon represents the
memory window of the measured data and it can be chosen
depending on the sampling interval and dynamic response.
The weights W should be chosen with respect to all signal
errors magnitudes. The length of horizon N and values of
weights W are recommended to be set via tuning and test
procedures. In addition, square of quaternion elements add
up to 1, meaning any unit quaternion satisfies ‖q̂eb‖

2
2 = 1,

which is enforced by a penalty term.

The optimized variable is the state at the beginning of the
horizon window p̂e(k − N), v̂e(k − N), q̂eb(k − N), α̂(k −

N), β̂(k −N) with the optimal model response, Eq. (13)-
(17), referred to as the N-step model prediction. The esti-
mated variables that enter the N-step model prediction as
the unknown inputs are the acceleration {âe(t)}kt=k−N and

angular velocity vectors {ω̂b(t)}kt=k−N . From the optimiza-
tion point of view the acceleration and angular velocity
vectors are estimated as the free variables.

The a priori state estimate used in the regularizing cost
at the beginning of the horizon is declared as x̄(k −N) =
[p̄e, v̄e, q̄eb , ᾱ, β̄]

T and is computed in a time instant k for
the time instance k −N by means of simulation as a one
step prediction

x̄(k −N) = f(x̂(k −N − 1), u(k −N − 1)) (22)

where

u(k −N − 1) =

[

R(q̂eb (k −N − 1))abm(k −N − 1)
ωb
m(k −N − 1)

(23)

−R(q̂eb(k −N − 1)β̂(k −N − 1)
−α̂(k −N − 1)

]

and x̂(k −N − 1) is the optimal estimate at the previous
update. The a priori angular velocity estimate ω̄b(k −N)
and a priori acceleration estimate āe(k − N) used in the
regularizing cost at the beginning of the horizon is set in
a time instant k for the time instance k − N from the
previous optimal estimates of ωb, ae (estimated in time
instance k − 1) as

āe(k −N) = âe(k −N − 1) (24)

ω̄b(k −N) = ω̂b(k −N − 1) (25)

Consequently, the variables for the time instant k−N − 1
are not the subject of optimization in the time instance k.

A gradient-based trust-region-reflective method Nocedal
and Wright (2006) (pp. 76-77), is applied to solve the
nonlinear-least square MHO criterion, Eq. (20). The gradi-
ents are computed numerically by finite differences within
the iterative process to solve for the scaled modified New-
ton step that arises from examining the Kuhn-Tucker nec-
essary conditions defined for the box constraint problem,
see the lsqnonlin function Matlab (2012). The number
of iterations in an optimization depends on a solver’s
stopping criteria. The stopping criteria for this method is a
relative tolerance δJ on the cost function value J(x) where
the iterations stop if |J(xi) − J(xi+1)| < δJ(1 + |J(xi)|).
The other stopping parameter of the optimization metric
is δx, which is a relative bound on the size of a step,
meaning that iterations end when |xi − xi+1| < δx(1 +
|xi|). The parameters that contribute significantly to the
precision of the trust-region-reflective method are maxi-
mum δmax and minimum δmin perturbation in variables for
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Fig. 1. Algorithm scheme of MHO

finite-difference gradients computations. Finite-differences
used to estimate gradients are computed with the central
method. The number of fixed iterations and the number of
function evaluations of the trust-region-reflective method
is implicitly limited through the above mentioned parame-
ters. The specified maximum allowed number of iterations
Λ can be considered as one of the tuning parameters for
the amount of filtering.

The MHO algorithm scheme is shown in Figure 1. The
algorithm can be summarized into following steps:

(1) Initialization; k = N + 1;
• Load the initial Datapool with measurement data
• Set the initial values
x̂(0) = [p̂e(0), v̂e(0), q̂eb(0), α̂(0), β̂(0)]

T for the a
priori state estimate, Eq. (22) (more details are
discussed in section 4.2)
• Compute the initial input vectors âe(0) and ω̂b(0)

according to Eq. (23)
(2) Start main loop; Increment k ← k + 1;

• Obtain the output measurement y(k) and update
the Datapool
• Numerically integrate a priori state estimates
x̄(k −N) with Eq. (22)-(23)
• Set the a priori inputs āe(k −N) and ω̄b(k −N)

from the previous iteration, Eq. (24), (25)
(3) Optimization.

• Set the initial guess for the iterative nonlinear
optimization x̂init(k −N) = x̄(k −N).
• Minimize the cost function (20) to numerically

compute the optimal state vector estimate x̂(k−
N) and at the very beginning of the reced-
ing window and to estimate the input vectors
{âe(t)}kt=k−N , {ω̂

b(t)}kt=k−N on the whole hori-
zon. When computing the cost function, the
model is used for prediction through the Eq. (13)-
(17), similar to a direct single shooting strategy.

