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Problem description

This paper studies investment behavior of firms deciding when to introduce an upgrade in a
durable goods market under uncertain product testing and risk of malfunction
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Sammendrag

Denne oppgaven omhandler investeringsadferd for selskaper som st̊ar overfor en beslutning om
n̊ar en oppgradert produktversjon skal lanseres i et marked for varige produkter. Selskapet
velger b̊ade investeringstidspunkt og pris, samtidig som det avveier risikoen for produktfeil og
tilbakekalling av solgte enheter. Mer spesifikt ønsker oppgaven å vise hvilke insentiver et selskap
kan ha til å introdusere den oppgraderte versjonen tidlig og dermed akseptere høyere risiko for
produktfeil. Selskapet kan redusere denne risikoen ved å gjennomføre produkttester av uviss
varighet. Vi viser at villigheten til lansere den oppgraderte versjonen tidlig med betydelig
risiko for produktfeil er større n̊ar (i) etterspørselen for den eksisterende versjonen har blitt
svekket, (ii) kvaliteten og mengden potensielle kunder for den oppgraderte versjonen er høy
eller (iii) prosessen for testing er treg. Videre viser vi at tilstedeværelsen av en innovatør i
markedet, som allerede har lansert en ny og risikabel produktversjon, gjør at etterhengeren
lanserer et mer p̊alitelig produkt. Denne effekten er sterkere n̊ar innovatørens produkt har en
større sannsynlighet for feil.
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Abstract

This paper studies investment behavior of firms deciding when to introduce an upgrade
in a durable goods market. The firm chooses both the investment timing and the price of the
upgrade while facing the risk of the upgrade experiencing a serious malfunction and requiring
a complete recall. More specifically, the paper aims to show what incentives a firm may have
to introduce an upgrade early and accept a higher malfunction risk. The firm can reduce
this risk by performing product tests of uncertain duration. We show that the willingness to
introduce an upgrade early with significant malfunction risk is larger when (i) the demand
for the existing version has weakened, (ii) the quality and stock of potential customers for the
upgrade is high or (iii) the testing process is slow. Furthermore, we find that the presence of
an innovator with a risky product in the market for the upgrade makes the laggard release
a more reliable product. This effect is stronger when the innovator’s product is more likely
to malfunction.

1We would like to thank Verena Hagspiel and Maria Lavrutich at the department for excellent guidance
throughout the project. We would also like to thank Kuno Huisman and Peter Kort for useful insights.



1 Introduction

Samsung introduced Note 7, the annual upgrade of the Samsung Galaxy Note smartphone
series, in the fall of 2016. Customers immediately reported incidents of the battery overheating,
causing the Note 7 to catch fire or even explode. Samsung ended up recalling all sold Note 7
units and refunding the customers, essentially losing all revenue from the smartphone2. The
example of Samsung is only the most recent among the many product upgrades that have been
recalled as a result of serious malfunction. Other examples include self-igniting water heaters
from OSO sold in Norway 3 and F-250 pickup trucks manufactured by Ford that would roll
unintended while in park 4. Typically, these products are durable goods. Durable goods are
consumer goods that do not wear out fast or have to be repurchased for several years5. In
general, product upgrades are critical for producers of durable goods to be successful. Failing
to deliver innovative upgrades may lead to a substantial loss in demand, as evident by Nokia’s
drop from 50% to under 5% market share since the introduction of the iPhone in 2007 6. This
paper investigates the incentives that drive producers of durable goods to introduce a product
upgrade with risk of malfunction.

Although durable goods expenditure accounted for roughly $1.3 trillion in the USA alone in
2016 7, the research on investment decisions for producers in durable goods markets has gained
limited attention in the literature. Interestingly, most of the durable goods literature ignores
the concept of product upgrades although durable goods markets are typically characterized
by products that improve over time. Levinthal and Purohit (1989) were the first to address
the upgrading problem and studied the decision of a monopolist in a two-period model under
the case of both separate and joint production. They found that the profits from separate
production, meaning that the existing version is phased out when the upgrade is introduced,
gives unambiguously higher profits than joint production. Furthermore, they found that a buy-
back policy can make joint production most profitable when there is a substantial difference
in quality between the two versions. We consider a separate production model like the one
presented in Levinthal and Purohit (1989) and extend it by introducing a testing phase of
uncertain duration and a possibility of product malfunction for the upgraded version.

Fudenberg and Tirole (1998) present a more thorough analysis of the upgrading problem, focus-
ing on what happens in the presence of a second-hand market. They assume that new and used
products are imperfect substitutes because the quality of the products deteriorate over time.
Consequently, the monopolist has incentive to lower the durability to make used products less
competitive to the upgrade. Contrary to Fudenberg and Tirole (1998), we will ignore second-
hand markets to more accurately evaluate the effects of a testing phase and risk of product
malfunction requiring a total recall.

A topic that has received significant attention in the durable goods literature is the time incon-
sistency problem. This problem was first addressed by Coase (1972) and arises because durable
goods sold in the future affects the future value of units sold today. Coase (1972) argued that
unless a monopolist is able to pre-commit to a price, the consumer’s expectations of future price
reductions will instantly lower the price of the durable good to marginal cost. He also argued
that leasing would avoid the problem, which was later confirmed by Bulow (1982). Common
topics in subsequent durable goods literature include the robustness of Coase’s time inconsis-
tency problem and ways to overcome it. A more recent contribution on the latter is Hahn (2006)

2http://www.samsung.com/us/note7recall/
3https://www.nrk.no/telemark/flere-tusen-brannfeller-star-igjen-1.11897142
4http://www.reuters.com/article/us-ford-motor-recall-idUSKBN1733Q5
5http://www.investopedia.com/terms/d/durables.asp
6https://www.statista.com/statistics/263438/market-share-held-by-nokia-smartphones-since-2007/
7http://www.investopedia.com/terms/d/durables.asp
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who found that introducing a stripped-down version of a durable good would in fact mitigate
the time inconsistency problem. Waldman (1996) analyzed a model for the upgrading problem
similar to Fudenberg and Tirole (1998) and showed that product upgrade introductions are
subject to a time inconsistency problem like the one presented in Coase (1972). They found
that this gives the firm an incentive to make the existing version obsolete upon introduction of
the upgrade. These papers assume that firms are not able to pre-commit to a price. In reality
however, many firms, like Apple, have a credible reputation for not reducing the price of existing
products until a new version is introduced. We therefore assume that the firm is in fact able to
pre-commit to a price for the upgrade.

Firms considering to introduce an upgraded version of a durable good have to consider the
uncertainty involved. The risk of malfunction may to some degree be mitigated by performing
product tests, but testing is itself often an uncertain process. Investment under uncertainty is
typically modeled by a real options approach, for which Dixit and Pindyck (1994) represent some
of the earlier literature. They start out with a basic real options model where the payoff from
investing follows a geometric Brownian motion and present a solution approach to the optimal
stopping problem. In later chapters, they extend this basic model to include several real world
applications, like options to mothball or abandon projects after investment, and allowing the
firm to invest in a certain capacity. However, they do not consider the specific characteristics
of the good. More specifically, they do not distinguish between consumable and durable goods,
even though they have different demand structures. We follow a similar solution approach as
Dixit and Pindyck (1994) and extend their work by considering the specific features of a durable
good.

In our model, we consider uncertainty in the testing phase for the upgrade, which is a type
of technological uncertainty. Grenadier and Weiss (1997) were among the first to apply a real
options approach to investment under technological uncertainty. They consider the optimal
investment strategy of a firm confronted with a sequence of technological innovations and apply
a geometric Brownian motion to model technological progress. This modeling assumption implies
that the technology level can actually decrease over time, which is hard to defend with intuition.
The recent norm has therefore been to instead model technological progress with a Poisson
process with positive jumps, like Farzin et al. (1998), who consider optimal timing of technology
adoption in a dynamic programming framework. In our model, we apply a Poisson process to
model the evolution of the testing phase.

Several papers on investment under uncertainty use examples from the durable goods industry
to motivate their research, without taking the specific features of durable goods into account.
Recent examples include Lavrutich et al. (2016), who consider entry deterrence and hidden
competition, and Hagspiel, Kort, et al. (2016), who consider investment in a production facility
with flexibility to scale the capacity. To motivate their work, both papers refer to the car
industry. Lavrutich et al. (2016) use Apple as an example of a hidden competitor developing
their own electric car, while Hagspiel, Kort, et al. (2016) present volume flexibility as a key
strategy implemented by car manufacturers to cope with demand uncertainty. Although the
market for cars is clearly a durable goods market, this is not accounted for in the authors’
respective demand functions.

The contribution of this paper is two-fold. First, it extends the literature on investment de-
cisions in durable goods markets by including a testing phase and a risk of having to recall a
malfunctioned product. We propose to model the arrival of a malfunction event as an inhomo-
geneous Poisson process, which, to the best of our knowledge, has not been done before. Second,
it extends the literature on investment under uncertainty by developing a model that accounts
for the specific features of durable goods. We find that a firm’s incentive to introduce a risky
upgrade in the market may be explained by three reasons. First, an incentive to release a risky
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upgrade arises when the profits from selling the existing version has dropped low. Second, if
the upgrade is of good quality and has a high expected initial stock of potential customers, the
expected value of the investment is high. This gives incentive to invest early even if significant
risk of malfunction is present. Finally, a slow testing process may drive the firm to gamble on a
risky upgrade rather than wait for more sub-tests to complete. We also find that the presence of
an innovator with a product that may itself malfunction in the market for the upgrade, makes
the laggard firm invest later and in a more reliable product. This delaying effect is stronger if
the innovator did limited product testing before it released its product, but decreases over time
as the product is sold without malfunctioning.

The rest of the paper is organized as follows. In Section 2, we solve the upgrading problem for
a monopolistic firm, and in Section 3 we consider an innovator-laggard model. In both models
we consider two cases: (1) the firm must refrain from investment until the upgrade has gone
through a testing phase with no uncertainty, and (2) the firm can invest at any stage of an
uncertain testing process, at the risk of malfunction. We also compare an analytical solution
approach suggested in Hagspiel, Huisman, et al. (2016) to a numerical solution, and argue that
the analytical approach is erroneous. Section 4 summarizes the findings and concludes. The
proofs of all propositions can be found in the appendix.

2 Monopoly

Consider first a risk-neutral and profit-maximizing monopolist producing a single durable good.
The firm makes a decision on when, or if, it should introduce an upgraded version of the product,
and which price to set for it. The technology for the upgrade needs to go through an exogenous
testing phase affecting the risk of malfunction. In Section 2.1, the duration of the testing phase
is assumed to be deterministic and finish at time tn

8. The firm does not invest before the testing
phase is completed, but can then adopt the technology and introduce the upgrade by paying a
fixed investment cost I. Later, in Section 2.2, we relax this assumption and allow the firm to
introduce the upgrade at any stage of a stochastic testing process. Upon introduction of the
upgrade, a stock of potential customers, hereafter referred to as customer potential, arises for
the new version and is expected to be Q0

2.

The firm is currently selling the existing version at the price P1, in a market with a customer
potential Q0

1. Since we do not consider the decision to introduce this version, P1 is treated as a
fixed parameter. In other words, P1 is the price the firm committed to when the existing version
was introduced. Furthermore, we let Qi(t) denote the remaining customer potential for version
i. Subscript 1 represents the existing version, while subscript 2 represents the upgrade to be
introduced. For most durable goods, each customer would normally not buy more than one unit
of the product. For instance, a single person would rarely purchase more than one iPhone 7.
The problem is therefore modeled such that a customer can buy at most one unit of each version
of the product. The customer potential therefore reduces over time as more units are sold, and
the dynamics are given by equation (2.1)

dQi(t) = −qi(t)dt, i = 1, 2, (2.1)

where dQi(t) denotes the instantaneous change in the customer potential for version i over time
period dt and qi(t) denotes the instantaneous demand for version i. As stated in the introduction
we also assume that the existing version becomes completely obsolete upon introduction of the

8The time-lag from technology adoption to market release is included in tn
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upgrade, implying that Q0
1 drops to zero. This allows us to investigate the effects of a testing

phase and product malfunction risk on the investment decision in more detail.

The instantaneous demand is a linear function as given in equation (2.2)

qi(t) = Qi(t)− ηiPi, i = 1, 2, (2.2)

where ηi in the demand function is a price penalty factor determined by the quality of the
product. Typically, one would expect the upgrade to be of better quality than the existing
version and therefore the relation η1 > η2 to hold. However, Hahn (2006) showed that firms
have incentives to introduce a stripped-down lower quality version of a durable good to mitigate
the time inconsistency problem. Our modeling approach provides flexibility to capture both
situations.

2.1 Deterministic product testing

Following Dixit and Pindyck (1994), we assume that the firm’s operating costs are equal to zero
without loss of generality. Future cash flows are discounted at the exogenous rate r. The present
value of future cash flows, denoted V (τ, P2), if the firm introduces the upgrade at time τ and
price P2 is then equal to

V (τ, P2) =

∫ tn

0
P1q1(t)e

−rtdt+

∫ τ

tn

P1q1(t)e
−rtdt+

∫ ∞
τ

P2q2(t− τ)e−rtdt− Ie−rτ . (2.3)

From equation (2.3) it is clear that the value V (τ, P2) consists of two parts. The first two terms
correspond to the value of selling the existing version until τ , while the last two terms correspond
to the value of selling the upgrade from τ onwards. The firm faces a trade-off in deciding the
introduction time τ . On one hand, additional revenue from the existing version represents a
benefit of waiting, and gives the firm an incentive to delay the introduction of the upgrade. On
the other hand, delaying the introduction leads to a heavier discounting on the revenue from
the upgrade. This effect represents a cost of waiting and gives the firm an incentive to hasten
the introduction.

The firm’s objective is to maximize the present value of future cash flows by optimally deciding
the time of introduction and price for the upgrade. Finding the maximized present value of the
firm’s profits, denoted V ∗ and hereafter referred to as the firm value, translates to the following
optimization problem

V ∗ =

∫ tn

0
P1q1(t)e

−rtdt+ max
τ

[∫ τ

tn

P1q1(t)e
−rtdt + max

P2

[∫ ∞
τ

P2q2(t− τ)e−rtdt

]
− Ie−rτ

]
.

