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Problem description

Experiencing tougher competition in the Nordic power markets and higher penetration
of non-dispatchable energy sources, the question arises whether reserve market oppor-
tunities should be taken into account when bidding into the day-ahead market. The
coordinated bidding problem is often modeled as a multi-stage stochastic optimiza-
tion problem, associated with long solution times. Hence, there is not much research
currently available to provide answers to the question. This thesis considers a Norwe-
gian hydropower producer and its participation in the day-ahead, primary reserve and
balancing market.
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Abstract

With the connection of new regions into the Nordic power markets competition inten-
sifies. The incentive of power producers to exploit their portfolios more effectively is
increasing. Expecting a higher share of non-dispatchable energy production in the years
to come, supply of ancillary services (reserves) will be divided between those producers
who possess flexible portfolios. The question then arises whether a hydropower producer
should take the reserve markets into account when submitting bids for the day-ahead
auction. This thesis considers the bidding problem of a Norwegian hydropower producer
bidding into the day-ahead, taking the primary reserve and balancing market into ac-
count. A stochastic program is proposed to investigate the value of coordinating the
day-ahead bid with the reserve market opportunities. Stochastic programs require good
scenarios to produce high-quality solutions, and hence a great effort is put into generat-
ing scenarios that do well at predicting market prices and volumes, and representing the
associated uncertainty. A comprehensive scenario generation framework that captures
the dynamics of each market as well as their inter-dependencies is proposed, tested and
found to perform well.

Modeling choices and assumptions are made with the goal of attaining reasonable so-
lution times, while at the same time reflecting the actual planning procedures of the
producer. Short solution times allow for a comprehensive case study to be conducted for
250 days in 2016. The case study is performed under three control variables: price de-
viation from water value, planning horizon granularity and the number of watercourses
in the portfolio. First, the testing is done with one watercourse at disposal. Coordina-
tion is found to yield a small gain of about 1 %. Next, the profitability of coordinated
bidding is further investigated with respect to price deviation from water value. The
results show that the gain associated with coordination is higher when this deviation
is low. The gain tends to zero when the deviation increases. Next, we investigate the
effect of adding more watercourses to the planning problem. Gains decrease, but seem
to stabilize around a value of 0.5 %.
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Sammendrag

Med stadig flere regioners tilknytning til de nordiske kraftmarkeder tilspisser konkur-
ransen mellom kraftprodusenter seg, og deres insentiv til å utnytte sine porteføljer p̊a
en mer effektiv måte forsterkes. Det forventes at andelen av ikke-regulerbar energipro-
duksjon (herunder bl.a sol- og vindkraft) skal øke i årene framover, slik at en høyere
etterspørsel etter reserver vil måtte etterkommes av de produsenter som er i besit-
telse av regulerbar produksjonskapasitet. Et spørsmål som derfor melder seg, er om
en vannkraftsprodusent bør ta mulighetene i reservemarkedene i betraktning n̊ar spot
anmeldes. Denne oppgaven iøynetar en norsk vannkraftsprodusent som deltar i spot-,
FNR- og RK-markedet. Et stokastisk program utvikles med det formål å undersøke
lønnsomheten forbundet med å koordinere spotanmelding opp mot mulighetene i re-
servemarkedene. Stokastiske programmers evne til å treffe gode beslutninger avhenger
av kvaliteten p̊a scenariene som gis. Derfor legges betydelig innsats i å generere sce-
narier som godt predikerer markedspriser og -volumer, og som samtidig representerer
usikkerheten forbundet med nevnte prediksjoner. Et integrert rammeverk som fanger
dynamikken i hvert marked, s̊a vel som sammenhengene mellom dem blir her foresl̊att,
testet og funnet tilfredsstillende.

Modelleringsvalg og antakelser er tatt slik at vi oppn̊ar h̊andterbare løsningstider,
som samtidig reflekterer de virkelige planlegginsprosedyrene hos produsenten. Ko-
rte løsningstider tillater omfattende testing av beslutningsmodellen for 250 dager i
2016. Beregningsstudien utføres under tre kontrollvariabler: prisavvik fra vannverdi,
oppløsning av planlegginshorisonten, og antall vassdrag i porteføljen. I første om gang
kjøres testrammeverket for ett vassdrag. Det viser seg at koordinering gir en svakt
økt fortjeneste p̊a omlag 1 %. Videre undersøkes det hvordan koordinert planleg-
ging presterer med hensyn p̊a prisavvik til vannverdi. Denne analysen avslører at
økt prosentvis fortjeneste forbundet med koordinering er betydelig n̊ar spotprisene
utover et planleggingsdøgn ligger tett p̊a vannverdien. Den positive effekten av ko-
ordinering svekkes dog n̊ar dette avviket øker. Til sist undersøkes effekten av å øke
porteføljestørrelsen. Prosentvis økt fortjeneste avtar, og stabiliseres p̊a omlag 0,5 %.
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Chapter 1

Introduction

Over the past 25 years, electricity markets in the Nordic countries have been deregulated
in order to improve efficiency and increase security of supply. This has shifted the
operation of power markets from centralized to competitive. Ventosa et al. 2005 describe
the trend towards competition in the electricity sector, and how it has led to efforts
by the research community to develop decision and analysis support models adapted
to the new market context. They classify the main families of approaches of energy
market modeling. It is emphasized that one-firm optimization models are able to deal
with difficult and detailed problems because of their better computational tractability.
Good examples of such models can be found in short-term hydrothermal coordination
and unit commitment, in which binary variables are required, and optimal offer curve
construction under uncertainty. Optimization models can be divided in two subgroups;
single-market and multi-market models. Single-market decision making softwares are
widely taken advantage of of the world’s power producers.

In the Nordic electricity market of today, by far the largest amount of electricity
is traded in the day-ahead market. Though, the demand for reserves is expected to
increase in the coming years. Due to a larger share of non-flexible renewable, inter-
mittent, non-dispatchable energy, it is expected that the power markets’ dispatchable
production capacities will have a greater demand for regulating reserves to fulfill (Loru-
bio 2011). Contributions have been made to the literature in the last years, on whether
taking smaller and subsequently cleared markets into account when bidding into a main
market is profitable. An overview of the contributions made is given in Chapter 3.

We base our investigations on the market conditions of the price-area NO3 in mid-
Norway. Power market bidding and the operation of hydro-power production capacity
is modelled using stochastic programming (SP). We first give an introduction to the
energy markets treated in this thesis in Chapter 2. The end of this chapter addresses
important attributes of hydro-power; how it is traditionally planned, operated, and fi-
nally how coordinated market considerations may be profitable when possessing flexible
production capacities. Thereafter, we discuss our contribution to the topic of coordi-
nated bidding in electricity markets in context to existing literature in Chapter 3. In
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2 CHAPTER 1. INTRODUCTION

chapter 4 we propose a stochastic programming model that produces bid curves for
the Nord Pool Day-Ahead market, while taking into account the opportunities that
may occur in subsequent reserve markets, cleared at a later point of time. To model
the uncertainty in prices and dispatched volume, we put a great amount of effort into
generating scenarios to the stochastic program. To begin with we perform an empirical
analysis on prices and traded quantities in section 5. This is the basis of our choice
of market models in section 6. In chapter 7 we propose a framework that generates
scenarios to the decision model. Finally, in chapter 8 we carry out a computational
case study to test the performance of coordinated planning and benchmark it against
it’s counterpart; sequential planning. Chapter 9 concludes the thesis.



Chapter 2

Energy markets and hydropower
production

2.1 Introduction
In this section we begin by briefly presenting the Nord Pool Day-Ahead market. It
is the main arena for trading power in the Nordic region. In contrary to most other
European day-ahead markets, The Nord Pool day-ahead market is cleared before the
reserve markets. The reserve markets that we wish to focus on in our work are the
primary reserve and tertiary reserve markets. These markets are presented in Sections
2.3 and 2.4. We conclude by describing the characteristics of hydropower planning and
production.

2.2 Day-ahead market
The day-ahead market (spot market) is the main arena for trading power. There is
a variety of different types of bids the producer can make. This paper only considers
single-hourly bids. The seller needs to decide how much he can deliver and at what
price, hour by hour. A buyer needs to assess how much power it needs to meet demand
the following day, and how much to pay for this volume. Nord Pool aggregates both
supply and demand curves and calculates the price which balances the two; the spot
price.

12:00 CET is the deadline for submitting bids for power which will be delivered the
following day. Hourly prices are typically announced at 12:42 CET or later. An hourly
price corresponds to a volume commitment for producers and buyers. This means that
producers are obliged to deliver whatever accumulated volume they bid beneath this
price. From 00:00 CET the next day, power contracts are physically delivered (meaning
that the power is provided to the buyer) hour by hour according to the contracts agreed.
If a producer should fail to deliver the committed volume, the TSO will buy tertiary

3



4 CHAPTER 2. ENERGY MARKETS AND HYDROPOWER PRODUCTION

reserves on the behalf of the producer and make him pay for it afterwards (NordPool
2016).

Figure 2.1: Example bid curve and relation between market price and producer com-
mitment. Any clearing price within the interval in the figure will result in the specified
commitment

2.3 Primary reserves market
When either production or consumption changes, so does the frequency in the grid.
A change in frequency of +/- 0.1 Hz activates primary reserves. The regulation of
these is completely automated within the respective plants, with the generator droop
control restricting the degree of possible regulation. The market comprises both normal
operation reserves (FCR-N) and disturbed operation reserves (FCR-D). There exist
two markets for primary reserves; a day-market and a week-market. The day-market
consists of daily commitments, hour by hour, and is the market considered in this paper.

Only a running plant can deliver primary reserves. The producer makes increasing
bid curves for the plants he expects to run the next day, in the same manner as for the
day-ahead market. He is paid for the reservation of a power band, not for an actual
delivery of energy. The half-width of this band (in MW), for which the supplier is
remunerated, is restricted by the equation below:

min{PROD − LB,UB − PROD, 0.1 · 2 · Ni

κ
}

where PROD denotes the planned production to the day-ahead market, UB and
LB upper and lower bounds on the generator capacity respectively, Ni the nominal
power of the generator, and κ the droop setting. In order to secure a good distribution
of primary reserves producers are obliged to set their plants’ droop setting equal to
or below 12 percent. The TSO will thus utilize the “residual” reserves of a producer
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no matter whether he participates in the market or not. Producers that do not bid
towards the market get paid by a certain rate. It is up to the TSO to decide which
quantities of primary reserves to provide. The lastly committed bid sets the price for all
participants, and the market is thus a marginal pricing market(Statnett AS 2016). Bids
are committed before 18:00 CET on the day before delivery, and final commitments are
given by the TSO at 19:00.

2.4 Tertiary reserves market
The tertiary reserves market will be referred to as the balancing- or the regulating
market interchangeably in this paper. Tertiary reserves are used to reduce larger im-
balances unforeseen by the day-ahead settlement, and are activated to relieve primary
reserves, such that these more flexible reserves are ready for the next sudden imbalance
occurring. Tertiary reserves are also activated when regional bottlenecks are present.

A producer, tentatively, places an increasing bid curve for the market within 21:30
on the evening before the day of schedule. Though, bids can be changed until 45 minutes
before the hour of schedule, and bids the evening ahead is only a mere guidance for the
TSO.

The activation happens after a call from the TSO to the producer, and the producer
must be able to fully activate the volume agreed upon within 15 minutes. Both produc-
tion and consumption capacities can be offered in the market. In the case of tertiary
reserves, the producer is paid for actual energy delivery. The TSO, at all times, has
a list of offered reserves, and starts off by activating the cheapest (upper) alternative
whenever needed. The lastly activated bid sets the price for all market participants. In
the case of upward regulation the balancing price is by market rules equal to or higher
than the spot price, and in the down-regulation case the price is equal to or lower than
the spot price. The absolute values of these differences (between balancing and spot
price) are often referred to as balancing market premiums (Statnett 2016).

Figure 2.2 shows the time line of bidding and clearing for all three of the markets.

Figure 2.2: Sequential clearing of relevant markets
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Table 2.1: Market characteristics

Day-ahead Primary reserve Balancing

Settlement granularity Hourly Hourly Hourly
Market clearing Day-ahead Day-ahead Real time
Remuneration Energy only Reserved capacity Energy only
Pricing scheme Marginal pricing Marginal pricing Marginal pricing
Activation Manual Automatic Manual
Single/dual pricing Single Single Dual
Price cap/floor [NOK] -4 500 - 27 000 >10 Day-ahead price

2.5 Hydropower production and planning
Hydro power is undoubtedly Norway’s most important electric power source as it con-
stitutes 99 % of total production (Statkraft 2016). It is a renewable energy source and
possesses a different set of characteristics compared with common electricity production
methods such as combustible fuels, nuclear, wind and solar.

The principle of hydropower is to utilize potential energy in elevated water reser-
voirs. This energy is converted to electrical energy in a turbine-generator system. The
energy is transferred directly to the grid for consumption. A strength of hydropower
production is its flexibility. Production volume can be regulated in a matter of sec-
onds to accommodate for unexpected events on the power grid. This is in contrast
to for example nuclear and thermal production, which require more time to adjust
production. The flexibility of hydropower makes it a valuable reserve resource. In com-
parison with other renewable resources such as wind and solar power, hydropower is
predictable. While wind and solar resources are dependent on exogenous factors in real
time, hydropower has storage capacity in the reservoirs.

Water in the reservoirs comes for free. On the other hand, water is a scarce resource,
and volume in the reservoirs constrain production opportunities. Hence, the producer
must always consider the option of producing at a later point in time when prices are
higher. This implies that the opportunity cost of producing at a later point in time is
arguably the most important cost when planning hydropower production. The producer
must assess the future value of each unit of stored water and produce when prices are
higher than this value.

The marginal increase in future income resulting from a unit increase of water in
reservoirs is commonly referred to as the water value. The water value is high when
reservoir levels are low and lower when levels increase. The risk of spill increases as
levels approach the maximum capacity of the reservoir, and hence the marginal water
value approaches zero for full reservoirs.
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It is common practice among producers to distinguish between short term, seasonal
and long term planning of production. The long term planning is often done utilizing
a stochastic optimization model, and water values are given by the shadow price of
the reservoir volume constraints. Water values can subsequently be used as boundary
conditions in short term planning models. In this paper we treat short term planning on
a daily basis, and water values are treated as deterministic, given parameters throughout
this paper.

When planning short term production, several markets can be considered. Some of
the opportunities in the markets are mutually exclusive. For instance, if a producer
commits to a large quantity in the day-ahead market, there may be no extra capacity
to react to balancing opportunities. This trade-off between markets can be considered
during the planning phase, by taking subsequent markets into account when bidding
into the day-ahead market. We refer to this practice as coordinated bidding or plan-
ning. Making bids without taking subsequent opportunities into account, is referred
to as sequential bidding or planning. Surprisingly, it is hard to determine whether a
coordinated planning is worthwhile. Such models require more computations and more
advanced models, but may not necessarily produce large gains. This might be because
reserve markets are very small compared to the day-ahead market or because reserve
markets are hard to predict in terms of prices and quantities. In this thesis we seek to
investigate whether, and if so in what situations, a coordinated planning is beneficial.
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Chapter 3

Coordinated bidding in the
literature

Several authors have used optimization models to investigate the possible gains from
coordinating bids towards different Nordic power markets. Faria and Fleten 2011 pro-
pose a two-stage stochastic model to support the bidding into the Nordic day-ahead
market while taking the Elbas market into account. The impact of considering the
possibility of trading in the Elbas in the day-ahead bidding decision is measured. The
results imply that, for a price-taking medium-sized hydropower, considering Elbas at
the time of day-ahead bidding has no significant effect on profits.

Boomsma et al. 2014 propose a multi-stage stochastic programming model for coor-
dinated bidding into two sequential markets, the day-ahead and the balancing market.
Their objective is to investigate whether there is a gain from using the coordinated
model instead of a sequential model, that takes only day-ahead scenarios, and no bal-
ancing scenarios, into account when producing a day-ahead market bid curve. As multi-
stage models are difficult to solve, they derive an upper bound, UB, of the objective
value of the coordinated model, that can be calculated without solving the coordinated
problem. They run a case study for the year 2010, and record the gains from coordi-
nated planning, UB−LB

LB
, where LB is the value of bidding sequentially; first into the

day-ahead market without regarding balancing market opportunities, then to react to
these later conditional on the day-ahead bid. They conclude that, under a two-price
system, there is a significant gain from coordinated bidding in the day-ahead and bal-
ancing markets. However, they do not explicitly model the volume allowance in the
balancing market.

Eriksrud and Braathen 2012 also consider the day-ahead and balancing market.
Unlike Boomsma et al. 2014 they put an effort into modeling the risk of not being dis-
patched in the balancing market by giving demanded balancing volumes as a stochastic
parameter to the model. They indicate that there are situations with certain relations
between market prices and the cost of water, where a coordinated model is likely to
outperform a sequential one. They point out, though, that more case testing has to be

9
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done in order to gain knowledge about the profitability of accounting for the balancing
market when bidding into the day-ahead market.

Not much work has been done to investigate the effects of taking the primary reserve
market into account when bidding into the day-ahead market in the Nordics. Though,
K̊arstad and Skjong 2015 formulate a stochastic dynamic model that coordinates the
day-ahead and primary reserve bidding for a thermal power producer participating
in the Swiss market. The report concludes that it is profitable for the producer to
participate in both markets. They forward to future work the inclusion of other markets,
as it is believed that there are synergy effects from delivering capacity in different reserve
markets.

To our knowledge, no research has been conducted to investigate the profitability of
taking both the balancing and primary reserve market into account when bidding into
the Nord Pool day-ahead market. This is our goal in this thesis. Most earlier contrib-
utors to the field have experienced long solution times associated with a coordinated
decision model. We have put effort into finding the intersection between realism, com-
putational tractability and fairness, in benchmarking a coordinated and a sequential
planning regime. The decision model is presented in a rather general form in chapter
4. The achieved solution times allow for much more testing of the model, which in
turn provides a great amount of results. The amount of results make a good basis for
drawing conclusions on the value of coordinated bidding. In addition, we test under
different circumstances: portfolio size and deviation between the day-ahead price and
the value of water.



Chapter 4

Problem formulation

Participants in the electricity markets submit their bids in a sequential order. After
prices clear in the day-ahead market, producers must place bids in the primary reserves
market, and then the balancing market (tertiary reserves). Bids in the balancing market
are only indicative and can be changed until 45 minutes before the operating hour
throughout the next day. In addition, producers can sell or buy power in the intraday
Elbas market opening at 2 pm the day before the operating day.

In this chapter, a stochastic mixed integer programming model (SMIP) is developed
for constructing bid curves for the day-ahead market, taking the alternatives of bidding
into the primary and tertiary reserves markets into account. The model has a daily
planning horizon, and boundary conditions are given as parameters from a long-term
model which is not treated in this thesis. The alternative of including Elbas is left for
future work. As mentioned in 3.2 there exist several primary reserve markets, but we
shall only include the daily normal operations reserves (FCR-N). From now on we will
simply use the term primary reserves for this market.

The flow of information during the bidding process is stage-wise. A stage is a
point in time when new information is revealed to the decision-maker, and he may take
recourse actions to accommodate for the new information and previous actions. There
are several such stages in this problem. When day-ahead prices clear, the producer
obtains information about obligated production quantity, and may then allocate this
quantity to available production capacity. In addition, the producer submits bids for
the primary reserve market. In the next stage primary reserve prices and obligations
are revealed. For the balancing market final bids are placed at latest 45 minutes before
operating hour. The balancing market is then operated in real-time, and the producer
may or may not be dispatched during operating hour. Hence, the problem consists of 27
stages, counting initial bid submission to the day-ahead market. Figure 4.1 illustrates
this structure.

For feasibility of implementation a simplified structure is considered. The simplified
structure consists of three stages, and is illustrated in Figure 4.2. In the first stage
the producer places day-ahead bids. In the second stage day-ahead obligations are

11
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Figure 4.1: Decision tree (squares denote decisions, circles denote new information)

calculated according to the realized price. In addition, the producer receives information
about the primary reserve price, and may decide on a commitment to this market. In the
final stage balancing market prices are revealed for the entire day and commitments are
decided upon. This structure may seem like a violation of natural non-anticipativity.
However, considering marginal pricing and the price taker assumption, the producer
has incentive to bid marginal cost. Only prices above marginal cost are attractive
to the producer, which would be reflected in a bid curve. Therefore, only inter-hour
coordination and predictability in the trade-off between reserve markets is overestimated
with this structure. In addition, day-ahead commitments are much more important for
inter-hour coordination than reserves because these commitments usually determine
whether a generator is on or off. Value from reserve markets should nevertheless be
regarded strictly as an upper bound.

Uncertainty is inevitable considering the problem at hand. The model contains
parameters that are inherently stochastic; clearing prices in the three markets as well
as the volumes traded in the balancing market. Because reserve markets are designed to
adjust for unforeseen events, the future clearing prices and volumes are hard to predict
(Klæboe et al. 2013). We therefore resolve to stochastic programming using discrete
representations of uncertainty commonly known as scenario trees. The producer has
a set of scenarios, S, when constructing day-ahead bid curves. The scenarios contain
day-ahead and primary reserve prices. For each s ∈ S, a set of scenarios Ωs for prices
and volumes in the balancing market is given.
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Figure 4.2: Simplified structure decision tree (squares denote decisions, circles denote
new information)

The remainder of this chapter consists of three parts. In section 4.1 we introduce
notation and define the mathematical model for the markets. Section 4.2 addresses
modelling of production. Section 4.3 discusses input data to the model.

4.1 Modelling bidding and commitments
We seek to model four markets; day-ahead, primary reserve, up regulation and down
regulation. Let the set m ∈M denote the different markets

m ∈M =


1 Day-ahead
2 Primary reserve
3 Up regulation
4 Down regulation

(4.1.1)

The here-and-now decision of the producer is the bid curve to submit for the day-
ahead market. Therefore, this is the only bid curve modeled explicitly. The bid curve
consists of a set of non-decreasing price-volume pairs, which is handled by restriction
4.1.3. To preserve linearity of the model we assign fixed bid points and assign a volume
to each. A similar approach was implemented by S.E. Fleten and Pettersen 2005.
Bid points are assigned such that an equal number of price scenarios are distributed
between each point. Let p ∈ P denote the set of bid points, Pp the price of the bid
point and zpt the bid volume of bid point p at time t. Now, because the TSO can
perform linear interpolation between price-volume pairs to fill demand, commitment
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Figure 4.3: Decision tree with problem variables and parameters (squares denote deci-
sions, circles denote new information)

will be determined by equation 4.1.2.

x1ts = zpt + (zp+1t − zpt)
ρ1ts − Pp
Pp+1 − Pp

if Pp ≤ ρ1ts ≤ P(p+1), p ∈ P , s ∈ S, t ∈ T (4.1.2)

z(p+1)t ≥ zpt p ∈ P \ |P|, t ∈ T (4.1.3)

where ρ1ts denotes the day-ahead price and x1ts denotes the committed volume.
Next, for each price realization in S, it has to be decided what reservation of primary

reserve to offer in each hour t ∈ T for the day of planning. This reservation is allocated
to the decision variable x2ts.

