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Abstract

Creutzfeld-Jakob disease is an invariably deadly prion disease with no cure that
attacks the brain. Hyperspectral microscopy has been used to examine 26 amyloid
plaques (captured with two different filters) present in infected brains, stained
with the luminescent polymer hFTAA. A MatLab program using the correlation
coefficient between the emission spectrum from the sample and a reference spectrum
representing the autofluorescence from the center of a plaque is used to examine
where the staining is most evident. The correlation proved to be highest at the
periphery of the plaques, indicating that the staining was most pronounced in the
center. Two new programs were written to view the emission spectra for different
distances from the center. The first program used pixels in the hyperspectral image
lying on five circles with different radius, while the other used pixels from intensity
based zones in the image. As it proved to be the most reliable, the latter was
preferred used on the hyperspectral images in the data set. A distinct red shift in
emission spectra as one moves from the periphery to the center of the plaques was
revealed, as well as a strong increase of intensity and at around 606 nm.
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Sammendrag

Creutzfeld-Jakobs sykdom er en kurløs og alltid dødelig prionsykdom som angriper
hjernen. Hyperspektral mikroskopi har blitt brukt til å undersøke 26 amyloideplakk
(tatt opp med to forskjellige filtre) tilstede i infiserte hjerner som er markert med
hFTAA. Et MatLab-program som bruker korrelasjonskoeffisienten mellom prøvens
emitterte spekter og et referansespekter som representerte autoflourescensen har
blitt brukt til undersøke hvor markeringen er mest synlig. Korrelasjonen viste seg å
være høyest ved periferien av plakkene, hvilket indikerer at markeringen var sterkest
i senteret. To nye program ble skrevet for å undersøke hvordan det de emitterte
spekterne s̊a ut for forskjellige avstander fra senteret. Det første programmet brukte
pixler i det hyperspektrale bildet som l̊a p̊a fem sirkler med forskjellig radius, mens
det andre brukte pixler fra soner i bildet inndelt p̊a bakgrunn av intensitet. Den
sonebaserte teknikken viste seg være den mest p̊alitelige, og ble derfor foretrukket
for bruk til videre analyse p̊a de hyperspektrale bildene i datasettet. Analysen viste
en tydelig rødforskyvning for de emitterte spekterne n̊ar man gikk fra periferien til
sentrum av plakkene, og en sterk økning i intensitet ved omlag 606 nm.
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Chapter 1
Introduction

1.1 Microscopy

Microscopy is about taking advantage of object properties such as reflection and
absorption, and making them visible in a way not possible by using only the naked
eye. Classical optical microscopes forms an image of the object examined using
glass lenses to focus light onto the eye. Although the invention of the microscope
is dated to the late 1500s [11], new techniques are still being developed. Mostly,
novel techniques make use of fluorescence, a phenomenon first discovered by Sir
George Gabriel Stokes in 1852. Fluorescent molecules serve as a light source found
in specific locations of a specimen, pointing out their position by emitting light
with a characteristic spectrum. The energy required to emit this light is obtained
by the molecule through the excitation light, which in a microscope is provided by
the light source (see figure 1.1). There are two ways to make use of fluorescent
microscopy, and the object being investigated is decisive for how it is used. The
object it self could be fluorescent, or fluorochromes are added to the object [2].

1.1.1 Autofluorescence

Autofluorescence (AF) is natural fluorescence by biological objects, and is widely
found in nature. Fluorochromes may also be added to objects having a significant
amount of AF. Thus, it is necessary to separate AF from the desired fluorochrome
emission. Uptil now, there have not been any good methods to do that since fluo-
rescence is traditionally is collected in one or a few wavelength channels, governed
by special filter settings. With the advance of spectrally resolved images one gets
new possibilities to analyze data in a refined way.
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Chapter 1. Introduction

Figure 1.1: A Jablonski diagram illustrating the process of fluorescence. An electron
is excited from the ground state to a higher energy state by absorption of excitation
light. The electron then goes back to the ground state and releases the excess energy as a
photon, known as fluorescence. The fluorescenct light wavelength will be longer than the
excitation light wavelength, as some energy is lost to vibrational heat in the high energy
state. Figure from scienceinyoureyes.com [7].