(2.4)

This optimization problem can be solved backwards in two steps. First, we derive the optimal
price to maximize the present value of profits after the introduction. Second, we derive the
optimal investment timing to maximize the profits over the whole period of consideration. The
first step corresponds to solving the inner maximization in equation (2.4). We find the maximized
present value of profits after introduction, denoted V ∗2 , by solving

V ∗2 = max
P2

[∫ ∞
τ

P2q2(t− τ)e−rtdt

]
. (2.5)
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Applying the first order condition for optimality to equation (2.5), we find that the optimal
price for the upgrade, P ∗2 , is given by

P ∗2 =
Q0

2

2η2
. (2.6)

An increase in the initial customer potential leads to an increase in the demand for the upgrade
and allows the firm to charge a higher price, implying that P ∗2 is increasing in Q0

2. Similarly,
an increase in the penalty factor from lower product quality leads to a reduction in demand,
which implies that P ∗2 is decreasing in the price penalty factor η2. Given the optimal price for
the upgrade, equation (2.5) is reduced to

V ∗2 =
(Q0

2)
2

4η2(1 + r)
e−rτ . (2.7)

An increase in the initial customer potential for the upgrade increases the demand for and
therefore the revenue from the upgrade, implying that V ∗2 is increasing in Q0

2. An increase in
the price penalty factor resulting from lower product quality reduces revenue from the upgrade,
implying that V ∗2 is decreasing in η2. The term e−rτ discounts the present value of the revenue
at the time of introduction back to today. Equation (2.7) also allows us to derive the net present

value of the upgrade evaluated at the time of introduction as
(Q0

2)
2

4η2(1+r)
− I.

We continue with the second step of the optimization problem from equation (2.4) and derive the
optimal investment timing to maximize the present value of profits over the entire investment
horizon. The optimal timing of investment, denoted τ∗, is presented in Proposition 2.1.

Proposition 2.1 The optimal time to introduce the upgrade is given by

τ∗ =


tn τ̂∗ < tn,

τ̂∗ τ̂∗ ≥ tn,
→∞ (Q0

2)
2

4η2(1+r)
− I ≤ 0,

(2.8)

where

τ̂∗ = ln

 P1(Q
0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
 . (2.9)

The optimal ivestment timing is given by one of three strategies, depending on the parameter
values. In the case where τ̂∗ < tn, it is optimal for the firm to introduce the upgrade as soon as
the testing is completed. Hence, the optimal time to introduce the upgrade is tn.

In the case where τ̂∗ ≥ tn, the firm prefers to delay the introduction of the upgrade even after
the testing is completed. This implies that at the time testing is completed, the benefit of
additional revenue by delaying is greater than the cost of heavier discounting on the revenue
from the upgrade. The optimal strategy for the firm is therefore to delay the introduction of
the upgrade until the benefit and cost of waiting are equal, represented by τ̂∗ in equation (2.9)
of Proposition 2.1.

The case
(Q0

2)
2

4η2(1+r)
− I ≤ 0 represents the situation when introducing the upgrade is unprofitable,

i.e the investment has a negative net present value. It will thus never be optimal for the firm to
invest in the upgrade, implying that τ∗ goes to infinity.

When τ∗ = tn or τ∗ → ∞, the optimal time of introduction can be considered constant and
insensitive to changes in the model parameters. When the optimal investment timing is instead
given by τ̂∗, we derive the parameter sensitivities. The results are presented in Proposition 2.2.
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Proposition 2.2 The sensitivity of the optimal investment timing when τ∗ = τ̂∗ with respect
to the model parameters Q0

1, P1, η1, Q0
2, η2, I, r is presented in Table (1)

Sensitivity Value

∂τ̂∗

∂Q0
1

> 0

∂τ̂∗

∂η1
< 0

∂τ̂∗

∂P1

> 0 when P1 <
Q0

1
2η1

< 0 when P1 >
Q0

1
2η1

∂τ̂∗

∂Q0
2

< 0

∂τ̂∗

∂η2
> 0

∂τ̂∗

∂I > 0

∂τ̂∗

∂r

> 0 when
(Q0

2)
2

4η2(1+r)
− I < rI

< 0 when
(Q0

2)
2

4η2(1+r)
− I > rI

Table 1: The introduction timing’s sensitivity to the model parameters

An increase in the demand for the existing version results in a higher benefit of waiting and
therefore delays investment. This implies that τ̂∗ is increasing in Q0

1 and decreasing in η1.
Similarly, increasing the profits from the upgrade increases the cost of waiting and therefore
hastens investment. This implies that τ̂∗ is decreasing in initial customer potential Q0

2 and
increasing in the price penalty factor η2 and the investment cost I.

The effect of changing the price of the existing version is ambiguous. We show in Appendix B

that the term
Q0

1
2η1

is actually the optimal price P ∗1 (Q0
1) given the customer potential Q0

1. When
P1 is close to P ∗1 , staying in the existing market is more attractive and investment is delayed.

This implies that τ̂∗ is decreasing in P1 when P1 >
Q0

1
2η1

and increasing in P1 when P1 <
Q0

1
2η1

.
However, recall that the firm pre-commits to a price for its products. The initially optimal

pre-commitment price for the existing version was P̃1 =
Q̃0

1
2η1

, where Q̃0
1 was the initial customer

potential. The customer potential decreases over time as units are sold, implying that P̃1 >
Q0

1
2η1

.

Thus, if the firm did pre-commit to the optimal price P̃1, the optimal investment timing τ̂∗ is
decreasing in P1.

An increase in the discount rate results in two contradicting effects on the optimal timing. The
first effect is that the present becomes relatively more important, which reduces the value of
waiting. This gives the firm an incentive to introduce the upgrade earlier. The second effect is
that the value of investing, given by the net present value of the upgrade, decreases. This makes
the upgrade relatively less attractive, and gives the firm incentive to introduce its upgrade later.
Hence, the overall effect on the investment timing depends on which of these effects are most
significant. It turns out that the first effect dominates and investment is hastened when the net
present value of the upgrade is above rI, while the second effect dominates and the investment

is delayed otherwise. Furthermore, there exists a threshold discount factor r̃ =

√
Q0

2
2

4η2I
− 1 for

which an increase above r̃ delays investment, and an increase below r̃ hastens investment. For
large Q0

2 and low η2 and I, the region below r̃ is large, while the region above r̃ is large in the
opposite case. The ambiguous relation between the discount rate and the optimal investment
timing is illustrated in Figure 1.
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Figure 1: An increase in the discount rate has an ambiguous effect on the investment timing.
(Q0

1 = 100, P1 = 3, η1 = 20, Q0
2 = 180, η2 = 15, I = 200)

Given the optimal investment timing, we can derive the optimal value of the firm. The result is
stated in Proposition 2.3.

Proposition 2.3 The value of the firm, V ∗(τ∗), is given by

V ∗(τ∗) =



P1(Q0
1−η1P1)
1+r + e−rtn

((
Q0

2
2

4η2(1+r)
− I
)
− P1(Q0

1−η1P1)
1+r e−tn

)
τ∗ = tn,

P1(Q0
1−η1P1)
1+r +

Q0
2
2

4η2(1+r)
−I

1+r

 P1(Q0
1−η1P1)

r

(
(Q0

2)
2

4η2(1+r)
−I

)
−r τ∗ = τ̂∗,

P1(Q0
1−η1P1)
1+r τ∗ →∞.

(2.10)

The firm value takes one of three forms depending on the optimal investment time τ∗. Common

for all three is the term
P1(Q0

1−η1P1)
1+r , which represents the value of selling the existing version

forever. For τ∗ = tn, where it is optimal for the firm to invest immediately upon completion of

the testing phase, the term e−rtn
(

Q0
2
2

4η2(1+r)
− I
)

represents the discounted value of the profits

from the upgrade. The subtraction of e−(r+1)tn P1(Q0
1−η1P1)
1+r corrects for the fact that the existing

version is discontinued once the upgrade has been introduced at tn.

In the case where τ∗ = τ̂∗, the second term represents the value added by introducing the
upgrade at τ̂∗ compared to selling the existing version forever. In the third case, τ∗ → ∞, the
firm never introduces the upgrade and there is no additional value above selling the existing
version forever.

We continue to derive the dependency of the firm value to the model parameters, as laid out in
Proposition 2.4.
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Proposition 2.4 The sensitivity of the firm value with respect to the parameters Q0
1, P1, η1,

Q0
2, η2, I, r is presented in Table (2)

Sensitivity Value

∂V ∗(τ∗)
∂Q0

1
> 0

∂V ∗(τ∗)
∂η1

< 0

∂V ∗(τ∗)
∂P1

> 0 when P1 <
Q0

1
2η1

< 0 when P1 >
Q0

1
2η1

∂V ∗(τ∗)
∂Q0

2
≥ 0

∂V ∗(τ∗)
∂η2

≤ 0
∂V ∗(τ∗)

∂I ≤ 0
∂V ∗(τ∗)

∂r < 0

Table 2: The firm value’s sensitivity to the model parameters

An increase in the value from selling the existing version will increase the overall value of the
firm, so V ∗(τ∗) is increasing in the customer potential Q0

1 and decreasing in the price penalty
factor η1. We observe the same ambiguous relationship to the price of the existing product as we
did for the optimal investment timing in Proposition 2.2. This implies that V ∗(τ∗) is increasing

in P1 when P1 <
Q0

1
2η1

, and decreasing in P1 when P1 >
Q0

1
2η1

. Hence, the firm value is decreasing
in P1 if the price that was committed to at the introduction of the existing version was chosen
optimally to be P̃1.

Similar to the existing version, an increase in the value of selling the upgrade increases the
overall value of the firm, implying that V ∗(τ∗) is increasing in the initial customer potential Q0

2

and decreasing in the price penalty factor η2 and the investment cost I. For the case τ∗ →∞,
the firm never introduces the upgrade, and the firm value is unaffected by changes in Q0

2, η2 and
I.

Furthermore, an increase in the discount rate reduces the value of future cash flows, which
implies that V ∗(τ∗) is decreasing in r.

2.2 Stochastic product testing and risk of malfunction

As the example with the Samsung Galaxy Note 7 in the introduction illustrated, producers of
durable goods may choose to introduce a product before it is thoroughly tested for malfunction
risks. We therefore relax the assumption that the firm refrains from undertaking the investment
until testing is completed. Instead, we introduce a testing level θ to describe the amount
of testing that has been completed. Overall product testing is often considered a series of
independent sub-tests; a smartphone test could for instance consist of battery testing, CPU
testing and screen responsiveness testing. Hence, a Poisson jump process is a suitable modeling
approach to describe the development in the testing phase. The process for θ is therefore given
as in equation (2.11).

dθ =

{
u Prob = λdt,

0 Prob = 1− λdt.
(2.11)

The jump size u defines the impact of a single sub-test, while λ determines the expected duration
of each sub-test by E[duration] = 1

λ . In reality, each sub-test arrival would likely have a random
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impact. In this case, u can be interpreted as the expected impact of each sub-test arrival instead
of the actual impact. Hence, this modification will not affect the implications of the model, and
we will henceforth assume a deterministic jump size.

Samsung ended up recalling all sold units of their Galaxy Note 7 and essentially lost the entire
revenue from the project. We therefore assume that a malfunction results in the firm losing the
entire value generated by the product, including the revenue up until the malfunction. However,
if a malfunction only resulted in a partial recall, the incentive to introduce the upgrade with
malfunction risk would only be stronger and the results in this paper would still be valid.
Furthermore, we want the marginal effect of completing sub-tests to be decreasing in θ, because
firms often test the most vital parts of the product first. This makes an exponentially decreasing
relation between the testing level θ and the probability of experiencing a malfunction suitable,
which also captures the real world fact that a product will never be completely free of malfunction
risk. The probability of experiencing a malfunction should also decrease when the product has
been for sale over time without malfunctioning. We therefore suggest that the arrival of a
malfunction event can be modeled by a single arrival inhomogeneous Poisson process, given as

dV2 =

{
−V2 Prob = φ(t)dt,

0 Prob = 1− φ(t)dt,
(2.12)

where

φ(t) = αe−(θ+αt), α > 0, (2.13)

is the inhomogeneous arrival rate of a product malfunction, and V2 is the total revenue from
the upgrade. The intensity parameter α determines how quickly the probability of experiencing
a malfunction decreases with the time it has been for sale. The instantaneous probability of
experiencing a malfunction within the next period dt is denoted p(t) and given by p(t) = φ(t)dt.
Further, we assume that the existing version has been for sale for a long time, and the probability
of it malfunctioning is therefore zero.

For the monopolistic firm in this section, the time at which the upgrade malfunctions after
introduction does not matter, because it results in a total recall and all revenue is lost. Hence,
the firm only considers the accumulated probability of ever experiencing a malfunction after the
upgrade is released, hereafter referred to as the disaster probability and denoted pd. The disaster
probability is calculated by integrating the instantaneous probability from zero to infinity and
is given by pd(θ) = e−θ. Figure 2 shows how the disaster probability relates to the testing level.

An important characteristic of the disaster probability is that it is independent of the intensity
parameter α. This is because α does not affect the overall probability of experiencing a mal-
function, but only the expected time at which it will happen. It is therefore irrelevant for the
monopolistic firm in this section.

The firm’s objective is to maximize the expected present value of future cash flows, by optimally
deciding the testing level θ and the time τ to introduce the upgrade, as well as its price. This
optimization problem is formulated in equation (2.14).

max
τ,P2

Eθ

[
V1(τ) + (V2(θ)− I) e−rτ

]
, (2.14)

The term V1(τ) represents the revenue from selling the existing product up until the time of
investment τ , and (V2(θ)− I) e−rτ represents the discounted value of selling the new product

9



Figure 2: The marginal effect of testing is diminishing.

from the investment time onwards. The optimization problem corresponds to an optimal stop-
ping problem of deciding the testing level θ at which the firm is willing to give up the remaining
customer potential Q1(t) in the existing market to undertake the investment. Since the trade-
off depends on the remaining customer potential and not time directly, we prefer to derive the
solution in terms of Q1 and θ instead of τ and θ.

The optimal stopping problem is solved in three steps. First, we derive the value of the firm in
the stopping region, i.e. when it is optimal to invest immediately. Second, we derive the value
of the firm in the continuation region, i.e. the region in which the firm prefers to stay in the
existing market. Finally, we find the testing threshold θ for which the firm is indifferent between
investing and staying in the continuation region.