Balancing market commitments are limited by the demand for balancing power. In
addition, upward and downward balancing can not be delivered simultaneously. We
restrict the commitments by an estimated market share σ multiplied by the forecasted
demand in NO3 νmtsω

xmtsω ≤ σνmtsω m ∈ {3, 4}, s ∈ S, t ∈ T , ω ∈ Ωs (4.1.4)

In terms of the parameters and decision variables defined thus far, we have the
decision structure illustrated in Figure 4.3
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4.2 Modelling production
Next, we seek to model the connection between commitments and production. The
committed volumes in each market must be allocated between the available generators.
Let q1itsω, q2itsω and qmitsω when m ∈ {3, 4} , denote the volume or reservation allocated
to generator i at time t in scenario s for day-ahead, primary reserve and balancing
respectively. Then it follows that

∑
i∈I

q1itsω = x1ts, s ∈ S, t ∈ T , ω ∈ Ωs (4.2.1)

∑
i∈I

q2itsω = x2ts, s ∈ S, t ∈ T , ω ∈ Ωs (4.2.2)

∑
i∈I

qmitsω = xmtsω, m ∈ {3, 4}, s ∈ S, t ∈ T , ω ∈ Ωs (4.2.3)

Primary reserve reservation on a generator must lie within an interval, which lower
and upper bounds are functions of κmaxi and κmini , the generator’s maximum and mini-
mum droop settings. Generators are grouped into two sets. Generators I ′ can be turned
on and off during the planning horizon by the binary variable uihsω. This decision can
be made for subperiods h ∈ H of the planning horizon. The remaning generators I \I ′
are producing. For generators i ∈ I \ I ′ reservation is bounded by

0.2Ni

κmaxi

≤ q2itsω ≤
0.2Ni

κmini

i ∈ I \ I ′, s ∈ S, t ∈ T , ω ∈ Ωs (4.2.4)

where Ni denotes nominal production. For generators to be turned on or off by the
decision model, i ∈ I ′ , the binary variable uihsω has to be included, such that primary
reserve reservation is only possible when generators are producing

uihsω
0.2Ni

κmaxi

≤ q2itsω ≤ uihsω
0.2Ni

κmini

h ∈ H, i ∈ I ′, s ∈ S, t ∈ T h, ω ∈ Ωs (4.2.5)

Similarly, to ascertain that generators produce within possible power range, the
following two restrictions are required

Qmax
i ≥ q1itsω + q2itsω + q3itsω − q4itsω, i ∈ I \ I ′, s ∈ S, t ∈ T , ω ∈ Ωs (4.2.6)

Qmin
i ≤ q1itsω − q2itsω + q3itsω − q4itsω i ∈ I \ I ′, s ∈ S, t ∈ T , ω ∈ Ωs (4.2.7)

where Qmax
i and Qmin

i denote upper and lower bounds on production respectively.
Primary reserve reservation must be included in both directions, hence the change in
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sign of q2itsω. For generators I ′ we have

uihsωQ
max
i ≥ q1itsω + q2itsω + q3itsω − q4itsω, h ∈ H, i ∈ I ′, s ∈ S, t ∈ T h, ω ∈ Ωs

(4.2.8)

uihsωQ
min
i ≤ q1itsω − q2itsω + q3itsω − q4itsω, h ∈ H, i ∈ I ′, s ∈ S, t ∈ T h, ω ∈ Ωs

(4.2.9)
Start-up costs are incurred whenever generators start operating after a period of

standstill. Start-up cost is accounted for in the following formulation

cihsω ≥ Ci(uihsω − ui(h−1)sω) h ∈ H, i ∈ I ′, s ∈ S, ω ∈ Ωs (4.2.10)

where Ci denotes the cost of a start-up.
The quantity of power produced depends on the volume discharge through the

turbine system, the efficiency of the turbine and the effective head by the physical
relation

q = η(d, heff )%gdheff
where q is the power produced in watts, η(d, heff ) is the system efficiency at the

given discharge and head, % is the density of water in kg/m3, g is the gravitational
constant, heff is the effective head in meters and d is the discharge in m3/s. Note
that the overall efficiency of the system is also dependent on other factors such as the
load in the grid and adjustments on the generator. The dependence on d is stressed to
reveal the non-linear relationship between discharge and production. To preserve the
linearity of the model and hence utilize linear programming tools, a set of cuts f ∈ F is
introduced. heff can for well regulated reservoirs i.e. little change in the height of the
water surface, be treated as constant throughout a day of planning. The inclusion of
the binary variable uihsω prevents the model from dispatching water when a generator is
not running, but which production cuts F has a negative intersection. Approximation
of the concave production curve is thus done forcing

q1itsω+q3itsω−q4itsω ≤ uihsωAif +Bifditsω h ∈ H, i ∈ I, f ∈ F , s ∈ S, t ∈ T h, ω ∈ Ωs

(4.2.11)
where primary reserve capacity is not included because there is no net water usage in

this market. There may be restrictions governing the minimum or maximum discharge
of a generator e.g. considering the wildlife in a watercourse. For the same reasons there
may be restrictions on minimum and maximum volume vjtsω in a reservoir. Therefore,
we introduce lower and upper bounds on discharge and reservoir volume

Dmin
i ≤ ditsω ≤ Dmax

i i ∈ I, s ∈ S, t ∈ T , ω ∈ Ωs (4.2.12)
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V min
j ≤ vjtsω ≤ V max

j j ∈ J , s ∈ S, t ∈ T , ω ∈ Ωs (4.2.13)

where J is the set of reservoirs. Furthermore, one must model how the reservoir
levels respond to production, and the interconnected flow between reservoirs. Since
most watercourses consist of several reservoirs, production in one part of the watercourse
will increase reservoir levels downstream. Let Ijt denote inflow, Γij and Λjj′ the fraction
discharge at i and spill at j′ ending up at j, and Oj′tsω the spill at j′ at time t. Now
we get

vjtsω − vj(t−1)sω = Ijt +
∑
i∈I

Γijditsω +
∑
j′∈J

Λjj′Oj′tsω, j ∈ J , s ∈ S, t ∈ T , ω ∈ Ωs

(4.2.14)
vj1sω − V 0

j = Ij1 +
∑
i∈I

Γijdi1sω +
∑
j′∈J

Λjj′Oj′1sω, j ∈ J , s ∈ S, ω ∈ Ωs (4.2.15)

where V 0
j denotes the initial volume.

Next, we proceed to model the value of water in the reservoirs. The future value
of a marginal volume of water is dependent on the outlook on future prices and inflow,
as modelled by a long term optimization model. In addition, the marginal water value
depends on the level of the reservoirs. It is high at low levels, and tends to zero at full
reservoirs. Hence the water value curve is concave and must be modelled by linear cuts
to gain linearity. Parameters for these cuts are estimated by the long term optimization
model at different reference levels. For well regulated plants i.e. with little change in
reservoir volume and head, this way of modelling is not necessary, and one could rather
use a water value independent of level.

We introduce a set of cuts l ∈ L reflecting the different levels. Let wks denote the
future income of watercourse k at the end of the period, Elk the reference level future
income, Wjk the marginal water value at the reference level, Vjl the reference level, and
J k the set of reservoirs in the watercourse. Then for all cuts it must hold that

wksω ≤ Elk +
∑
j∈J k

Wjk(vj|T |sω − Vjl) k ∈ K, l ∈ L, s ∈ S, ω ∈ Ωs (4.2.16)

In some watercourses, there is only one reservoir and one generator. That is, after
water has been dispatched from the reservoir it becomes irrelevant to the hydro power
producer. When in addition the reservoir is very large relative to the dispatch capacity
of the generator, it is considered reasonable to assume a constant water value (Wk) over
the course of 24 hours. Thus, instead of modeling the value of the remaining water in
a watercourse, wksω, and adding this to the objective function to be maximized, we
can model the cost of water dispatched, ∆wksω, and subtract this from the objective
function. This alternative water valuation is shown by equation 4.2.17.
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∆wksω ≥
∑
i∈Ik

∑
t∈T

Wkditsω k ∈ K, s ∈ S, ω ∈ Ωs (4.2.17)

However, for the objective function presented below, we choose the general water
valuation formulation from equation 4.2.16. And finally, the objective function is

max
∑
s∈S

(
πs

∑
m∈{1,2}

∑
t∈T

ρmtsxmts +
∑
ω∈Ωs

πsω

( ∑
m∈{3,4}

∑
t∈T

(ρmtsω + ιmρ1ts)xmtsω +
∑
k∈K

wksω

−
∑
i∈I′

∑
h∈H

cihsω

))
(4.2.18)

where π denotes the probability of a scenario and ρ3tsω and ρ4tsω are upward and
downward balancing premium respectively. In accordance with the market mechanisms
we have that ι3 = 1 and ι4 = −1. The formulation can be found in its entirety in
Appendix C.

4.3 Modelling of stochastic parameters
So far we have discussed the mathematical formulation and decision variables of the
problem. This section is devoted to a treatment of the parameters in the model. Before
implementation is possible, all parameters must be specified. The term parameter is
usually applied to deterministic quantities, and the term random variable is often used
for stochastic quantities. To avoid confusion with decision variables, we will use the term
parameter for all quantities (including random variables) that are input (constants) to
the mathematical program. Where necessary, we will specify whether a parameter
is deterministic or stochastic. Except for six parameters, all problem parameters are
treated as deterministic. The deterministic parameters are generally highly specific for
the watercourse and production resource considered. The deterministic parameters will
therefore be treated along with the case study in Section 8.2.

The stochastic parameters are the day-ahead price, primary reserve price, balancing
premium and volume in both regulating directions (ρmts, m ∈ {1, 2},ρmtsω, m ∈ {3, 4},
νmtsω, m ∈ {3, 4}). Stochastic parameters are usually generated by some appropriate
generation algorithm. Scenario generation is a vital part of the modelling of stochastic
problems. Stochastic programming relies on the fact that modelling uncertain parame-
ters as if they were certain, e.g. mean value deterministic problems, can be inefficient.
A realistic description of uncertainty is therefore needed. However, solving an instance
with continous stochastic parameters is either very hard or impossible (Conejo et al.
2010). This issue is tackled by constructing a discretization of the stochastic parame-
ters, known as a scenario tree.

Kaut and Wallace 2007 argue that a complete problem modelling should include
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a procedure for scenario generation. In order to provide valuable solutions to the
decision maker, quality of the input data must be emphasized. We will provide a brief
introduction to scenario generation, with special focus on electricity markets.

4.3.1 A brief review of scenario generation approaches
In the later years, the research community has put significant effort into the topic of
scenario generation. Conejo et al. identify four main categories of scenario genera-
tion methodologies. These include path-based methods, moment matching, internal
sampling and scenario reduction.

Path-based methods uses econometric or time series models to generate complete
paths. The collection of these paths is called a fan, and clustering of this fan produces
a scenario tree. Moment matching is used to generate discrete distributions that satisfy
a set of statistical properties, e.g. moments, correlations or percentiles. Internal sam-
pling comprises various procedures for sampling from the original distribution. Finally,
scenario reduction is used to reduce the number of scenarios to a prescribed cardinality
utilizing some probability metric.

4.3.2 Scenario generation in electricity markets
There exists no single best procedure for scenario generation in general. Conejo et al.
presents a comprehensive framework for scenario generation in electricity markets. The
electricity prices are modelled as time series. This can be done using ARIMA series
provided that the series is homoscedastic i.e. the variance is steady in time, stationary
and that residuals are normally distributed. Several transformations can be made to
achieve validity of these assumptions. The important point here is that the modelling
choice must be made in accordance with empirical properties. One must have in-depth
knowledge of market characteristics to be able to model them efficiently, and always
check the assumptions.

For multivariate distributions or time series, the modelling complexity is signifi-
cantly reduced under the assumption of a Gaussian normal joint distribution. If in
addition the joint behaviour does not change in time, the dependence between the vari-
ables is fully characterized by the variance-covariance matrix. In this case, correlation
between time series can be modeled utilizing a Cholesky decomposition. Modelling is
more complicated for other joint distributions. Once again the main point is that mod-
eling requires profound knowledge of the empirical behaviour. To model dependence
correctly, one must know the joint behaviour of the markets.

Relation to the methodology in this thesis

In subsequent chapters, we propose a methodology that combines path-based methods
(quantile autoregression - QAR) and a copula based heuristic that best fits the moment
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matching category. We adopt parts of the methodology by Conejo et al. and deviate
where need be.

The next three chapters treat scenario generation for the problem at hand. In
Chapter 5 we describe the historical characteristics of the markets, which is necessary
to choose good models. In Chapter 6 we propose models for the markets that reflect
the important empirical characteristics. In turn, we connect the dots and outline the
entire scenario generation algorithm in Chapter 7. In addition, we test the quality of
the scenario generation method.



Chapter 5

Empirical market analysis

5.1 Introduction
The goal of this section is to provide a thorough assessment of the relevant electricity
markets to aid subsequent model specification. There are three markets at hand: Day-
ahead market, daily primary reserve market and the balancing market. All data is from
the period 2014-2017 in the price zone NO3. Data was downloaded from Nord Pool
and Statnett. We will investigate the historical characteristics of these markets in the
natural order; the order of market clearing.

5.2 Day-ahead price
The daily day-ahead price (spot price) in NO3 for the period 2014-2017 is plotted in
Figure 5.1a. We note that the price level seems to fluctuate around a mean of 240
NOK/MWh with some periods of longer deviations from this price. Surprisingly, it is
hard to identify a predictable annual seasonal pattern. The price in 2014 is relatively
steady throughout the year. During 2015 and 2016 however, we observe periods in which
the price differs significantly from its mean value. Mid 2015 is dominated by a regime
with low prices, and 2016 starts off with days of extremely high prices and ends with a
period of high prices. These variations may be explained by other fundamental factors
than pure calendar effects, such as rain fall, snow melting or extreme temperature that
may shift somewhat from year to year. The average daily prices are found in Figure
5.1b. We note that spot prices are generally lower during weekends, due to lower
demand for power in industrial applications.

To get an impression of the hourly day-ahead prices, descriptive statistics are pre-
sented in Table 5.1. Observe that the mean price increases in the morning hours, and
are highest during the working day. Demand for power is generally higher during this
period. By comparing the hourly means and medians we see that probability density is
asymmetrically distributed. This is further characterized by the skewness and kurtosis.

21



22 CHAPTER 5. EMPIRICAL MARKET ANALYSIS

Figure 5.1: Daily and daily averaged day-ahead prices

(a) 2014-2017

(b) Monday-Sunday
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Table 5.1: Descriptive statistics for hourly day-ahead price

Hour Mean Median St. dev. Skewness Kurtosis Min Max
00 - 01 209.02 219.01 53.01 -1.22 1.23 30.28 291.52
01 - 02 201.95 212.27 53.72 -1.20 1.16 17.43 286.01
02 - 03 197.69 208.39 54.50 -1.19 1.11 10.95 283.11
03 - 04 195.79 206.42 55.00 -1.18 1.06 10.86 281.98
04 - 05 198.15 210.20 55.31 -1.22 1.16 24.16 287.49
05 - 06 206.69 216.68 55.78 -1.20 1.22 23.98 300.61
06 - 07 223.59 228.32 59.93 -0.85 0.83 24.07 404.89
07 - 08 245.45 245.46 91.41 6.54 117.04 24.52 1937.81
08 - 09 261.50 255.02 107.96 5.91 85.39 25.52 2076.30
09 - 10 259.58 256.72 99.63 5.87 86.75 26.24 1938.20
10 - 11 256.57 255.81 83.39 2.49 24.39 26.96 1260.41
11 - 12 251.42 251.44 72.90 0.62 3.70 27.05 726.53
12 - 13 245.66 246.06 69.39 0.45 3.43 26.87 654.82
13 - 14 241.79 242.63 67.27 0.24 2.71 26.51 596.08
14 - 15 239.39 240.16 68.92 0.90 9.70 26.42 896.17
15 - 16 239.00 237.79 72.22 1.65 16.16 26.42 955.53
16 - 17 241.64 240.21 96.27 7.46 113.40 31.29 1937.91
17 - 18 248.23 246.85 105.90 7.88 111.46 38.86 1939.07
18 - 19 247.78 249.86 89.56 7.33 129.68 51.88 1936.94
19 - 20 243.83 247.28 65.57 0.06 3.43 52.44 672.02
20 - 21 238.04 241.61 60.19 -0.58 1.18 55.28 485.42
21 - 22 233.36 236.62 57.26 -0.84 0.74 55.46 384.42
22 - 23 226.78 232.31 55.02 -0.95 0.67 54.28 344.38
23 - 00 215.73 224.44 53.28 -1.12 0.90 38.32 303.73
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Night and morning hours generally have more symmetric distributions than day hours.
Note especially the extreme kurtosis that arises during the start and end of the working
day, at 7-8 am and 4-7 pm respectively. Around these hours prices are generally much
more volatile; hour 8-9 am and 5-6 pm are the only hours with a standard deviation
above 100 NOK/MWh. Note also that prices can become quite extreme in these hours,
with the highest observed price at NOK 2076.30 per MWh. We conclude that price
behaviour may be very different from hour to hour.

However, hourly prices are obviously related. The information that bidders act on
before market closure is the same for all hours. Hence, a forecasting error is likely to
propagate throughout the day. To investigate cross-hour correlation, Figure 5.2a plots
the historical correlation between all the 24 hours. The day-ahead price has a clear
block structure. Night hours from 9 pm to 8 am are highly correlated. The night hours
are also correlated with the hours right after noon. The early and late working day
hours are cross correlated, but exhibit less correlation with the rest of the day.

Furthermore, we see from Figure 5.2b that there is significant autocorrelation for
each of the hours from one day to the next. Late night and morning hours seem almost
non-stationary, but the augmented Dickey-Fuller test rejects a unit root for all hours
indicating stationarity in the long term. Autocorrelation is much stronger for night time
hours, but weekly seasonality is more prominent for day time hours. Heteroscedasticity
is obviously present in some periods. Engle’s ARCH LM test show that there are in
fact ARCH effects, except for in hours 8-10. Model considerations will be discussed in
subsequent chapters.
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Figure 5.2: Day-ahead price (a) cross-correlogram and (b) hourly autocorrelation 2014-
2017 NO3

(a) Cross-correlogram

(b) Autocorrelation
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5.3 Primary reserve price
The daily average of prices in NO3 for the period 2014-2017 can be found in Figure
5.3a. We note that the price behaviour is asymmetric about the mean of 40 NOK/MWh,
exhibiting large spikes above the mean and more stable, lower prices below. The price
is generally higher, and has more spikes during early summer. Hydrology, e.g. reservoir
filling and inflow, are important factors. It seems that the day ahead price and primary
reserve price are negatively correlated in this period. In general, snow melting and high
rates of inflow forces high rates of discharge from the reservoirs. This gives a downward
pressure on the day ahead price for energy delivery. However, capacity reservation
and spinning reserves is connected to the forecasted difference between production and
consumption that may be harder to estimate precisely at this time of year. The weekly
prices are plotted in Figure 5.3b. We see the opposite pattern that we did for day-ahead
prices, with higher reserve prices during the weekends.

Once again we would like to investigate the hourly price characteristics of the elec-
tricity market at hand. Table 5.2 shows descriptive statistics for the primary reserve
price in all hours of the day. Notice the development of the mean throughout the day.
Prices are high during night and morning hours, and generally lower during the rest of
the day. This is in strong contrast to the behaviour of day-ahead prices. The start and
end of the working day does not seem to affect the primary reserve price at all. The
median lies below the mean for all hours. The distributions are clearly fat tailed and
skew, which can also be seen from the skewness and kurtosis. Surprisingly, the highest
skewness and kurtosis occurs in the afternoon and evening, despite the low price level.
We see from the minimum and maximum prices that primary reserve prices, just as
day-ahead prices, span a broad range. The highest recorded price is 700 NOK/MWh of
reserved capacity, which is shockingly high because there is no actual delivery of power
should there not be demand. Nevertheless, this is about three times the average of
the day-ahead price, which includes power delivery. Once again we conclude that the
hourly prices behave quite differently from hour to hour.

Primary reserve bids are made at the same time for all hours, just as for the day-
ahead market. Hence, we expect there to be significant correlation between the hours.
The correlation structure between all hours is plotted in Figure 5.4a. The primary
reserve market also has a block structure correlation, but there are only two blocks:
Day/evening hours and night/morning hours. This makes sense compared to the de-
scriptive statistics that show different primary reserve price behaviour during day and
night time.

To investigate the hours separately, the reader is referred to Figure 5.4b. The auto-
correlation seems weaker than for day-ahead prices for all hours. The autocorrelation
is generally stronger during night time. We observe a weekly seasonality in the prices.
The augmented Dickey-Fuller test rejects the null hypothesis of a unit root for all hours,
thus indicating stationarity. Engle’s ARCH LM test shows that there are ARCH effects
in about two thirds of the hours.
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Figure 5.3: Daily and daily averaged primary reserve prices

(a) 2014-2017

(b) Monday-Sunday
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Table 5.2: Descriptive statistics for the primary reserve price

Hour Mean Median St. dev. Skewness Kurtosis Min Max
00 - 01 62.04 40.00 58.39 3.24 19.72 10.00 700.00
01 - 02 63.48 40.00 59.21 2.52 8.69 10.00 450.00
02 - 03 64.95 41.00 62.21 2.58 9.21 10.00 500.00
03 - 04 64.51 44.00 60.71 2.51 8.59 10.00 450.00
04 - 05 64.18 40.00 60.64 2.48 8.64 10.00 500.00
05 - 06 55.38 35.00 52.99 2.65 9.20 10.00 400.00
06 - 07 41.61 25.00 41.99 3.58 16.75 10.00 380.00
07 - 08 36.68 25.00 36.65 4.47 27.28 10.00 380.00
08 - 09 35.32 25.00 31.51 4.31 27.21 10.00 380.00
09 - 10 33.37 24.00 28.75 4.61 32.27 10.00 380.00
10 - 11 32.29 24.00 25.93 4.27 25.69 10.00 300.00
11 - 12 31.75 24.00 27.21 5.72 51.48 10.00 380.00
12 - 13 31.78 24.00 28.28 6.85 83.27 10.00 500.00
13 - 14 31.82 24.00 28.88 6.70 77.91 10.00 500.00
14 - 15 31.55 24.00 28.34 6.89 83.65 10.00 500.00
15 - 16 31.29 24.00 28.33 6.97 84.39 10.00 500.00
16 - 17 31.24 24.00 28.43 7.13 86.34 10.00 500.00
17 - 18 31.59 24.00 28.62 6.82 81.03 10.00 500.00
18 - 19 31.12 24.00 28.43 7.61 94.34 10.00 500.00
19 - 20 31.06 24.00 25.36 5.23 41.91 10.00 350.00
20 - 21 31.69 24.00 28.59 7.77 97.70 10.00 500.00
21 - 22 33.39 24.00 31.32 6.33 65.71 10.00 500.00
22 - 23 36.95 25.00 35.05 4.91 40.03 10.00 500.00
23 - 00 47.25 29.00 46.92 2.80 9.47 10.00 380.00
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Figure 5.4: Primary reserve price (a) cross-correlogram and (b) hourly autocorrelation
2014-2017 NO3

(a) Cross-correlogram

(b) Autocorrelation
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5.4 Balancing market
The balancing market is fundamentally different from the two other markets in this
thesis. First of all, prices are not quoted day-ahead for all hours. The balancing market
is a real time market in which trading happens in hourly blocks, and bids are submitted
until 45 minutes before the operating hour. Secondly, demand arises in the balancing
market only when there is an imbalance between production and consumption. Primary
reserve obligations on the other hand, are capacity reservations intended to normalize
small and sudden frequency deviations. If the imbalance between production and con-
sumption is larger, then balancing reserves are activated. The producer therefore faces
the risk of not being dispatched. In addition, the balancing price is unknown until after
operating time, because the TSO will activate reserves until regulating demand is met
in real time.

In general, we expect the balancing market to be highly random and unpredictable.
The reason for this is that expected power demand will be priced into the day-ahead
market price at closure of this market. Hence, expected deviation between supply
and demand should be zero. This discussion argues that the balancing market should
be highly random and hard to forecast before day-ahead market closure. This is also
supported by empirical studies on balancing market forecasting, see for example Klæboe
et al. 2013.

5.4.1 Balancing market regulating states
There are three possible states in the balancing market, all mutually exclusive; we shall
use the term regulating states. First, if there is no deviation between production and
consumption, there is no need for regulation, and the market is in a no regulation state.
If production exceeds consumption, the system is in a downward regulation state. The
contrary holds for upward regulation, i.e. when consumption exceeds production and
there is excess demand for power.

There are most hours of no regulation in the data set. When regulation occurs
however, it usually occurs in clusters of hours. This means that consecutive hours are
often dominated by the same regulation state. Intuitively this makes sense because an
imbalance in production and consumption may be caused by an unforeseen event of
some duration. In hours with no regulation, no traded quantity nor balancing premium
exists. Hence, analysis on these parameters is complicated. The analyst must make a
consistent choice of how to deal with hours of no regulation. This is necessary to assess
the autocorrelation structure, which will be done as we choose model in Section 6.6.