(4) Post-simulation to obtain x̂s(k).
• The initial condition for the first step is x̂s(k −
N) = x̂(k −N).
• Use the model to estimate the state from the

beginning of the window k − N to the end of
the window k as

x̂s(k −N + i) = f (x̂s(k −N + (i− 1)) (26)

, u(k −N + (i− 1)))

where i = 1, 2, . . . , N and

u(k−N+(i−1)) =

[

âe(k −N + (i− 1))
ω̂b(k −N + (i− 1))

]

(27)

(5) End of loop; Go to Step 2.

Conditions for convergence and stability of the Moving
Horizon Observer (MHO) are established in the literature
for the case when open loop prediction models are ap-
plied Sui and Johansen (2011); Alessandri et al. (2008);
Rao et al. (2003) as in this case, Eq. (13)-(17). Like the
EKF, the key conditions are uniform observability (i.e.
observability of the system, and persistent excitation of
the data) as well are optimality of the solution found of
the numerical optimization problem. The latter requires
that the initialization of the a priori estimate is sufficiently
accurate, and generally means that only local convergence
can be established. This is not a computationally most
efficient implementation, but serves the purpose of com-
paring performance indicators such as convergence speed
and accuracy.

To be able to use or display the outputs of the MHO to
a user or to a control system it is sometimes convenient
to express the estimates of the PVA in the NED coordi-
nates. With respect to the WGS-84 reference ellipsoid, the
position estimate p̂e is transformed into the estimates of

latitude µ̂, longitude l̂ and height ĥ. This transformation
is computed via an iterative procedure, such as that of
Hofmann-Wellenhof, Lichtenegger, and Collins, Hofmann-
Wellenhof et al. (2001) (pp. 279-303), where only one iter-
ation at each sampling interval is performed. The relation
between the ECEF and NED coordinate rotation is given
as

q̂ne (k) = q̂µ(k)⊗ q̂l(k) (28)

where q̂µ = [cos((µ̂ + π/2)/2); 0; sin((µ̂ + π/2)/2); 0] and

q̂l = [cos(l̂/2); 0; 0;− sin(l̂/2)]. Following, the velocity in
the NED coordinate system is computed as

v̂n(k) = R(q̂ne (k))v̂
e(k) (29)

as well as the attitude expressed in the NED coordinate
system is given as

q̂nb (k) = q̂ne (k)⊗ q̂
e
b(k) (30)

4. EXPERIMENTS

The presented MHO algorithm is experimentally tested
on the flight data from the aircraft. The experiments are
performed on the Piper Cherokee 140 light fixed-wing
aircraft, Grip et al. (2013).

4.1 Setup and Implementation

The aircraft is carrying the Xsens MTi inertial measure-
ment unit mounted on a bulk head in the back, and
the uBlox LEA-6H GNSS receiver with an active an-
tenna mounted on the instrument panel. The Xsens MTi
is equipped with a moderately accurate accelerometer,
gyroscope and magnetometer with an in-run gyro bias
stability of 20 deg.h−1. The position as well as Doppler-
based velocity measurement is provided by the uBlox LEA-
6H GNSS receiver. The Xsens MTi measurements are
provided at the sampling interval 0.01 s and the uBlox
LEA-6H GNSS module provides the measurements at the



sampling interval 0.2 s. All the sensor readings are filtered
using thirdorder low-pass filters with a cutoff frequency
of 5 Hz, and the GPS readings are resampled to 0.01 s
before being provided to the observer. The magnetometer
measurements are also filtered with a fourth-order notch
filter to remove the predominant component of a square
disturbance with period 1.2 s, caused by the aircraft’s anti-
collision light.

The benchmark algorithm considered in this study is the
multiplicative EKF that provides a reference for the MHO
estimates. The EKF processes measurements from a set of
higher-quality sensor ADIS 16488 "tactical grade" IMU.
The position and Doppler-based velocity measurement
is provided by the uBlox LEA-6H GNSS receiver. The
ADIS sensor is mounted within the cockpit behind the
pilot’s seat. The ADIS 16488 contains relatively accurate
accelerometers, gyros, and magnetometers, with an in-run
gyro bias stability of 6.25 deg.h−1. The measurements are
obtained at the sampling rate of 410 Hz and downsampled
to 100 Hz. Magnetometer readings are provided by the
Xsens MTi instead of the ADIS 16488, due to the difficulty
of accurately calibrating magnetometers installed in the
cockpit. The EKF is implemented as an indirect filter
with resetting, but with both prediction and update taking
place at 100 Hz. The EKF estimates PVA, gyro bias
and accelerometer bias. The attitude is represented by
a quaternion in the navigation equations, whereas the
attitude error in the EKF is represented using a 3-DOF
Gibbs vector. The attitude quaternion is reset in the style
of a multiplicative EKF, Markley (2003).