The value of the firm in the stopping region, denoted V2(θ), is equal to the expected present
value of the revenue from the upgrade and calculated as follows

V2(θ) = pd(θ)V2 [θ| disaster] + (1− pd(θ))V2 [θ| no disaster] . (2.15)

When we assume that a malfunction requires all sold units to be recalled, the revenue in the
event of a disaster is zero. Recall from section 2.1 that the present value of the revenue from

the upgrade when there is no malfunction risk is given by
Q0

2
2

4η2(1+r)
. Hence, the value of the firm

in the stopping region is given as

V2(θ) =
Q0

2
2

4η2(1 + r)

(
1− e−θ

)
. (2.16)

In the continuation region, the value of the firm is derived by applying Itô’s Lemma and the
Bellman equation. This results in a partial differential equation for the continuation value,
denoted F (θ,Q1), given as

rF (θ,Q1) = P1(Q1 − η1P1)− (Q1 − η1P1)
∂F (θ,Q1)

∂Q1
+ λ [F (θ + u,Q1)− F (θ,Q1)] . (2.17)

The first term on the right hand side, P1(Q1 − η1P1), represents the instantaneous profits

from selling the existing version in the next period dt. The second term, −(Q1 − η1P1)
∂F (θ,Q1)
∂Q1

,
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represents the decrease in value over the next period dt from the reduction in customer potential
Q1. The last term, λ [F (θ + u,Q1)− F (θ,Q1)], represents the expected value of a sub-test
arriving in the next period dt.

The optimal stopping problem can now be solved by deriving the testing level θ∗(Q1) at which
the firm is indifferent between investing and staying in the existing market. If the testing level
is above the threshold, i.e. θ > θ∗(Q1), it is optimal for the the firm to introduce the upgrade
immediately. If the testing level is below the threshold, i.e. θ < θ∗(Q1), it is optimal for the
firm to delay the introduction of the upgrade and drain the customer potential in the existing
market further. Therefore, the optimal strategy for the firm is given by the threshold function
θ∗(Q1), dividing the (θ,Q1)-plane into a continuation region and a stopping region.

The threshold function θ∗(Q1) is challenging to derive analytically because the optimal stopping
problem is two-dimensional. Consequently, the available literature on analytical solutions to
such problems is limited. The only contribution that offers a solution approach so far is the
working paper of Hagspiel, Huisman, et al. (2016). In the following sub-section, we solve the
optimal stopping problem by applying their solution approach. However, we argue that their
approach is erroneous and provides an incorrect solution. We therefore present a numerical
solution both to prove this, and to investigate the characteristics of the optimal investment
timing and the firm value.

2.2.1 Analytical solution approach

The working paper of Hagspiel, Huisman, et al. (2016) considers an incumbent firm in a declining
market due to technology development and pressure on continuous innovation. The firm is
already producing and selling an established product and has the option to make an innovating
move in order to develop a more technologically viable product. This will increase the firm’s
demand and, in turn, result in higher revenue. Hagspiel, Huisman, et al. (2016) propose that a
longer waiting time before commitment will result in a more advanced development with better
products, as the technology level and manufacturing expertise is expected to increase in time.
Hence, the firm must weigh the benefits of continuing to sell the established product while
waiting for further technology developments, against committing to the current innovation level
and release a better product with a higher demand. In conformity with Hagspiel, Huisman,
et al. (2016), we consider a two-dimensional problem with a Poisson-process and hence, their
solution approach can be adopted.

Hagspiel, Huisman, et al. (2016) solve the optimal stopping problem by splitting the continua-
tion region into two parts. The split is such that in the second part, it is optimal for the firm to
invest if a technology increment arrives now. In the first part on the other hand, the firm prefers
to stay in the existing market even if a technology increment arrives. Each part of the contin-
uation region requires the solution of a first-order inhomogeneous partial differential equation,
both solved by guessing a general form with undetermined coefficients. The coefficients of the
guessed solutions are then determined by applying value matching conditions between the two
parts, and between the second part and the stopping region at the investment threshold θ∗. The
problem is, however, that the coefficients they derive are themselves functions of the underlying
variables. It turns out that the optimal values derived using the above approach do not solve the
corresponding partial differential equations, indicating that the proposed solution is incorrect.
In order to verify this, we have applied the approach of Hagspiel, Huisman, et al. (2016) to
our model and present the resulting firm value, VA(θ,Q1), and testing threshold, θ∗A(Q1), in
Proposition 2.5.
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Proposition 2.5 The analytical value of the firm, VA(θ,Q1), and investment threshold, θ∗A(Q1),
are given as

VA(θ,Q1) =



Q0
2
2

4η2(1+r)

(
1− e−θ

)
− I θ ≥ θ∗,

λ
λ+r

(
Q0

2
2

4η2(1+r)

(
1− e−(θ+u)

)
− I
)

+ P1(Q1−η1P1)
λ+r+1 θ∗ − u < θ < θ∗,(

λ
λ+r

) θ∗−θ
u

(
Q0

2
2

4η2(1+r)

(
1− e−θ∗

)
− I
)

+ P1(Q1−η1P1)
1+r

(
1−

(
λ

λ+r+1

) θ∗−θ
u

)
θ < θ∗ − u,

(2.18)

θ∗A(Q1) = ln


Q0

2
2

4η2(1+r)

(
1− λ

λ+re
−u
)

(
Q0

2
2

4η2(1+r)
− I
)(

1− λ
λ+r

)
− P1(Q1−η1P1)

λ+r+1

 . (2.19)

To illustrate the shortcomings of these results, both the firm value and the threshold are graphed
in Figure 3.

(a) Investment timing. (b) Firm value.

Figure 3: Results from the analytical solution.
(P1 = 3, η1 = 20, Q0

2 = 180, η2 = 15, I = 200, r = 0.05, λ = 2, u = 0.2)

We have from figure 3a that θ∗ →∞ for Q1 ≈ 68. Figure 3b shows a large drop in the firm value
with increasing Q1 around this region. This is counter-intuitive, as a higher market potential
and, thus, higher demand should increase the firm value. Moreover, the firm value is completely
unaffected by the testing level θ for Q1 > 68, which seems erroneous as well. All Q1 > 68
lies within the region θ < θ∗(Q1) − u of the firm value, so we investigate this region further.

When θ∗ →∞, the only remaining term in this case is P1(Q1−η1P1)
1+r . This is equal to the present

value of the revenue generated by selling the existing version forever and never introduce the
upgrade. Hence, the value function ignores the option to release the upgrade at a later point
in time, which has value even though it is not optimal to exercise it immediately. We therefore
conclude that the analytical solution vastly undervalues the option to release the upgrade in the
continuation region, in particular when θ∗(Q1)→∞.

Another indication of a mistake in the solution approach is the overall shape of the firm value
surface. Q1 is a continuous variable and the firm value should therefore be continuous and
differentiable in Q1 over its entire domain. Figure 3b shows that the firm value is indeed
continuous for all Q1, but it is not smooth for Q1 ≈ 68.
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2.2.2 Numerical solution approach

As an alternative approach to the one suggested by Hagspiel, Huisman, et al. (2016), we have
developed a numerical model to derive the optimal investment threshold as well as the firm
value. The numerical model builds on the method of finite differences. This is a tool commonly
used to solve partial differential equations, and it is carried out by creating a point-grid and
approximating a solution by iterating over the entire domain, starting from some boundary
condition. The value in the stopping region has an analytical expression given in equation
(2.16) and does not require a numerical solution. For the continuation region on the other hand,
we translate equation (2.17) to the following finite difference scheme

F (j, i) =
P1(Q1(i)− η1P1) + (Q1(i)− η1P1)

F (j,i−1)
dQ1

+ λF (j + u
dθ , i)

r + λ+ Q1(i)−η1P1

dQ1

. (2.20)

Here, i is the index in Q1 and j is the index in θ. The step-size in Q1 is dQ1 and the step-size in θ
is dθ. More details on the numerical solution approach and the boundary conditions applied are
presented in Appendix C. Figure 4 graphs the numerical results, θ∗(Q1) and V (θ,Q1), together
with the analytical results,θ∗A(Q1) and VA(θ,Q1), and gives a foundation for comparison.

(a) Investment timing. (b) Firm value.

Figure 4: Comparison of numerical and analytical solutions.
(P1 = 3, η1 = 20, Q0

2 = 180, η2 = 15, I = 200, r = 0.05, λ = 2, u = 0.2)

The two thresholds are equal for Q1 relatively close to η1P1. This is because the value of
exploiting the existing market is negligible for such values, and the investment problem can be
evaluated as a simple call option on the upgrade without any cost of giving up the existing
version. However, when Q1 is increased sufficiently above η1P1 and the existing market becomes
more valuable, the analytical threshold is significantly below the numerical one. This implies
that the analytical model undervalues the benefit of draining the existing market or overvalues
the investment for large Q1.

Another significant difference is the Q∗1 for which θ∗ goes to infinity, i.e. for what Q1 the firm
does not invest immediately regardless of the testing level. If we let θ →∞, we can ignore the
malfunction risk and apply the results from Proposition 2.1 to derive Q∗1. Immediate investment
corresponds to τ̂∗ = 0, which by rearranging gives

Q∗1(θ →∞) =

r

(
Q0

2
2

4η2(1+r)
− I
)

P1
+ η1P1. (2.21)

With the parameter values in Figure 4, we get Q∗1(θ →∞) = 65.24. This verifies the numerical
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threshold function, as it approaches infinity when Q1 approaches 65.24. The analytical threshold
on the other hand approaches 3.7 and is thus proven incorrect.

Both solutions yield the same firm value for small customer potentials and high technology
levels. This is because investment is then triggered in both cases, and the firm values are equal
to the common stopping value. Outside the stopping region, the value given by the analytical
approach is very different from the numerical value, especially for Q1 > 68, as shown in Figure
4b. This is because the analytical firm value ignores the value of the option to introduce the
upgrade later, as previously discussed.

2.3 Characteristics of the solution to the optimal stopping problem

In what follows, we discuss the optimal strategy of the firm and how investment may be triggered.
Remember that the threshold θ∗(Q1) divides the (Q1,θ)-plane into a continuation region where
the firm prefers to stay in the existing market, and a stopping region where the firm introduces
the upgrade immediately. Figure 5 illustrates the two regions, in addition to an example path
for entering the stopping region.

Figure 5: The investment threshold θ∗(Q1) divides the (Q1,θ) plane into a stopping region and
a continuation region.

(P1 = 3, η1 = 20, Q0
2 = 180, η2 = 15, I = 200, r = 0.05, λ = 2, u = 0.2

The firm may transition from the continuation region into the stopping region for two reasons.
The first reason is a continuous decrease in Q1, leading into the stopping region horizontally from
the right, as illustrated by the green line. This suggests that the remaining customer potential
for the existing version has become sufficiently small to trigger investment at the current testing
level. The second reason that could trigger investment is the completion of another sub-test,
i.e. a discrete jump in θ leading into the stopping region vertically, as illustrated by the orange
line. This could for instance correspond to the completion of battery testing for a smartphone.

The main motivation for this paper was to investigate the factors that may drive a firm to
release an upgrade with significant risk of malfunction. In what follows, we investigate how the
the investment threshold depends on the parameters of the testing process, i.e. λ and u. The
sensitivity to other model parameters are through numerous numerical experiments found to be
the same as in Proposition 2.1.

An increase in the impact of completing a single sub-test will increase the benefit of waiting until
the next sub-test is completed, implying that θ∗(Q1) is increasing in u. Similarly, an increase in
the arrival rate results in a shorter expected duration for each sub-test and increases the benefit
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(a) θ∗(Q1) is increasing in λ. (b) θ∗(Q1) is increasing in u.

Figure 6: A faster testing process increases the investment threshold.
(P1 = 3, η1 = 20, Q0

2 = 180, η2 = 15, I = 200, r = 0.05, λ = 2, u = 0.2)

of waiting for the next sub-test to be completed. This implies that θ∗(Q1) is also increasing in
λ. From this we conclude that firms are more willing to accept malfunction risks if the testing
process is slow.

A change in the discount rate has a similar ambiguous effect to what was found in the deter-
ministic model. On one hand, it makes the present more important, which gives incentive to
hasten the introduction of the upgrade. On the other hand, it makes the upgrade relatively
less valuable, which gives incentive to delay the introduction. The threshold discount factor r̃
that splits the regions of which the first and second effect dominates exists also in this case,
but does not have an analaytical expression. We therefore limit the analysis to illustrate the
non-monotonic relation between the discount rate and the test threshold in Figure 7.

(a) θ∗(Q1) is decreasing in r for low r. (b) θ∗(Q1) is increasing in r for high r.

Figure 7: An increase in the discount rate has an ambiguous effect on the investment timing.
(P1 = 3, η1 = 20, Q0

2 = 180, η2 = 15, I = 200, λ = 2, u = 0.2)

In addition to investigating how the optimal investment timing depends on the parameters of
the testing process, it is interesting to see how they affect the firm value. The results of this
numerical analysis are shown in the Figure 8.

An increase in the arrival rate reduces the expected duration of each sub-test. This will make the
testing level increase faster and therefore the failure probability decline faster. The firm value
F (θ,Q1) is therefore increasing in the arrival rate λ. An increase in the impact of the sub-tests
would also make the testing level increase faster. Hence, the firm value F (θ,Q1) is increasing
in the jump size u. The sensitivity to other model parameters are unchanged by the relaxation
of the assumption that the firm must refrain from investment until testing is completed. We
therefore refer to Proposition 2.4 for the sensitivity to the other parameters.
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(a) V (θ,Q1) is increasing in λ. (b) V (θ,Q1) is increasing in u.

Figure 8: A faster testing process increases the firm value.
(P1 = 3, η1 = 20, Q0

2 = 180, η2 = 15, I = 200, r = 0.05, λ = 2, u = 0.2)

An interesting observation from Figure 8 is that the firm value is insensitive to changes in the
testing level for high θ. This follows from our modeling assumption that the marginal benefit of
testing is decreasing, as discussed under the introduction of the disaster probability in Section
2.2. For large level of θ, the disaster probability approaches zero, and further testing will
therefore not increase the firm value. Since the firm value does not increase as more testing is
finished, the firm value is insensitive to the speed of the testing process, i.e. λ and u, for such
large θ. The surface plots in Figure 8 therefore merge for large θ.

3 Innovator-laggard model

In reality, producers of durable goods usually operate in a competitive environment, which may
affect the decision to release an upgrade. For instance, Samsung does not operate as a monopolist
in the market for smartphones, but faces strong competition from Apple in particular. In this
section, we therefore extend the monopoly model to incorporate the aspect of competition. More
specifically, we consider an innovator-laggard problem, suitable for markets where two actors
are dominating, like Apple and Samsung in the smartphone market.

Consider two risk-neutral and profit-maximizing firms that are both selling a similar durable
good. One of the firms, hereafter referred to as the innovator, has already released an upgraded
version of the product and is selling it in a new market. The other firm, hereafter referred
to as the laggard, is currently selling an older version of the product in the existing market.
The laggard makes a decision on when, or if, it should introduce an upgraded version of the
product and enter the new market in competition with the innovator. If it chooses to invest,
the laggard can set the price for the upgrade optimally. Similar to the monopoly model, the
technology for the upgrade goes through a testing phase. In Section 3.1 we assume the testing
phase is deterministic and finishes at time tn. The firm does not invest until the testing phase is
completed, but can then introduce the upgrade by paying a fixed investment cost I. In Section
3.2, we relax this assumption and allow the firm to introduce the upgrade at any stage of a
stochastic testing process.