1.2 Hyperspectral imaging

Hyperspectral imaging is a branch of spectral imaging that has very high spectral
resolution. High resolution here means a few nm in the visible range, which is a
major improvment over previous few channel wavelength separation. The technique
combines spectroscopy with regular imaging, which results in a lot of information
being saved in one dataset, see figure 1.2 [5, 29].
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1.2 Hyperspectral imaging

(a) A hyper-
spectral cube.

(b) The spectrum from one pixel can be extracted form a hyperspec-
tral image.

Figure 1.2: Every pixel in a hyperspectral image carries information about intensity
distribution per wavelength. The intensity, I, of a spectrum is mathematically described
as dependent on the wavelength λ, I(λ), while a regular intensity image depend on the
spatial coordinates x and y, I(x, y). A hyperspectral image can therefore be represented
as a three dimensional image, I(x, y, λ), often visualized as the cube in (a). As shown in
(b), the spectrum can be extracted from every pixel in the image and will be limited by
the spectral resolution (i.e. the number of images in the cube). The colors of the images
in this figure is related to the intensity.

1.2.1 Signal processing

Hyperspectral images can be analyzed more or less detailed based on what ap-
plication one is aiming for, as well as the nature of the object that may contain
much AF background signal. One could for example focus on what the emission
spectrum from an image looks like, or how the spectrum from every pixel is [8]. A
classic situation in signal processing of hyperspectral images is when a spectrum
originates from many different sources, some not as wanted as others. This can for
example be the Poisson noise of the fluorescence signal, or simply noise originating
from the detector. A technique called linear unmixing has been developed to sepa-
rate and give a relative weighting to the spectra present in a spectrum, given that
there exists a reference spectrum for each spectra that is present. Linear unmixing
has proven to be effectful to reduce noise, as well as being able to separate spectra
from an object stained with more than one fluorochrome if signal to noise is high
enough [29].

Another quite similar technique is based on calculating the correlation coeffi-
cient between an emitted spectrum and a reference spectrum. The technique does
not assume anything about the sample, and have been used on other applications
having a low signal to noise ratio. As hyperspectral images can contain a lot of
noise due to the large amount of wavelength channels, the correlation approach is
a suiting technique for that purpose [4].
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Chapter 1. Introduction

1.3 Applications

1.3.1 Prion diseases

In this master work the aim is to develop signal processing tools for bioimaging.
Specifically, we are interested in neurological diseases based on protein disorder.
Prion diseases are inevitable fatal neurodegenerative diseases. All types evolves in
the same manner - through change in conformation of the prion protein from its
common form, PrPC, into the pathogenic amyloid form, PrPSc [14].

PrPSc, and therefore prion diseases, can be obtained in three different ways;
infectious, inherited and sporadic. The presence of PrPSc is then the catalyst of
the PrPC to PrPSc conversion [15]. This conversion is believed to occur through
refolding of PrPC [20]. Some research suggests that the absence of PrPC due to
refolding into PrPSc is the pathogenic factor [16], although most research labels the
isoform PrPSc as cause for the disease [26]. PrPSc is enriched with β-sheets, which
is structurally more stable than the α-helical fold of PrPC [27, 18], see figure 1.3.

Figure 1.3: Illustration of two different foldings of the prion protein. To the left is the
folding with β-sheets, PrPSc, and to the right is the structurally weaker α-helical fold,
PrPC. Conformational change from the α-helical fold to the β-sheets fold is believed to
be the pathogenic factor for prion diseases. Figure from learner.org [10]

Creutzfeldt-Jakob disease

Creutzfeldt-Jakob disease (CJD) is a prion disease that can occur to humans, pro-
gresses at a high rate, and is as all prion diseases, invariably deadly. There exists
two types of PrPSc emerging in CJD, type 1 and type 2, and the genotype at the
polymorphic codon 129 can be M/V, M/M or V/V [1, 17]. This gives a total of six

4



1.4 Staining amyloids

combinations, although M/M1 and M/V1 has proven to be defiant to distinguish
[19]. There has been reported that co-occurence of different types of PrPSc can
happen in one diseased brain [21, 6].