Figure 5.5 shows the probability of the system being in some regulating state for all
hours during a day. We note that no regulation is the most likely state of the system, and
that this probability is almost constant throughout the day. Hence, market participants
tend to forecast power demand with consistent precision even though hours towards the
end of the day is further away in time at the time of bid submission. We note that
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Figure 5.5: Probability of regulation states during the operating day

there is a slight dip in probability of no regulation at time 8-9 am and 5-6 pm. These
hours exhibit higher volatility in demand, likely due to the start and end of the working
day. Up regulation also seems to be more likely in these hours. Two main regimes are
identified: midnight to around 8 am when down regulation is significantly more likely
than up regulation, and the rest of the day when the difference is less prominent.

5.4.2 Balancing market volume
Regulating demand is associated with a non-zero regulating quantity in either direction.
We refer to this quantity as the regulating- or balancing volume, simply because it is
industry jargon. Figure 5.6b displays the balancing volume in both directions in 2014-
2016. We observe that the balancing volumes are highly volatile, with tremendous spikes
in the data. There is no clear annual seasonal pattern, but we note that there are periods
for which balancing is more or less likely. For instance, in late 2014 there are few hours
of downward regulation accompanied by low volumes, but in late 2016 the opposite is
the case. Figure 5.7 shows the historical distributions of volumes and premiums. Note
that the distributions are fat-tailed and highly skewed, looking somewhat like Weibull
distributions for different shape parameters.

The daily distribution of balancing volumes are plotted in Figure 5.8. Investigate
first the plots labeled excl. These indicate the average hourly volume in non-zero
hours, i.e. it is an average over the hours that are in either upward- or downward
regulation. We notice that the average size of a regulation event in both directions
is approximately 60-70 MWh independent of the hour of day, except for the nightly
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Figure 5.6: Historical prices and traded quantities in the balancing market

(a) Balancing premium

(b) Balancing volume
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Figure 5.7: Historical volume and premium distributions

Figure 5.8: Average hourly balancing volumes
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Figure 5.9: Average hourly balancing premiums

upward volumes. Between 11 pm and 7 am average upward regulation volumes are
significantly higher. The plots labeled incl. show the hourly average volume including
hours without regulation, i.e. it is the product of the excl. plots, and the probability
of regulation occurring cf. Figure 5.5.

5.4.3 Balancing market premiums

The balancing market premiums exhibit a behaviour much alike that of the balancing
volumes. However, they are in general more spiky, see for example Figure 5.6a. Once
again it is hard to identify a clear annual seasonal pattern. The premiums seem to
be more stable than volumes around its mean and less exposed to large changes in
mean and variance in time (heteroscedasticity). The augmented Dickey-Fuller test
furthermore rejects the null hypothesis of a unit root in premiums and volumes, thus
indicating stationarity of the series in the long term. The hourly average premiums
of hours with regulation can be seen in Figure 5.9. Once again we see that two main
regimes are present: night and day hours. During the working day and the evening
up regulation premiums are higher than during night time. Down regulation has a
premium peak during the start of the working day.
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Figure 5.10: Scatter plots for the balancing volumes and premiums

(a) Upward regulation

(b) Downward regulation
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5.4.4 The relationship between balancing market volumes and
premiums

Finally, we look at the concordance between volumes and premiums in the balancing
market. The reader is asked to study Figure 5.10a and 5.10b. The figure plots data
points for hours with regulation only. We notice a weak linear relationship in the
data. This is confirmed by computing Pearson’s correlation coefficient between premium
and volume, giving 44 % and 37 % correlation for upward and downward regulation
respectively. It will be an important goal to retain this relationship in subsequent
modelling.

To conclude, we have found that regulating volumes and premiums are highly
stochastic and that spikes occur frequently in the data. The data seems to be sta-
tionary. There is no clear annual seasonal pattern. There are two prominent regimes
during the day; late night and morning hours, and day hours. State probability, vol-
umes and premiums have different characteristics in these hours. There is a positive
correlation between volumes and premiums.

5.5 Intermarket dependence
Relationship between day-ahead market and primary reserves

As pointed out previously, there is a relationship between the day-ahead and primary
reserve prices. Figure 5.11a plots the hourly average prices from Table 5.1 and 5.2 in
the spot and primary reserve market. The primary reserve price is high during night
hours when the day-ahead price is low. During the working day the reserve price falls,
while day-ahead price reaches its maximum. We also saw from Figure 5.1b and 5.3b
that there is a weak negative correlation between day-ahead and primary reserve prices
on a weekly basis. The scatter plot in Figure 5.11b shows the relationship between
the prices for hours in the data set. The relationship is clearly non-linear. Computing
Pearson’s correlation coefficient for all the data gives a correlation of -26.2 %. However,
if we divide the data into two sets: one set of prices for which the spot price is above
350 NOK/MWh, and one below, we get two very different results. For the above set,
correlation is 43.9 %, and for the below set it is -35.1 %. To investigate whether this
relationship in the prices is a function of the hour of day, we plotted scatters for the
hours separately. These revealed no obvious relationship between the prices during
day time, and a negative non-linear relationship during night time. A linear regression
model between day-ahead and primary reserve price would therefore not be appropriate.

Relationship between day-ahead market and balancing reserves

The connection between the day-ahead price and the balancing market must be eval-
uated by investigating the regulation state, volumes and premiums. We start by
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Figure 5.11: Relation between day-ahead and primary reserve markets

(a) Hourly spot (red) and primary reserve price (blue)

(b) Spot and primary reserve price
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Table 5.3: Dependence relations among the markets

Primary reserve Balancing
Price Reg. state Reg. volume Reg. premium

Day-ahead
Negative
non-linear
dependence

No explicit
dependence

No
dependence

Positive linear
dependence

Primary reserve Conditionally
independent2

Conditionally
independent

Conditionally
independent

analysing the day-ahead price for the different regulation states. The prices are dis-
tributed very similarly for all regulation states, with a somewhat lower price level for
down regulation. We therefore regard regulation state as independent of the spot price.1

Regulating volumes and the connection to the day-ahead price is evaluated by scatter
plots, and Pearson’s correlation coefficient. The correlation is computed only for hours
with respective regulation. The scatter plots show no obvious relationship between
the quantities. Correlation is calculated at 5.2 % for upward regulation and 1.6 %
for downward regulation. Spot price and regulation volumes are therefore regarded as
independent in this thesis.

Regulating premiums show correlated behaviour with the day-ahead price. Cor-
relation is measured to be 35.9 % and 64.7 % for upward and downward regulation
respectively, including only regulation hours. A scatter plot furthermore gives an im-
pression of the linearity of the dependence. Figure 5.12 shows a scatter plot of the
day-ahead price and premiums for downward regulation. Notice that the relationship
exhibits weak linearity. The same is the case for upward regulating premiums.

Relationship between reserve markets

Finally, we will discuss the relationship between the reserve markets. Histograms of
the primary reserve price has been plotted for all regulation states, with no significant
change in distributional properties. Scatter plots and correlation coefficients for pri-
mary reserve price and regulating volumes and premiums during respective regulation,
shows no relation between primary reserves and regulating reserves. The markets are
thus regarded as independent. To sum up, Table 5.3 shows the dependence relations
discovered in this thesis.

1At least explicitly - the next section will propose an hour specific Markov model for state deter-
mination, which then will result in an implicit connection to the spot price since downward balancing
is more likely in the morning when spot prices are low. See section 6.6

2Conditional on day-ahead price
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Figure 5.12: Scatter plot day-ahead price and downward premium 2014-2017
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Chapter 6

Modelling the markets

6.1 Introduction
In this section the goal is to arrive at a set of models to be used in scenario generation
outlined in Chapter 7. These scenarios should have a link to forecasting to be relevant
for the day of planning. Good point forecasts are important to reduce uncertainty
in the stochastic parameters. In addition, good probabilistic forecasts are necessary to
achieve a reasonable description of the uncertainty inherent in the forecast. The quality
of the forecast determines the quality of the scenarios. We therefore start off with a
brief introduction to electricity price forecasting.

Most hydropower producers have in-house proprietary models for forecasting day-
ahead prices. To our knowledge there is no commercial tool for forecasting primary
reserve prices. We do not have access to such fundamental forecasting models. We
therefore forecast prices directly with autoregressive models using lagged prices.

This chapter starts with a discussion on modelling of day-ahead and primary reserve
prices which are modelled in the same way. We end up proposing a panel data model
using quantile autoregression to provide probabilistic forecasts for these market prices.
Non-linear dependence is modelled with a copula based heuristic. Thereafter, we discuss
models for the balancing market. Regulating states are modelled with an hour-specific
Markov model. We use a resampling technique to account for hours with no regulation.
Thereafter we fit one-dimensional AR/ARMA models to volumes and premiums. To
aid the reading of this chapter Figure 6.1 illustrates the final modelling framework we
arrive at. Explanations and justifications will be given throughout this chapter.

6.2 Selection of model family
Weron 2014 makes a review of the most frequently used model families in electricity
price forecasting. The author groups models into five categories: Fundamental, reduced-
form, multi-agent, computational intelligence and statistical models. As many other

41
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Figure 6.1: Final model overview

authors, due to short term prediction performance, we choose to proceed with the
category of statistical models.

6.2.1 ARIMA-models
GARCH-models (General Auto-Regressive Conditional Heteroscedasticity) are intended
to deal with heteroscedasticity, which is an occuring phenomenon in electricity market
prices. However, application of various ARIMA-models (Auto-Regressive Integrated
Moving Average) appears traditionally more frequently in the literature. Weron pointed
out that ”Although electricity prices exhibit heteroskedasticity, the general experience
with GARCH-type components in electricity price forecasting models is mixed. There
are cases where modeling heteroskedasticity is advantageous, but there are at least as
many examples where such models perform poorly”. This might hold especially for
short term forecasting, because even if variance changes annually, heteroscedasticity is
less prominent in the short term. We therefore choose to proceed with ARIMA models
in this thesis. ARIMA will be used to model the balancing market. Boomsma et al.
2014 and Eriksrud and Braathen 2012 have previously used ARIMA models for the
balancing market.

Mathematical structure of ARIMA-models

Here follows a mathematical definition of a general SARIMAX-model, which is an
ARIMA-model with one or more seasonal AR-terms or MA-terms and one or more



6.2. SELECTION OF MODEL FAMILY 43

exogenous explanatory variables. ρmh is the price in market m in hour h that is fore-
casted. B is the backshift operator, such that Bkρh = ρh−k, and Bs is the seasonal
backshift operator, that backwards shifts by a season instead of a unit. Let φ(B) be the
autoregressive polynomial, and Φ(Bs) the seasonal autoregressive polynomial. Further,
we denote the difference operators ∇d and ∇D

s , regular and seasonal respectively, with
order d and D. Let θ(B) and Θ(Bs) represent the moving average polynomials, where
the subscript s denotes seasonality as before. εt denotes the white noise error term, and
ψ(B(nk)) the polynomial of the exogenous variable umh, where B(nk) is the backshift
operator with nk in system dead time i.e. the delay between an input signal and the
response in output. C is a constant.

Φ(Bs)φ(B)∇D
s ∇dρmh(t) = Θ(Bs)θ(B)εmh(t) + ψ(B(nk))umh(t) + C (6.2.1)

where ∇D
s =(1−Bs)D and ∇d = (1−B)d.

To correctly specify which terms should be included in an ARIMA model, there are
two widely applied methods. They are the Box-Jenkins methodology (Box et al. 2007)
and minimization of some information criterion e.g. Bayesian or Akaike. In this thesis
we follow the Box-Jenkins methodology and utilize the ACF and PACF of the prices
to aid identification.

Innovation terms in standard software-packages for ARIMA estimation are often
set by default to Gaussian. However, other distributions can be used, for example
the Student’s t-distribution. Also other tailor made estimation techniques can be used
based on the distribution of the innovations.

6.2.2 QR-based models
Another relevant statistical model is quantile regression (QR) as introduced by Koenker
and Bassett 1978. QR can be used in a variety of ways.

Fundamental quantile regression models

Hagfors et al. 2016 developed a fundamental quantile regression model for the UK
(APX) day-ahead price. They showed that sensitivity towards fundamental factors and
the lagged price changes across quantiles. Do and Molnar 2015 similarly found that the
effect of fundamental factors vary substantially across quantiles for the German day-
ahead electricity price. Regular regression will therefore not capture the full dynamics
in the price.

Jonsson et al. 2014 propose a time-adaptive quantile regression framework to arrive
at a semi-parametric description of the predictive density of the day-ahead price in
Denmark. Exponential distributions are fitted to the tails due to higher uncertainty
in tail estimation. The QR model is benchmarked against a GARCH model with
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Gaussian innovations. Upon evaluation the parametric GARCH model seems to be
unfit for probabilistic forecasts, while the QR model performs better.

Quantile regression averaging

Weron and Misiorek 2008 perform a comparison of 12 different parametric and semi-
parametric models for spot point predictions and prediction intervals (PI). In terms of
PI forecasting, and conditional coverage, the semi-parametric models clearly outperform
the parametric models, and especially in periods with heteroscedasticity.

In a later paper Nowotarski and Weron 2013 use a quantile regression averaging
(QRA) framework to calculate prediction intervals by weighting point forecasts from
those same 12 models. The results indicate an enhanced performance. Maciejowska et
al. 2016 further develops the model to orthogonalize input point forecasts by principal
component analysis (PCA) in the QRA model, yielding the Factor QRA (FQRA). The
FQRA model shows even more promising results in terms of interval forecasts.

Quantile autoregression

Quantile autoregression (QAR) captures systematic influence of previous prices on the
conditional distribution of the price. It has been used for scenario generation before,
see for example Tomasgard and Høeg 2005. This approach is valuable because price
variance can be related to the forecasted value, e.g. high forecasts might yield a higher
variance of innovations. The conditional price distribution can also be asymmetric,
which is the case for electricity prices. Such dynamics cannot be modelled by ARIMA
models with error terms of constant variance. In addition, the methodology is easily
implemented without the need of fundamental forecasting models. We therefore choose
to proceed with QAR-models in this thesis, and will evaluate such model’s ability to
provide probabilistic forecasts for the day-ahead and primary reserve market.

Mathematical structure of quantile autoregression models

For an introduction to quantile autoregression, the reader is referred to Koenker and
Xiao 2005. We will provide details on estimation and implementation in this thesis in
Section 6.4. Here we will only outline the concept of quantile autoregression to ease
the reading of Section 6.3. As Koenker points out these models can capture systematic
influences of conditioning variables on location, scale and shape of the conditional
distribution of the response. This provides an extension to constant coefficient time
series in which the the effect of conditioning is confined to a location shift.

The basic concept of quantile regression is to estimate coefficients in the autore-
gressive model such that, for a given quantile τ , the conditional quantile Qρmh(t)(τ |
ρmh(t − 1), ..., ρmh(t − p)) has the property that Prob(ρmh(t) ≤ Qρmh(t)(τ)) = τ . QR
does not forecast the distribution itself, but rather each quantile directly. Hence, for a
fine discretization of τ ∈

〈
0, 1

〉
Qρmh(t)(τ) approximates the conditional density of the
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Table 6.1: Day-ahead and primary reserve characteristics and corresponding modelling
choices

Findings from empirical study Modelling

Different day-ahead/primary reserve hourly
characteristics and information structure

Panel data

Autocorrelation and stationarity Autoregressive models
Weekly seasonality Seasonal term
Price variance depends on
price level 1 Quantile autoregression

Day-ahead/primary reserve non-linear
dependence

Copula heuristic

price for hour h on day t. Some interpolation scheme and tail modelling will be needed,
this is discussed in section 6.4. The QAR(p) model can be written (in terms of the
notation in this thesis)

Qρmh(t)
(
τ |ρmh(t− 1), ..., ρmh(t− p)

)
=

φmh0(τ) + φmh1(τ)ρmh(t− 1) + ...+ φmhp(τ)ρmh(t− p) (6.2.2)

6.3 Day-ahead and primary reserve price modelling
Day-ahead and primary reserve prices are very similar in several respects. Both markets
are cleared day-ahead and all 24 hourly prices are quoted at the same time. In addi-
tion, the individual hours in each market have different statistical properties. Finally,
both market prices are stationary, highly autocorrelated and has a similar underlying
structure, see Section 5.1. We therefore aim to model day-ahead and primary reserve
prices in a similar manner.

In Chapter 5 we discovered a set of market properties that we wish to retain in
the modelling. Table 6.1 lists the important findings, and how each of these will be
modelled. We will explain why these are important properties and provide details on
modelling throughout this section.

The general concept is illustrated in Figure 6.2 and is as follows. First we use
a combination of panel data and quantile autoregression to achieve predictive price
densities (probabilistic forecasts) on an hourly basis for both markets. These densities
(marginals) shall represent the underlying uncertainty in the forecast. Because hourly
prices are correlated, innovations will be correlated between hours and markets. Our

1This was not treated in Chapter 5 but will be discussed in this section and in section 6.4
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Figure 6.2: Hourly price densities constructed from quantile regression and example
price paths constructed from the copula heuristic

goal is to connect daily price paths from all 48 densities, such that both intermarket
and inter-temporal dependencies represent the true behaviour. For this we use a copula
based scenario generation heuristic. Section 6.4 and 6.5 are devoted to a description of
quantile regression and the copula based method respectively.

6.3.1 Choosing a panel data model

Autoregressive models are intended for stochastic processes in which the next obser-
vation depends on a combination of previous observations. As time progresses, the
previous observations seize to influence the most recent observations gradually. Nearby
observations are therefore more strongly correlated than observations further apart in
time. However, both day-ahead and primary reserve prices are quoted at the same
time for all hours in a day. The information set that the market participants utilize
is the same for all the bidding hours. It is therefore unsound from a methodological
perspective to model the sequence of day-ahead and primary reserve prices as a one
dimensional hourly time series. The prices should rather be modelled as 24-dimensional
panel data, with discrete time increments of one day. This makes intuitive sense if we
consider the transition between two consecutive days. The price in hour 1 on day t,
should not necessarily be strongly correlated with the price in hour 24 on day t − 1.
In the same manner, hour h + 1 should not be explained by hour h because it is not



6.3. DAY-AHEAD AND PRIMARY RESERVE PRICE MODELLING 47

yet an actual observation at the time of forecasting. In addition, day-ahead and pri-
mary reserve prices exhibit very different characteristics in terms of variance and mean
reversion in each of the hours. Individual models should therefore be fitted to each of
the hours independently. In other words, the forecast in market m for hour h on day t
is based on Bkρmh(t) = ρmh(t− k).

Huisman et al. 2007 proposed a panel model composed of a deterministic component
and a stochastic component,

ρmh(t) = fmh(t) +Xmh(t) (6.3.1)

the deterministic component accounting for predictable regularities such as mean
price and seasonal effects. Huisman builds his deterministic component on a mean
price level µm0, and hourly deviations from the mean price level, µmh, to allow for
differences in mean price levels over the hours. The deterministic component also
allows for different price levels for different weekdays of the week. To model this, Id(t)
is a dummy variable that equals 1 if the delivery day t+1 is a weekday d. βmd is the
difference from the mean price level.

fmh(t) = µm0 + µmh +
∑
d

βmdI
d(t) (6.3.2)

The stochastic part accounts for the variation of the price around the deterministic
component and is modelled as a mean reverting process.

xmh(t) = −αmhxmh(t− 1) + εmh(t) (6.3.3)

The error term is assumed i.i.d., has zero mean and finite variance. The authors use
Seemingly Unrelated Regression (SUR) to estimate the model. Just like Huisman et al.
we choose to model prices as panel data. Apart from that, we take a different approach
to model the time series. Instead of modelling predictable regularities separate from
the stochastic process we include it as a constant in a quantile autoregressive model. As
we shall see later, this allows for a comparison of the constant term across quantiles. In
addition, we choose to model weekly seasonality by including a seasonal auto-regressive
term instead of using the dummy variable βmdId(t). We allow the model to be of higher
order than plain mean reverting (AR(1)). As we will see in subsequent chapters, both
day-ahead and primary reserve prices in NO3 are in fact auto-regressive processes of
higher order.

6.3.2 Identifying the order of the autoregressive process
Before we proceed we must first decide on the necessary order of autoregressive terms
in the QAR-model. The PACF of the primary reserve price can be found in Figure
6.3. From the PACF we see that all hours have significant spikes at lag 1. There are
also significant spikes at lag 2 and 3, especially for evening hours. Some hours also
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have significant spikes at higher lags, but this is generally not the case. Minimization
of the Bayesian information criterion further elaborates: almost all hours are of order 3
(exceptions are hours 2-5 am). To be able to perform direct comparison of coefficients
in different hours, our choice is to model all hours as the same process order which
is not an unreasonable approximation for any of the hours. There are weak seasonal
effects at lag 7 in some hours. We thus include the seasonal autoregressive term at lag 7.
Upon investigating the residuals ACF after inclusion of 3 autoregressive terms and the
seasonal term, all significant serial correlation in the residuals is gone. A similar analysis
was done for the day-ahead price, but the PACF plot is left out for brevity. A model
containing 3 autoregressive terms and one seasonal term at lag 7 is found appropriate
for day-ahead prices as well. Hence, we arrive at the following non-parametric model
for the conditional price density, which will be referred to as the QARhourly-model

Qρmh(t)(τ) = φmh1(τ)ρmh(t−1)+φmh2(τ)ρmh(t−2)+φmh3(τ)ρmh(t−3)+Φmh7(τ)ρmh(t−7)

+ φmh0(τ), τ ∈
〈
0, 1

〉
(6.3.4)

6.3.3 Extending the basic model
In this section we propose an extension to the QARhourly-model in 6.3.4 which turns out
to provide even better probabilistic forecasts. Even though hourly prices are modelled
as individual time series, they are highly correlated. Other hours than h in day t − 1
may be good explanatory variables for hour h and could be included in the autoregres-
sive framework. Possibly all h ∈ {1, ..., 24} on day {t − 1, ..., t − p} can potentially
be explanatory variables for ρmh(t). For all the other hours in the panel we restrict
ourselves to consider only day t− 1. Figure 6.4 illustrates.

The hourly prices are highly correlated a given day. It is therefore likely that the
true dimension of the panel is much less than 24. In that case, it would be highly
impractical to model all 24 hours. We therefore performed a Principal Component
Analysis (PCA) of the prices. The first principal component of the day-ahead accounts
for 83 % of the variance in the price, and the first principal component of primary re-
serve prices accounts for 71 %. Scaling and mean centering reveals that this component
is very similar to the daily mean of the prices. Figure 6.5 plots the first principal com-
ponent and the mean (centered and scaled) of the daily prices. This result implies that
the daily mean of the prices can be a very efficient explanatory variable. This makes
intuitive sense because the daily mean price represents the underlying information set
of participants upon bidding. As daily time increments progress, the information set is
updated (outlooks on inflow, price, etc). New information to participants is a funda-
mental driver of the variance of the prices. We therefore choose to test three models:
pure one-dimensional autoregression (only the same hour lagged), autoregression with
yesterdays mean as explanatory variable, and 24-dimensional regression using all pre-
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Figure 6.3: PACF for the primary reserve price
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Figure 6.4: Including price information in other hours. The orange ellipse shows daily
lagged prices in the same hour, while the blue ellipse shows other hours on the previous
day

vious hours.
Testing has been done in two stages. First we check the explanatory power of

the variables in-sample (2014-2015) by evaluating different criteria (Sum of squared
error, adjusted R-sqaured and AICc), in a stepwise forward and backward regression
framework. Thereafter, we evaluate out-of-sample predictive ability of the models (after
ordinary AR-estimation).

All criteria for picking variables return models with similar in-sample quality for
both day-ahead and primary reserve prices. Most of the hours are included, indicating
explanatory power across the day. The average adjusted R-squared is 82.2 % for day-
ahead prices and only 47.7 % for primary reserve. Most of the variance in day-ahead
prices are well explained during night and evening. Start and end of the working day
are much more problematic however, with an R-squared score as low as 65 % in hour 9.
For primary reserve, the high-price morning hours score higher than afternoon hours.
The adjusted R-squared drops on average 8 % for day-ahead and 13 % for primary
reserve in sample when only including the lagged mean.