The laggard is selling the existing version at a price PL1 which, as in the monopoly model, is
treated as a fixed parameter. Let Q1(t) denote the remaining customer potential in the existing
market. The customer potential decreases as more units are sold, and the dynamics are given
by equation (3.1)

dQ1(t) = −qL1 (t)dt, (3.1)
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where qL1 (t) is the instantaneous demand for the existing version. To focus on the effects of the
testing phase and product malfunction risk, we assume no competition across different versions
of the product. The laggard is therefore acting as a monopolist in the existing market, and qL1 (t)
is the same as q1(t) in equation (2.2).

The initial customer potential for upgraded products, Q0
2, is divided between those initially loyal

to the innovator’s product, (1 − ν)Q0
2, and those initially loyal to the laggard’s product, νQ0

2.
The share of the potential that prefers the laggard’s product does not arise until the laggard
introduces the upgrade. Customers in this market may switch from being loyal to one firm to the
other, depending on the relative prices of the innovator’s product, P I2 , and the laggard’s product,
PL2 . The degree of loyalty among the customers in the market depends on the characteristics of
the goods sold. For example, Ensslen et al. (2016) finds that customers buying electric vehicles
are less sensitive to relative prices than customers buying fossil fueled vehicles. We therefore
introduce a disloyalty factor γ to capture the degree of brand loyalty in the market.

Let QL2 (t) denote the remaining customer potential in the new market loyal to the laggard’s
product at time t. The customer potential is decreasing as more units are sold and follows the
dynamics in equation (3.2)

dQL2 (t) = −qL2 (t)dt, (3.2)

where qL2 (t) is the instantaneous demand for the upgrade in the new market. We propose the
following structure function for the instantaneous demand

qL2 (t) = QL2 (t)− η2PL2 + γ(P I2 − PL2 ). (3.3)

The first two terms are similar to the monopoly demand in equation (2.2) and depends on the
quality of the product, η2, the price, PL2 , and the remaining customer potential QL2 (t). The
third term, γ(P I2 − PL2 ), is the additional demand the laggard can achieve by stealing from or
losing customers to the innovator, representing the competition effect.

3.1 Deterministic product testing

The value of the laggard that introduces the upgrade at time τ has similar form as in equation
(2.3). Applying the demand functions from equations (2.2) and (3.3), the value of future cash
flows, denoted VL(τ, PL2 ), if the laggard invests at time τ and price PL2 is given as

VL(τ, PL2 ) =

∫ tn

0
PL1 q

L
1 (t)e−rtdt+

∫ τ

tn

PL1 q
L
1 (t)e−rtdt+

∫ ∞
τ

PL2 q
L
2 (t− τ)e−rtdt− Ie−rτ . (3.4)

The value VL(τ, PL2 ) in equation (3.4) consists of two parts. The first two terms represent the
value of selling the existing product as a monopolist until time τ , while the last two terms
represent the value of investing at τ and selling the upgrade onwards. The firm faces a similar
trade-off in deciding the investment timing as in the monopoly case, between draining the
existing market and reducing discounting on the revenue from the upgrade.

The objective of the laggard is to maximize its present value of future cash flows by optimally
deciding the time of introduction and price of the upgrade. The maximized present value of
future profits, denoted V ∗L , is found by solving the following optimization problem:
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V ∗L (τ, P2) =

∫ tn

0
PL1 q

L
1 (t)e−rtdt+max

τ

[∫ τ

tn

PL1 q
L
1 (t)e−rtdt+ max

PL2

[∫ ∞
τ

PL2 q
L
2 (t− τ)e−rtdt

]
− Ie−rτ

]
.

(3.5)

We derive the optimal investment timing, denoted τ∗L, in the same steps as in Section 2.1. We
therefore only summarize the steps and present the results, while the detailed calculations are
placed in Appendix C. First, we derive the present value of the revenue after introduction at
time τ , denoted V L

2
∗
, given as

V L
2
∗

= max
PL2

[∫ ∞
τ

qL2 (t− τ)PL2 e
−rtdt

]
,

= PL2
∗ νQ0

2 − η2PL2
∗

+ γ(P I2 − PL2
∗
)

1 + r
e−rτ , (3.6)

where PL2
∗

is the optimal price for the upgrade. Second, we derive this optimal price by applying
the first-order condition for optimality, resulting in

PL2
∗

=
νQ0

2 + γP I2
2(η2 + γ)

. (3.7)

The prices of the innovator’s and the laggard’s products are strategic complements, moving in
the same direction. As in the monopoly model, the optimal price is increasing in the customer
potential, i.e. ν and Q0

2 and decreasing in η2. When the customers are completely loyal to
their preferred product, i.e. when γ = 0, no competition effect is present, and the optimal
price is the same as in the monopoly case. It is also worth noticing that even though the
laggard has a second-mover advantage in determining the price, it may choose a price higher
than the innovator’s. More specifically, it chooses a higher price if the innovator’s price is below

P̄ I2 =
νQ0

2
2η2+γ

. When γ = 0 and no competition is present, P̄ I2 approaches the optimal monopoly

price with customer potential νQ0
2.

Finally, we derive the optimal investment timing τ∗L by maximizing the expected present value
of the profits over the entire investment horizon. This result is presented in Proposition 3.1,
along with the firm value V ∗L (τ∗L).

Proposition 3.1 The optimal time to introduce the upgrade, τ∗L, and the corresponding firm
value, V ∗L (τ∗L), is given by9

τ∗L = ln

 PL1 (Q1 − η1PL1 )

r
(
PL2
∗ νQ0

2−η2PL2
∗
+γ(P I2−PL2

∗
)

1+r − I
)
 , (3.8)

V ∗L (τ∗L) =
PL1 (Q1 − η1PL1 )

1 + r
+
PL2
∗ νQ0

2−η2PL2
∗
+γ(P I2−PL2

∗
)

1+r − I
1 + r

 PL1 (Q1 − η1PL1 )

r
(
PL2
∗ νQ0

2−η2PL2
∗
+γ(P I2−PL2

∗
)

1+r − I
)
−r ,

(3.9)

where

PL2
∗

=
νQ0

2 + γP I2
2(η2 + γ)

. (3.10)

9The same three cases as in Proposition 2.1 apply, but we exclude the cases when τ∗ = tn and τ∗ → ∞ as
they are similar to the monopoly case.
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An increase in the innovator’s price P I2 increases the demand for and, thus, the revenue from
the upgrade. This increases the value of introducing the upgrade and makes the laggard invest
earlier. When the laggard’s price is lower than the innovator’s, i.e. PE2 < P I2 , an increase in the
disloyalty factor γ increases the revenue from the upgrade and hastens investment. Furthermore,
a higher market share ν also makes investing in the upgrade more attractive and makes the
laggard introduce it earlier 10.

3.2 Stochastic product testing and risk of malfunction

In this section we extend the duopoly model to include the risk of product malfunction. Pre-
viously, we have argued that the occurrence of a product malfunction in the real world often
results in a total product recall for the exposed firm. In case of such an event, the customers who
initially preferred the recalled product now have to buy substitutes from another brand. When
two similar firms are operating in a duopoly, this would imply that all customers would purchase
from the producer of the remaining product or not at all. Hence, if either the innovator’s or the
laggard’s product malfunctions, the other firm will become a monopolist and, thus, receive the
entire initial customer potential Q0

2 of the new market.

Suppose the innovator has just introduced its upgrade in the new market at a testing level θI . Let
pI(t) denote the instantaneous probability of the innovator experiencing a product malfunction
within the next period dt. As suggested in Section 2.2, this probability is given by

pI(t) = φI(t)dt = αe−(θ
I+αt)dt. (3.11)

The innovator’s disaster probability, i.e. the probability that its product will ever malfunction
given that it has not up until time t, is denoted pId(t) and given as pId(t) = e−(θ

I+αt). Unlike in
the monopoly model, α now affects the strategy of the laggard, as it determines how quickly the
innovator’s risk probabilities pI(t) and pId(t) reduce over time. Figure 9 shows how the arrival
rate, φI(t), of the innovator’s product malfunction reduces over time for different α.

Figure 9: Higher intensity factor α decreases φI(t) faster
(θI = 0.4)

10 The sensitivities to the model parameters that are common remain the same, so we refer to Propositions 2.2
and 2.4 for η1, η2, PL1 , Q0

2, I.
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A higher α yields a higher arrival rate of product malfunction for small values of t that will
converge to zero fast when t is increased. A high α would therefore be suitable for products that
are expected to malfunction shortly after release, if ever. Such products could for instance be
smartphones or computers. Lower values of α result in a more evenly distributed arrival rate,
making it suitable for products that are more susceptible to malfunction over time, and not
only in the very first period after release. Such products could for instance include car brakes
or vacuum cleaners.

We prefer to determine the strategy in terms of remaining customer potential Q1 rather than
time t, as in Section 2.2. However, time has a direct effect on the innovator’s risk probabilities
and must be considered in this section. The deterministic relation between customer potential
in the existing market and time, from equation (2.1), allows us to represent time in terms of Q1

and Q0
1, by relation (3.12), and still solve the problem in terms of Q1 and θ.

t = ln

(
Q0

1 − η1PL1
Q1 − η1PL1

)
(3.12)

Applying this to pI(t) and pId(t), we find the probabilities in terms of remaining customer
potential as

pI(Q1) = αe−θ
I

(
Q1 − η1PL1
Q0

1 − η1PL1

)α
dt, (3.13)

pId(Q1) = e−θ
I

(
Q1 − η1PL1
Q0

1 − η1PL1

)α
. (3.14)

The objective of the laggard is to maximize the expected present value of future cash flows, by
optimally deciding the time τ and testing level θ for the upgrade, as well as the price, PL2 . This
optimization problem is formulated in equation (3.15)

max
τ,PL2

Eθ

[
V1(τ) + (V2(θ, τ)− I) e−rτ

]
. (3.15)

The terms have the same interpretation as in equation (2.14), but V2 is now also a function
of time, because it depends on the innovator’s risk probabilities. This optimization problem
corresponds to an optimal stopping problem, which can be solved by finding the testing level θ for
which the laggard is indifferent between introducing the upgrade and staying in the continuation
region.

We start by describing the value of the laggard in the stopping region. After the upgrade is
introduced to the new market, there are four scenarios to potentially materialize: (1) neither
firms’ products malfunction, (2) only the innovator’s product malfunctions, (3) only the laggard’s
product malfunctions and (4) both firms’ products malfunction. Each outcome has a probability
determined by the current testing level θ of the laggard, the testing level θI at which the
innovator’s product was introduced, and for how long the innovator has been active. We denote
the only two non-zero revenue outcomes (1) and (2) as d̄I and dI respectively. The value of the
laggard in the stopping region, denoted V2(θ,Q1), is equal to the expected present value of the
revenue from the upgrade, as presented in equation (3.16).

V2(θ,Q1) =
(
1− pLd (θ)

)
pId(Q1)E[V2|dI ] +

(
1− pLd (θ)

) (
1− pId(Q1)

)
E[V2|d̄I ]. (3.16)
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Here, E[V2|dI ] and E[V2|d̄I ] are the expected present values of the revenue given that the in-
novator’s product malfunctions and not, respectively. Evaluating the conditional expressions
results in the stopping value in Proposition 3.2.

Proposition 3.2 The value of the laggard in the stopping region, V2(θ,Q1), is given as

V2(θ,Q1) =
(
1− pLd (θ)

)
pId(Q1)P

L
2

[
νQ0

2 − η2PL2 + γ(P I2 − PL2 )

1 + r

(
α

α
− α

α+ r + 1
+

α

α+ r + 2

)
+

(1− ν)Q0
2 − γ(P I2 − PL2 )

1 + r

α

α+ r + 1

]
(3.17)

+
(
1− pLd (θ)

) (
1− pId(Q1)

) [
PL2

νQ0
2 − η2PL2 + γ(P I2 − PL2 )

1 + r

]
where

pId(Q1) = e−θ
I

(
Q1 − η1PL1
Q0

1 − η1PL1

)α
, (3.18)

pLd (θ) = e−θ. (3.19)

The first part represents the expected value if only the innovator’s product malfunctions and the
laggard at some time becomes a monopolist in the new market. The second part represents the
expected value if neither products malfunction. A high disaster probability pId of the innovator
gives the monopoly outcome the highest weight, while a low pId gives the duopoly outcome the
highest weight. Since the monopoly outcome is more attractive, the stopping value is strictly
decreasing in the innovator’s testing level θI . The innovator’s disaster probability is also larger
for large Q1 before the product becomes established, and the stopping value is therefore higher
for large Q1. The effect of γ on the stopping value is ambiguous and depends on the relative
prices PL2 and P I2 . More specifically, a highly competitive market, i.e. high γ, increases the
stopping value when the innovator’s price is high relative to the laggard’s.

When the innovator’s product is certain to malfunction, i.e. pId = 1, and is expected to do
so immediately, i.e. α → ∞, the laggard becomes a monopolist immediately after investment.
Hence, the stopping value of the laggard approaches the monopoly value from equation (2.16).
If the innovator’s product is certain to never malfunction, i.e. pId = 0, the laggard will never
become a monopolist in the new market. The stopping value is then equal to the duopoly revenue
in equation (3.6), weighted by the probability that the laggard’s product does not malfunction.

Following Proposition 3.2, we derive the optimal price, PL2
∗
, for the laggard to set for the up-

grade. The result is presented in Lemma 3.1.

Lemma 3.1 The optimal price, PL2
∗
, to charge by the laggard is given by

PL2
∗
(Q1) =

νQ0
2 + γP I2 + pId(Q1)

α
α+r+1

[
(1− ν)Q0

2 − γP I2 −
νQ0

2+γP
I
2

α+r+2

]
2(η2 + γ)− 2pId(Q1)

α
α+r+1

[
γ + η2+γ

α+r+2

] (3.20)

The optimal price exists on a continuum between the deterministic duopoly price in equation
(3.10) and the deterministic monopoly price in equation (2.6). A high probability of becoming
a monopolist, i.e. high pId, and short expected time until it happening, i.e. high α, yields a
price that is closer to the monopoly price. On the other hand, a low probability of becoming a
monopolist or a long expected time until it happening, yields a price closer to the duopoly price.
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Furthermore, the prices are strategic complements moving in the same direction. However, the
sensitivity to P I2 is only significant if a duopoly outcome is likely and the competition effect
appears, which is heavily influenced by the disaster probability pId.