1.4 Staining amyloids

It has been reported that heptamer formyl thiophene acetic acid (hFTAA) passes
BBB in mice and stains amyloid-β plaques, and the most significant staining has
happened on the periphery of the plaque [25, 3]. Similarly, such stains called LCP
(luminescent conjugated polymer) or LCO (luminescent conjugated oligomers) can
be used to stain a large variety of protein amyloid states.

1.5 The project objective

In the FP7 EU-project LUPAS a lot of new probes for diagnostics of Alzhheimer’s
disease (AD) and prion diseases were developed. Here a set of data from human
form of CJD is analyzed using the new correlation algorithm. The purpose is to see
differences in spectral response for the stain hFTAA in different samples, and to
develop new auxiliary help routines to assist in the handling and analysis of data.
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Chapter 2
Background and Theory

2.1 Correlation analysis

In order to separate two quite similar emission spectra, correlation analysis has
been used with success. A MatLab program named plotCorrelation, developed by
P̊al Gunnar Ellingsen in the LUPAS-project [4], calculates the correlation between
the spectrum in a hyperspectral image pixel and a reference spectrum by using the
correlation coefficient (equation 2.2).

ρXY =
σXY

σXσY
(2.1)

X and Y are in equation (2.1) random variables, σXY is the covariance between X
and Y , and σX and σY is in accordance with conventional notation the standard
deviation of X and Y , respectively. The resulting correlation is in the interval
−1 ≤ ρXY ≤ 1, where 1 means that X = Y , and -1 that X = −Y . When
applied on hyperspectral images, X and Y represents the reference spectrum and
the spectrum in a pixel. Assuming N data points gives:

ρXY =

N∑
i=1

(Xi − X̄)(Yi − Ȳ )√
N∑
i=1

(Xi − X̄)2

√
N∑
i=1

(Yi − Ȳ )2

(2.2)

where X̄ and Ȳ represents the mean values of X and Y , respectively [4] An example
on application of plotCorrelation is shown in figure 2.1.

7



Chapter 2. Background and Theory

Figure 2.1: The figure illustrates how plotCorrelation is used to find the correlation
between a reference spectrum and the emission spectrum for all pixels in a hyperspectral
image. The emission spectrum is extracted from the image and its correlation with the
reference spectrum is calculated. The resulting value, in this case 0.9610, is plotted in
a new figure with the same dimensions as the hyperspectral image at the exact same
point, which in this case is at (63,196) (X and Y position respectively). When all corre-
lation coefficients are calculated and plotted, a heat map showing the emission spectra’s
correlation with the reference spectrum at all points in the hyperspectral image is shown.

2.2 Linear unmixing of emission spectra

Linear unmixing can be used to identify and separate overlapping spectra, for ex-
ample fluorescence from objects stained with more than one fluorochrome. Math-
ematically, a measured spectrum can be described as:

S(λ) =
∑

Ai ∗Ri(λ), (2.3)

where R is the reference spectra and A is a weighting matrix. Solving the
equation requires linear algebra [9].

2.3 Statistics

Statistics is essential in the process of handling large amount of data. A mean value
with its standard deviation reports about the consistency of the results. When
handling multiple emission spectra, a mean spectrum with standard deviation can
be calculated to discover common features.

8



2.3 Statistics

If X1, X2, . . . , Xn is a random sample of size n, the sample mean is defined as
(2.4)

X̄n =
1

n

n∑
i=1

Xi (2.4)

where X̄n is mean value and Xi is the value for the i’th element. The sample
variance is defined as (2.5)

σ2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (2.5)

where σ is the standard deviation [24].

2.3.1 The weak law of large numbers

If the random numbers X1, X2, X3, . . . has mean µ, the mean value, X̄n, for the
first n numbers approaches µ as n increases towards infinity. That is, for any
positive ε:

lim
n→∞

P (|X̄n − µ| > ε) = 0, (2.6)

where P is the probability [22].
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Chapter 3
Method

3.1 Programming

For implementation of new tools to analyze hyperspectral images, the software
MatLab [13] was used to make it compatible with previous work from the LUPAS
project. For exploring the radial dependence of spectra, two new scripts were
written. The first is based on spectra from a fixed distance from a chosen centre in
the image, named the circle-method. The other is based on spectra from pixels in
image having a total intensity within a certain interval, the zone-method. Pseudo
codes are shown in algorithms 1 and 2.