Out-of-sample testing tells a different story however. The models have been tested
for 350 days out-of-sample in terms of root mean square error (RMSE) after ordinary
AR-estimation using MLE. Figure 6.6 plots the RMSE during the test period (2016). As
expected, predictive performance varies across the day. Working day hours are harder
to predict for day-ahead prices, and morning hours are harder to predict for primary
reserve prices. The more complex models including information about other hours on
day t− 1 perform marginally better than the pure one-dimensional. This is especially
true in the high volatility hours. There is no significant difference in the performance
of the model using only the lagged mean, and the model using all lagged hours. The
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Figure 6.5: First principal component and daily mean (centered and scaled)

(a) Primary reserve (b) Day-ahead

lagged-mean actually performs slightly better in hour 9 for day-ahead prices. For the
sake of parsimony our choice is therefore to proceed with the lagged mean-model. As
we shall see later, this model performs better than the pure one-dimensional QARhourly

model in terms of prediction intervals. Hours with high variance are handled more
efficiently by the lagged-mean model.

We have now arrived at the following extension of the quantile autoregressive model,
which will be referred to as the QARlagged−mean-model

Qρmh(t)(τ) = φmh1(τ)ρmh(t−1)+φmh2(τ)ρmh(t−2)+φmh3(τ)ρmh(t−3)+Φmh7(τ)ρmh(t−7)

+ ψmh(τ)µρm(t− 1) + φmh0(τ), τ ∈
〈
0, 1

〉
(6.3.5)

All coefficients are estimated for m = {Day-Ahead,Primary reserve} in the manner
explained in 6.4. The next goal will be to connect full price paths between the 24 panels
of prices in each market, as well as between the markets.

6.3.4 Hourly and intermarket dependence
We have now proposed how to forecast hourly conditional price distributions. Con-
necting the individual hours into daily price path scenarios remains. As pointed out in
Section 5.5, the prices at hand are correlated across hours and markets. After fitting ei-
ther of the quantile autoregressive models in this section, hourly innovations (also across
markets) will still exhibit correlation and dependence cross-sectionally. The block cor-
relation structure will be present in the residuals. The dependence structure between
the day-ahead and primary reserve prices also seems to be non-linear. Thus, linear
correlation is not sufficient to model the intermarket price behaviour. This dependence
must be embedded into the scenario generation to achieve realistic scenarios. Kaut
2014 proposed a copula-based heuristic for scenario generation. The main concept is to
provide a full description of dependence between random variables by utilizing copu-
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Figure 6.6: RMSE of day-ahead and primary reserve price predictions

(a) Day-ahead

(b) Primary reserve
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las. The value of the variables and their dependence are decoupled via the cumulative
mapping. The construction of scenarios is done by solving an assignment problem min-
imizing the distance between the copula defined by the scenarios and a target copula
(e.g. the empirical). The optimization problem is solved heuristically. We will use this
heuristic approach to model dependence. A full explanation is provided in Section 6.5.

6.4 Modelling predictive density: Quantile regres-
sion

We use quantile regression for probabilistic forecasting of day-ahead and primary re-
serve prices. This section aims to describe how we have implemented the quantile
autoregression framework and important considerations. For the general topic of quan-
tile regression the reader is referred to Koenker 2005. We will briefly summarize the
methodology in the following. Quantile regression can be used in various ways, but
we use it to estimate optimal coefficients for a linear autoregressive forecasting model.
Quantile regression can be performed multiple times to estimate coefficients for the
different quantiles and hence approximate the conditional distribution. Section 6.3
presents the models to be estimated; QARhourly (6.3.4) and QARlagged−mean (6.3.5).
Both models are estimated for day-ahead and primary reserve prices. The section also
provides an explanation of the choice of a quantile regression model. Main reasons are
that it allows for a dynamic non-parametrical description of forecast uncertainty, and
that conditional price variance may be related to the forecasted price.

In this section we will use a slightly modified notation corresponding to the notation
in litterature. Let ft(β0, ..., βk) denote a linear regression function with coefficients
β0...βk ∈ R in the variables Xt1...Xtk, i.e. the set of explanatory variables of the
stochastic variable Yt at time t. Then, a prediction on Yt is given by

Ŷt = ft(β0, ..., βk) = β0 + β1X̃t1 + ...+ βkX̃tk (6.4.1)

and the residual of the prediction is defined as

εt = Ỹt − Ŷt (6.4.2)

where εt denotes the error, and Ỹt denotes the observed value of Yt.
The problem of computing the coefficients for the τ th quantile τ ∈ (0, 1) can be formu-
lated as

(P)
min
β0,...,βk

z =
∑
t∈T

(τ − 111ε)εt (6.4.3)
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where

111ε =

1 if εt ≤ 0
0 otherwise

(6.4.4)

We can linearize problem (P) by introducing the binary variable δt. Solving (P) is
then equivalent to solving (P1)

(P1)
min
β0,...,βk

z =
∑
t∈T

τε+
t + (1− τ)ε−t (6.4.5)

s.t.

εt = ε+
t − ε−t t ∈ T

ε+
t ≤ δtM t ∈ T
ε−t ≤ (1− δt)M t ∈ T
ε+
t ≥ 0 t ∈ T
ε−t ≥ 0 t ∈ T
δt ∈ {0, 1} t ∈ T

Problem (P1) is easily solved in any standard software given that T is not a very big
set. This program will give coefficients for the forecasting model to issue predictions on
the τ th quantile. If we compute coefficients for sufficiently large number of quantiles, we
will achieve an approximation of the conditional probability distribution. In this case
however, we have 48 parallel time series, one for each hour of the day in the day-ahead
and primary reserve prices. This can be interpreted as a panel.

For a panel data model, that is

Yit = β0 + βX it + uit i ∈ N = {1..24} (6.4.6)

with possibly shared covariates between equations and covariant error terms uit, the
problem of estimating pooled quantile coefficients (Wooldridge 2010), can be formulated
as
(P2)

min
β0,β

z =
∑
i∈N

∑
t∈T

τε+
it + (1− τ)ε−it (6.4.7)

s.t.
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εt = ε+
it − ε−it t ∈ T , i ∈ N

ε+
it ≤ δitM t ∈ T , i ∈ N
ε−it ≤ (1− δit)M t ∈ T , i ∈ N
ε+
it ≥ 0 t ∈ T , i ∈ N
ε−it ≥ 0 t ∈ T , i ∈ N
δit ∈ {0, 1} t ∈ T , i ∈ N

Problem (P2) is harder to solve than (P1) due to huge increase in the number of
binary variables. Other authors recommend to let β be a function of i and the constant
term β0 the same across panels, or penalizing deviations. These problems are equally
hard to solve as (P2). We have to solve the problem many times to get estimates
of the different quantiles. We choose to use (P1) to estimate quantiles for each hour
individually. This is a reasonable choice because each of the hourly prices behave quite
differently, so we regard it as a strength that the coefficients are highly specific for
each hour. To illustrate this, we have plotted the quantiles using both (P1) and (P2)
for September 2 2016 in Figure 6.7. Note that the price axis is shifted by 100 NOK
in (b) to include the top quantile. Variance is very different from hour to hour and
(P1) clearly captures this. (P2) gives a change in hourly variance only dependent on
observed values; clearly not enough to capture the high variance during start and end
of the working day.

One drawback of quantile regression is tail uncertainty. As we progress towards
the tails of the distribution, less and less data points are available, yielding higher
uncertainty. One way to cope is to include more data points in the estimation, but this
increases computational effort. For scenario generation purposes a good description of
distributional tails is paramount. Jonsson et al. 2014 fits exponential distributions to
the tails below 5 % and above 95 %. However, upon testing this does not seem to be
worthwhile. The empirical 5 % and 95 % tails of the forecast error distribution perform
just equally well or better. In this thesis we therefore choose to use the empirical 5 %
and 95 % tails of the forecasting error. The limit of 5 % and 95 % is set ad hoc because
good results are achieved for these values, similar to Jonsson et al.

Between 5 % and 95 % we will use quantile regression to estimate the cumulative
distribution of the conditional price. Ideally, a very fine discretization of the quantiles
would be used. This is however very time consuming. For 5 % increments, the running
time is just short of half an hour, which is deemed acceptable. We thus choose 5 %
increments.

An interpolation scheme is needed to arrive at a complete cumulative distribu-
tion. We choose Matlab’s built-in Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP). PCHIP is shape preserving, does not overshoot (does not violate monotonic-
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Figure 6.7: Pooled vs. nonpooled quantile estimation Sept. 4 2016

(a) Pooled (P2) estimation

(b) Nonpooled (P1) estimation
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Figure 6.8: Predictive cumulative distribution for day-ahead price with empirical tails.
Notice that monotonicity is maintained

ity), and works well when the underlying function is not oscillatory.
Finally, we discuss the length of the training period. Jonsson et al. choose training

period based on a trial and error approach, evaluating which training length gives best
fit out of sample. They arrive at longer training periods for quantiles close to the tails
and shorter training periods for centre quantiles. The range is from 2000 to 210 entries
in the training set. We have tested different training period sizes for our model, but we
seem to get best results including all data in the in sample set, that is 2014-2015, for all
quantiles. This implies less time dynamic coefficients. Figrure 6.8 shows an example of
an interpolated cumulative distribution with empirical tails fitted below and above 5 %
and 95 % using the methodology in this chapter. Qualitatively, the result is satisfactory.
Monotonicity is clearly not violated in this case.

In order to verify our assumption that the conditional price exhibits varying sensitiv-
ity to conditioning variables across the distribution, we did an analysis on the resulting
regression coefficients. These results are in themselves interesting, and the full analysis
can be found in Appendix E.

6.5 Modelling dependence: Copula heuristic
Dependence between random variables should not always be modelled linearly using
correlations. In our case it is necessary to model dependence between the day-ahead
and primary reserve prices precisely. For instance, in the morning hours there seems to
be some threshold day-ahead price, at which the primary reserve price is expected to
be low, typically in the range of 15-25 NOK/MWh. If the day-ahead price is reduced
from this threshold by only a few percent, the primary reserve price can be expected
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to increase by many percent. On the other hand, if the day-ahead price is increased
from the threshold value by a few percent, very little is expected to happen to the
primary reserve price. Dependence in down-turns differs from dependence in up-turns.
Correlations are not sufficient to model such dynamics.

Dependence across hours and across markets will be modelled with the copula-based
framework by Kaut 2014. The model proposed in Section 6.3 combined with estimation
from Section 6.4 provides hourly predictive densities for the prices. Constructing daily
price paths from these densities with correct dependence properties is our next goal. In
this chapter we only explain quite briefly what a copula is, and the goal of generating
scenarios from a copula. A more extensive introduction to copula theory and the
copula-based scenario generation heuristic used is given in Appendix D.

6.5.1 Copula-based scenario generation
A copula is the joint cumulative distribution function of any n-dimensional random
vector with standard uniform margins, that is, a function C : [0, 1]n → [0, 1]. Sklar’s
theorem (Sklar, 1996) states that for any n-dimensional cumulative distribiution func-
tion F with marginal distribution functions F1, ..., Fn, a copula C exists such that

F (x1, ..., xn) = C
(
F1(x1), ..., Fn(xn)

)
(6.5.1)

If all the marginal cumulative distribution functions Fi are continuous, then there ex-
ists only one unique C. A consequence of the theorem is that, for every u = (u1, ..., un) ∈
[0, 1]n we have that

C(u1, ..., un) = F
(
F−1

1 (u1), ..., F−1
n (un)

)
(6.5.2)

where F−1
i is the generalized inverse of Fi. That means that knowing the marginal

cdfs and the copula is the same as fully knowing the multivariate cdf. This stands in
contrast to correlations that assume a linear dependence. Furthermore, copulas, unlike
correlations, are independent from the marginal distributions. Therefore we can model
the two independently. A copula only models the interdependence of two or more
distributions, the information about the distributions themselves has been removed.
Ergo, the copula is unchanged as long as the multivariate samples do not change order.

Obtaining the copula for a multivariate distribution is a non-trivial task. Instead
we construct an empirical copula, CT from historical samples, each historical sample
containing one sample entry from each of the distributions modeled. In the case of our
day-ahead and primary reserve market modeling, each sample contains 24 hourly prices
for both day-ahead and primary reserve. The method takes the number of scenarios to
generate, S, as input. The goal of the method is now to generate the copula scenarios
for each margin ũsm, s ∈ {1..S},m ∈ {1..n}, that in aggregate deviate as little as
possible from the target copula. According to the definition of a copula, the scenarios
ũsm should be placed approximately uniformly between 0 and 1. At the same time,
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Table 6.2: Balancing market characteristics and corresponding modelling choices

Findings from empirical study Modelling

Regulating states with different probability
throughout the day

Hour specific Markov

Autocorrelation and stationarity Autoregressive models
Missing values in volumes and premiums Unequally spaced time series
Day-ahead dependence for premiums Linear regression
Dependence between premiums and
volumes and hours

Copula heuristic

for all s ∈ {1..S}, ũsm have to be connected across the n distributions (hours and
markets), such that the dependence between the distributions resemble the one of the
target copula. This is achieved by solving an assignment problem heuristically. The
problem minimizes the deviation between the target copula and the copula defined by
the scenarios.

After obtaining ũsm, we can make the transformation back to target variables. We
have already estimated day-specific cumulative distributions of the prices (using quan-
tile autoregression) for which we are making scenarios. We can now calculate the actual
price scenarios using F−1

m (ũsm). These scenarios will be correctly distributed across each
margin and at the same time have correct dependence properties between hours and
markets.

6.6 Balancing market modelling

This section describes the modelling of the balancing market. It is divided into four
parts. First we discuss how the balancing market differs from the day-ahead and pri-
mary reserve markets. Thereafter, we present a model for regulating states. We then
discuss balancing volumes, and finally premiums.

Two very important features of the balancing market will permeate the modelling
in this section: regulation states and real time balancing and pricing. As pointed out
in section 5.4 the balancing market is characterized by regulation states, i.e. if there is
regulation or not. Should there be regulation, the regulating volume in that direction
is strictly positive. Let ϑt denote the regulation state of the system at time t

ϑt =


−1 if down regulation, i.e. ν4t > 0
0 if no regulation, i.e. νmt = 0 ∀m
1 if up regulation, i.e. ν3t > 0

(6.6.1)
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Because of hours without regulation the data set for regulating volumes and pre-
miums contains zeros in most hours. This must be tackled by the modelling approach
because these hours will significantly bias the mean and variance of the model if included
without regard to the regulation state. We therefore chose to decouple the regulation
state i.e. arrival of demand, and the regulating volume, i.e. the size of the demand. A
similar approach is chosen by several other authors, see for example Klæboe et al. 2013
and Olsson and Söder 2008. As we shall see later, this allows for a conceptual frame-
work in which the volume and price processes are continuous background processes
made observable by the arrival of demand. In this way we can think of the regulating
volume and premium as unequally spaced- or irregularly sampled time series. That is,
zero hours in the data are simply regarded as hours in which no information about the
volume or price process is available. This discussion raises two questions: what is an
appropriate way of modelling the arrival of regulation demand, and its duration, and
how to model unequally spaced time series. Before returning to these question, we shall
discuss the real time pricing mechanism of the balancing market.

Because day-ahead and primary reserve prices are quoted for all hours at the same
time, and because the different hours exhibit different mean reversion and variance
properties, we chose to model the prices as panel data. For the balancing market
however, hourly prices are revealed consecutively throughout the day. In this structure
one would expect consecutive hours to be correlated more than hours further apart. In
addition, we would expect a forecasting error in one hour to propagate to the next hour,
increasing forecasting uncertainty towards the end of the day. The balancing market
volumes and prices can therefore be modelled as ordinary one dimensional time series
on an hourly basis.

Several models for balancing market forecasting have been proposed. In an empirical
study, Klæboe et al. benchmark a variety of time series based models. Klæboe test
the forecast ability of four volume models, five premium models and three models for
state determination. In this thesis we use the best performing model for the 12-36h
forecasting horizon, with minor adjustments where we find it beneficiary.

6.6.1 Regulating states

For state determination several model options exist. We want a model to correctly
reflect the probability of regulation occurring throughout the day. In addition, if a state
occurs, it tends to last for some duration. That is, probability of remaining in state is
higher than the probability of entering this state from another state. Klæboe et al tested
duration dependent and hourly specific Markov switching models in addition to an
arrival rate model from inventory control theory. For the day ahead forecasting horizon
the hour specific Markov model performed best, predicting 37 % of hours correctly.
This rather low fraction clearly shows the unpredictability of the balancing market. An
hour specific Markov model has a transition probability matrix
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Pt =


P11t . . . P1nt

... . . . ...
Pm1t . . . Pmnt

 (6.6.2)

where Pijt denotes the probability of the regulating state switching from state i to
state j from hour t to hour t+ 1, and | · | denotes the number of entries in a set. In our
case Pt is a 3× 3 matrix reflecting the possible outcomes of ϑt. Estimators for Pijt are
calculated according to

Pijt = |ϑt = i ∩ ϑt+1 = j|
|ϑt = i|

(6.6.3)

using historical data. All hour specific Markov transition matrices are given in
Appendix A. These can be used to simulate outcomes for the regulating state through
the day of planning.

6.6.2 Balancing volumes

Because the balancing volumes are unequally spaced time series, analysis and estimation
is complicated. Our first goal is to analyse the autocorrelation structure in the data. If
we include zero hours in the analysis, the results will be biased. On the other hand, if
we exclude zero values and artificially compress the time series, hours that are far apart
in time will contribute to the calculation as if they were consecutive. Other options
include linear interpolation in the data and mean value substitution, but as Erdogan
et al. 2005 points out, this smoothens the data and causes bias. We cope with this in
a similar way as Söder et al. Let βmt denote the regulation signal in each regulating
direction

βmt =

1 if ϑt = 1 for m = 3 or ϑt = −1 for m = 4
0 otherwise

(6.6.4)

βmt is 1 if there is regulation in hour t and zero otherwise. Using the regulation
signal we can include only regulation hours in the calculation without destroying the
time structure. The autocovariance function at lag h can now be computed

γ(h) = 1∑T
t=1 βmt

T−h∑
t=1

(νmt − µν)(νm,t+h − µν)βmtβm,t+h (6.6.5)

where µν denotes the mean of the regulation volume. From this result the autocor-
relation function %(h) can be computed as

%(h) = γ(h)
γ(0) (6.6.6)
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Figure 6.9: ACF for the balancing market

Figure 6.9 shows the autocorrelation computed for various lags for volumes and pre-
miums. We note that volumes as well as premiums exhibit an autoregressive signature,
with slowly decaying positive ACF. There is also some seasonality present at around
24 hour lag, especially for premiums. Taking stationarity of the series into account,
ARMA models will be an appropriate modelling tool.

Erdogan et al. present a statistical model for unequally spaced time series. The
core idea is to use an autoregressive process of order 1 to resample the missing values.
Such a technique might be appropriate for the regulating volumes because an estimate
for the PACF shows a significant spike at lag 1, leaving the other lags at essentially
zero. This might however destroy some of the seasonal effects for the cases when no
regulation lasts for more than a day. It should not be a problem for shorter instances
because the 1 hour lag correlation is much stronger than the 24 hour lag correlation.
Besides, the average duration of no regulation is 8.5 hours, well below a full day.

The details on the methodology of Erdogan can be found in Appendix B. Here
follows the fundamentals of it, necessary to show why and how we pre-process the
balancing volumes time series.

An autoregressive process of order 1 can be written as follows

X(t+ 1) = θX(t) + σεt+1 (6.6.7)

We start with an irregularly sampled time series X(ti) with nonzero values at times
ti. We want to ”fill in the gaps” at all the times sk when the value of the time series
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is not available. In addition, we obviously want to keep all original values of the time
series such that the resampled series coincide at these times, i.e. X̃(sk) = X(ti) for
sk = ti. The parameters θ̂ and σ̂ are estimated using a least squares and maximum
likelihood argument (according to the methodology in the Appendix). In general, εs
cannot be estimated for hours without data. Instead we introduce an auxiliary error ε
for hours without data such that

X(ti + ∆i) = θ̂∆iX(t) + εσ̂
∆i−1∑
j=0

θ̂j (6.6.8)

where ∆i denotes the time gap between the last and next hour with available data.
In this manner way we can estimate a local error term in between observations.

Rearranging the terms we get a direct estimate of ε

ε = X(ti + ∆i)− θ̂∆iX(t)
σ̂
∑∆i−1
j=0 θ̂j

(6.6.9)

This allows us to set recursively

X̂(ti + 1) = θ̂X̂(t) + σ̂ε (6.6.10)

Note also that this prediction sets X̂(ti) = X(ti) so that the resampled values
coincide with the original data, as desired. We now have all we need to resample the
regulating volume time series. We first logarithmically transform the data to stabilize
the variance, and fit a rational to make the residuals have zero mean.

One very important feature of the resampling procedure is that it uses only the
end points of the original data to estimate the local error term ε. However, for the
balancing market this will cause an issue which has not been pointed out by previous
research. The balancing market is operated in real time, but quoted hourly in the data
set. Balancing events tend to last for several hours when they start; averaging at 3.9,
5.0 and 8.5 hours for upward, downward and no regulation respectively. Because of
this, the hours in the middle of the event are likely to be full hours. On the other
hand, for the first and last hour in a regulation event, we have no guarantee that the
quoted hours are full hours. Actually, the contrary seems to be the case. Figure 6.10
shows an illustrative example of what the volume data may look like. We can see
that the last volume in the first event, at hour 6, is very low compared to the rest
of the data. The same holds for the first hour in the next event, at hour 10. Hence,
if we use hour 6 and 10 for estimation in the resampling algorithm, this will bias the
mean of the series significantly. Figure 6.11 shows proof of this hypothesis. The average
volumes are plotted during regulation events. It is calculated as follows: All consecutive
regulation hours of duration longer than three hours are linearly stretched from 0 to
100 % of duration. For each percentile increment, the average volumes are computed
over all events. From this figure we clearly see the main point: volumes are lower at
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Figure 6.10: Example of volumes structure in two regulation events. End-point volumes
are generally smaller than mid-event volumes

the beginning and the end of regulation events. Mid-event volumes are just short of
twice the size. We therefore double the size of end-point volumes before proceeding.
This is an important step to attain a reasonable mean for the resampled series. The
resampling procedure has been implemented in Matlab according to the pseudocode in
Table 6.3

Figure 6.12 shows the resampled downward volume. Qualitatively, the resampled
data seems to behave much like the original data in terms of amplitude. Calculations
show that the mean and variance of the series slightly decrease after resampling. This is
not surprising because the data density in the unequally spaced series is much higher for
periods with high volumes. The resampled series however, will have uniform density
in time. We thus add more data to periods of low volumes than we do to periods
of high volumes. This cannot be viewed as a weakness of the resampling technique.
The variance can possibly be increased by perturbing the auxillary error term with
randomness until the desired variance is achieved a posteriori. Like Erdogan et al.
pointed out, it seems that the resampled data tends to underestimate the presence of
spikes. Spikes are an important characteristic of the regulating market. A more in
depth analysis of the balancing market would attempt to tackle this problem. For the
purposes of this thesis however, the results are considered satisfactory.

We now move on to forecasting balancing volumes. AR(1) models are fitted to the
resampled series for the desired training period. The AR(1) models can be simulated a
large number of times for the forecast horizon to yield probabilistic forecasts. In turn,
the hourly simulations can be used to estimate the predictive density for each hour.
These densities will then be coupled with a copula framework to generate scenarios,
see section 7. The reason we choose simulation of the AR model instead of quantile
regression as previously, is twofold. Primarily, the probabilistic forecasting of the bal-
ancing market is fundamentally different from day-ahead and primary reserves. For
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Figure 6.11: Average volume during the completion of regulation events

Table 6.3: Pseudocode for resampling unequally spaced time series

Algorithm: Resampling unequally spaced time series
1: k ← 0; sk ← t0; X̃(s0)← X(t0);
2: For i ∈ {1...n− 1} do
3: δ ← ti+1 − ti; ε← X(ti+1)−θ̂δX(ti)

σ̂
∑δ−1

j=0 θ̂
j

;

4: For j ∈ {1...δ − 1} do
5: sk+1 ← sk + 1;
6: X̃(sk+1)← θ̂X̃(sk) + σ̂ε;
7: k ← k + 1;
8: End for
9: End for
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Figure 6.12: Resampled downward regulating volume

the balancing market we are to forecast 12-36 time steps ahead, while for day-ahead
and primary reserve we forecasted 48 time series one step. If we were to use quan-
tile regression for the balancing market we would have to model the propagation of
forecasting uncertainty in hour h to hour h + 1 in some way. Secondly, the balancing
market is highly unpredictable, so we hypothesize that a more advanced model will not
be worthwhile.