As in the deterministic case, the laggard has a second-mover advantage, but may still choose

to set a higher price than the innovator. Now, the threshold price, P̃ I2 , also depends on the
likelihood of becoming a monopolist and is given by

P̃ I2 =
νQ0

2 + pId(Q1)
α

α+r+1

[
(1− ν)Q0

2 −
νQ0

2
α+r+2

]
2η2 + γ − pId

α
α+r+1

[
γ + 2η2+γ

α+r+2

] . (3.21)

In the extreme case where the innovator never experiences a product malfunction, i.e. when

pId = 0, P̃ I2 approaches the threshold price from the deterministic case. If, on the other hand,
the innovator’s product malfunctions immediately, i.e. α→∞ and pId = 1, the laggard chooses

the optimal monopolist price and P̃ I2 , thus, approaches
Q0

2
2η2

.

We now turn to the value in the continuation region. If the laggard decides not to invest, there
are four possible outcomes over the next period dt: (1) the innovator’s product malfunctions
and another sub-test is completed, (2) the innovator’s product malfunctions and no sub-test is
completed, (3) the innovator’s product does not malfunction and another sub-test is completed
and (4) the innovator’s product does not malfunction and no sub-test is completed. Considering
these outcomes and the instantaneous probabilities of each, we derive the following partial
differential equation for the firm value Fd(θ,Q1) in the continuation region

rFd(θ,Q1) = PL1 (Q1 − η1PL1 )− (Q1 − η1PL1 )
∂F (θ,Q1)

∂Q1
(3.22)

+ λ [Fd(θ + u,Q1)− Fd(θ,Q1)] + ae−(θ
I+αt) [Fm(θ,Q1)− Fd(θ,Q1)] .

Fm denotes the value of the laggard if the innovator experiences a malfunction. The term involv-
ing [Fm(θ,Q1)− Fd(θ,Q1)] therefore represents the additional value of becoming a monopolist
in the next period dt, weighted by the instantaneous probability pI(Q1) of the innovator expe-
riencing a malfunction in this period. The remaining terms have the same interpretation as in
equation (2.17).

As in the monopoly case, this partial differential equation has to be solved numerically. Let i
be the indexed step of the customer potential Q1 and j be the indexed step of the testing level
θ. Furthermore, let dθ be the grid step in θ and dQ1 be the grid step in Q1. Equation (3.22)
can then be translated into the following finite difference scheme for the value of the laggard in
the continuation region:

Fd(j, i) =
PL1 (Q1(i)− η1PL1 ) + (Q1(i)− η1PL1 )F (j,i−1)

dQ1
+ λFd(j + u

dθ , i) + αe−θ
I
(
Q1(i)−η1PL1
Q0

1−η1PL1

)α
Fm(j, i)

r + λ+ αe−θI
(
Q1(i)−η1PL1
Q0

1−η1PL1

)α
+

Q1(i)−η1PL1
dQ1

(3.23)

We continue to solve the optimal stopping problem by deriving the testing level θ∗d(Q1) for
which the firm is indifferent between introducing the upgrade and continuing to sell the existing
version. The threshold is found by using equation (3.23) for the value in the continuation region,
and equation (3.2) for the value in the stopping region. The optimal strategy for the laggard if
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the innovator’s product has not malfunctioned at current Q1 is then given by θ∗d(Q1), dividing
the (θ,Q1)-plane into a continuation region and a stopping region. We also derive the investment
threshold given that the innovator has experienced a malfunction at current Q1, denoted θ∗m(Q1),
by the numerical procedure in Section 2.2.2. A new region then arises, behaving as a stopping
region if the innovator’s product has malfunctioned, and a continuation region if it has not. The
three different regions are presented in Figure 10.

Figure 10: The investment thresholds θ∗m and θ∗d divide the (Q1,θ)-plane into three distinct
strategic regions11.

(PL1 = 3, η1 = 20, Q0
2 = 400, η2 = 15, I = 200, r = 0.05, λ = 2, u = 0.2, P I2 = 8, γ = 5, ν = 0.5,

α = 1.5, θI = 0.4)

In the monopoly case, investment may be triggered by a continuous decrease in Q1 or a discrete
jump in the testing level θ, taking the firm from the continuation region into the stopping re-
gion. Now, investment may also be triggered by the innovator experiencing a malfunction in the
conditional stopping region. If the innovator experiences a malfunction for such (θ,Q1), exem-
plified by the point (θ̄, Q̄1), the region becomes a stopping region, and the laggard introduces
the upgrade.

The difference between θ∗d(Q1) and θ∗m(Q1) in Figure 10 shows that the laggard requires a higher
testing level to trigger investment when a risky innovator is present. This is because it is more
valuable for the laggard if the innovator’s product malfunctions before the laggard has introduced
its upgrade. The laggard is then able to set the optimal monopoly price and reap the full benefit
of becoming a monopolist. On the other hand, if the innovator’s product malfunctions after
the investment is made, the laggard has to operate in the new market with the pre-committed
price. This gives an incentive to stay in the continuation region and observe the innovator’s
product. We therefore conclude that the laggard has a greater value of staying in the existing
market when a risky innovator is present in the new market and, thus, introduces the upgrade
with a lower risk of malfunction. For the rest of this paper, we will refer to this as the ”delaying
effect”.

The main motivation for this paper was to investigate the factors that drive a firm to release
an upgrade with significant risk of malfunction. In the monopoly model, we studied how the
characteristics of the testing process affected the strategy. In the remainder of this section, we

11Numerous numerical experiments confirm that this is the general shape for all parameter values.
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focus on how the presence of a risky innovator affects the investment decision. In particular, we
focus on the threshold θ∗d(Q1), assuming the innovator’s product has not malfunctioned.

The degree of which the innovator affects the optimal strategy depends on how risky its product
is, i.e. the testing level θI at which it was released. Figure 11 illustrates this for values of θI

equal to 0.2, 0.4 and 0.6.

(a) Lower θI delays investment. (b) Lower θI increases firm value.

Figure 11: Sensitivity to the innovator’s testing level θI .
(PL1 = 3, η1 = 20, Q0

2 = 400, η2 = 15, I = 200, λ = 2, r = 0.05, u = 0.2, P I2 = 8, γ = 5, ν = 0.5,
α = 1.5)

If the innovator released its product before it was thoroughly tested, implying low θI , it is more
likely to malfunction. In this case, the laggard has a larger incentive to stay in the existing market
and observe the innovator’s product. Hence, the investment threshold θ∗d(Q1) is decreasing in θI

due to the decreased delaying effect, as illustrated in Figure 11a. We conclude that the laggard
is less willing to accept malfunction risk for its own product if the innovator’s product has not
been thoroughly tested and is likely to malfunction.

If the innovator’s product was released at a low testing level, the laggard is more likely to become
a monopolist and has a higher firm value. The laggard’s value is therefore strictly decreasing
in θI , as shown in Figure 11b. However, the figure also shows that the firm values converge at
low Q1 for all θI . This is because the innovator’s product has then been sold for a long time
without experiencing malfunction, and the probability of it ever malfunctioning has decreased
to zero irrespective of the initial testing level.

The intensity parameter α has two effects on the optimal investment timing. The first effect
is that it determines how quickly the probability of the innovator’s product malfunctioning
approaches zero and, thus, the likelihood of the laggard becoming a monopolist at a given
Q1. The second effect is that it determines the expected time until the innovator’s product
malfunctions. Hence, it affects the expected discounting on the benefit of becoming a monopolist
and, thus, the expected present value of it. The influence of α on the strategy and the laggard’s
value is illustrated in Figure 12 for values of α equal to 0.01, 0.1 and 1, as well as the extreme
cases α = 0 and α→∞ for the strategy.

Figure 12a shows that increasing α has a non-monotonic effect on the investment timing. This
finding arises because the two effects discussed work in opposite directions when α is increased:
it decreases the probability of the innovator’s product malfunctioning, but increases the expected
present value of becoming a monopolist. The ambiguous relation becomes clearer when a fixed
Q1 is considered, as illustrated for Q1 = 60.6 in Figure 13. For low α, the dominating effect
of increasing α is that the expected present value of becoming a monopolist increases. This
increases the delaying effect, and the laggard requires a higher testing threshold θ∗d(Q1) to trigger
investment. For high α, the dominating effect of increasing α further is that the probability of

24



(a) α has an ambiguous effect on the investment
timing.

(b) High α implies higher (lower) firm value at high
(low) Q1.

Figure 12: Sensitivity to the intensity parameter α.
(PL1 = 3, η1 = 20, Q0

2 = 400, η2 = 15, I = 200, r = 0.05, λ = 2, u = 0.2, P I2 = 8, γ = 5, ν = 0.5,
θI = 0.4)

becoming a monopolist decreases. This reduces the delaying effect, and the laggard is willing
to invest at a lower θ∗d(Q1). For an intermediate region of α, both the expected present value
and the probability of becoming a monopolist is high, making the delaying effect strong enough
that the laggard is unwilling to invest at any testing level θ.

Figure 13: The intensity parameter α has a non-monotonic effect on the investment timing.
(PL1 = 3, η1 = 20, Q0

2 = 400, η2 = 15, I = 200, r = 0.05, λ = 2, u = 0.2, P I2 = 8, γ = 5, ν = 0.5,
θI = 0.4)

A consequence of the non-monotonic effect of increasing α is that the investment thresholds
for the extreme cases α = 0 and α → ∞ are equal. In fact, when α = 0, the heavy expected
discounting on the benefit of becoming a monopolist makes it worthless, while for α → ∞, the
probability of becoming a monopolist is zero for all Q1 where the laggard considers investment.
Hence, in both cases, the risky innovator yields no delaying effect and does not affect the strategy.
Both extremes therefore have the same investment threshold, illustrated by the red line in Figure
12a.

Figure 12a also shows a drop in the threshold going from Q1 = 60 + dQ1 to 60, for α = 0.1
and α = 0.01. This is because α is so low, that the probability of the innovator experiencing a
malfunction is significant even at Q1 = 60 + dQ1. At the same time, α is not yet low enough
to erode the value of becoming a monopolist. Hence, the risky innovator yields a significant
delaying effect even for Q1 = 60 + dQ1. However, when the customer potential drops to 60,
the exponential relation between Q1 and time implies that the innovator has been active for an
infinite amount of time. The probability of the innovator’s product malfunctioning then drops
to zero regardless of α, and the threshold depends solely on the testing process. Thus, the
thresholds at Q1 = 60 are equal for all values of the intensity parameter. This effect is also
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present in the value of the laggard in Figure 12b, most clear for α = 0.1. The fact that the
innovator may malfunction has a high value at Q1 = 60 + dQ1, which vanishes completely at
Q1 = 60. We conclude that for certain intensity parameters, the laggard is not willing to accept
any risk of malfunction unless the innovator has malfunctioned, and, thus, delays investment
forever.

The ambiguous effect of increasing α is present in the value of the laggard as well. For high Q1,
the dominating effect is that large α decreases the expected time until the innovator experiences
a malfunction, which increases the firm value. For low Q1, the dominating effect is that large
α implies a lower probability of the innovator experiencing a malfunction, which decreases the
firm value. The values therefore intersect at a line where the effects are equal, as illustrated
in Figure 12b. Generally, we find that the laggard’s value is increasing in α for high Q1 and
decreasing in α for low Q1.

The strategy of the laggard also depends on the competitiveness of the duopoly market, deter-
mined by the disloyalty parameter γ. The degree of loyalty heavily influences the value of acting
in duopoly with the innovator, and its impact on the investment timing is shown in Figure 14.

(a) High γ hastens investment if P I
2 is high.

(P I
2 = 10)

(b) High γ delays investment if P I
2 is low.

(P I
2 = 4)

Figure 14: Sensitivity to the competition parameter γ.
(PL1 = 3, η1 = 20, Q0

2 = 400, η2 = 15, I = 200,r = 0.05, λ = 2, u = 0.2, ν = 0.5, α = 1.5,
θI = 0.4)

A market with customers that have low product loyalty, i.e. high γ, allows the firm with lower
price to steal more customers from the competitor. Hence, a higher γ increases the value of
investing, as long as the laggard chooses a price lower than the innovator’s. However, we showed
in equation (3.21) that although the laggard has a second-mover advantage in determining the

price, it sets a higher price than the innovator if P I2 < P̃ I2 . A higher γ will then decrease the
value of investing, and the laggard requires a higher testing level to trigger investment. The

threshold θ∗d(Q1) is therefore decreasing in γ for P I2 > P̃ I2 and increasing for P I2 < P̃ I2 . From
this, we conclude that if the market for the upgrade is highly competitive and the innovator’s
price is high relative to the laggard’s, the laggard is more willing to accept malfunction risk for
its upgrade.

The share of potential customers for the upgraded versions who are initially loyal to the laggard,
ν, also influences the value of entering into a duopoly with the innovator. Increasing the market
share increases the demand for the laggard’s product, which implies a higher value of investing.
Hence, the testing threshold θ∗d(Q1) that triggers investment is lower for large ν, and the laggard
is more willing to accept malfunction risk for its product.

Finally we find a similar ambiguous relation between the discount rate and the optimal invest-
ment timing as in the monopoly model. This effect is most clear when we fix Q1 and graph the
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investment timing as a function of r, as presented in Figure 15.

Figure 15: The discount effect r has an ambiguous effect on the optimal strategy.
(PL1 = 3, η1 = 20, Q0

2 = 400, η2 = 15, I = 200, λ = 2, u = 0.2,P I2 = 8, γ = 5, ν = 0.5, α = 1.5,
θI = 0.4)

Recall that in the monopoly model, increasing r had two effects on the investment timing;
(i) the present becomes relatively more important, and (ii) the net present value from the
upgrade decreases. In this section, the investment timing is in addition affected by the delaying
effect. This effect arises from the relative benefit of becoming a monopolist before introducing
the upgrade versus after, which does not depend on the discount rate. Hence, isolating the
delaying effect of the innovator, an increase in r only results in the present becoming relatively
more important and, thus, hastens investment. We therefore find that for high Q1, where the
delaying effect of the innovator influences the strategy more heavily, effect (i) dominates for a
larger range of r. The threshold rate r̃ is then increasing in Q1, as illustrated in Figure 15.

4 Conclusions

This paper examines a firm facing an investment decision on when to introduce an upgraded
version of an existing durable good. The upgrade is subject to a risk of malfunction that depends
on the progress of an uncertain testing process. We consider both the case when the firm has
monopoly rights in the market for the upgrade, and when an innovator is already present in
the new market. The paper extends the durable goods literature by introducing the concepts
of product testing and malfunction risks. Furthermore, it extends the literature on investment
under uncertainty by developing a model that accounts for the specific features of durable goods.