Input: Hyperspectral image as 3D matrix, array with wavelength values
Output: Mean emission spectra for points a fixed distance from centre with

standard deviations
display hyperspectral image in figure;
take user input to define centre and five integer radii;
normalize spectra for every pixel in image with respect to area;
for all radii do

find positions in hyperspectral image whose distance from centre,
calculated by the pythagorean theorem and rounded to an integer, is
equal to radius;
for all wavelengths do

find mean value and standard deviation for pixels located at
calculated positions in hyperspectral matrix;

end

end
return
Algorithm 1: How the emission spectra is calculated in circle-method.

11



Chapter 3. Method

Input: A = Hyperspectral image as 3D matrix,
wave = array with wavelength values
Output: Emission spectra with standard deviations for all zones
xStep← [0.1, 0.2, 0.3, . . . , 1];
img ← 2D intensity image;
/* finding max and min value of image: */
maxImg ← max(img);
minImg ← min(img);
/* all values in xStep is used to make an array

containing upper intensity limits for the zones */
limits← xStep ∗ (maxImg −minImg) +minImg;
for i← 1 to 10 do

if i = 1 then
zonei ← [pixels with intensity value ≤ limits(i)];

else if i = 10 then
zonei ← [pixels with intensity value > limits(i− 1)];

else
zonei ← [limits(i− 1) < pixels with intensity value ≤ limits(i)];

end
for j ← 1 to length of wave do

/* Calculate mean value and standard deviation for
pixels in zonei for every wavelength */

zoneSpec(zonei, wavej)← mean(A(zonei, wavej));
stdSpec(zonei, wavej)← std(A(zonei, wavej));

end

end
return zoneSpec stdSpec

Algorithm 2: How the emission spectra is calculated in zone-method.

3.2 Pythagorean theorem

To calculate the distance between two pixels in a digital image, the pythagorean
theorem is used [23]:

d =
√

(X2 −X1)2 + (Y2 − Y1)2, (3.1)

where (X1, Y1) and (X2, Y2) are the coordinate positions of the two pixels, and d
is the distance between them.

12



3.3 Hyperspectral images in dataset

3.3 Hyperspectral images in dataset

Figure 3.1: The dataset contained 56 folders, one for each hyperspectral image. Every
folder contained a set of *.txt files, one for each wavelength (i.e. one for each layer in the
hyperspectral image, see figure 1.2). Every *.txt file contained information about how
many counts that were registered by the detector at every point.

Figure 3.1 illustrates how the hyperspectral images were saved in *.txt files. A
MatLab function called readSpecFiles (written by P̊al Gunnar Ellingsen) could take
one folder as input, and give a three dimensional matrix and a one dimensional
array as output. The matrix can be understood as the hyperspectral cube seen
in figure 1.2, where numerical values in the plane constructed by the two first
dimensions represents the number of counts registered by the detector, i.e. the
intensity. Every step in the third dimension is one layer in the hyperspectral cube.
The one dimensional array output is an ordered list of wavelengths corresponding
to the layers (wavelengths is extracted from the filename, see figure 3.1).

The images in the dataset had dimensions in the range 208-784 pixels in the
X direction and 218-720 pixels in the Y direction. The mean resolution of all
images was 372x343. In terms of spectral resolution, all hyperspectral images had
a starting wavelength at around 450 nm and ending at around 807 nm. All of them
had around 80 files, so that in average, 4-5 nm separated each data point.

3.4 Laboratory work

Laboratory work is performed by Hennig Leske at the university of Zürich. The
samples are sections of the cerebellum in human tissue, since it is uncommon to
have amyloid-β plaques there, which would be a confounder for this study. All
plaques are sporadic CJD (sCJD) cases.
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Chapter 3. Method

3.4.1 Sample preparation

10 µm thick frozen sections of human tissue were dried at room temperature, fix-
ated using 100% ethanol, and subsequently washed twice using PBS. The following
step was staining the sections with hFTAA diluted in PBS for 30 minutes. Af-
ter that they were washed twice in PBS, dried and sealed using dako fluorescence
mounting medium and a coverslip. Nailpolish was applied to prevent NaOH to
access the tissue. After hardening of the nail polish (1 day), the sections were
decontaminated in 2M NaOH, washed in H2O and analyzed.