In this section we have covered a model for the balancing market volumes. To
summarize, we first identify a Markov model for determination of the balancing state.
We then modelled the volume time series as a continous series which is only observable
when there is regulation. To obtain the regularly sampled series, we resampled the
series using an AR(1) process. Probabilistic forecasts can be generated by simulating
the AR model a large number of times. The next section will briefly discuss how to
generate corresponding regulating premiums.

6.6.3 Balancing market premiums
The regulating premiums are obviously very dependent on the regulation state. Premi-
ums decline to a very low level (not necessarily zero due to price zone export) whenever
there is no regulation. Premiums are also dependent to a varying degree on day-ahead
price and volumes. Klæboe et al. conclude that the performance in terms of forecast-
ing MAE is similar for all four non-naive premium models they propose. Two of these
models use day-ahead price and/or volume as exogenous parameters. Because of the
correlation between these quantities in NO3, we want to include those same exogenous
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parameters in this model.

Since there is no volume in hours without regulation, the premium is not of any
relevance to the decision model in these hours. We will therefore also set the premium
to zero in hours without regulation. This causes the same problem as for volumes. If
we do not make any changes to the premium series data, and fit ARIMA models, the
result will be biased by low premiums in hours without regulation. On the other hand,
if we remove the no regulation hours and replace with zeros, the exact same problem
that we had for the volumes occurs. We see two natural options: 1) regression on the
volumes and 2) resampling of premium data.

The first approach will involve fitting an ARIMAX model for the premiums with
volume as exogenous input in addition to the day-ahead price (see Section 5.5). This
will require us to generate volume scenarios first, and then generate premium scenar-
ios conditional on the volumes. There is one rather big problem with this approach:
dependence is likely non-linear. Premiums should tend to zero when there is no regu-
lation, i.e. νmt = 0. When νmt > 0 however, premiums are distributed in a wide range,
especially for low volumes. The linear relationship in Figure 5.10 intensifies as volumes
become larger. It is therefore likely that a linear coefficient describing the relationship
between volumes and premiums is not sufficient.

The other option is to remove hours with no regulation, and resample the premium
series as well. Once again, this will destroy some of the seasonality in the premiums.
Keeping in mind that the average length of no regulation phases is 8.5 hours, and that
seasonality is 24 hourly, we do not believe this will be a big disadvantage. Another prob-
lem is that resampling with an AR(1) process will not explicitly catch the dependence
on exogenous parameters: volumes and day-ahead price. We have tested both models,
and the resampling model performs better. Test results clearly show that non-linear
dependence between volumes and premiums is critical. As volumes go from νmts = 0
to νmts ≥ 0, impact on premiums is huge. The effect is especially severe when volumes
are very large. In this case, corresponding premiums can be way too large. Our choice
is therefore to proceed with the resampling model.

We follow the procedure in Section 6.6 for resampling the series. The resampled
time series is of order 2 even after resampling. Afterwards an ARMAX(2,0,1) model is
fitted to the resampled data with resampled volumes as well. Coefficients are in Table
6.4.

Generating premium scenarios is non-trivial, because for each volume scenario, a
premium must be generated. In addition, we seek to reduce sampling error. The
obvious option is to simulate a number of premiums for each volume scenario. This
will yield a realistic predictive distribution for premiums. What remains is to choose
full premium paths to pair with volumes. For this we will once again use to copula
heuristic with the empirical copula directly as target, see Chapter 7.
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Table 6.4: Coefficients for premium up model

Parameter Value Standard error t statistic
Constant 0.0368 1.95 0.0188
AR{1} 0.0873 0.00517 16.9
AR{2} 0.755 0.00417 181
MA{1} 0.774 0.00533 145
ψvol 0.0911 0.00608 15.0
ψspot 0.0300 0.00530 5.66
Variance 2584 1.38 1870

6.6.4 Out-of-sample testing
We have tested the point forecasting ability of the models in this section out of sample.
Tests were done for the period October 2015 to September 2016 and benchmarked
against a naive2 model. The optimal training period (in terms of lowest forecasting
error) was found to be 80 days. We have chosen to quote forecasting error in terms
of Monthly-weighted Mean Absolute Error (MMAE). This is a modified MAPE (Mean
Absolute Percentage Error) that avoids the problem of volumes close to zero. Weron
and Misiorek 2008 used a similar measure on a weekly basis for day-ahead prices.
The MMAE is defined in terms of the predictions and realization of the variables e.g.
volumes, as

MMAE = 1
N · ν̄N

N∑
i=1
|νmi − ν̂mi| (6.6.11)

where N is the number of hours in the month. Results are found in Table 6.5. The
results are rather depressing. As expected, the balancing market is extremely hard to
predict before day-ahead market closure. However, in contrary to what Klæboe et al.
2013 found, the naive model performs equally well as the more sophisticated model.
The best performance has bold font in the table. Note especially that premiums and
volumes for upward regulating are problematic. Surprisingly, the naive model has an
error averaging well below 100 %, which is much better than what Klæboe et al. found
in NO2.

Even though these results are bad in terms of point forecasting, the models may be
valuable for probabilistic forecasting. Lack of a good point forecast simply implies more
uncertainty in the model parameter. In turn, this must be handled by scenarios that
correctly portray the uncertainty. These scenarios may span a broad range. There is
not necessarily a strong connection between point forecasting ability and probabilistic
forecasting ability. Hence, it may be possible to construct a probabilistic forecasting
model that works very well even though the underlying point forecasts are highly uncer-

2Using yesterday’s prices as forecast
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Table 6.5: Results in MMAE from out-of-sample testing Oct 2015-Sept 2016

Prem. down Prem. up Vol. down Vol. up

Period Naive ARMA Naive ARMA Naive AR Naive AR
Oct 36 % 42 % 99 % 90 % 51 % 44 % 17 % 23 %
Nov 29 % 29 % 73 % 74 % 44 % 40 % 30 % 40 %
Dec 44 % 39 % 99 % 65 % 54 % 50 % 26 % 42 %
Jan 99 % 84 % 102 % 78 % 48 % 44 % 23 % 33 %
Feb 36 % 36 % 21 % 42 % 56 % 51 % 14 % 24 %
Mar 26 % 31 % 35 % 43 % 37 % 50 % 25 % 30 %
Apr 43 % 30 % 44 % 64 % 64 % 52 % 16 % 21 %
May 46 % 37 % 95 % 67 % 57 % 44 % 47 % 50 %
Jun 39 % 42 % 89 % 73 % 57 % 53 % 64 % 60 %
Jul 53 % 41 % 50 % 55 % 64 % 57 % 34 % 52 %
Aug 31 % 36 % 50 % 52 % 61 % 59 % 56 % 57 %
Sep 53 % 43 % 45 % 48 % 74 % 53 % 52 % 38 %

tain. Probabilistic forecasting ability of all models proposed thus far will be evaluated
in Section 6.7.

6.7 Evaluation of probabilistic forecasting ability
This section is devoted to testing of the probabilistic forecasting ability of the proposed
models. Good probabilistic forecasts is a necessity to provide a description of uncer-
tainty. These forecasts are used directly in scenario generation by choosing scenarios
that represent the underlying density as effectively as possible. In contrast to single-
valued or point forecasts, probabilistic forecasting amounts to assigning a probability
to each of the possible outcomes, i.e. a probability density. In this thesis we evaluate
probabilistic performance in terms of interval forecasts. An interval forecast consists of
a lower and upper bound Lt|t−1(p) and Ut|t−1(p) respectively, and a probability p that
the random variable will take a value between these bounds. By evaluating interval
forecasts for different probabilities p, we can assess how well the probabilistic forecasts
performs. Other options to evaluate probabilistic forecasts include for example the Con-
tinous Ranked Probability Score (CRPS). In this thesis we take the approach proposed
by Christoffersen 1998 to evaluate a set of interval forecasts.

Interval forecasts can be evaluated in terms of unconditional and conditional cover-
age. Put informally, unconditional coverage is achieved if a fraction p of the observed
values were between the bounds for some test period. If in addition the probability that
the random variable takes a value in the interval remains constantly equal to p through-
out the test period, we have conditional coverage. This is especially important for time
series exhibiting heteroscedasticity, such as electricity prices, in which the probabilistic
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forecast may perform well in some periods and worse in other.
Some notation is necessary. Let the indicator variable It define whether or not the

realization of the random variable yt is in the interval.

It =

1 if yt ∈ [Lt|t−1(p), Ut|t−1(p)]
0 otherwise

(6.7.1)

With the indicator variable obtained from some test period t ∈ T test, we can perform
analysis on conditional and unconditional coverage without regard to the underlying
forecasting model nor any distributional assumptions. The next subsections establish
briefly the testing criterion on It. Unconditional coverage is treated first, and then we
move on to conditional coverage. Finally, we review the results from testing.

6.7.1 Unconditional coverage
Given a sequence of indicators from the test period {It}t=Tt=1 , we wish to test whether
E(It) = p against the alternative hypothesis that E(It) 6= p. Christoffersen proposes a
log likelihood ratio test

LRuc = −2 log
L(p; I1, I2, ..., IT )
L(π̂; I1, I2, ..., IT )

 asy∼ χ2(1) (6.7.2)

where π̂ = n1/(n0 + n1) is the maximum likelihood estimator for π, and n0 and n1
are the number of It equal to 0 and 1 respectively. The LRuc-statistic is plotted and
compared with the 5 % and 1 % significance level for a chi squared distribution with
one degree of freedom (χ2

α=0.05(1) and χ2
α=0.01(1)). χ2

α(1) denotes the value for which
there is a probability of α of observing LRuc ≥ χ2

α(1) under the assumption that the
hypothesis E(It) = p is true. That is, if the LR-statistic lies beneath the significance
limit, then the forecast passes the test.

This procedure tests for overall coverage of the interval, but does not test whether
the zeros and ones come clustered in a time dependent manner.

6.7.2 Conditional coverage
Conditional coverage is a measure of coverage that also checks whether indicator ones
and zeros come clustered or independently distributed in time. We want to test if
E(It|It−1, ..., I1) = p for the entire test period. This is similar to test whether It is
identically and independently Bernoulli distributed with parameter p, {It} iid∼ Bern(p).
The statistic is

LRcc = −2 log
 L(p; I1, I2, ..., IT )
L(Π̂1; I1, I2, ..., IT )

 asy∼ χ2(2) (6.7.3)
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Table 6.6: Unconditional coverage day-ahead and primary reserve

Day-ahead Primary reserve
Target coverage QARhourly QARlagged−mean QARhourly QARlagged−mean

95 % 95 % 95 % 95 % 95 %
90 % 90 % 89 % 88 % 90 %
75 % 74 % 72 % 67 % 72 %
50 % 50 % 47 % 41 % 42 %

with Π̂1 a Markov transition probability matrix estimated by

Π̂1 =
[

n00
n00+n01

n01
n00+n01

n10
n10+n11

n11
n10+n11

]
(6.7.4)

This statistic suffices to check for both independence and coverage simultaneously,
and will be plotted against 5 % and 1 % significance level for a chi squared distribution
with two degrees of freedom.

6.7.3 Results
The models for day-ahead and primary reserve prices have been tested for the 50 first
days (1200 hours) in 2016. Testing is done by computing forecast intervals for the 95
%, 90 %, 75 % and 50 % coverages with quantile autoregression. Thereafter, we check
whether the realization of the price is within the respective intervals. We test both the
QARhourly-model (6.3.4) and the QARlagged−mean-model (6.3.5) for both markets. To
give an intuitive impression of coverage, we first present the coverage in Table 6.6. The
widest intervals seem to perform very well. The 75 % and 50 % intervals seem to be a
bit to narrow, especially for primary reserve. It is not clear whether the lagged mean
model gives better probabilistic forecasts at this point.

Next, we perform the LR-test by Christoffersen on an hourly basis. This will provide
us with information on how the model performs in each of the 24 hours, which is
interesting because the hours have such different characteristics. The results are plotted
in Figure 6.13 and 6.14. Investigate first only the upper plots in each figure, labeled
unconditional. Results are very good for both markets. Almost all hours and intervals
pass the test at the 1 % significance level. The primary reserve prices are somewhat
problematic in the early hours of the day, but the inclusion of the lagged mean seems
to relieve this. Inclusion of the lagged mean in the day-ahead model does not seem to
give an advantage in terms of unconditional coverage.

In terms of conditional coverage, results are also very satisfying. The QARhourly

day-ahead model passes the test for most hours, but has some fails across several hours
through the day, with no obvious structure. The QARlagged−mean model outperforms
the pure hourly model. Only two test instances fail the test at the 1 % significance
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Table 6.7: Unconditional coverage balancing market

Target coverage Prem. up Prem. down Vol. up Vol. down

95 % 92 % 93 % 95 % 95 %
90 % 88 % 89 % 92 % 90 %
75 % 76 % 80 % 84 % 73 %
50 % 56 % 60 % 58 % 52 %

level. We thus conclude that the lagged mean model performs best, and we choose this
model for scenario generation in Chapter 7 & 8.

For primary reserve prices, the QARlagged−mean model provides significantly better
conditional coverage than the pure one-dimensional hourly model. This is especially
true in the highly volatile early morning hours. Some hours still do not pass the test,
but this is generally the more narrow intervals. We are not aware of any probabilis-
tic forecasting on primary reserve prices in Norway. Still, comparing with day-ahead
coverage, results are very good. We once again conclude that the lagged mean model
performs best, and thus choose it for use in subsequent scenario generation.

As an additional benchmark, we compare the mean width of the prediction interval
for the two models. Generally, if a model has correct probabilistic properties (calibra-
tion), we want the mean width of the prediction interval to be as narrow as possible
(sharpness). Figure 6.15 plots the mean PI width across hours for both markets and
models. For day-ahead prices we see that the lagged mean model generally provides
tighter bounds, except for hour 18-19. For primary reserve the lagged mean model is
significantly tighter during early morning hours. Taking conditional coverage into ac-
count, there is little doubt that the lagged mean model has best performance for both
markets.

A similar test was done for the balancing market. The test was carried out for 350
days (8400 hours), from October 2015 to September 2016. Aggregated results are in
Table 6.7. Results are very similar to Klæboe et al. 2013. The widest intervals perform
pretty well, while the narrowest tend to include too many realizations. The results
are further elaborated by computing Christoffersen’s LR-test for unconditional and
conditional coverage. Figure 6.16 plots the results. Unconditional coverage is acceptable
for wide intervals, but narrow intervals generally perform worse. The wider intervals
perform badly for downward premium in morning hours. Klæboe et al. did not check
conditional coverage for the proposed models, but encouraged future researchers to do
so before implementing. Conditional coverage is generally bad, especially for narrow
intervals. This is not unexpected reminding ourselves of the inherently unpredictable
nature of the balancing market. It is not reasonable to expect good forecasts in a
market which is designed to respond to unforeseen events.
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Figure 6.13: LR-test for unconditional (top row) and conditional (bottom row) coverage
day-ahead price

(a) Day-ahead QARhourly model

(b) Day-ahead QARlagged−mean model
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Figure 6.14: LR-test for unconditional (top row) and conditional (bottom row) coverage
primary reserve price

(a) Primary reserve QARhourly model

(b) Primary reserve QARlagged−mean model
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Figure 6.15: Mean PI width - solid line represents QARhourly model, dashed line repre-
sents QARlagged−mean model

(a) Day-ahead

(b) Primary reserve
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Figure 6.16: LR-test for unconditional (top row) and conditional (bottom row) coverage
balancing market



Chapter 7

Scenario generation and evaluation

7.1 Introduction
Chapter 6 presented the necessary tools for generating probabilistic forecasts and mod-
elling dependence between hours and markets. This chapter aims to connect the dots,
and outline the scenario generation algorithm in its entirety. In addition, we test im-
portant properties of the generated scenarios.

An important characteristic of good scenarios is that the scenario distribution re-
flects the uncertainty in the forecast method. As we saw in section 6.7, the probabilistic
forecasts perform well. However, upon generating scenarios, only a few discrete values
must be picked to represent the probabilistic forecast. In addition, the scenarios must
represent the underlying connection between hours and markets.

We test the scenarios in two ways. First, we qualitatively test dependence properties
between markets and hours by evaluating scatter plots with scenarios and real prices.
Thereafter we subject several scenario sets of different size to the optimization problem.
The resulting objective value can be used to check for in-sample and out-of-sample
stability. Results are used to determine the necessary number of scenarios to be used
in the case study in Chapter 8.

7.2 Scenario generation algorithm
The reader is reminded of the problem structure in Figure 4.3, consisting of three
stages. The here-and-now decision is the bid curve to submit in the day-ahead market.
No decision is made between day-ahead price realization and primary reserve price
realization. Hence there is no need to create additional branching between these events.
If for each day-ahead price we had a branch of primary reserve price scenarios, there
would be redundant information (duplicates) in day-ahead prices. We rather model
pairs of day-ahead and primary reserve prices in the same scenario set s ∈ S. The
copula based heuristic is used to model dependence in the scenarios. In the second

77
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stage, a primary reserve commitment is decided upon with the opportunity cost of
lost balancing market opportunities. Hence, for each s there must be a set of possible
balancing market realizations ω ∈ Ωs. The balancing market premiums are dependent
on day-ahead price, and is therefore generated conditional on each day-ahead price
scenario. Dependence internally in the balancing market volumes and premiums is also
modelled with the copula-based heuristic.

Figure 6.2 outlines the concept. We use either quantile regression (day-ahead and
primary reserve) or simulation (balancing premium and volume) to produce hourly
predictive densities. Thereafter we treat each density as the marginal distribution of a
multivariate joint distribution. That is, for day-ahead and primary reserve, we have 48
marginals (one for each hour in each market). Our objective is to pick |S| scenarios of
the 48 variables that reflect their joint behaviour as effectively as possible. For this we
use the copula heuristic.

The scenario generation algorithm is implemented partly in Matlab and partly in
C++. In the following we will outline a high-level pseudocode for the algorithm. Our
goal is clarify how the different building blocks from Chapter 6 fit into the procedure.
Figure 7.1 illustrates the program.

1. Hourly predictive densities/cumulative functions are created with quantile regres-
sion on a hourly basis for day-ahead and primary reserve prices

2. The copula heuristic is used to create the desired number of day-ahead and pri-
mary reserve scenarios, with respect to each hourly density, the connection be-
tween hours, and the connection between markets. We use the empirical copula
of the training period directly as target to model dependence

3. Balancing market data is resampled

4. Balancing market dependence is modelled using the empirical copula, and copula
scenarios are generated before simulation

5. Appropriate AR/ARMA models are fitted to the log-transformed balancing mar-
ket volumes and premiums and used to simulate a large number N times. Premi-
ums have day-ahead price scenarios as explanatory variable, and in this way the
linear dependence between day-ahead price and premiums is respected. Based on
the simulations, we estimate the empirical cumulative distribution for volumes
and premiums on hourly basis for the 12-36 hour forecasting horizon

6. Cumulative distributions for the balancing market are matched with copula sce-
narios to yield scenarios in terms of target variables. Back-transformation is
performed; half the estimated variance is added to cope with bias from log trans-
formation

7. Regulation state is simulated with the hour specific Markov model in each branch.
Volumes and premiums in hours without relevant regulation are set to zero
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Figure 7.1: Scenario generation overview

7.3 Evaluation of scenarios
This section is devoted to testing of the scenario generation procedure. From Section
6.7 we already know that the predictive densities for each hour perform well. These
densities are treated as marginals of a multivariate joint distribution. The copula
heuristic ensures that each marginal is represented by |S| points uniformly distributed
along the cumulative mapping. Hence, the only loss of information in the marginals
stems from the discretization into scenarios, and not from the heuristic itself. We
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therefore assume that the scenarios constitute an effective description of uncertainty
in each individual variable given the number of scenarios. In 7.3.2 we determine the
necessary number of scenarios by solving the planning problem multiple times with
different scenario sets. It remains to assess dependence in scenarios in the multivariate
setting (between hours and markets). Assessing dependence is interesting because it
determines the daily price path and the trade-off between markets. The price path or
price development between hours is of interest because it determines how to coordinate
production inter-temporally. Start-up costs are inflicted when production restarts after
stand-still.

7.3.1 Evaluating inter-temporal and inter-market dependence
We want to find out if the scenarios represent plausible price paths. There are mul-
tiple reasons for this. The copula heuristic solves an assignment problem to minimize
deviation between the target copula and the copula defined by the scenarios. This is
done heuristically by matching margins as in the bivariate case, and then subsequently
add margins until all margins are added. No higher order dependencies are taken into
account. In addition, the assignment problem is solved by a greedy algorithm. The loss
of quality, i.e. the deviation from the target copula, may result in an altered description
of dependence in the scenarios.

Visual evaluations in this section should only be regarded as a rough estimate of
performance, and would reveal nothing but severe flaws in the scenario generation.
Conclusions are drawn accordingly. If one is primarily concerned with the performance
of scenarios subject to a stochastic problem, one can run stability tests and compare to
some large reference scenario set. This follows in subsection 7.3.2.

To evaluate the suggested scenario generation method’s ability to create inter-hourly
price paths, the following methodology is used. 40 daily scenarios are generated out-
of-sample for a period of 50 days in 2016. Daily price means are calculated for all
scenarios and real prices, µms and µ̃m for each day in the test period. The means are
subtracted from each of the hourly prices in the respective scenarios. The same is done
for the realizations, the realized daily average price is subtracted from the hourly price,
see Figure 7.2. Thereafter, we plot empirical distributions for the resulting variables
ρmts − µms and ρ̃mt − µ̃m for all test days. The resulting distributions should coincide
if scenarios have similar fluctuations around daily means as real prices. Figure 7.3 and
7.4 show the results. The results are generally satisfactory. Notice that distributions
seem to have approximately equal support and probability density. The primary reserve
realized prices are unevenly distributed, and more days should have been included in
the test period. However, primary reserve prices often take values that are multiples of
ten because of bidding behaviour. This might cause some of the spikes in the figure.

Next, we seek to evaluate price development from one hour to the next. How much
the price fluctuates between consecutive hours, implicitly determines risk of unplanned
start-up costs. We therefore need to verify that the scenarios have similar properties
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Figure 7.2: Price fluctuations around daily mean

compared to real prices. This is done by plotting scatters for ρmts against ρm,t+1,s and
comparing with realized prices. Figure 7.5 shows the results. For day-ahead prices
results are very good. The scenarios seem to exhibit the same behaviour as the real
prices; the variance at different price levels coincide. For primary reserve prices, there
might be a tendency to produce scenarios with too extreme fluctuations from one hour
to the next. Due to lack of realized prices, it is hard to conclude. Primary reserve has
enourmous spikes in some periods, and are very stable in other periods. For additional
reference, we compared the scenarios to the whole set of historical prices. In that case,
the results were very similar.

Finally, we visually check the relationship between the day-ahead and primary re-
serve market. Figure 7.6 shows the generated scenarios plotted against realized prices
from the period (50 days in 2016). Notice how the non-linear relationship between the
prices is portrayed well by the scenarios. The supports of the real prices and the sce-
narios seem to coincide. In sum, visual inspections indicate that non-linear dependence
seems to be modelled successfully. This is a property we would not have been able to
capture using only correlations. Similar scatter plots were made to assess the depen-
dence between balancing market volumes and premiums, and can be found in Figure
7.7. There seems to be some tendency to underestimate the presence of spikes.

7.3.2 Evaluating stability
The quality of a scenario tree should be evaluated by how good decision support it pro-
vides rather than by statistical properties alone. Performance of a scenario generation
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Figure 7.3: Fluctuations of day-ahead prices around daily mean for scenarios and real
prices
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Figure 7.4: Fluctuations of primary reserve prices around daily mean for scenarios and
real prices
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Figure 7.5: Hour to hour price fluctuations. Blue dots denote scenarios, red circles
denote realized prices

(a) Day-ahead price (b) Primary reserve price

Figure 7.6: Generated day-ahead and primary reserve scenarios. Blue dots denote
scenarios, red circles denote realized prices
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Figure 7.7: Balancing market premiums and volumes. Blue dots denote scenarios, red
circles denote realized prices and volumes

(a) Upward balancing (b) Downward balancing

method is therefore often evaluated by subjecting it to the optimization problem at
hand. To evaluate the quality of a scenario generation method we can run an in-sample
stability test, as defined in the work of Kaut and Wallace 2007, in which we require the
following relationship between objective functions on different scenario trees

max
x∈X

F̂a(x) ≈ max
x∈X

F̂b(x) (7.3.1)

where F̂a(x) denotes the objective function evaluated on scenario tree a. In practice
this means that any two scenario trees representing the same planning period should
yield an approximately equal objective value. If there is randomness in the scenario
generation method, we require in-sample stability between different trees of the same
size. If there is not much or no randomness in the scenario generation method, we can
still compare objective values when changing the size of the scenario tree.