We find that a monopolistic firm’s incentive to introduce a risky upgrade in the market may
be explained by three reasons. First, an incentive to release the risky upgrade arises when the
profits from selling the existing version has dropped. Second, if the upgrade is of high quality
and has a high expected initial stock of potential customers, the expected value of the investment
is large. This gives incentive to invest early even if significant malfunction risk is present. Third,
a slow testing process may drive the firm to gamble on a risky upgrade rather than wait for
more sub-tests to complete. We also find that the presence of an innovator with a risky upgrade
gives the laggard an incentive to stay longer in the market for the existing version and observe
the innovator’s product. Hence, the laggard requires a higher testing level to justify investment
and is less willing to accept malfunction risk. This may have been one of the reasons why
Nokia waited too long to enter the smartphone market in 2007 and ended up losing the entire

27



mobile phone market to innovating companies like Apple and Samsung12. The delaying effect is
stronger if the innovator did limited product testing before it released its product, but decreases
over time as the innovator’s product has been sold without malfunctioning. Another interesting
finding is that a change in the discount rate has an ambiguous effect on the optimal timing of
the upgrade introduction, both in the monopoly and the duopoly case.

In what follows, we present several suggestions for further research. First of all, we assume that
a second-hand market does not exist. Including an active second-hand market would make the
model more suitable for a real world case, as companies like Norwegian Finn.no and American
Craigslist and eBay have made it easier than ever for customers to sell their used durable goods.
Second, the paper only considers the case of separate production, i.e. firms discontinue the
previous version when introducing an upgrade. In reality, most firms continue to sell the old
version at a discounted price after the upgrade is introduced. The relaxation of this assumption
would, however, come at the cost of added complexity from the time inconsistency problem
introduced in Coase (1972). Finally, one could allow for cross competition between the markets
like in Arslan et al. (2009) to make the model more realistic.

An interesting extension for the duopoly model would be to consider a leader-follower model
similar to Steg and Thijssen (2015) instead of an innovator-laggard model. To continue the
smartphone example used throughout the paper, companies like Samsung and Apple are con-
tinuously releasing upgraded versions of their products. It would therefore be interesting to
investigate the incentives to be the first-mover in the transition from one generation of smart-
phones to the next, and whether a preemption game would appear. However, such an extension
would require modeling of two distinct Poisson processes, one for each company, as it would
be unreasonable to argue that they have common testing. This would complicate the model
drastically and was therefore left out of scope.
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Appendix A

Parameter List

Parameter Symbol Example Values

Interest rate r 0.05
Initial customer potential in existing market Q0

1 150
Initial customer potential in new market [Duo (Mon)] Q0

2 400 (180)
Remaining customer potential in existing market Q1 N/A
Remaining customer potential in new market Q2 N/A
Price of product in existing market P1/P

L
1 3

Price of product in new market. P2 N/A
Price of product in new market for innovator. P I2 8
Price of product in new market for laggard. PL2 N/A
Price penalty factor for product in existing market η1 20
Price penalty factor for product in new market η2 15
Customer disloyalty parameter γ 5
Initial fraction of customers loyal to laggard in new market ν 0.5
Investment cost I 200
Arrival rate of completed sub-tests λ 2
Poisson jump size u 0.2
Testing level at which innovator has invested θI 0.4
Intensity parameter α 1.5

Appendix B

B.1 Deterministic monopoly problem

B.1.1 Derivation of demand relations

To find an expression for the demand q(t) to insert into the value function in equation (2.4), we
solve the following differential equations for i = 1, 2:

dQi(t) = −qi(t)dt = −(Qi − ηiPi)dt, i = 1, 2, (B.1)
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with the boundary conditions Q1(0) = Q0
1 and Q2(0) = Q0

2. The solutions are

Q1(t) =η1P1 + (Q0
1 − η1P1)e

−t, (B.2)

Q2(t) =η2P2 + (Q0
2 − η2P2)e

−t. (B.3)

Inserted into the expressions for instantaneous demand as given by equation (2.2), this gives

q1(t) =(Q0
1 − η1P1)e

−t, (B.4)

q2(t) =(Q0
2 − η1P1)e

−t. (B.5)

B.1.2 Proof of Proposition 2.1

Derivation of optimal price

We start with equation B.4 and B.5 insert these into the value function in (2.4). The expression
for firm value then becomes

V ∗ =

∫ tn

0
(Q0

1 − η1P1)e
−tP1e

−rtdt+ max
τ

[∫ τ

tn

(Q0
1 − η1P1)e

−tP1e
−rtdt− Ie−rτ +

max
P2

[∫ ∞
τ

(Q0
2 − η2P2)e

−(t−τ)P2e
−rtdt

]]
. (B.6)

Applying the first-order condition for maximization on

max
P2

[∫ ∞
τ

P2(Q
0
2 − η2P2)e

−(t−τ)e−rtdt

]
(B.7)

gives

d

dP2

[
P2
Q0

2 − η2P2

1 + r
e−rτ

]
= 0. (B.8)

Solving equation (B.8) yields the optimal price P ∗2 as presented in equation (2.6). Inserting this
into (B.7) gives the optimal value V ∗2 as presented in equation (2.7).

Derivation of optimal investment timing τ∗

We continue by inserting the expression for V ∗2 in the inner maximization in (B.6) and apply the
first-order condition for maximization on the outer maximization with respect to the investment
timing τ

d

dτ

[
P1

(Q0
1 − η1P1)

1 + r

[
e−(1+r)tn − e−(1+r)τ

]
− Ie−rτ +

(Q2
0)

2

4η2(1 + r)
e−rτ

]
= 0.

(B.9)
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This gives the following equation for the optimal timing

P1

(
Q0

1 − η1P1

)
e−(1+r)τ

∗ − r
(

(Q0
2)

2

4η2(1 + r)
− I
)
e−rτ

∗
= 0 (B.10)

and results in the expression for τ̂∗ in the case τ∗ = τ̂∗ in Proposition 2.1.

Proof that τ̂∗ is an optimum

Applying the convexity condition to confirm optimality requires interpretation of the second
derivative. Instead, we determine the regions of which the value increases and decreases in τ by
evaluating the sign of the expression in equation B.10.

First, we consider the region of which the firm value increases in τ

∂V (τ)

∂τ
> 0, (B.11)

P1(Q
0
1 − η1P1)e

−(1+r)τ − r
(

(Q0
2)

2

4η2(1 + r)
− I
)
e−rτ > 0, (B.12)

τ < ln

 P1(Q1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
 = τ̂∗. (B.13)

This implies that ∂V (τ)
∂τ > 0, i.e. it is beneficial to invest at a later time then τ , when τ < τ̂∗.

Similarly, we consider the region of which the firm value decreases in τ

∂V (τ)

∂τ
< 0 (B.14)

P1(Q
0
1 − η1P1)e

−(1+r)τ − r
(

(Q0
2)

2

4η2(1 + r)
− I
)
e−rτ < 0 (B.15)

τ > ln

 P1(Q1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
 = τ̂∗ (B.16)

This implies that ∂V (τ)
τ < 0, i.e. it is beneficial to invest earlier than τ , when τ > τ̂∗. Altogether,

we find that it is optimal to invest later when τ < τ̂∗ and earlier when τ > τ̂∗ and therefore,
that the optimal investment timing is in fact τ̂∗.

B.1.3 Optimal price P1

We interpret P1 as a parameter, so the following only applies for the purpose of sensitivity anal-
ysis as discussed in Proposition 2.2 and 2.4. We apply the first-order condition for maximization
w.r.t. the price P1 to the the firm value when τ∗ = τ̂∗ in Proposition 2.3. This gives the equation

∂V (τ̂∗, P1)

∂P1
=
Q0

1 − 2η1P1

1 + r

1−

P1
(Q0

1 − η1P1)

r

(
Q0

2
2

4η2(1+r)
− I
)

−(1+r)

 = 0. (B.17)
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This has the candidate solutions P c11 =
Q0

1
2η1

and P c21 that is the solution to

1−

P c21 (Q0
1 − η1P c21 )

r

(
Q0

2
2

4η2(1+r)
− I
)

−(1+r)

= 0.

We evaluate the convexity of the value with respect to the price. The second-order derivative is
given by

∂2V (τ̂∗, P1)

∂P 2
1

=
−2η1
1 + r

1−

P1
(Q0

1 − η1P1)

r

(
Q0

2
2

4η2(1+r)
− I
)

−(1+r)



+
Q0

1 − 2η1P1

1 + r

(1 + r)
Q0

1 − 2η1P1

r

(
Q0

2
2

4η2(1+r)
− I
)
 P1(Q

0
1 − η1P1)

r

(
Q0

2
2

4η2(1+r)
− I
)

−(2+r)

 .
(B.18)

For the candidate solution P c11 , the second term goes to zero while the first term is negative.
Hence, P c21 is a maximum. For the candidate solution P c21 , the first term becomes becomes zero,
while the second term is positive. Hence, P c21 is a minimum.

We therefore conclude that the optimal price for the remaining customer potential Q0
1 is

Q0
1

2η1
.

B.1.4 Proof of Proposition 2.2

For the case where τ̂∗ <∞, the net present value of undertaking the investment must be positive.

This requires that
(

(Q0
2)

2

4η2(1+r)
− I
)
≥ 0. We also require that the demand

(
Q0

1 − η1P1

)
e−t for the

existing version cannot be negative, as this would imply that the optimal time of introduction
has already passed. In the proofs that follow, we refer to these as the base assumptions.

Sensitivity to the initial stock of potential customers for the existing product, Q0
1

∂τ̂∗

∂Q0
1

=
r
(

(Q0
2)

2

4η2(1+r)
− I
)

P1(Q0
1 − η1P1)

P1. (B.19)

This is > 0 under the base assumptions.

Sensitivity to the initial stock of potential customers for the new product, Q0
2

∂τ̂∗

∂Q0
2

=
r
(

(Q0
2)

2

4η2(1+r)
− I
)

P1(Q0
1 − η1P1)

−P1(Q
0
1 − η1P1)(

r
(

(Q0
2)

2

4η2(1+r)
− I
))2 2rQ0

2

4η2(1 + r)

=
−2Q0

2

4η2(1 + r)
(

(Q0
2)

2

4η2(1+r)
− I
) .

(B.20)

This is < 0 under the base assumptions.
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Sensitivity to the price of the existing product, P1

∂τ̂∗

∂P1
=
r
(

(Q0
2)

2

4η2(1+r)
− I
)

P1(Q0
1 − η1P1)

(
Q0

1 − 2η1P1

)
. (B.21)

Hence, ∂τ̂∗

∂P1
> 0 when P1 <

Q0
1

2η1
, and ∂τ̂∗

∂P1
< 0 when P1 >

Q0
1

2η1
.

Sensitivity to the price penalty factor for the existing product, η1

∂τ̂∗

∂η1
=
r
(

(Q0
2)

2

4η2(1+r)
− I
)

P1(Q0
1 − η1P1)

(−P 2
1 ). (B.22)

This is < 0 under the base assumptions.

Sensitivity to the price penalty factor for the new product, η2

∂τ̂∗

∂η2
=
r
(

(Q0
2)

2

4η2(1+r)
− I
)

P1(Q0
1 − η1P1)

−P1(Q
0
1 − η1P1)(

r
(

(Q0
2)

2

4η2(1+r)
− I
))2 −rQ0

2
2

(4η2(1 + r))2
4(1 + r)

=
Q0

2
2

4η22(1 + r)
(

(Q0
2)

2

4η2(1+r)
− I
) .

(B.23)

This is > 0 under the base assumptions.

Sensitivity to the investment cost, I

∂τ̂∗

∂I
=
−r
(

(Q0
2)

2

4η2(1+r)
− I
)

P1(Q0
1 − η1P1)

−P1(Q
0
1 − η1P1)(

r
(

(Q0
2)

2

4η2(1+r)
− I
))2 =

1

r
(

(Q0
2)

2

4η2(1+r)
− I
) . (B.24)

This is > 0 under the base assumptions.

Sensitivity to the discount rate, r

∂τ̂∗

∂r
=
−r
(

(Q0
2)

2

4η2(1+r)
− I
)

P1(Q0
1 − η1P1)

P1(Q
0
1 − η1P1)(

r
(

(Q0
2)

2

4η2(1+r)
− I
))2 (4η2(Q

0
2)

2 [(1 + r)− r]
16η22(1 + r)2

− I
)

= − 1

r
(

(Q0
2)

2

4η2(1+r)
− I
) ( (Q0

2)
2

4η2(1 + r)2
− I
)
.

(B.25)

This expression is negative when

Q0
2
2

4η2(1 + r)2
− I > 0, (B.26)(

(Q0
2)

2

4η2(1 + r)
− I
)
> rI, (B.27)

and positive otherwise.
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B.1.5 Proof of Proposition 2.3

Derivation of firm value

The value of the firm is given by equation (2.4). We evaluate the integrals by inserting the
results from equation (2.7) and (B.4). This gives the following expression for the firm value,
given investment timing τ .

V (τ) =
P1(Q

0
1 − η1P1)

1 + r

[
1− e−(1+r)tn + e−(1+r)tn − e−(1+r)τ

]
+

(Q0
2)

2

4η2(1 + r)
eτe−(1+r)τ − Ie−rτ

(B.28)

Collecting terms, rearranging and factoring out e−rτ gives:

V (τ) =
P1(Q

0
1 − η1P1)

1 + r
+ e−rτ

[(
Q0

2
2

4η2(1 + r)
− I

)
− P1(Q

0
1 − η1P1)

1 + r
e−τ

]
(B.29)

Inserting for τ = tn, τ = τ̂∗ and τ →∞ gives the results in Proposition 2.3

B.1.6 Proof of Proposition 2.4

Apart from the assumptions presented in the proofs for Proposition 2.3, we require the optimal

investment timing to be greater than or equal to 0. This implies that

 P1(Q0
1−η1P1)

r

(
(Q0

2)
2

4η2(1+r)
−I

)
 > 1,

and we extend the reference to the base assumptions to include this.

Sensitivity to the remaining stock of potential customers for product 1, Q0
1

∂V

∂Q0
1

=
P1

1 + r
+

Q0
2
2

4η2(1+r)
− I

1 + r
(−r)

 P1(Q
0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
−(1+r) P1

r
(

(Q0
2)

2

4η2(1+r)
− I
)

=
P1

1 + r

1−

 P1(Q
0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
−(1+r)

 .