3.4.2 Experimental setup

Microscope information is given in table 3.1. The images were collected with a
1000 fold magnification, using Olympus oil. The spectra were calibrated so that
there was no more difference than 2 nm according to the reference. Pictures of
plaques were taken and the exposure time was set, so that the brightness level of
the image was always around 3000 with filter set 1 and filter set 9. Filter set 1
excites with BP 365 nm (FWHM 12 nm), has a beam splitter FT 395 nm and a
LP 397 nm filter for emission. Filter set 9 excites with BP 450-490 nm, has a beam
splitter FT 510 and a LP 515 nm filter for emission [28].

Microscope: Zeiss Axioplan 2 Imaging

Filter:
Zeiss filter set 1 and
Zeiss filter set 9

Lamp: HXP 120C

Table 3.1: Microscope information

14



Chapter 4
Results and discussion

4.1 Normalization of multiple spectra in one plot
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Figure 4.1: Illustration of the differences between normalizing spectra with respect to
maximum value and area under curve. The area normalization reveals that the blue
spectrum (unbroken line) has a larger portion of its total energy at the maximum value
compared to the red spectrum (dotted line), which does not show in a spectrum normalized
with respect to the maximum value. This is because the area normalization shows how
every peak changes its value with respect to the total spectrum. The red shift happening
is more evident with area normalizing, and the fact that the peak at 600 nm for the blue
(unbroken line) spectrum increases relative to the peak at 550 nm for the red (dotted
line) spectrum is much easier to see with area normalization.

For both the zone-method and the circle-method, normalization of the mean spectra
is done with respect to area under the curve. In the earlier version of plotCorre-
lation, normalization was done with respect to maximum value. This is however
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Chapter 4. Results and discussion

the first time multiple spectra is plotted in the same figure in the program, and
normalization with respect to maximum value does not give a good visualization
of how the spectra changes. Differences between the two is illustrated in figure 4.1.

To normalize the spectra, the MatLab built-in function trapz is used [12]. It uses
the trapezoidal rule on the values available for the spectrum (typically around 80 for
dapi filtered images, and some fewer for green filtering due to a higher wavelength
cut-off). Mathematically speaking, the trapezoidal rule is a simplification of area
calculation. However, as the spectra used digitally always has a finite number
of data points, there is always a straight line between the data points. I.e. if a
trapezium is used for area calculation between all data points in a digital image
with finite step size, there is no simplification. The function does not calculate
the actual area, but sets the width between every data point (i.e. the step in
wavelength) to unity. This is a source of error if the wavelength step size is not
equal everywhere, and it does alter in some degree for the spectra in this analysis.
However, after testing, the error was found to be so small, it does not affect the
normalization in a considerably degree. The most important aspect is that all
spectra are normalized with respect to area calculated in the same manner.

4.2 Testing algorithm

Two techniques were implemented that had the same objective, namely to explore
how the emission spectrum from different areas of the plaque varied radially. Both
techniques were added as options in the program plotCorrelation.

4.2.1 Circle-method

The first technique that came to life was loosely based on the option in plotCorre-
lation that plots the correlation vs distance from intensity maximum/mass center.
In the new option, spectra from five distances from the center is plotted, and the
correlation is not taken into account. As the plaques intensity maximum and mass
center vary a lot, the center is determined based on user input, as is the radii of
the circles. A pixel is contributing to a circle if the distance from the center to the
pixel, calculated by use of equation (3.1) and rounded to an integer, is equal to the
integer radius of that particular circle.

4.2.2 Zone-method

The second technique chooses pixels in the image based on total intensity. In stead
of having a certain distance from a given center, the pixels are now chosen to
contribute to a zone if their total intensity lies within a certain interval. Figure
4.2 illustrates how the program works step-by-step. Figure 4.3 and 4.4 shows both
circle-method and zone-method applied on two different plaques, and unveils some
important differences between the two.
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Figure 4.2: Flow chart illustrating line of action for zone-method.
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(b) Image of plaque divided into zones.
Colorbar shows number of counts.
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Figure 4.3: Example showing usage of both circle-method and zone-method on a fairly
circular plaque.