Another form of stability testing is the out-of-sample test, also defined by Kaut and
Wallace, which is carried out by evaluating the relationship described by

F̂a(x̂b∗) ≈ F̂b(x̂a∗) (7.3.2)

A solution x̂b
∗ from running the model with tree b is imposed on tree a, and vice

versa. Generally, an out-of-sample test indicates the performance of a solution given a
different realization of stochastic parameters. Solutions with high out-of-sample stabil-
ity tend to be robust, but then again, if the scenario generation method is consistent,
there is little variation between the scenario trees. Hence a solution from one tree would
be expected to perform well on another tree. There is no simple relationship between
in-sample and out-of-sample stability, but both are required in a good scenario tree
method (Kaut and Wallace 2007).
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In-sample stability

We have tested the scenario generation method in this thesis in-sample and out-of-
sample. In-sample testing is done by running the model several times with different
scenario trees for January 8, 2016. The decision model from Chapter 4 has been run
with different scenario trees of different sizes; 20 times for each size. Note that we
use the simplified modelling for the value of water according to 4.2.17, yielding net
daily profit in the objective. Not all scenario tree size combinations are tractable; for
large numbers of day-ahead/primary reserve scenarios, the number of possible balancing
scenarios per branch is gradually limited. The mean objective value from the 20 runs
is plotted in Figure 7.8 as a function of the number of scenarios. Notice that the
number of day-ahead/primary reserve scenarios affects the objective value significantly.
As the number of day-ahead/primary reserve scenarios approaches 100, the objective
value seems to stabilize perfectly with respect to the number of scenarios. Notice also
that the number of balancing market scenarios has negligible effect on the mean of the
objective value. This might be due to the small size of the balancing market compared
to the day-ahead market.

The objective value is extremely stable between trees of the same size. Figure 7.9
plots the standard deviation in the objective for the 20 runs. The standard deviation
does not exceed 0.4 % of the objective value. The standard deviation decreases with
respect to the number of day-ahead/primary reserve scenarios and balancing market
scenarios, but this increased stability is likely not very important. Stability from run
to run is due to the low inherent randomness in the generation method 1. The Markov
model is a source of randomness. However, the important point here seems to be that
the objective value changes as we increase the number of day-ahead/primary reserve
scenarios. No reference scenario tree is available, but the 200 day-ahead/primary reserve
tree is the largest tree we solved for. Using this objective value as reference, other
objective values vary between -2.5 and 10.0 % as the number of scenarios increase.

Out-of-sample stability

Next, we check out-of-sample stability. This has been done by imposing the first stage
solutions (bid curves for day-ahead) from the smaller scenario trees to a large tree of 200
× 2 scenarios, and resolving. We want to assess what number of scenarios is necessary
to provide a good solution relative to the larger reference tree. Figure 7.10 shows the
results. The variance in performance among the 20 trees of the same size is negligible.
Changing the number of balancing market scenarios per branch neither affects out-of-
sample performance. Any number of day-ahead and primary reserve scenarios above
∼20 yields good solutions, deviating less than -0.5 % from optimum.

Considering in-sample and out-of-sample stability our choice is to use 40 day-ahead
and primary reserve scenarios and 4 balancing market scenarios per branch for the case

1Only when the deviation from the target copula is equal for different rank assignments, one rank
will be chosen randomly. See Appendix D
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Figure 7.8: Mean of objective value for different scenario tree sizes. The different colors
represent the number of balancing market scenarios per branch

Figure 7.9: Stability (standard deviation of each set of 20 runs) of the objective value
for different scenario tree sizes
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Figure 7.10: Out of sample stability. Bid curves constructed for different scenario tree
sizes are subjected to a reference tree with 200 day-ahead/primary reserve scenarios
and 400 balancing scenarios (200 × 2)

study in Chapter 8. The problem can be efficiently solved with this tree size, and still
provide very good solutions.



Chapter 8

Computational case study

The goal of this chapter is to assess whether the hydpropower producer should take
primary reserve and balancing market opportunities into account upon bidding into
the day-ahead market. Section 8.1 describes two planning regimes, that henceforth
are referred to as coordinated and sequential planning. Coordinated planning takes
subsequent market opportunities into account when bidding, while sequential planning
does not. The possible gains from coordinated planning will be investigated under three
control variables, all introduced in the next section. In subsection 8.1.1 we propose a
measure for deviation between water value and the day-ahead price, price-water-value
squared deviation (PWSD). The PWSD is used to identify interesting sets of historical
days for testing. This measure is actively referred to throughout the case study. In
subsection 8.1.2 we present and discuss the granularity of the planning horizon. We
discuss two settings; hourly and sub-periods. A sub-period is a set of hours for which
a generator is planned either on or off the entire sub-period. This practice reduces the
number of binary variables and hence decreases solution time significantly. Finally, in
subsection 8.1.3 we discuss the effects of an increasing production portfolio size. Section
8.2 addresses assumptions and problem parameters that are independent of planning
framework; boundary conditions, production functions, market shares etc. The results
from the case study are presented in section 8.3. All decision models involved have
been implemented in Xpress-IVE with Xpress-Mosel and solved by Xpress-Optimizer.
All test results were obtained on 3.20 GHz Intel Core PCs with 16 GB RAM.

8.1 Case study framework
Coordinated bidding

Figure 8.1 illustrates the case study framework. The model from Chapter 4 (Model 1) is
used to calculate a coordinated day-ahead bid curve. Next, this curve is fed into another
model (Model 2) along with the realized day-ahead price, resulting in a production
commitment. Furthermore, Model 2 receives primary reserve and balancing market

89
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scenarios1 and calculates a bid curve for the primary reserve market. Finally, in a
third model (Model 3) we reveal the primary reserve prices, resulting in a commitment.
Also, balancing market volumes and premiums are revealed. The producer simply
sells the balancing reserves that are found profitable and feasible under the incurred
commitments, and the profit of the coordinated framework is output.

Sequential bidding

The profit from coordinated bidding is at all times compared to the equivalent resulting
from a sequential framework. The sequential models calculate bid curves based on
scenarios for the next upcoming market clearing. No scenarios for subsequent markets
are used. This way we get a benchmark to assess the value of coordinated planning.
All involved models can be found for inspection in Appendix C.

The next sections describe the control variables of the case study. These control
variables will be used to determine when possible gains from a coordinated planning
can be expected.

Figure 8.1: Case study framework

1The same primary reserve scenarios are used again, although the prediction should be somewhat
less uncertain knowing the day-ahead price. One should in practice generate new scenarios conditional
on the realized day-ahead price. This would require a thorough study of post-spot reserve price
forecasting, which is not treated in this thesis.
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8.1.1 Effect of price-water-value-deviation
Eriksrud and Braathen 2012 identify different situations in which coordinated bidding
may be valuable. Relations between water value, day-ahead prices, reserve market
prices and volumes determine these situations. Eriksrud and Braathen only consider
the balancing market, but a similar argument can be made for primary reserves. The
water value is here represented by V [NOK/MWh]. The first four relate day-ahead
price (ρ1) and downward balancing. The downward regulation premium is denoted by
(ρ4).

(a) ρ1 � V : It is not profitable to bid into the day-ahead market, and no reserve
opportunities can compensate. No bids will be placed.

(b) ρ1 < V : It is profitable to bid into both markets if one expects high vol-
umes/premiums in BM, and not profitable to bid into any market if one expects
low volumes/premiums in BM.

(c) ρ1 > V and ρ4 > (ρ1 − V ): It is profitable to bid into the day-ahead market and
one should bid into BM whenever possible.

(d) ρ1 > V and ρ4 < (ρ1 − V ): It is profitable to bid into the day-ahead market and
not into BM, because it yields smaller profits than the pure day-ahead profit.

These four relations are possible in the case of upward regulation. The upward
regulation premium is denoted by (ρ3).

(e) ρ1 < V and ρ1 + ρ3 < V : It is not profitable to bid into any of the two markets.

(f) ρ1 < V and ρ1 + ρ3 > V : It is not profitable to bid into the day-ahead market,
and it is profitable to bid into BM.

(g) ρ1 > V and ρ1 + ρ3 > V : It is profitable to bid into both markets. If one
anticipates high volumes in BM, one might be willing to reduce the day-ahead
volume to achieve higher volumes in BM.

(h) ρ1 � V and ρ1 + ρ3 � V : It is very profitable to bid into the day-ahead market,
and the producer will not risk reducing its total commitments in order to obtain
flexibility in BM.

From this discussion it is clear that coordinated bidding theoretically should yield
higher gains whenever the day-ahead price does not deviate much from the water value.
We therefore seek to quantify such a deviation. Because we are considering several re-
serve markets, we only use the day-ahead price to quantify price-water-value-deviation.
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We define a simple measure for the purpose of choosing test days, and we refer to it as
the PWSD, absolute price-water-value squared deviation:

PWSD =

√√√√ 1
24

24∑
t=1

(ρ1t − V )2 (8.1.1)

In addition, we define a slightly modified measure that accounts for whether the
deviation is mainly negative or positive; net price-water-value-deviation NPWD.

NPWD =

+ if 1
24
∑24
t=1(ρ1t − V ) > 0

− otherwise
(8.1.2)

The motivation for defining these measures is to identify which days that might
yield higher or lower gains from a coordinated framework. The terms are squared
to penalize large deviations in some hours, compared to the alternative of smaller
deviations throughout the day. Generally, smaller deviations throughout the day is
more interesting in terms of coordinated bidding. We utilize the NPWD to determine
whether we expect profits to be positive or zero/negative, i.e. whether the price is
generally higher or lower than water value.

8.1.2 Effect of planning horizon granularity

We do not include block bids in this thesis, but model only single hourly bids. How-
ever, we allow for partitioning of the planning horizon into sub-periods, h ∈ H with
corresponding operating hours t ∈ T h. The generator on/off-decision variable, uighsω
therefore requires that a generator in a given scenario is either on or off during the
entire sub-period. The motivation for this choice is twofold. As shown in Chapter 5,
all markets are governed by different price regimes during the day. Day-ahead prices
are generally low during night hours, while primary reserve prices are high, downward
regulation is more likely in the morning etc. This also has practical implications for
most producers. If day-ahead prices are too low to be profitable in night hours, the
producer is probably not committed in any of the night hours. Start-up costs play an
important role, because profitability in some hours is not enough to overcome addi-
tional start-up costs. This is often the case in practice; generators are either on or off
for entire sub-periods. Planning under this assumption drastically reduces the number
of binary third stage variables, and thus solution time. This approximation is necessary
to be able to solve the models with increased portfolio sizes. If a generator runs in a
certain sub-period in a scenario, the bid curve will be made such that a commitment
is granted in all hours of the sub-period. This has an important consequence. Given a
realized price in any hour, the sub-period based solution (if production is planned) will
always have equal or higher probability of being committed compared to the hourly
model solution.
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Production is planned in sub-periods. However, realized production may look very
different. Sub-periods are only used in the planning phase of Model 1. When the
real prices are revealed, any commitment is possible, and the next models (Model 2
and Model 3) allow for production in any hour according to the commitment, without
regard to sub-periods.

To conclude, the introduction of sub-periods represents a restriction to the original
problem, but at the same time it may have a positive effect on unplanned start-up
costs. Our main motivation is still that it allows us to solve the planning problem to
optimality within reasonable time also for 2 or 3 watercourses, so that we can investigate
the influence of portfolio effects on coordinated bidding. Before that we also run tests
with sub-periods when the portfolio only consists of one watercourse. The results
are presented in chapter 8.3.1, in succession to those obtained from running with one
watercourse and full hourly granularity. The results are compared qualitatively in order
to evaluate the effect of the sub-period restriction before moving on to two and three
watercourses.

8.1.3 Effect of increasing production portfolio size
We start off by investigating how the coordinated framework performs relative to the
sequential framework when we only have one watercourse at disposal. The framework
is run with both hourly granularity and with sub-periods. Thereafter, we wish to inves-
tigate possible gains from coordinated bidding when we add more production resources
(watercourses) to the planning problem. It is only possible to solve these models to
optimality within reasonable time (∼20 min per run) when the models are run with
sub-periods.

Our motivation is to investigate how the value of coordinated bidding changes when
recourse flexibility changes. Theoretically, coordinated planning outperforms sequential
planning when reserve opportunities are predictable, and little flexibility is at hand to
respond to a reserve opportunity not accounted for in the first-stage decision.

Obviously, predictability of reserve opportunities is not a function of the portfolio
size. On the other hand, when more production resources are added, possible reallo-
cation (and thus recourse options) of committed production increases. For instance, a
day-ahead obligation can be redistributed to some of the generators while one genera-
tor can be turned off to respond to downward balancing demand. Another example is
primary reserve commitments. If there is only one generator in the portfolio, a primary
reserve obligation restricts all large downward balancing events. Because the producer
is committed, there is no way to turn the generator off in the case of large down-
ward balancing volumes. With two or three generators, primary reserve obligations can
possibly be reallocated, and flexibility increases.

To sum up, flexibility of recourse actions increases when additional production re-
sources are added to the portfolio. Note that flexibility increases in both frameworks.
Subsequent models can react to realizations and redistribute production in the coordi-
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Figure 8.2: Single watercourse recourse options illustrated on a generator
production/discharge-curve

nated as well as the sequential framework. Our question should be which framework
benefits the most from increased recourse options. To simplify the discussion we con-
sider only the day-ahead and the upward balancing market first. We will also distin-
guish between the cases when the reserve market realization turns out to be as planned,
and when it does not. We will refer to these situations as favorable and unfavorable
realizations, respectively. First we consider a portfolio size of 1, that is only one gen-
erator. Figure 8.2 illustrates. The day-ahead price is weakly profitable, so day-ahead
production is planned in both frameworks. However, large volumes are expected in the
balancing market, so the coordinated model retains some capacity to respond to these
opportunities. If the expectation turns out to be correct, the coordinated model will
perform better than the sequential model, earning a premium on the capacity sold to
the balancing market. On the other hand, if there is no balancing volume, the coor-
dinated model has no option but to deliver the obligated day-ahead production at low
efficiency.

We now move on to the case in which we have three generators available. Everything
else is the same; day-ahead prices are barely profitable, and one expects large amounts
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of upward regulation. The sequential framework will plan production until marginal
cost on all generators. The coordinated framework might withhold some capacity to
respond to balancing market opportunities. If there are in fact large balancing volumes,
the coordinated framework will benefit compared to the pure sequential. On the other
hand, if there is no upward regulation, we have more recourse options than for the
single watercourse. If there is enough capacity on two of the generators, one generator
can be turned off to produce at higher total efficiency.

In terms of increased flexibility and recourse, there are two points we want to ad-
dress: I) increased recourse increases ability to react to profitable predictable (but still
unplanned in the sequential framework) realizations, and II) increased recourse increases
the ability to react to costly unpredictable (obviously unplanned in both frameworks)
realizations. The practical implications are twofold:

• When the sequential model constructs bad bid curves compared to the coordinated
model (due to favorable reserve realizations), the sequential framework has more
recourse (with a large portfolio) to compensate for the bad bid curve, and catch up
with coordinated performance. That is, the expected gain from having planned
coordinated instead of sequentially decreases in the case of a favorable reserve
realization.

• When the coordinated model constructs a bad bid curve (due to unpredictability),
the coordinated model has more recourse to mitigate unplanned costs. Put more
formally, the expected cost of making a bad coordinated decision decreases.

To conclude, it is not a priori clear whether gains from coordinated bidding will
increase or decrease with increasing portfolio size; it depends on the specific situation
and which of the two aforementioned effects has more power. It is an interesting
question, and results from the case study will aid a conclusion.

8.2 Case description
This section describes all problem specific parameters that are input to the decision
model in chapter 4, and all assumptions made.

Restrictions on traded volumes

We assume a price-taking role in all of the modeled markets. In the day-ahead market
the producer is committed to produce whatever volume that is accumulated for bid
curve price points below the realized price. This is a reasonable assumption because
the total demand in the day-ahead market is very large. In the primary reserve market
the producer can commit to any volume below the realized price. Primary reserve com-
mitments are however limited strictly by the minimum static setting on each generator.
In these two markets the demand is rather predictable and continuous.
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Figure 8.3: Portfolio recourse options illustrated on a generator production/discharge-
curve
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In the balancing market on the other hand, demand is inherently unpredictable and
clustered, and varies from low to high volumes. In the case of small volumes demanded,
one producer can very well sell the entire volume. In this case the producer would act
as price maker. When volumes are larger it is likely that several producers contribute to
delivering this volume. νmts forecasts the entire demand in hour t in scenario s in NO3.
It is therefore unsound to let one producer deliver the entire volume. This would imply
that no other producers placed bids beneath the market price, and it would violate the
price taker assumption. Our approach is simply to restrict the balancing volume sold
by the decision model to a market share multiplied by the total volume traded in a
balancing hour. NTE delivered roughly 15 % of total production in NO3 in 2016. We
therefore set the market share to 15 % in the balancing market as well. This might be
an overly restrictive constraint, and we will discuss its implications later on.

Bid curve price points

Bid curves have to be decided explicitly for the day-ahead (Model 1) and primary reserve
market (Model 2). To retain linearity of the model, bid points are set as constants
before the model is run. Price levels vary with respect to test day so we update the
bid points for every planning day of the test period. This is done by placing |P | bid
points such that the price scenarios are distributed approximately uniformly between
the bins defined by neighbouring bid points (according to market rules). We choose
|P | = |S|−2

2 , which gives the highest number of bid points, with which non-anticipativity
of the bid curve with respect to the scenarios is still ensured (Löhndorf et al. 2013).
If interpolation causes too large or too small commitments, production is set to the
corresponding largest or smallest feasible value.

Watercourses

In order to be able to solve the optimization problems to optimality within reasonable
time, very ”simple” watercourses from NTE’s portfolio have been wisely chosen. By
simple we mean that the watercourses each consist of one very large reservoir and
one generator downstreams, after which the water is not any longer of relevance to the
producer. The three watercourses are not interconnected in terms of water flow. Hence,
each of the watercourses Bogna, Mosvik and Ormsetfoss are modeled as shown in figure
8.4. This despite that there is in fact a restriction on the water level change in the
lake (Sn̊asavatnet) to which water dispatched at Bogna flows. We nevertheless defend
our assumption with the fact that Sn̊asavatnet is the sixth largest lake in Norway, and
has a water level that is hard to influence. More importantly, this assumption does not
discriminate the performance of the coordinated framework compared to the sequential
framework.



98 CHAPTER 8. COMPUTATIONAL CASE STUDY

Figure 8.4: Simple watercourses

The value of water

Further, the generators’ discharge are considered small relative to the respective reser-
voir volumes. Hence, the head cannot change drastically over the time of a daily
planning horizon. According to NTE, it is therefore reasonable to assume that the
water values can be treated as constants over the 24 hours of planning, independent of
inflow and discharge. Therefore, instead of modeling the value of the water remaining
in a watercourse with the following restriction

wksω ≤ Elk +
∑
j∈J k

Wjk(vj|T |sω − Vjl) k ∈ K, l ∈ L, s ∈ S, ω ∈ Ωs (8.2.1)

and adding the summation of wks to the objective function that is to be maximized, we
require

∆wksω ≥
∑
i∈Ik

∑
t∈T

Wkditsω k ∈ K, s ∈ S, ω ∈ Ωs (8.2.2)

to be satisfied, and we subtract ∆wksω from the objective function.

Generators

The relation between water discharge and production in each generator is modeled
using six linear cuts, assuming an average water level in the respective reservoirs. The
production cuts for all involved power plants are displayed in figure 8.5. The set of
production cuts is concave for all generators. Some of the cuts do not intersect below
zero on the discharge axis. This is handled by introduction of the binary decision
variable uihsω, see Chapter 4. NTE has estimated the cost of a start-up to 4000 NOK.
This cost is incurred each time one of the generators starts running after stand-still.
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Estimating each markets’ contribution to profits

In addition to total profit, we estimate the profit contribution from each market. Pro-
duction efficiency (amount of water used to produce a certain quantity of power) is a
function of all decisions made by the producer. We therefore calculate hourly water
cost per megawatt after final allocation of production. We use this number to estimate
water cost in all markets with actual power delivery.

Water cost per megawatt is calculated as

Vt =
∑
k∈K

∑
i∈IkWkdit

x1t + x3t − x4t
t ∈ T (8.2.3)

or Vt = ρ1t when the denominator is zero and there is downward regulation. Primary
reserve commitment is not included because net water usage is zero for this market. As
an example, profit from upward regulation can now be calculated according to

πBMup
t = (ρ1t + ρ3t)x3t − Vtx3t t ∈ T (8.2.4)

Planning horizon granularity

When running with a coarser planning granularity than an hourly resolution, we always
use the same three sub-periods; T 1 = {1..7}, T 2 = {8..19} and T 3 = {20..24}. These
sub-periods are all carefully chosen. T 1 is chosen due the day-ahead and primary
reserve price levels mainly. In these hours, day-ahead prices are generally low while
primary reserve prices are high. This may effectively increase the price of each day-
ahead unit sold, rendering production profitable. Besides, as can be seen in Figure 5.5,
the probability of down-regulating is higher in the morning hours. Ergo, planning in
a coordinated manner could provide production in these hours, that can be profitably
reduced in case of downward regulating volumes. The day-ahead price (Table 5.1)
often peaks in the eight hour and then stays quite stable above the daily mean until
somewhere around the nineteenth hour. Profitable production is thus likely in the
second sub-period, hence the choice of T 2. The day-ahead price drops towards late
evening and night hours, so the third sub-period T 3 contains these hours.
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Table 8.1: Number of test days

PWSD <20 <20 20-40 20-40 40-60 >60
NPWD + - + - + +
Bogna 43 34 59 42 28 36
Mosvik 29 39 46 58 35 24

Figure 8.5: Production cuts

Test days

Historical days used for testing are the 250 first days of 2016. The testing days are
grouped into sets according to the PWSD defined in 8.1.1. The PWSD is watercourse-
specific, and all testing days are chosen on the basis of the PWSDs of Bogna and
Mosvik. Note therefore that one calendar day might correspond to two test days.

Analyzing profit at various PWSD-levels does not make sense for a two-watercourse
portfolio. The water values are consistently different at each watercourse, so they
deviate differently from the day-ahead price. We would therefore not be able to relate
the coordinated gain to a certain PWSD interval.

All runs with portfolios of either one or two generators are conducted with the
watercourses of Bogna and Mosvik. To further investigate the effect of portfolio size,
we also add the third, simple watercourse to the portfolio. We test for the same days
as for the two-watercourse portfolio. The number of test days can be seen in Table 8.1.
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Table 8.2: Accumulated profit at Bogna for all 250 test days distributed across markets.
Full hourly granularity. Up and Down denote upward and downward balancing market
profits respectively

Bogna Profit Spot Prim. res. Up Down Start-up
Sequential 8,535,911 9,070,850 92,825 136,935 375,319 -1,140,018
Coordinated 8,611,677 8,999,220 157,046 167,435 455,974 -1,167,998
% change 0.89 % -0.79 % 69.19 % 22.27 % 21.49 % 2.45 %

Table 8.3: Accumulated profit at Mosvik for all 250 test days distributed across markets.
Full hourly granularity. Up and Down denote upward and downward balancing market
profits respectively

Mosvik Profit Spot Prim. res. Up Down Start-up
Sequential 4,947,357 5,509,812 71,086 161,979 284,487 -1,080,007
Coordinated 5,004,864 5,514,083 141,416 174,696 366,183 -1,191,514
% change 1.16 % 0.11 % 98.9 % 7.85 % 28.72 % 10.32 %

8.3 Case results
In this section we present the results from the case study. We first investigate the
performance of coordinated bidding relative to sequential when we only have a one-
watercourse portfolio at a time, and hourly planning in all models. We then move
on and see what happens when the day of planning is divided into sub-periods. This
means that a first-stage decision is based on the restriction that a generator is either
on or off for all of the hours t ∈ T h in a scenario. The use of sub-periods reduces the
computational burden, and allows for reasonable solution times when more watercourses
are added to the portfolio. The results with two- and three-watercourse portfolios are
presented in 8.3.2 and 8.3.3 respectively. Finally, in section 8.4, we highlight and discuss
the important findings.