(B.30)

This is > 0 under the base assumptions.
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Sensitivity to the initial stock of potential customers for product 2, Q0
2

∂V

∂Q0
2

=
2Q0

2

4η2(1 + r)2

 P1(Q
0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
−r

+

Q0
2
2

4η2(1+r)
− I

1 + r
(−r)

 P1(Q
0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
−(1+r) −P1(Q

0
1 − η1P1)(

r
(

(Q0
2)

2

4η2(1+r)
− I
))2 2rQ0

2
2

4η2(1 + r)

=

 P1(Q
0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
−r 2Q0

2

4η2(1 + r)2
(
1 + 2r2Q0

2

)
.

(B.31)

This is > 0 under the base assumptions. In the case τ∗ →∞, the sensitivity is 0.

Sensitivity to the price of the existing product, P1

∂V

∂P1
=
Q0

1 − 2η1P1

1 + r
−
r
(

(Q0
2)

2

4η2(1+r)
− I
)

1 + r

 P1(Q
0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
−(1+r) Q0

1 − 2η1P1

r
(

(Q0
2)

2

4η2(1+r)
− I
)

=
Q0

1 − 2η1P1

1 + r

1−

 P1(Q
0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
−(1+r)

 .
(B.32)

Hence, ∂V
∂P1

> 0 when P1 <
Q0

1
2η1

, and ∂V
∂P1

< 0 when P1 >
Q0

1
2η1

.

Sensitivity to the demand factor of product 1, η1

∂V

∂η1
=
−P 2

1

1 + r
+

Q0
2
2

4η2(1+r)
− I

1 + r
(−r)

 P1(Q
0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
−(1+r) −P 2

1

r
(

(Q0
2)

2

4η2(1+r)
− I
)

=
P 2
1

1 + r


 P1(Q

0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
−(1+r) − 1

 .

(B.33)

This is < 0 under the base assumptions.

Sensitivity to the demand factor of product 2, η2

∂V

∂η2
= − (Q0

2)
2

4η22(1 + r)2

 P1(Q
0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
−r − (Q0

2)
2(Q0

1 − η1P1)P1

4η22(1 + r)2
(

(Q0
2)

2

4η2(1+r)
− I
)
 P1(Q

0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
−(1+r) .

(B.34)

Both terms are clearly negative under the base assumptions, making the sensitivity < 0. Note
that in the case τ∗ →∞, the derivative is 0.
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Sensitivity to the investment cost, I

∂V

∂I
= − 1

1 + r

 P1(Q
0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
−r − 1

1 + r

 P1(Q
0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
−(1+r) P1(Q

0
1 − η1P1)

(Q0
2)

2

4η2(1+r)
− I

= −

 P1(Q
0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
−r .

(B.35)

This is < 0 under the base assumptions. Note that in the case where τ∗ →∞, the derivative is 0.

Sensitivity to the discount rate, r
This proof is more complex and requires several steps.

∂V

∂r
= −P1(Q

0
1 − η1P1)

(1 + r)2
+

−4η2Q0
2
2

(4η2(1+r))
2 (1 + r)− r

(
(Q0

2)
2

4η2(1+r)
− I
)

(1 + r)2

 P1(Q
0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
−r

+

Q0
2
2

4η2(1+r)
− I

1 + r

 P1(Q
0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)
−r − ln

 P1(Q
0
1 − η1P1)

r
(

(Q0
2)

2

4η2(1+r)
− I
)


−r
r
(

(Q0
2)

2

4η2(1+r)
− I
)

P1(Q0
1 − η1P1)

−P1(Q
0
1 − η1P1)(

r
(

(Q0
2)

2

4η2(1+r)
− I
))2

((
(Q0

2)
2

4η2(1 + r)
− I
)

+ r
−4η2Q

0
2
2

(4η2(1 + r))2

) .
(B.36)

We now introduce the simplification NPV2 =
Q0

2
2

4η2(1+r)
− I. Inserting for NPV2 and collecting

terms gives

∂V

∂r
= −P1(Q

0
1 − η1P1)

(1 + r)2
− (1 + r)NPV2 + I

(1 + r)2

(
P1(Q

0
1 − η1P1)

rNPV2

)−r
− NPV2

1 + r

(
P1(Q

0
1 − η1P1)

rNPV2

)−r [
ln

(
P1(Q

0
1 − η1P1)

rNPV2

)
+

1

NPV2

(
NPV − rNPV2 + I

1 + r

)]
.

(B.37)

When we evaluate the expression, it is clear that only one term can be positive, namely:

− NPV2
1 + r

(
P1(Q

0
1 − η1P1)

rNPV2

)−r
1

NPV2
(−r)NPV2 + I

1 + r
= r

NPV2 + I

(1 + r)2

(
P1(Q

0
1 − η1P1)

rNPV2

)−r
.

(B.38)

However, this is dominated by

− (1 + r)NPV2 + I

(1 + r)2

(
P1(Q

0
1 − η1P1)

rNPV2

)−r
, (B.39)

and we can therefore conclude that ∂V
∂r < 0.
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B.2 Stochastic monopoly problem

B.2.1 Explanation of probability terms

We now show that equation (3.11) represents the probability of the innovator’s product mal-
functioning within the next time period dt. Since the arrival rate φ(t) is continuous in time, the
probability of an event occurring in the next time period dt can be determined by integrating
the function from time t to (t+ dt).

∫ t+dt

t
φ(s)ds =

∫ t+dt

t
αe−(θ+αs)ds = −

[
e−(θ+αs)

]t+dt
t

= e−(θ+αt)
(

1− e−αdt
)
. (B.40)

The term e−αdt can be approximated by use of a Taylor expansion as follows:

e−αdt ≈ 1− αdt+
(−αdt)2

2
+ ...+

(−αdt)n

n!
. (B.41)

Terms with order of 2 and higher will approach zero fast as dt→ 0. Hence, they are neglected.
Using the first two terms from the Taylor expansion as an approximation for e−αdt, equation
(B.40) simplifies to αe−(θ+αt)dt. Hence, equation (3.11) is verified.

B.2.2 Determining the firm value in the continuation region

The firm value in the region of continuation is given from two solution approaches: analytical
and numerical. Both approaches are presented here.

In general, the dynamics of the firm value can be found from Itô’s Lemma:

E[dF (θ,Q1)] = −(Q1 − η1P1)
∂F (θ,Q1)

∂Q1
+ λdt (F (θ + u,Q1)− F (θ,Q1)) + o(dt) (B.42)

The Bellman equation is derived from fundamentals of dynamic programming and states that
the total return on an investment opportunity over a period dt must equal its instantaneous
profit plus the expected change in value over this period. The equation is given as follows:

rF = π +
1

dt
E [dF ] (B.43)

The differential equation governing the continuation region of the investment problem can then
be derived by combining equation B.42 and B.43, which is the same as presented in equation
(2.17).

Analytical approach

We follow in the steps of Hagspiel, Huisman, et al. (2016) and divide the continuation region in
two parts. In the first part of the continuation region, the firm will not invest even if a sub-test
is completed in the next step. In the second part, the firm will invest upon test completion.
Hence, by denoting θ∗(Q1) the optimal test threshold for a given level of Q1, the first part of
the continuation region is defined as θ < θ∗(Q1) − u, and the second part of the continuation
region is defined as θ∗(Q1)− u < θ < θ∗(Q1).
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Second part of continuation region
The firm will here invest immediately upon completion of the next sub-test. From this follows
that
F (θ + u,Q1) = V2(θ + u) − I, where V2(θ) is given by equation (2.16). Inserting into equation
(2.17) gives:

(r + λ)F (θ,Q1) = P1(Q1 − η1P1)− (Q1 − η1P1)
∂F (θ,Q1)

∂Q1
+ λ (V (θ + u,Q1)− I) . (B.44)

This is a first-order inhomogeneous PDE, and the solution can be found by combining a ho-
mogeneous and a particular solution. We first find the homogeneous solution governed by the
following equation:

(r + λ)FH(θ,Q1) = −(Q1 − η1P1)
∂F (θ,Q1)

∂Q1
. (B.45)

To simplify the expressions, we use the substitution Z = (Q1 − η1P1), as all terms involving Q
is of this form. We guess on a solution to the equation above of the following form:

F (θ, Z) = A0Z
β0 . (B.46)

Substitution of this into the homogeneous equation (B.45) gives

(r + λ)A0F (θ, Z) = −ZA0β0Z
β0−1, (B.47)

which leads to
β0 = −(λ+ r). (B.48)

By applying this and substituting back for Z, we conclude that the solution to the homogeneous
equation is given by

FH(θ,Q1) = A0(Q1 − η1P1)
−(λ+r). (B.49)

Again using the Z simplification, we rely on the method of undetermined coefficients and guess
a particular solution of the form

FP (θ, Z) = γ0Z + γ1e
−(θ+u) + γ2, (B.50)

which leads to

γ0 =
P1

λ+ r + 1
,

γ1 =
−λ
λ+ r

V2,

γ2 =
λ(V2 − I)

λ+ r
.

(B.51)

Backwards substituting for Z and combining the homogeneous and particular solutions, we
conclude that the firm value in the second part of the continuation region is given by
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F (θ,Q1) = A0(Q1 − η1P1)
−(λ+r) +

P1(Q1 − η1P1)

λ+ r + 1
+

λ

λ+ r
(V2(θ + u,Q1)− I) . (B.52)

First part of continuation region

In this region the firm will not invest in the next period even if new technology arrives, i.e.
θ < θ∗(Q1)− u. From equation (2.17) we then have the following expression

(r + λ)F (θ,Q1) = P1(Q1 − η1P1)− (Q1 − η1P1)
∂F (θ,Q1)

∂Q1
+ λF (θ + u,Q1). (B.53)

As in the second part of the continuation region, this is a first-order inhomogeneous partial
differential equation, and the solution is found in a similar manner. We first consider the
homogeneous part:

(r + λ)F (θ,Q1) = −(Q1 − η1P1)
∂F (θ,Q1)

∂Q1
+ λF (θ + u,Q1). (B.54)

As proposed by Hagspiel, Huisman, et al. (2016) we guess on a solution of the following form:

FH(θ, Z) = A1Z
β1 +A2β

θ
2 +A3Zβ

θ
3 , (B.55)

where Z is again a substitution for Q1 − η1P1.

By substituting equation (B.55) into equation (B.54) we get the following expression:

(r+λ)
(
A1Z

βθ1 +A2β
θ
2 +A3Zβ

θ
3

)
= Z

(
β1A1Z

β1−1 +A3β
θ
3

)
+λ
(
A1Z

β1 +A2β2θ + u+A3Zβ
θ+u
3

)
.

(B.56)

By factoring out each constant A and solving for β we get the following results:

β1 = −r,

β2 =

(
λ

r + λ

)− 1
u

,

β3 =

(
λ

λ+ r + 1

)− 1
u

.

(B.57)

The solution to the homogeneous part is hence given by:

FH(θ, Z) = A1Z
−r +A2

(
λ

r + λ

)− θ
u

+A3Z

(
λ

λ+ r + 1

)− θ
u

. (B.58)

We now want to find a particular solution to the following inhomogeneous equation:

(r + λ)F (θ,Q1) = P1(Q1 − η1P1)− (Q1 − η1P1)
∂F (θ,Q1)

∂Q1
+ λF (θ + u,Q1). (B.59)
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Since the inhomogeneous term depends on Q1 only, we do not have to account for the variable
θ in the particular solution. Hence we guess on a solution that is a function of Q1 only:

FP (θ, z) = γ4Z, (B.60)

where Z still is a substitution for Q1 − η1P1.

Inserting equation (B.60) into (B.59) and solving for γ4 gives the following result:

γ4 =
P1

1 + r
. (B.61)

The particular solution can hence be written as:

P1(Q1 − η1P1)

1 + r
. (B.62)

The full solution to the differential equation for the first part of the continuation region is given
by the homogeneous solution and the particular solution combined. This is expressed as:

F (θ, Z) = A1Z
−r +A2

(
λ

r + λ

)− θ
u

+A3Z

(
λ

λ+ r + 1

)− θ
u

+
P1(Q1 − η1P1)

1 + r
. (B.63)

Summarized firm values in the three different regions

F (θ,Q1) =


A1(Q1 − η1P1)

−r +A2

(
λ
r+λ

)− θ
u

+A3(Q1 − η1P1)
(

λ
λ+r+1

)− θ
u

+ P1(Q1−η1P1)
1+r θ < θ∗ − u,

A0(Q1 − η1P1)
−(λ+r) + P1(Q1−η1P1)

λ+r+1 + λ
λ+r

(
Q0

2
2

4η2(1+r)

(
1− e−(θ+u)

)
− I
)

θ∗ − u < θ < θ∗,

Q0
2
2

4η2(1+r)

(
1− e−θ

)
− I θ ≥ θ∗.

(B.64)

We know that when Q1 approaches η1P1 the demand of the existing version goes to 0 and the
firm value should therefore be finite. Hence, we can conclude that A0 and A1 must be zero.
Furthermore, we want the value function to be continuous in the continuation region. To achieve
this we apply the value matching condition between the two parts of the continuation region at
θ∗(Q1)− u.

Inserting for θ = θ∗(Q1) − u and equating the first and second part of the continuation region
gives:

A2

(
λ

r + λ

)− (θ∗−u)
u

+A3(Q1 − η1P1)

(
λ

λ+ r + 1

)− (θ∗−u)
u

+
P1(Q1 − η1P1)

1 + r
=

P1(Q1 − η1P1)

λ+ r + 1
+

λ

λ+ r

(
Q0

2
2

4η2(1 + r)

(
1− e−θ∗

)
− I

)
.

(B.65)

We first collect terms dependent on Q1:
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A3(Q1 − η1P1)

(
λ

λ+ r + 1

)− (θ∗−u)
u

+
P1(Q1 − η1P1)

1 + r
=
P1(Q1 − η1P1)

λ+ r + 1
. (B.66)

Solving for the constant A3 gives the following result:

A3 = − P1

1 + r

(
λ

1 + λ+ r

) θ∗
u

. (B.67)

We now look at the remaining terms:

A2

(
λ

r + λ

)− (θ∗−u)
u

=
λ

λ+ r

(
Q0

2
2

4η2(1 + r)

(
1− e−θ∗

)
− I

)
. (B.68)

Solving for the constant A2 gives the following result:

A2 =

(
λ

λ+ r

) θ∗
u

[
Q0

2
2

4η2(1 + r)

(
1− e−θ∗

)
− I

]
. (B.69)

We see that the coefficients appear to be functions of the threshold θ∗, which, according to
Proposition 2.5, is itself a function of the underlying variable Q1. As a consequence, the proposed
guess on a solution to equation (B.54) is not valid. Hence, the resulting firm value in Proposition
2.5 is incorrect.