The experimental flight data lasts approx. 40 min.

4.2 Settings and Results

The MHO is evaluated and tested in comparison with
the multiplicative EKF in the following experiments. One
main challenge for each observer/filter is how fast will the
states (and other optimized variables) converge, therefore
the initialization of the MHO plays an important role. As
already mentioned, the initial state vector estimate x̂(0)
(this vector should not be confused with the initial value
for the optimization x̂init) can be set from the sensors.
The initial position and velocity are set from the GPS
measurement while the initial quaternion vector is indi-
rectly set from the accelerometer and magnetometer unit
vectors and their references aeref = [3.058; 5.971;−7.130]

m.s−2 and me
ref = 104[2.644; 4.085;−2.468] nT based on

the QUEST algorithm described in Shuster and Oh (1981).
The initial inputs âe(0) and ω̂b(0) are always set according
to the Eq. (23).

Experiment 1 The first experiment considers the run of
the MHO that starts its computations 15 min after the
take off and the computations run 23.3 min. The initial
conditions, set from the sensors, are set sufficiently close
to the reference values given by the EKF. The EKF runs its
computations from the very first sample instant, starting
during the airplane’s take off and having ample time to
converge. The comparison of attitude estimation of the
MHO and the reference EKF is shown in Figure 2. The
settings for MHO are shown in Table 1.

Fig. 2. Estimated Euler angles, a - MHO, b - EKF
(reference)

Fig. 3. Estimated biases by MHO. The reference values
were obtained as the mean values from the airplane’s
stand still gyroscope and accelerometer recordings
right after the landing and are displayed as dashed
lines. These reference values have informative charac-
ter.



Parameter Setting Description

τ 0.01 Integration step
Λ 16 Maximum number of iterations
N 3 Length of horizon
W1 5 ∗ 103I3 Gyroscope weight
W2 20 ∗ 103I3 Accelerometer weight
W3 5 ∗ 103I3 Magnetometer weight
W4 2I3 Position weight
W5 2I3 Velocity weight
W6 0.1 Quaternion weight
W7 104I3 Gyroscope bias weight
W8 101I3 Accelerometer bias weight
W9 5 ∗ 0.01I3 Acceleration regularizing cost
W10 5 ∗ 0.001I3 Gyro regularizing cost
W11 102 if J < δT Position regularizing cost
W12 102 if J < δT Velocity regularizing cost
W13 102 if J < δT Quaternion regularizing cost

Table 1. Setting of main tuning parameters for
MHO

Estimated sensor biases are displayed in Figure 3. The
tuning of the MHO’s parameters is important for the
overall performance of the observer. Tuning of the MHO
in Table 1 overestimates the pitch angle θ shown in Figure
2 in comparison with the reference EKF. This can be
explained by more relaxed tuning of the accelerometer
bias weight W8 and conservative tuning of the acceleration
regularizing costW9. The pitch angle θ, in Figure 2 is over-
estimated at the same time intervals as the accelerometer
bias in y-axis, in Figure 3, deviates from the reference.
The accelerometer bias is not observable in all conditions
and requires moves with sufficient excitations in the given
axis. If the new weights W8 and W9 are set according to
the tuning shown in Table 2, similar attitude estimation as
the reference EKF is achieved. The attitude estimation is
documented in Figure 4 with bias estimates documented
in Figure 5. The regularization terms were not found in
general to influence stability properties of the estimator.

Parameter Setting Description

τ 0.01 Integration step
Λ 16 Maximum number of iterations
N 3 Length of horizon
W1 5 ∗ 103I3 Gyroscope weight
W2 20 ∗ 103I3 Accelerometer weight
W3 5 ∗ 103I3 Magnetometer weight
W4 2I3 Position weight
W5 2I3 Velocity weight
W6 0.1 Quaternion weight
W7 104I3 Gyroscope bias weight
W8 102I3 Accelerometer bias weight
W9 5 ∗ 0.001I3 Acceleration regularizing cost
W10 5 ∗ 0.001I3 Gyro regularizing cost
W11 102 if J < δT Position regularizing cost
W12 102 if J < δT Velocity regularizing cost
W13 102 if J < δT Quaternion regularizing cost

Table 2. Setting of main tuning parameters for
MHO

Experiment 2 The second experiment focuses on the
convergence ability of the MHO, where the comparison
with the benchmark reference EKF is continued. In this
scenario, the initialization of the MHO after 29 min
after take off is considered where the scenario lasts 8.3
min. The initial conditions, set from the sensors, are set

Fig. 4. Estimated Euler angles, a - MHO, b - reference
EKF

Fig. 5. Estimated biases

wrong due to noisy measurements of the accelerometer and
magnetometer in comparison to the reference values given
by the EKF. The reference EKF runs its computations
from the very first sample instant, starting during the
airplane’s take off and having ample time to converge. The
settings used by the MHO are presented in Table 2.