8.3.1 Results: One watercourse

Total gains from coordinated planning

The accumulated results for all 250 test days can be found in Table 8.2 and 8.3. Coordi-
nated planning increases the total profits by approximately one percent. At Bogna we
observe a light reduction in profit from the day-ahead market compared to the sequen-
tial planning. On the other hand, profits from all reserve markets increase significantly.
Total start-up costs also increase marginally. At Mosvik profits from the day-ahead
market actually increase slightly. Once again, reserve markets account for a greater
portion of the profits.
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Effect of price-water-value-deviation

Next, we move on to investigate coordinated performance at various PWSD levels. A
summary of the results can be found in Table 8.4. Let πcd and πsd denote daily profits
for some test day d using the coordinated and sequential framework respectively. The
row labeled gain (%) is calculated as ∑d∈D π

c
d/
∑
d∈D π

s
d − 1.

We observe that profits increase as PWSD increases. Total profit contribution is
much larger for high PWSD. The row labeled gain should be interpreted with some
caution and always be compared to the sum of profits. When profits are close to zero,
the gain percentage is very sensitive to small differences. We observe that the gain from
coordinated bidding is generally higher for prices close to water value. As expected,
gain tends to zero when the price is much higher than water value.

Table 8.4: Full hourly granularity profits in NOK. Negative NPWD are excluded for
large PWSD because there is very little production on these days

PWSD <20 20-40 40-60 >60 Totals
NPWD + & - + + +

Bogna mean of πcd 3,518 25,381 48,580 155,786 42,905
std. of πcd 8,160 9,178 10,825 163,852 -∑
d∈D π

c
d 270,896 1,497,482 1,360,246 5,452,504 8,581,128

gain (%) 7.1 0.61 2.0 0.19 0.75
Mosvik mean of πcd 1,211 19,409 31,749 118 479 29,180

std. of πcd 6,841 8,357 9,672 121,529 -∑
d∈D π

c
d 82,331 892,798 1,111,218 2,961,965 5,048,312

gain (%) 77 2.6 0.01 0.13 1.2

Profits in each hour of the day

To understand how the coordinated framework benefits compared to the sequential,
we further investigate the test days when PWSD<20 at Bogna. The average profit
contribution from each market throughout the day is plotted in Figure 8.6. The co-
ordinated model tends to submit unprofitable bids into the day-ahead market in the
morning. However, upon delivering primary reserve and downward balancing, total
profit exceeds that of the sequential model. Throughout the rest of the day, the co-
ordinated model sells slightly more reserves than the sequential, but the difference is
smaller. Reserve market opportunities in the morning (when day-ahead prices are low)
seem to be the main source of increased profits under coordinated planning.

Effect from planning with sub-periods

We then move on to investigate the results from planning with sub-periods instead of
hourly granularity. We only include the results at Bogna. Our goal is to assess whether
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Figure 8.6: Hourly average profit contribution from the markets

(a) Coordinated framework (b) Sequential framework

Table 8.5: Accumulated profit at Bogna for all 250 test days distributed across markets.
Sub-periods planning. Up and Down denote upward and downward balancing market
profits respectively

Bogna Profit Spot Prim. res. Up Down Start-up
Sequential 7,802,044 8,006,040 121,965 168,253 453,809 -948,023
Coordinated 7,856,833 7,925,567 186,712 198,362 526,197 -980,005
% change 0.70 % -1.01 % 53.09 % 17.90 % 15.95 % 3.37 %

sub-period planning changes the profit structure and more importantly if coordinated
gains remain the same as for hourly planning. The reader is referred to table 8.5
for accumulated results. We first note that profits are comparable with the profits
from hourly planning, although we see a light decline. The percentage change between
sequential and coordinated planning is very similar to what we saw for hourly planning.
Results for different PWSD-levels are in Table 8.6. We observe the same decline in gain
as the PWSD increases. The total gain at Bogna is approximately equal to the gain with
hourly planning. This increases our confidence that sub-period planning will provide
results that correctly reflect the potential of coordinated bidding. This planning regime
will be used for two and three watercourses in the portfolio.

Table 8.6: Sub-period profits at Bogna in NOK. Negative NPWD are excluded for large
PWSD because there is very little production on these days

PWSD <20 20-40 40-60 >60 Totals
NPWD + & - + + +

Bogna mean of πcd 3,937 25,779 49,007 138,381 39,261
std. of πcd 8,223 8,587 9,084 105,930 -∑
d∈D π

c
d 303,168 1,520,973 1,323,196 4,704,946 7,852,283

gain (%) 7.2 1.5 0.84 0.22 0.83
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Table 8.7: Accumulated profit at Bogna & Mosvik for all 250 test days distributed
across markets. Sub-periods. Up and Down denote upward and downward balancing
market profits respectively

Portfolio Profit Spot Prim. res. Up Down Start-up
Sequential 23,802,574 25,211,480 365,611 444,083 957,400 -3,176,000
Coordinated 23,923,208 25,094,139 501,099 491,389 1,044,580 -3,207,999
% change 0.51 % -0.47 % 37.06 % 10.65 % 9.11 % 1.01 %

8.3.2 Results: Two watercourses
As explained in section 8.1.3 it is not a priori clear whether an additional production
capacity will increase or dilute the gains from coordinated bidding. We move on to
investigate accumulated results with a two-watercourse portfolio presented in Table
8.7. In general, results are very similar to the one-watercourse portfolios. Wee see a
light decline in coordinated gain down to approximately one half percent. Coordinated
day-ahead profits decline slightly compared to sequential, while profits from reserve
markets increase. Note however that reserve market profits do not increase as much as
they did for one watercourse.

8.3.3 Results: Three watercourses
We move on to the case of three watercourses in the portfolio. The plant at Ormsetfoss
has been added to the planning problem, and the models have been solved for the
same days as for two watercourses. Accumulated results are in Table 8.8. As for two
watercourses, there is a small gain from coordinated bidding. Once again there is
a marginal decline in profit from the day-ahead market under coordinated planning.
Accordingly, reserve markets account for a larger portion of total profits. Compared
to the case of two watercourses, there seems to be a light convergence between the
two planning regimes. The coordinated and sequential frameworks exploit the markets
more equally. Put differently, the difference in day-ahead and reserve profits between
the planning regimes is less than it was before. Obviously, there is a limited demand
for balancing reserves. The acquired amount of balancing volume must be distributed
to the generators. It is thus natural that the balancing market gain from coordinated
bidding declines when we add more watercourses to the planning problem.

8.4 Discussion of results
One watercourse

For one watercourse a gain of about 1 % can be expected, thus showing that coordinated
planning has a moderate potential. Compared to previous research we have tested
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Table 8.8: Accumulated profit at Bogna, Mosvik & Ormsetfoss for all 250 test days
distributed across markets. Sub-periods. Up and Down denote upward and downward
balancing market profits respectively

Portfolio Profit Spot Prim. res. Up Down Start-up
Sequential 31,251,845 33,552,921 435,944 567,621 1,041,595 -4,348,000
Coordinated 31,399,066 33,456,550 565,826 611,124 1,119,835 -4,356,000
% change 0.47 % -0.29 % 29.79 % 7.66 % 7.51 % 0.18 %

for a large number of days, and therefore obtained reliable results. The coordinated
planning reduces total profits from the day-ahead market and increases profits from
reserve markets even more. Obviously, this increases the importance of assumptions and
modelling of the reserve markets. There may be additional risks associated with a shift
to reserve markets. Especially, we want to address the assumptions on the balancing
market. In the testing framework, all balancing volumes and premiums are revealed
at the same time. The model may subsequently pick the balancing opportunities that
are profitable (compared to water value) and feasible (capacity). This is a rather
reasonable approximation because I) there is no/little opportunity cost associated with
balancing that is not reflected in water value (other intraday markets such as Elbas
are rather illiquid), and II) inter-temporal coordination is already very restricted by
day-ahead and primary reserve commitments. Therefore, any balancing opportunity
above marginal cost would be reflected in a bid curve for the balancing market. In
addition, inter-temporal coordination is to a large extent already determined by day-
ahead and primary reserve commitments. Only decisions about turning a generator on
or off would affect this. Such situations are likely to be so valuable that the producer
would seize these opportunities anyway. To conclude, this modelling choice may slightly
overestimate the value of the balancing market.

In this thesis we use a market share to restrict obligations in the balancing market.
This might be an excessively restrictive modelling, and will probably limit the value of
the balancing market. A producer could possibly deliver the entire regulation demand
in one hour, but would in this case act as price maker. Future research should look
into the sensitivity in gains with respect to the market share, or look into ways to
model the limited balancing demand. To conclude, this modelling choice may slightly
underestimate the value of the balancing market.

We conclude that higher gains can be expected for days when the day-ahead price
does not deviate much from water value. This is in line with our hypothesis in section
8.1.1. In these cases a producer can enhance profit by taking subsequent reserve markets
into account. However, the total value of such days is very small compared to days when
the day-ahead price is higher.

Coordinated planning often outperforms sequential planning because reserve mar-
kets can be better exploited in morning hours. Day-ahead prices are low in the morning,
but primary reserve prices are generally high. In addition, the probability of downward
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balancing is higher in the morning. A sequential planning fails to account for this.
Coordinated planning allows for unprofitable day-ahead bids in these hours, and sub-
sequently creates opportunities to deliver profitable reserves.

Planning with sub-periods does not seem to significantly deteriorate the quality of
bidding decisions. More importantly, it cannot be seen to favour either of the planning
frameworks before the other. This is an important finding because it allows us to solve
the models for larger portfolios, and compare gains from coordinated bidding. We must
still exhibit some caution interpreting the results. The sub-periods are chosen based on
average price behaviour. It will fail to reflect hourly variations within each sub-period.
Hence, when we test a different set of days, we cannot guarantee that sub-period based
planning performs equally well as hourly.

Two watercourses

When planning for two watercourses simultaneously, we get very similar results as we
did for only one watercourse. The gain from coordinated bidding decreases to about
0.5 %. In addition, we observe that the trade-off between markets differs less between
coordinated and sequential planning. Day-ahead profits are more similar between the
two planning regimes, and so are the reserve market profits. As discussed in Section
8.1.3, recourse options increase in both frameworks when additional watercourses are
added. This implies that a sequential planning now has more options to react to reserve
opportunities. Therefore, we would expect the sequential framework to close some of
the gap to coordinated performance, which it does.

Three watercourses

Moving on to three watercourses, we once again see a light decline in gain from co-
ordinated bidding. However, this decline is extremely small. The profit contribution
from each market converges even more for the two planning regimes. This may have
a natural interpretation. In addition to increased recourse, the convergence may stem
from the limited balancing demand. Even though we add more production capacity, the
balancing demand is exactly the same. In this way the sequential framework may catch
up with coordinated performance simply because there is no more balancing demand
that coordinated planning can utilize.



Chapter 9

Conclusion

In this thesis we have assessed the value of coordinated bidding for a hydropower pro-
ducer. All work is put in context to the sparse literature on the topic. We develop a
stochastic mixed integer program for constructing bid curves to the day-ahead market,
taking subsequent market opportunities into account. To develop a scenario genera-
tion methodology, we start off with an empirical analysis of all relevant markets. We
propose quantile autoregression model to yield probabilistic forecasts for the day-ahead
and primary reserve markets. We further develop existing models for the balancing
market, and utilize a copula based method to model dependence. Finally we evaluate
the generated scenarios before carrying out an extensive case study. We compare the
performance of coordinated planning to that of pure sequential under three relevant
control variables, and conclude that coordinated planning has a moderate potential for
increasing total profits of the producer.

Scenario generation

The extended QAR model proposed in Chapter 6 provides very good probabilistic
forecasts for day-ahead and primary reserve prices. Forecasts are shown to have good
unconditional and conditional coverage. A similar model has to our knowledge never
been used for probabilistic forecasting of day-ahead and primary reserve prices. A
producer with good forecast models could instead model the deviation between the
forecast and the realized price using a similar methodology.

Our work on balancing market prices and volumes extends the current literature.
Despite the effort, simulation of the ARMA models provide probabilistic forecasts with
rather poor conditional coverage. Future research should look into ways to enhance
conditional coverage. In addition, the balancing market is characterized by price and
volume spikes. ARMA models have been shown to perform poorly under the presence of
spikes. We encourage future researchers to look into mixture models for the balancing
market.

We use a copula based method to model the non-linear relationship between stochas-
tic parameters. The method seems to work well, generating scenarios of high quality.
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We investigate the stability of scenario trees generated, and conclude that the method
provides good decision support even for a rather low number of scenarios.

Case study

Our initial problem description aimed to evaluate the possible gains from coordinated
bidding. We have benchmarked a coordinated planning framework against a pure se-
quential under three different control variables. In light of the results from Chapter
8 we are now ready to make a conclusion. Coordinated bidding seems to have a very
moderate potential for increased profits. When planning with only one watercourse,
gains of about 1 % can be expected. The gain is substantially higher for days when the
day-ahead price lies in near proximity to water value. However, the total value of these
days is low compared to days with higher prices. A coordinated planning increases the
producer’s ability to exploit profitable reserve market opportunities. This is especially
true in morning hours when day-ahead prices are low and reserve prices and demand
are higher. Day-ahead commitments below water value turn out to be profitable when
accounting for reserve opportunities.

When planning for more watercourses simultaneously, the value of coordination
decreases to about 0.5 %. More generators increase recourse options, and it is likely
that this dilutes the value of coordinated planning. The producer can simply reallocate
production to respond to reserve market opportunities.

Future research

There are however questions that remain unanswered. It is unclear what happens to
coordinated gains when planning for very large portfolios. Our results indicate that
gains should decline, but there is also a tendency of stabilization. When moving from
one to two watercourses, gains decline. Some of this decline may be explained by
the binary nature of decisions on the production resources. Generators are either on
or off, and if primary reserves are offered, the producer cannot turn the generator
off. When moving from two to three watercourses, gains decrease only marginally.
It might very well be that case that coordinated bidding has some value even for
very large portfolios. For instance, downward balancing and offering primary reserve
require operating generators. Hence, it does not matter how many generators are in
the portfolio if none of them are running. Such opportunities can never be exploited,
and a sequential planning will fail to capture this.

One can also raise the question what will happen to coordinated gains when consid-
ering more complex watercourse structures. In this problem all watercourses have only
one generator, and are physically disconnected. In more complex structures decisions
at one generator will affect possible decisions at other generators (due to restrictions
on reservoir levels etc). This will limit the portfolio flexibility, and possible recourse
options. It might very well be the case that coordinated planning is even more valuable
under such circumstances.
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To our knowledge, we are the first to evaluate value of coordination considering mul-
tiple reserve markets. This may increase value of coordination because of diversification
of reserve opportunities. It is more unlikely that all reserve markets have unfavorable
realizations simultaneously. There are in addition other markets and bid types that
could be considered. Weekly primary reserves and the intraday market Elbas are ex-
amples of such markets. Block bids is another option concerning bid types. Value from
coordinated bidding may very well look differently considering these situations instead.

Obviously, the value from coordinated planning is very dependent on the quality
of scenarios. This thesis considers pre-spot modelling, and estimation of the value
of reserve opportunities at the time of day-ahead bidding. The day-ahead bid is the
major decision of the day for the planner. However the bids submitted to subsequent
markets also have an effect on final profits, and the gain associated with coordinated
bidding. In our testing framework we need to model the post-spot decisions taken by
the producer to assess the value of coordination. We cannot distinguish profit gains
stemming from the first stage decision and post-spot decisions. A specialized post-spot
reserve forecasting model may very well increase the potential of coordinated bidding
estimated in our work, facilitating even better post-spot decisions.
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Appendix A

Markov transition matrix

P1 =

0, 76 0, 03 0, 21
0, 01 0, 78 0, 21
0, 05 0, 07 0, 88

 P2 =

0, 79 0, 02 0, 19
0, 00 0, 88 0, 11
0, 02 0, 05 0, 93

 P3 =

0, 83 0, 03 0, 14
0, 01 0, 92 0, 07
0, 01 0, 04 0, 95



P4 =

0, 87 0, 03 0, 10
0, 00 0, 93 0, 07
0, 02 0, 05 0, 94

 P5 =

0, 75 0, 03 0, 23
0, 01 0, 89 0, 10
0, 02 0, 08 0, 90

 P6 =

0, 66 0, 01 0, 33
0, 02 0, 74 0, 24
0, 06 0, 08 0, 87



P7 =

0, 64 0, 01 0, 35
0, 03 0, 57 0, 39
0, 11 0, 08 0, 81

 P8 =

0, 80 0, 01 0, 19
0, 02 0, 80 0, 18
0, 09 0, 10 0, 82

 P9 =

0, 69 0, 03 0, 28
0, 02 0, 75 0, 24
0, 04 0, 08 0, 88



P10 =

0, 72 0, 03 0, 25
0, 02 0, 77 0, 21
0, 08 0, 04 0, 88

 P11 =

0, 81 0, 05 0, 14
0, 00 0, 79 0, 21
0, 05 0, 04 0, 91

 P12 =

0, 73 0, 02 0, 24
0, 00 0, 86 0, 14
0, 04 0, 05 0, 90



P13 =

0, 72 0, 03 0, 26
0, 01 0, 82 0, 17
0, 04 0, 07 0, 90

 P14 =

0, 80 0, 00 0, 20
0, 00 0, 88 0, 11
0, 05 0, 08 0, 88

 P15 =

0, 77 0, 01 0, 22
0, 01 0, 82 0, 16
0, 03 0, 07 0, 89



P16 =

0, 76 0, 03 0, 21
0, 01 0, 80 0, 19
0, 04 0, 08 0, 88

 P17 =

0, 75 0, 01 0, 24
0, 01 0, 85 0, 14
0, 07 0, 06 0, 87

 P18 =

0, 82 0, 02 0, 16
0, 05 0, 63 0, 32
0, 07 0, 04 0, 89
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P19 =

0, 79 0, 04 0, 17
0, 01 0, 82 0, 17
0, 05 0, 06 0, 89

 P20 =

0, 77 0, 01 0, 23
0, 04 0, 81 0, 15
0, 06 0, 07 0, 87

 P21 =

0, 69 0, 02 0, 30
0, 01 0, 85 0, 14
0, 05 0, 08 0, 87



P22 =

0, 75 0, 02 0, 24
0, 05 0, 78 0, 18
0, 07 0, 06 0, 88

 P23 =

0, 69 0, 04 0, 27
0, 02 0, 80 0, 18
0, 05 0, 07 0, 88

 P24 =

0, 46 0, 06 0, 48
0, 03 0, 71 0, 26
0, 08 0, 10 0, 82





Appendix B

Resampling unequally spaced time
series

An autoregressive process of order 1 can be written as

X(t+ 1) = θX(t) + σεt+1 (B.0.1)

where X(t) are observations of the random variable, and εt is a white noise error
term distributed εt ∼ N (0, 1). Extending the notation recursively an observation at
arbitrary lag h can be written as

X(t+ h) = θhX(t) + σ
h−1∑
j=0

θh−1−jεt+1+j (B.0.2)

Noting that the last term is distributed as σ∑h−1
j=0 θ

h−1−jεt+1+j ∼ N
(
0, σ2(1−θ2h

1−θ2 )
)

we make the substitution

X(t+ ∆) = θ∆X(t) + σ∆εt+∆ (B.0.3)

for ∆ ≥ 0. Estimation of the two parameters θ and σ remains. Because the error
terms are assumed to have zero mean, and because there is no intertemporal correlation
of the error terms, least squares can be used to estimate θ without an estimate for σ.
An estimator θ̂ is found by solving the convex non-linear problem

θ̂ = arg min
θ∈(−1,1)

n−1∑
i=1

(
x(ti+1)− θ∆ix(ti)

)2
(B.0.4)

with ∆i = ti+1 − ti and assuming ∆i ≥ 1, or alternatively rescaling the problem.
The problem is very effectively solved using convex optimization. With an estimator
for θ available, an estimator for σ can be found using maximum likelihood. First, if we
define zi = x(ti+1) − θ̂∆ix(ti), we can see that zi ∼ N

(
0, σ2

∆i

)
. Furthermore, we have

that
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σ2
∆i

= σ2
(

1− θ̂2∆i

1− θ̂2

)
⇔ σ2 =

σ2
∆i(

1−θ̂2∆i

1−θ̂2

) (B.0.5)

The Gaussian likelihood of the residuals is maximized by calculating the mean of
this normalized variance according to

σ̂ =

√√√√√ 1
n

n−1∑
i=0

z2
i(

1−θ̂2∆i

1−θ̂2

) (B.0.6)

Now that we have estimators for the coefficients of the series, we proceed with
the resampling process. We start with an irregularly sampled time series X(ti) with
nonzero values at times ti. We want to ”fill in the gaps” at all the times sk where the
value of the time series are not available. In addition, we obviously want to keep all
original values of the time series such that the resampled series coincide at these times,
i.e. X̃(sk) = X(ti) for sk = ti. However, we miss one important thing. In general, εs
cannot be estimated for hours without data. Instead we introduce an auxiliary error ε
such that

X(ti + ∆i) = θ̂∆iX(t) + εσ̂
∆i−1∑
j=0

θ̂j (B.0.7)

This way we can estimate a local error term in between observations. Rearranging
the terms we get a direct estimate of ε

ε = X(ti + ∆i)− θ̂∆iX(t)
σ̂
∑∆i−1
j=0 θ̂j

(B.0.8)

This allows us to set recursively

X̂(ti + 1) = θ̂X̂(t) + σ̂ε (B.0.9)

Note also that this prediction sets X̂(ti) = X(ti) so that the resampled values
coincide with the original data, as desired. We now have all we need to resample the
unequally spaced time series.
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Decision models

C.1 Coordinated framework: Model 1

max
∑
s∈S

(
πs

∑
m∈{1,2}

∑
t∈T

ρmtsxmts +
∑
ω∈Ωs

(
πsω

∑
m∈{3,4}

∑
t∈T

(ρmtsω + ιmρ1tsω)xmtsω +
∑
k∈K

wksω

−
∑
i∈I′

∑
h∈H

cihsω

))

x1ts = zpt + (zp+1t − zpt)
ρ1ts − Pp
Pp+1 − Pp

if Pp ≤ ρ1ts ≤ P(p+1), p ∈ P , s ∈ S, t ∈ T

z(p+1)t ≥ zpt p ∈ P \ |P|, t ∈ T

∑
i∈I

q1itsω = x1ts, s ∈ S, t ∈ T , ω ∈ Ωs

∑
i∈I

q2itsω = x2ts, s ∈ S, t ∈ T , ω ∈ Ωs

∑
i∈I

qmitsω = xmtsω, m ∈ {3, 4}, s ∈ S, t ∈ T , ω ∈ Ωs

xmtsω ≤ σνmtsω m ∈ {3, 4}, s ∈ S, t ∈ T , ω ∈ Ωs

uihsω
0.2Ni

κmaxi

≤ q2itsω ≤ uihsω
0.2Ni

κmini

h ∈ H, i ∈ I ′, s ∈ S, t ∈ T h, ω ∈ Ωs

0.2Ni

κmaxi

≤ q2itsω ≤
0.2Ni

κmini

i ∈ I \ I ′, s ∈ S, t ∈ T , ω ∈ Ωs
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uihsωQ
max
i ≥ q1itsω + q2itsω + q3itsω − q4itsω, h ∈ H, i ∈ I ′, s ∈ S, t ∈ T h, ω ∈ Ωs

Qmax
i ≥ q1itsω + q2itsω + q3itsω − q4itsω, i ∈ I \ I ′, s ∈ S, t ∈ T , ω ∈ Ωs

uihsωQ
min
i ≤ q1itsω − q2itsω + q3itsω − q4itsω, h ∈ H, i ∈ I ′, s ∈ S, t ∈ T h, ω ∈ Ωs

Qmin
i ≤ q1itsω − q2itsω + q3itsω − q4itsω i ∈ I \ I ′, s ∈ S, t ∈ T , ω ∈ Ωs

cihsω ≥ Ci(uihsω − ui(h−1)sω) h ∈ H, i ∈ I ′, s ∈ S, ω ∈ Ωs

q1itsω + q3itsω − q4itsω ≤ Aif +Bifditsω i ∈ I, f ∈ F , s ∈ S, t ∈ T , ω ∈ Ωs

vjtsω − vj(t−1)sω = Ijt +
∑
i∈I

Γijditsω +
∑
j′∈J

Λjj′Oj′tsω, j ∈ J , s ∈ S, t ∈ T , ω ∈ Ωs

vj1sω − V 0
j = Ij1 +

∑
i∈I

Γijdi1sω +
∑
j′∈J

Λjj′Oj′1sω, j ∈ J , s ∈ S, ω ∈ Ωs

wksω ≤ Elk +
∑
j∈J k

Wjk(vj|T |sω − Vjl) k ∈ K, l ∈ L, s ∈ S, ω ∈ Ωs

Dmin
i ≤ ditsω ≤ Dmax

i i ∈ I, s ∈ S, t ∈ T , ω ∈ Ωs

V min
j ≤ vjtsω ≤ V max

j j ∈ J , s ∈ S, t ∈ T , ω ∈ Ωs

xmts ≥ 0 m ∈ {1, 2}, s ∈ S, t ∈ T

xmtsω ≥ 0 m ∈ {3, 4}, s ∈ S, t ∈ T , ω ∈ Ωs
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wksω ≥ 0 k ∈ K, s ∈ S, ω ∈ Ωs

zpts ≥ 0 p ∈ P , s ∈ S, t ∈ T

qmitsω ≥ 0 m ∈M, i ∈ I, s ∈ S, t ∈ T , ω ∈ Ωs

uihsω ∈ {0, 1} i ∈ I ′, h ∈ H, s ∈ S, ω ∈ Ωs

ditsω ≥ 0 i ∈ I, s ∈ S, t ∈ T , ω ∈ Ωs

vjtsω ≥ 0 j ∈ J , s ∈ S, t ∈ T , ω ∈ Ωs

cihsω ≥ 0 h ∈ H, i ∈ I ′, s ∈ S, ω ∈ Ωs

C.2 Coordinated framework: Model 2
1

max
∑
ω∈Ωs

πω

(∑
t∈T

ρ2tωx2tω +
∑

m∈{3,4}

∑
t∈T

(ρmtω + ιmρ1tω)xmtω +
∑
k∈K

wkω −
∑
i∈I′

∑
h∈H

cihω

)

x1t = z∗pt + (z∗p+1t − z∗pt)
ρ1t − Pp
Pp+1 − Pp

if Pp ≤ ρ1ts ≤ P(p+1), p ∈ P , t ∈ T

x2tω = φpt + (φp+1,t − φpt)
ρ2tω − Pp
Pp+1 − Pp

if Pp ≤ ρ2ts ≤ P(p+1), p ∈ P , ω ∈ Ωs, t ∈ T

φ(p+1)t ≥ φpt p ∈ P \ |P|, t ∈ T

∑
i∈I

q1itω = x1t, t ∈ T , ω ∈ Ωs

∑
i∈I

q2itω = x2tω, t ∈ T , ω ∈ Ωs

1Exception from Chapter 4: In this model both primary reserve and balancing market scenarios
are indexed with ω.