The optimal threshold function is found by applying value-matching between the second part of
the continuation region and the stopping region, as described by equation (2.15).

(Q1 − η1P1)P1

λ+ ρ+ 1
+

λ

λ+ ρ

(
V2

(
1− e−(θ+u)

)
− I
)

= V2

(
1− e−θ

)
− I. (B.70)

Solving for θ∗(Q1) yields the result as stated in Proposition 2.5.

Numerical approach

As for the analytical case, we want to solve the PDE given by equation (2.17).

We apply a backward difference approximation for the differential ∂F (θ,Q1)
∂Q1

, given as ∂F (θ,Q1)
∂Q1

≈
F (j,i)−F (j,i−1)

dQ1
. Further, we set the step-sizes to dQ1 in Q1(i)- direction, and dθ in θ(j)-direction.

A jump then takes the firm value from F (j, i) to F (j + u
dθ , i), and we get the finite difference

scheme for the firm value in the continuation region as presented in equation (2.20). This is
restated below as follows:

F (j, i) =
P1(Q1(i)− η1P1) + (Q1(i)− η1P1)

F (j,i−1)
dQ1

+ λF (j + u
dθ , i)

r + λ+ Q1(i)−η1P1

dQ1

. (B.71)

At each point (j, i), the firm value is given by the maximum value of staying in the existing
market and investing, i.e. max [F (j, i), V2(j, i)− I], where V2(j, i) is given as
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V2(j, i) =
(Q0

2)
2

4η2(1 + r)

(
1− e−θ(j)

)
(B.72)

We begin solving the problem from the boundary Q1(1) = η1P1. Here, the existing market is
completely drained and all terms involving Q1(1)− η1P1 in F (j, 1) can be ignored. Let k be the
highest index in the θ vector, and choose θ(k) high enough to trigger investment. Then, iterating
downwards from j = k at i = 1, we find θ∗(i = 1) as the last θ(j) that triggers investment.

We then iterate upwards from i = 2, using the full expression in equation (B.71) for F (j, i) and
the same initial assumption that investment is triggered at θ(k). This approach works until
θ∗(Q1) → ∞, i.e. when it is never optimal to invest. The Q∗1, with corresponding index i∗,
for which this happens, is located by finding the first i where it is optimal to wait at the first
possibility, i.e. at j = k − 1.

Iterating onwards from i = i∗, we need to apply a different condition at θ(k). We therefore use
the fact that the effect of testing is diminishing, since the malfunction risk is given by e−θ and
claim that at θ(k), the firm value F (θ,Q1) = F (θ + u,Q1). Then, equation (2.17) reduces to

rF (θ,Q1) = (Q1 − η1P1)P1 − (Q1 − η1P1)
∂F (θ,Q1)

∂Q1
, (B.73)

with the corresponding finite difference scheme

F (k, i) =
P1(Q1(i)− η1P1) + (Q1(i)− η1P1)

F (k,i−1)
dQ1

r + Q1(i)−η1P1

dQ1

. (B.74)

This is then used to find the firm value at the boundary θ(k) for i > i∗. The MatLab script
for the numerical model is lengthy and therefore excluded from the paper, but is available upon
request.

Appendix C Innovator-laggard

C.1 Deterministic product testing

C.1.1 Derivation of demand relations

We first formulate the differential equations for the remaining market potential in both the new
and the existing market. This is accomplished by combining equation (3.1) and (3.2) for the
dynamics of market potential in the existing market and new market respectively with their
corresponding demand functions, given by equation (2.2) and (3.3). This results in the following
differential equations

dQ1(t) = −(Q1(t)− η1PL1 )dt (C.1)

dQL2 (t) = −
(
QL2 (t)− η2PL2 + γ(P I2 − PL2 )

)
dt, (C.2)

where equation (C.1) governs the dynamics of customer potential for the laggard in the existing
market (monopoly) and equation (C.2) governs the dynamics of customer potential for the
laggard in the new market (duopoly).
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Equation (C.1) and (C.2) can be integrated directly, and by applying the initial conditions
Q1(0) = Q0

1 and QL2 (0) = νQ0
2, we get the following expressions for the customer potentials

Q1(t) = (Q0
1 − η1PL1 )e−t + η1P

L
1 (C.3)

QL2 (t) =
(
νQ0

2 − η2PL2 + γ(P I2 − PL2 )
)
e−t + η2P

L
2 − γ(P I2 − PL2 ). (C.4)

Inserting these back into the demand functions from equation (2.2) and (3.3), the demand
functions take on the following form

qL1 (t) = (Q0
1 − η1PL1 )e−t, (C.5)

qL2 (t) =
(
νQ0

2 − η2PL2 + γ(P I2 − PL2 )
)
e−t. (C.6)

C.1.2 Proof of Proposition 3.1

Derivation of optimal price to charge by the laggard, PL2
∗

We start out with the value function from equation (3.4). Inserting the demand relations from
equation (C.5) and (C.6) gives the following expression for firm value

VL
∗(τ, PL2 ) =

∫ tn

0
PL1 (Q0

1 − η1PL1 )e−(1+r)t + max
τ

[∫ τ

tn

PL1 (Q0
1 − η1PL1 )e−(1+r)ttdt+ (C.7)

max
PL2

[∫ ∞
τ

PL2
(
νQ0

2 − η2PL2 + γ(P I2 − PL2 )
)
e−(1+r)t+τdt

]
− Ie−rτ

]

We let V L
2 denote the value generated by the laggard from selling the upgraded version in the

new market.

V L
2
∗

= max
PL2

[∫ ∞
τ

PL2
(
QL1 (t− τ)− η2PL2 + γ(P I2 − PL2 )

)
e−(1+r)t+τdt

]
= max

PL2

[
PL2

νQ0
2 − η2PL2 + γ(P I2 − PL2 )

1 + r
.e−rτ

]
(C.8)

We apply the first-order condition of maximization with respect to PL2 .

∂

∂PL2

[
PL2

νQ0
2 − η2PL2 + γ(P I2 − PL2

∗
)

1 + r
e−rτ

]
=
νQ0

2 − 2η2P
L
2
∗

+ γ(P I2 − 2PL2
∗
)

1 + r
e−rτ = 0. (C.9)

Solving for PL2
∗

gives the optimal price as presented in equation (3.7) and given in Proposition
3.1.

Derivation of optimal investment timing, τ∗L

We find the optimal value generated by the laggard from selling the upgraded version in the
new market by plugging the optimal price from equation (3.7) into equation (C.8). In order to
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determine the investment timing we solve the outer maximization problem given by the value
function in equation (C.7). Inserted for the optimal value of V L

2 , we get

max
τL

[∫ τL

tn

PL1 (Q0
1 − η1PL1 )e−(1+r)tdt+ PL2

∗ νQ0
2 − η2PL2

∗
+ γ(P I2 − PL2

∗
)

1 + r
e−rτL − Ie−rτL

]
.

(C.10)

Integrating and calculating the first-order condition with respect to τ gives the following expres-
sion

PL1 (Q0
1 − η1PL1 )e−(1+r)τL

∗
+ r

(
I − PL2

∗ νQ0
2 − η2PL2

∗
+ γ(P I2 − PL2

∗
)

1 + r

)
e−rτL

∗
= 0. (C.11)

Solving for τL
∗ gives the optimal investment timing as presented in Proposition 3.1.

Derivation of optimal firm value, VL
∗

The optimal value of the laggard is found by integrating equation C.7 and inserting expressions
for optimal price PL2

∗
and optimal investment timing τL

∗. Carrying out the integrations results
in the following expression for optimal firm value

VL
∗(τL

∗) =
PL1 (Q0

1 − η1PL1 )

1 + r

[
1− e−(1+r)tn + e−(1+r)tn − e−(1+r)τ∗

]
+ (C.12)

r

(
I − PL2

∗ νQ0
2 − η2PL2

∗
+ γ(P I2 − PL2

∗
)

1 + r

)
e−rτ

∗
.

Collecting terms and inserting the expression for optimal investment timing τL
∗ results in the

optimal firm value as presented in Proposition 3.1.

C.2 Stochastic product testing and risk of malfunction

C.2.1 Proof of Proposition 3.2

We start out with the expected payoff from investment, as given by equation (3.16). Given that
the innovator does not experience a product malfunction, the value of the laggard is represented
by the perpetual duopoly value.

E[V |d̄I ] = PL2
νQ0

2 − η2PL2 + γ(P I2 − PL2 )

1 + r
. (C.13)

Given that the innovator experiences a malfunction, the value of the laggard depends on the
timing of this malfunction. Hence, the expected value of the laggard, given that the innovator’s
product malfunctions, is represented by

E[V |dI ] =

∫ ∞
0

Prob(mt|m)V (mt)dt, (C.14)
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where mt denotes the event of malfunction at time t, and m denotes the event of a malfunction

ever occurring. Note that Prob(mt|m) = pI(t+τ)

pId(τ)
. This comes from the fact that P (A|B) =

P (A∩B)
P (B) , so that the probability of the innovator’s product malfunctioning at time t conditional

upon ever malfunctioning is equivalent to the instantaneous probability of malfunctioning at
time t after investment τ , divided by the probability of the innovator ever malfunctioning.

The value of the laggard given that the innovator’s product malfunctions at time t consists of
two parts: 1) The laggard operates in a duopoly with the innovator up until malfunction. 2) At
point of malfunction t, the laggard is positioned in a monopoly situation, keeping its remaining
stock of potential customers QL2 (t) while receiving the innovator’s initial stock of loyal customers
(1− ν)Q0

2. This is mathematically stated as

V (mt) =

∫ t

0
PL2 (QL2 (s)−η2PL2 +γ(P I2−PL2 ))e−rsds+

∫ ∞
t

PL2 (QL2 (t)+(1−ν)Q0
2−η2PL2 )e−se−rsds.

(C.15)

Evaluating the integrals and collecting terms yields the following

V (mt) = PL2
νQ0

2 − η2PL2 + γ(P I2 − PL2 )

1 + r

(
1− e−(1+r)t

)
+ PL2

(νQ0
2 − η2PL2 + γ(P I2 − PL2 ))e−t + (1− ν)Q0

2 − γ(P I2 − PL2 )

1 + r
e−(1+r)t. (C.16)

Inserted into equation (C.14) gives the following expected value of the laggard conditional upon
the innovator experiencing a malfunction

E[V |dI ] =
1

P Id (τ)
e−(θ

I+ατ)αPL2

[
νQ0

2 − η2PL2 + γ(P I2 − PL2 )

1 + r

(
1

α
− 1

α+ r + 1
+

1

α+ r + 2

)
+

(1− ν)Q0
2 − γ(P I2 − PL2 )

1 + r

1

α+ r + 1

]
. (C.17)

Hence, by combining equation (C.17) and (C.13) with equation (3.16), the expected value of the
laggard in the stopping region is given in Proposition 3.2.

Derivation of optimal price to charge by the laggard

From equation (3.2), the optimal price can be determined by solving the first-order condition
with respect to the price PL2 . Differentiating, collecting terms and solving for PL2

∗
yields the

optimal price in Lemma 3.1.

C.2.2 Derivation of firm value in the continuation region

We start out by formulating the dynamics of the laggard’s firm value. In the continuation
region, there are four possible outcomes over the next time period dt: (1) innovator’s product
malfunctions and another sub-test is completed, (2) innovator’s product malfunctions and no
sub-test is completed, (3) innovator’s product does not malfunction and another sub-test is
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completed and (4) innovator’s product does not malfunction and no sub-test is completed.

E[dFd(θ,Q1)] =− (Q1 − η1PL1 )
∂Fd(θ,Q1)

∂Q1
dt+ λdt

(
αe−(θ

I+αt)dt
)

[Fm(θ + u,Q1)− Fd(θ,Q1)] +

+(1− λdt)
(
αe−(θ

I+αt)dt
)

[Fm(θ,Q1)− Fd(θ,Q1)] +

+λdt
(

1− αe−(θI+αt)dt
)

[Fd(θ + u,Q1)− Fd(θ,Q1)] +

+ (1− λdt)
(

1− αe−(θI+αt)
)

[Fd(θ,Q1)− Fd(θ,Q1)] + o(dt), (C.18)

where Fm denotes the firm value of the laggard in case of being a monopolist in the market, and
Fd denotes the firm value of the laggard in the duopoly.

We neglect all terms involving dt of order higher than one (because they approach zero fast as
dt→ 0). This leaves us with the following expression for firm value dynamics

E [dFd(θ,Q1)] =− (Q1 − η1PL1 )
∂Fd(θ,Q1)

∂Q1
+ λdt(Fd(θ + u,Q1)− Fd(θ,Q1))+

+αe−(θ
I+αt)dt [Fm(θ,Q1)− Fd(θ,Q1)] + o(dt). (C.19)

Combining equation (C.19) with the Bellman equation from (B.43), we arrive at the PDE for
firm value in the continuation region, as presented in equation (3.22).

As in the monopoly model, the PDE in the continuation region must be solved numerically. The
finite difference scheme is given by equation (3.23) and restated below. At each point, the firm
value is given by the maximum of waiting, F (j, i) and investing, i.e. the value in Proposition
3.2 less the investment cost I.

Fd(j, i) =
PL1 (Q1(i)− η1PL1 ) + λFd(j + u

dθ , i) + (Q1(i)− η1PL1 )F (j,i−1)
dQ1

+ αe−θ
I
(
Q1(i)−η1PL1
Q0

1−η1PL1

)α
Fm(j, i)

r + λ+ αe−θI
(
Q1(i)−η1PL1
Q0

1−η1PL1

)α
+

Q1(i)−η1PL1
dQ1

.

(C.20)

We solve it in the same way as in the monopoly problem, iterating upwards in i from Q1(1) =
η1P

L
1 and downwards in j from θ(k), where it is assumed optimal to invest. The index i∗, where

θ∗ →∞, is found in the same way, but the boundary PDE at θ(k) for i > i∗ now takes the form

Fd(k, i) =
PL1 (Q1(i)− η1PL1 ) + (Q1(i)− η1PL1 )F (k,i−1)

dQ1
+ αe−θ

I
(
Q1(i)−η1PL1
Q0

1−η1PL1

)α
Fm(k, i)

r + αe−θI
(
Q1(i)−η1PL1
Q0

1−η1PL1

)α
+

Q1(i)−η1PL1
dQ1

,

(C.21)

to capture the fact that the innovator’s product can possibly malfunction. The MatLab script
for the numerical model is lengthy and therefore excluded from the paper, but it is available
upon request.
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