Beside the reference multiplicative EKF (d) and the MHO
(b), the performance of the multiplicative EKF (a) and



Fig. 6. Zoom of estimated Euler angles, a - EKF, b - MHO,
c - EKF (with Xsens MTi), d - reference EKF

RSE of roll φ× 103 pitch θ × 103 yaw ψ × 103

a 0.2619 0.1591 0.9029
b 0.2970 0.1853 1.2274
c 0.3748 0.2183 1.1907

Table 3. Root Square Error for transient data
in Fig. 6, first 250 sec, a-EKF (Adis 16488),

b-MHO (Xsens MTi), c-EKF (Xsens MTi)

the multiplicative EKF with moderately accurate Xsens
MTi IMU sensor set (c) is compared. The multiplicative
EKFs (a,c) are initialized in the same sampling interval as
the MHO (b) but the reference multiplicative EKF (d).
Zoomed plots of the first 10 s are shown in Figure 6.

The performance in this experiment is evaluated by the
Root-Square-Error index computed for each Euler angle
as

RSE =

√

√

√

√

n
∑

k=1

e2j(k) (31)

where j = 1, 2, 3, n = 25000, e1(k) = φr(k) − φ̂(k) and

e2(k) = θr(k)− θ̂(k), e3(k) = ψr(k)−ψ̂(k). The RSE index
numbers for the first 250 s are shown in Table 3. The MHO
(b) has shown a better performance in comparison to the
multiplicative EKF (c) in terms of the roll φ and pitch θ
angles and slightly worse performance in the yaw angle ψ.
The MHO (b) and the multiplicative EKF (c) are both
using the same IMU, Xsens MTi. The best performance
for the first 250 s is delivered by the multiplicative EKF
(a) using relatively precise IMU, Adis 16488.

RSE of roll φ pitch θ yaw ψ

a 8.8331 28.1161 159.1960
b 80.9853 65.4003 249.4891
c 179.1406 66.3386 557.7118

Table 4. Root Square Error for steady-state
data, last 250 s, a-EKF (Adis 16488), b-MHO

(Xsens MTi), c-EKF (Xsens MTi)

Fig. 7. Computational indicators

The RSE index numbers for the last 250 s are shown in
Table 4. The MHO (b) has shown a better performance in
comparison to the multiplicative EKF (c) in terms of all
the Euler angles. The best performance for the last 250 s
is delivered by the multiplicative EKF (a) using relatively
precise IMU, Adis 16488.

The maximum number of iterations Λ is a tuning pa-
rameter needed for real-time computations when fixed-
processing time is given by sampling intervals. Limiting the
iterations thus leads to some trade-off between the speed of
convergence and the speed of computations. In this case
the regularization also reduces the number of iterations
needed to attain optimality. The number of iterations with
monitored cost function value for the first 10 s is plotted
in Figure 7. These computational indicators are associated
with zoomed plot shown in Figure 6. In order to improve
the convergence of the MHO, the initial regularizing cost
weights W11, W12 and W13 are set to a very small number
close to zero until the cost function reaches the threshold
limit value δT . The cost function value is monitored during
the computations and when it gets below the threshold
value δT , the algorithm turns on the filtering by changing
the regularizing cost weights W11, W12 and W13. It can
be seen in Figure 6 that the convergence of the MHO (b)
progresses fast until approx. 100th sampling interval when
the cost function reaches the threshold value. This is when
the regularizing cost weights are switched to their nominal
values given in Table 2.

5. CONCLUSION

This work presents a novel methodology for estimation of
position, velocity and attitude of a body in motion using



a moving horizon observer (MHO). The importance of
MHO algorithm in combination with the motion dynamic
equations and low-cost IMU and GNSS sensors lies in the
simplicity of the problem formulation and in modularity
of different sensor combinations for highly accurate esti-
mation. The result of this study is a design and numerical
off-line testing of the MHO on experimentally measured
data as well as the favorable comparison with the reference
multiplicative extended Kalman filter. The computational
complexity and higher computational cost represents a key
limitation when it comes to real-time estimations on such
devices as CPU, GPU or FPGA. Higher computational
costs are however inevitable in order to achieve better
performance.
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