120 APPENDIX C. DECISION MODELS

∑
i∈I

qmitω = xmtω, m ∈ {3, 4}, t ∈ T , ω ∈ Ωs

xmtω ≤ σνmtω m ∈ {3, 4}, t ∈ T , ω ∈ Ωs

uihω
0.2Ni

κmaxi

≤ q2itω ≤ uihω
0.2Ni

κmini

h ∈ H, i ∈ I ′, t ∈ T h, ω ∈ Ωs

0.2Ni

κmaxi

≤ q2itω ≤
0.2Ni

κmini

i ∈ I \ I ′, t ∈ T , ω ∈ Ωs

uihωQ
max
i ≥ q1itω + q2itω + q3itω − q4itω, h ∈ H, i ∈ I ′, t ∈ T h, ω ∈ Ωs

Qmax
i ≥ q1itω + q2itω + q3itω − q4itω, i ∈ I \ I ′, t ∈ T , ω ∈ Ωs

uihωQ
min
i ≤ q1itω − q2itsω + q3itω − q4itω, h ∈ H, i ∈ I ′, t ∈ T h, ω ∈ Ωs

Qmin
i ≤ q1itω − q2itω + q3itω − q4itω i ∈ I \ I ′, t ∈ T , ω ∈ Ωs

cihω ≥ Ci(uihω − ui(h−1)ω) h ∈ H, i ∈ I ′, ω ∈ Ωs

q1itω + q3itω − q4itω ≤ Aif +Bifditω i ∈ I, f ∈ F , t ∈ T , ω ∈ Ωs

vjtω − vj(t−1)ω = Ijt +
∑
i∈I

Γijditω +
∑
j′∈J

Λjj′Oj′tω, j ∈ J , t ∈ T , ω ∈ Ωs

vj1ω − V 0
j = Ij1 +

∑
i∈I

Γijdi1ω +
∑
j′∈J

Λjj′Oj′1ω, j ∈ J , ω ∈ Ωs

wkω ≤ Elk +
∑
j∈J k

Wjk(vj|T |ω − Vjl) k ∈ K, l ∈ L, ω ∈ Ωs

Dmin
i ≤ ditω ≤ Dmax

i i ∈ I, t ∈ T , ω ∈ Ωs

V min
j ≤ vjtω ≤ V max

j j ∈ J , t ∈ T , ω ∈ Ωs
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xmtω ≥ 0 m ∈ {2, 3, 4}, t ∈ T , ω ∈ Ωs

wkω ≥ 0 k ∈ K, ω ∈ Ωs

φpt ≥ 0 p ∈ P , t ∈ T

qmitω ≥ 0 m ∈M, i ∈ I, t ∈ T , ω ∈ Ωs

uihω ∈ {0, 1} i ∈ I ′, h ∈ H, ω ∈ Ωs

ditω ≥ 0 i ∈ I, t ∈ T , ω ∈ Ωs

vjtω ≥ 0 j ∈ J , t ∈ T , ω ∈ Ωs

cihω ≥ 0 h ∈ H, i ∈ I ′, ω ∈ Ωs

C.3 Coordinated/Sequential framework: Model 3
max

∑
m∈{3,4}

∑
t∈T

(ρmt + ιmρ1t)xmt +
∑
k∈K

wk −
∑
i∈I′

∑
h∈H

cih

x2t = φ∗pt + (φ∗p+1t − φ∗pt)
ρ2t − Pp
Pp+1 − Pp

if Pp ≤ ρ1ts ≤ P(p+1), p ∈ P , t ∈ T

∑
i∈I

q1it = x∗1t, t ∈ T

∑
i∈I

q2it = x2t, t ∈ T

∑
i∈I

qmit = xmt, m ∈ {3, 4}, t ∈ T

xmt ≤ σνmt m ∈ {3, 4}, t ∈ T

uih
0.2Ni

κmaxi

≤ q2it ≤ uih
0.2Ni

κmini

h ∈ H, i ∈ I ′, t ∈ T h

0.2Ni

κmaxi

≤ q2it ≤
0.2Ni

κmini

i ∈ I \ I ′, t ∈ T



122 APPENDIX C. DECISION MODELS

uihQ
max
i ≥ q1it + q2it + q3it − q4it, h ∈ H, i ∈ I ′, t ∈ T h,

Qmax
i ≥ q1it + q2it + q3it − q4it, i ∈ I \ I ′, t ∈ T

uihQ
min
i ≤ q1it − q2it + q3it − q4it, h ∈ H, i ∈ I ′, t ∈ T h

Qmin
i ≤ q1it − q2it + q3it − q4it i ∈ I \ I ′, t ∈ T

cih ≥ Ci(uih − ui(h−1)) h ∈ H, i ∈ I ′

q1it + q3it − q4it ≤ Aif +Bifdit i ∈ I, f ∈ F , t ∈ T

vjt − vj(t−1) = Ijt +
∑
i∈I

Γijdit +
∑
j′∈J

Λjj′Oj′t, j ∈ J , t ∈ T

vj1s − V 0
j = Ij1 +

∑
i∈I

Γijdi1 +
∑
j′∈J

Λjj′Oj′1, j ∈ J

wk ≤ Elk +
∑
j∈J k

Wjk(vj|T |ω − Vjl) k ∈ K, l ∈ L

Dmin
i ≤ dit ≤ Dmax

i i ∈ I, t ∈ T

V min
j ≤ vjt ≤ V max

j j ∈ J , t ∈ T

xmt ≥ 0 m ∈ {3, 4}, t ∈ T

wk ≥ 0 k ∈ K

qmit ≥ 0 m ∈M, i ∈ I, t ∈ T

uih ∈ {0, 1} i ∈ I ′, h ∈ H

dit ≥ 0 i ∈ I, t ∈ T

vjt ≥ 0 j ∈ J , t ∈ T
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cih ≥ 0 h ∈ H, i ∈ I ′

C.4 Sequential framework: Model 1

max
∑
s∈S

πs

(∑
t∈T

ρ1tsx1ts +
∑
k∈K

wks −
∑
i∈I′

∑
h∈H

cihs

)

x1ts = zpt + (zp+1t − zpt)
ρ1ts − Pp
Pp+1 − Pp

if Pp ≤ ρ1ts ≤ P(p+1), p ∈ P , s ∈ S, t ∈ T

z(p+1)t ≥ zpt p ∈ P \ |P|, t ∈ T

∑
i∈I

q1its = x1ts s ∈ S, t ∈ T

uihsQ
max
i ≥ q1its, h ∈ H, i ∈ I ′, s ∈ S, t ∈ T h

Qmax
i ≥ q1its, i ∈ I \ I ′, s ∈ S, t ∈ T

uihsQ
min
i ≤ q1its, h ∈ H, i ∈ I ′, s ∈ S, t ∈ T h

Qmin
i ≤ q1its i ∈ I \ I ′, s ∈ S, t ∈ T

cihs ≥ Ci(uihs − ui(h−1)s) h ∈ H, i ∈ I ′, s ∈ S

q1its ≤ Aif +Bifdits i ∈ I, f ∈ F , s ∈ S, t ∈ T

vjts − vj(t−1)s = Ijt +
∑
i∈I

Γijdits +
∑
j′∈J

Λjj′Oj′ts, j ∈ J , s ∈ S, t ∈ T

vj1s − V 0
j = Ij1 +

∑
i∈I

Γijdi1s +
∑
j′∈J

Λjj′Oj′1s, j ∈ J , s ∈ S

wks ≤ Elk +
∑
j∈J k

Wjk(vj|T |s − Vjl) k ∈ K, l ∈ L, s ∈ S

Dmin
i ≤ dits ≤ Dmax

i i ∈ I, s ∈ S, t ∈ T
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V min
j ≤ vjts ≤ V max

j j ∈ J , s ∈ S, t ∈ T

x1ts ≥ 0 s ∈ S, t ∈ T

wks ≥ 0 k ∈ K, s ∈ S

q1its ≥ 0 i ∈ I, s ∈ S, t ∈ T

uihs ∈ {0, 1} i ∈ I ′, h ∈ H, s ∈ S

dits ≥ 0 i ∈ I, s ∈ S, t ∈ T

vjts ≥ 0 j ∈ J , s ∈ S, t ∈ T

cihs ≥ 0 h ∈ H, i ∈ I ′, s ∈ S

C.5 Sequential framework: Model 2

max
∑
s∈S

πs

(∑
t∈T

ρ2tsx2ts +
∑
k∈K

wks −
∑
i∈I′

∑
h∈H

cihs

)

x1t = z∗pt + (z∗p+1t − z∗pt)
ρ1t − Pp
Pp+1 − Pp

if Pp ≤ ρ1t ≤ P(p+1), p ∈ P , t ∈ T

x2ts = φpt + (φp+1,t − φpt)
ρ2ts − Pp
Pp+1 − Pp

if Pp ≤ ρ2ts ≤ P(p+1), p ∈ P , s ∈ S, t ∈ T

φ(p+1)t ≥ φpt p ∈ P \ |P|, t ∈ T

∑
i∈I

q1its = x1t, t ∈ T , s ∈ S

∑
i∈I

q2its = x2ts, t ∈ T , s ∈ S

uihs
0.2Ni

κmaxi

≤ q2its ≤ uihs
0.2Ni

κmini

h ∈ H, i ∈ I ′, t ∈ T h, s ∈ S
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0.2Ni

κmaxi

≤ q2its ≤
0.2Ni

κmini

i ∈ I \ I ′, t ∈ T , s ∈ S

uihsQ
max
i ≥ q1its + q2its, h ∈ H, i ∈ I ′, s ∈ S, t ∈ T h

Qmax
i ≥ q1its + q2its, i ∈ I \ I ′, s ∈ S, t ∈ T

uihsQ
min
i ≤ q1its − q2its, h ∈ H, i ∈ I ′, t ∈ T h, s ∈ S

Qmin
i ≤ q1its − q2its, i ∈ I \ I ′, t ∈ T , s ∈ S

cihs ≥ Ci(uihs − ui(h−1)s), h ∈ H, i ∈ I ′, s ∈ S

q1its ≤ Aif +Bifdits i ∈ I, f ∈ F , t ∈ T , s ∈ S

vjts − vj(t−1)s = Ijt +
∑
i∈I

Γijdits +
∑
j′∈J

Λjj′Oj′ts, j ∈ J , t ∈ T , s ∈ S

vj1s − V 0
j = Ij1 +

∑
i∈I

Γijdi1s +
∑
j′∈J

Λjj′Oj′1s, j ∈ J , s ∈ S

wks ≤ Elk +
∑
j∈J k

Wjk(vj|T |s − Vjl) k ∈ K, l ∈ L, s ∈ S

Dmin
i ≤ dits ≤ Dmax

i i ∈ I, t ∈ T , s ∈ S

V min
j ≤ vjts ≤ V max

j j ∈ J , t ∈ T , s ∈ S

x2ts ≥ 0 t ∈ T , s ∈ S

wks ≥ 0 k ∈ K, s ∈ S

φpt ≥ 0 p ∈ P , t ∈ T

qmits ≥ 0 m ∈ {1, 2}, i ∈ I, t ∈ T , s ∈ S
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uihs ∈ {0, 1} i ∈ I ′, h ∈ H, s ∈ S

dits ≥ 0 i ∈ I, t ∈ T , s ∈ S

vjts ≥ 0 j ∈ J , t ∈ T , s ∈ S

cihs ≥ 0 h ∈ H, i ∈ I ′, s ∈ S



Appendix D

Modelling dependence: Copula
heuristic

D.1 Introduction

Dependence in the prices across hours and across markets is modelled with the copula-
based framework by Kaut 2014. The model proposed in Section 6.3 combined with
estimation from Section 6.4 provides hourly predictive densities for the prices. Con-
structing price paths from these densities with correct dependence properties is our
next goal. The target copula, i.e. the target dependence characteristics, is determined
from historical data from some training period. Dependence across the domain of the
cumulative mapping is independent of price level. In other words, predictive density
and dependence is decoupled.

The following extracts the fundamentals of Kaut’s work. The principles of copula
theory are first introduced, for explaining why and how we use copulas in our scenario
generation method. Aiming to ease the explanation of this non-trivial subject, we
first introduce some basics and notation, before turning to discuss the case of bivariate
scenario generation, which can be carried out solving a MIP. Next, a heuristic to replace
the MIP is presented. Finally, the logic from this heuristic is extended, such that a
heuristic for the general multivariate scenario generation can be derived.

A copula is the joint cumulative distribution function of any n-dimensional random
vector with standard uniform margins, that is, a function C : [0, 1]n → [0, 1]. Sklar’s
theorem (Sklar, 1996) states that for any n-dimensional cumulative distribiution func-
tion F with marginal distribution functions F1, ..., Fn, a copula C exists such that

F (x1, ..., xn) = C
(
F1(x1), ..., Fn(xn)

)
(D.1.1)

If all the marginal cumulative distribution functions Fi are continuous, then there ex-
ists only one unique C. A consequence of the theorem is that, for every u = (u1, ..., un) ∈
[0, 1]n we have that
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C(u1, ..., un) = F
(
F−1

1 (u1), ..., F−1
n (un)

)
(D.1.2)

where F−1
i is the generalized inverse of Fi. That means that knowing the marginal

cfds and the copula is the same as fully knowing the multivariate cdf. This stands in
contrast to correlations that assume a linear dependence. Furthermore, copulas, unlike
correlations, are independent from the marginal distributions. Therefore we can model
the two independently.

A copula only models the interdependence of two or more distributions, the in-
formation about the distributions themselves has been removed. Ergo, the copula is
unchanged as long as the multivariate samples do not change order. One natural option
is to change the values to the ranks of the values in the sample, 1 denoting the minimum
and S the maximum. The copula sample is thus equivalent to an assignment between
the ranks of the margins.

C = {r = (r1, ..., rn) : 1 ≤ ri ≤ S,∀i ≤ n} (D.1.3)

Cr(r) = C(r1

S
, ...,

rn
S

) = Pr(
[
0, r1

S

]
× ...×

[
0, r1

S

]
) (D.1.4)

Whilst transforming a copula sample to a multivariate scenario is trivial keeping
track of the accordance of values and ranks, the difficult part is to generate copula
scenarios. The most straight-forward method is sampling. The problem with this
however, is that we need many samples in order to reach a satisfactory resemblance of
the distribution. And again, we stress our wish to keep the number of input scenarios to
our decision model as low as possible. The objective of the MIP presented in the next
subsection is to minimize the average deviation between the to be generated copula
sample, consisting of S scenarios, and the target copula. This, subject to the constraint
that a rank from both margins (in the bivariate case) must be allocated to all of the
scenarios S. A margin rank shall only be allocated once. In reality, obtaining the copulas
is a non-trivial task, similar to estimating distribution functions by sampling. We will
use the empirical copula directly as target.

D.2 MIP for the bivariate problem
The assignment of ranks to make a scenario is modelled by binary variables xij that
are equal to one if the j-th rank of the second margin is assigned to the i-th rank of
the first margin. Put differently, if there is a scenario with r = (i, j), the Cr function is
equal to

Cr(i, j) = 1
S

i∑
k=1

j∑
l=1

xkl (D.2.1)
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An assignment’s deviation from the target copula can thus be written

dev(i, j) = Cr(i, j)− C∗r (i, j) (D.2.2)

Which can decomposed into its positive and negative parts,

dev(i, j) = 1
S

(y+
ij − y−ij) (D.2.3)

further giving

dev(i, j) =
i∑

k=1

j∑
l=1

xkl − SC∗r = y+
ij − y−ij (D.2.4)

Consequently we have that,

S|dev(i, j)| = y+
ij − y−ij (D.2.5)

The problem of minimizing the average absolute deviation davg can be formulated
in the following way. The scaling factor 1

S
is omitted.

min
S∑

i,j=1
(y+
ij + y−ij) (D.2.6)

s.t
S∑
i=1

xij = 1 ∀j ∈ {1...S} (D.2.7)

S∑
j=1

xij = 1 ∀j ∈ {1...S} (D.2.8)

i∑
k=1

j∑
l=1

xkl − y+
ij + y−ij = SC∗r (i, j) ∀i, j ∈ {1...S} (D.2.9)

y+
ij ≥ 0, y−ij ≥ 0, xij ∈ {0, 1} ∀i, j ∈ {1...S} (D.2.10)

D.3 Copula-based scenario generation heuristic
In order to reduce solution times, a greedy heuristic is proposed. The algorithm for the
bivariate case matches every rank j from the first distribution with a rank i from the
second. This is done through the evaluation of the expression

δr(i, j) =
S∑
l=1
|dev(l, j)| =

S∑
l=1
|Cr(l, j)− C∗r (l, j)|, (D.3.1)

greedily choosing the rank i resulting in the lowest deviation between copula sample
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Table D.1: Heuristic for bivariate scenario generation

Algorithm: Bivariate heuristic
1: S ← {1...S}; rj ← i∗

2: For j ∈ {1...S} do
3: For i ∈ I do
4: calculate the deviation δr(i, j)
5: If δr(i, j) < δ∗r then
6: i∗ ← i; δ∗r ← δr(i, j)
7: End if
8: End for
9: rj ← i∗; I ← I \ i∗
10: End for

and target copula. A rank i that is chosen to be paired with a rank j is removed from
the set of possible ranks to match the rest of the ranks j with.

Next, we extend the heuristic from a bivariate to a general multivariate case. This is
done by starting with two margins and then adding one margin at a time. The procedure
can be decribed in an inductive manner: assume that we have already generated values
for m margins and want to add a new margin m+1, using the bivariate copulas of
variable pairs (1,m+ 1), ..., (m,m+ 1) as targets. Unlike the bivariate case, we cannot
simply connect rows and columns, as m margins have already been connected. Instead,
we assign the ranks of the new margin to scenarios. Hence, rks becomes the rank of
variable k assigned to scenario s, Ck

r and C∗kr denote respectively the sample and target
cdfs of the bivariate copula of variables k and (m+1), δkr the deviation function of this
copula, δkr = Ck

r − C∗kr . The heuristic is open for the possibility that several scenarios
can have the same deviation. Therefore all the best scenarios found at line 8 are stored,
before one is chosen randomly at line 12. The output is finally S scenarios with length
m, such that each margin k ∈ {1..m} has a rank assigned to the scenario s. The
rank values of the scenarios can then be transformed according to D.3.2 such that
Cs = [0, 1]k. Giving these values to the respective inverse cumulative density functions
of the margins k, F−1

k , we finally reach the point that we have meaningful scenarios.

Cr(i1, i2, .., in) = 1
S

i1∑
k1=1

i2∑
k2=1

...
in∑

kn=1
xsk1,k2..,kn (D.3.2)
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Table D.2: Heuristic for multivariate scenario generation

Algorithm: Multivariate heuristic
1: S ← {1...S}; δ∗r ←∞
2: For j ∈ {1...S} do
3: For s ∈ S do
4: For k ∈ {1...m} do
5: calculate the deviation δkr (rks , j)
6: End for
7: δrs ←

∑m
i=1 δ

k
r (rks , j)

8: If δrs < δ∗r then
9: s∗ ← s; δ∗r ← δrs
10: End if
11: End for
12: rm+1

j ← s∗;S ← S \ s∗
13:End for
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Appendix E

Regression coefficients

It remains to verify that day-ahead and primary reserve prices indeed exhibit varying
sensitivity to conditioning variables across quantiles and hours. The estimation of the
regression model in equation 6.3.5 has been performed using (P1) from section 6.4.
Estimation has been done through 2014 and 2015 for both day-ahead and primary
reserve prices. The resulting model coefficients are plotted in Figure E.1 and E.2.

Observe that the constant term in each market varies across quantiles and hours. In
addition, sensitivity to the lagged prices changes significantly throughout quantiles and
hours. For the day-ahead price, sensitivity to yesterday’s price in the same hour is high
for low quantiles in the morning and high for high quantile prices later in the day. This
is qualitatively very similar to the results found in Hagfors et al. 2016. Lag 2 and lag
3 have less dynamic effects across the quantiles. The weekly lag is interesting because
it varies greatly across quantiles for hours around the start of the working day. This
might indicate strong explanatory power of the previous week prices for the conditional
distribution in these hours. Suprisingly, the lagged mean has the opposite effect of lag
1.

For primary reserve prices the constant term varies across the quantiles, but are
ordered opposite in terms of rank compared to the day-ahead constants. Low quantiles
have high constants, and high quantiles have low constants. The lag 1 coefficients are
less dependent on quantile compared to day-ahead. For lag 2 and 3 all coefficients are
very close to zero except for the 95 % quantile throughout the day. The 95 % quantile
coefficients exhibit a rather extreme behaviour compared to other quantiles, see lag 7
and the lagged mean.

To conclude, we have verified that indeed day-ahead and primary reserve prices
exhibit varying sensitivity across quantiles. In addition, we see that sensitivity to
previous prices changes throughout the day. These results substantiate our modelling
approach.
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Figure E.1: Coefficients from day-ahead quantile regression model (2014-2015)
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Figure E.2: Coefficients from primary reserve quantile regression model (2014-2015)
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