18



4.2 Testing algorithm

100 200 300

50

100

150

200

250

300
2

4

6

8

10

x 104

(a) Intensity image with circles. Colorbar
shows number of counts.

100 200 300

50

100

150

200

250

300

4

6

8

10

x 104

(b) Image of plaque divided into zones.
Colorbar shows number of counts.
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Figure 4.4: Example showing usage of both circle-method and zone-method on a non-
circular plaque.
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4.2.3 Strengths and weaknesses of algorithms

Figure 4.3 and 4.4 show a higher standard deviation for the spectrum corresponding
to the second outermost circle for the non-circular plaque relative to the circular. As
one can see in figure 4.4a, the plaque’s non-circularity forces the second outermost
circle to cover a lot of background (i.e. low intensity areas) if it is to touch the outer
edge, which gives contribution from pixels all over the image. Another bi-effect of
the circle having a large radius, is that some of the points may be outside the image
– and thus no contribution from these points. A lower number of contributors yield
additional noise and cause the mean value to be more inaccurate with respect to
expectation value, as stated in the weak law of large numbers [22]. For example,
the plaque shown in figure 4.3 has approximately 500 pixels that contribute to
the mean spectrum for the second outermost circle, while the corresponding zone
(20− 30%) contains over 5000 pixels as a basis for mean calculation.

A zone-method weakness is revealed if the image contains areas of slightly
increased intensity in the background. A zone that seemingly covers the periphery
of a plaque may then also include some background. Another point is that the image
should only contain one plaque, unless one is looking for a mean spectrum for many
plaques. The latter can be solved by using the cropping option in plotCorrelation.

Statistics

A method for examining hyperspectral images of this kind should be suitable for
statistical purposes. Although the dataset in this report only contains a few images,
other analysis may involve many hundreds, rendering it nearly impossible to do a
proper analysis examining one image at the time. The resulting method should
produce general results, so that they can be used for making statistics about the
data set.

If the objective requires handling of many plaques, the circle-method is not
suited due to multiple reasons. First of all, the vast requirement of user input
makes the process lengthy. In addition, equal parameters for data acquisition is
required to get meaningful statistical results, which is difficult as the radius of
circles is determined by user input and will therefore not be kept constant. There
is also a problem with plaques having different geometrical shape, rendering it
impossible for spectra from circle-method to represent the same area. In the zone-
method, zones always represent a given intensity interval, yielding more relevant
statistical results.
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4.3 Autofluorescence from CJD plaque

4.3 Autofluorescence from CJD plaque

Figure 4.5 shows spectra for ten zones in a unstained plaque captured with dapi
filter, i.e. the spectra represents AF for CJD plaques captured with dapi filter in
the data set. As the set only contained one image of unstained plaque, it should
be taken into consideration that AF spectra might vary for different plaques. The
dataset did not contain an image of unstained plaque captured with green filter.
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Figure 4.5: Autofluorescence of CJD plaque. Emission spectra for ten zones from
unstained plaque captured with dapi filter. Peaks are located at 546 nm and 582 nm.

4.4 Correlation approach vs. linear unmixing

The work presented in this report has made use of the correlation approach to
mathematically weight the spectra present in one spectrum, and not linear un-
mixing. The two approaches are quite similar as they both require a reference
spectrum, and they are both ways to mathematically express in what degree a
spectrum is present within another spectrum. The linear unmixing approach is
weak for situations where a spectrum is not a linear combination of many spectra.
For use like in this report, with hFTAA staining of PrPSc, the resulting emission
spectrum can be a product of a chemical reaction, and is thus no linear combination
of one spectrum from hFTAA and another from PrPSc. The correlation approach
describes the linear relation between measured and reference spectrum. If there is
no effect from the staining in a spectrum, the correlation with AF should be high,
and vice versa. It does not matter in what way the staining changes the spectrum,
it only matters if it is changed or not with respect to the AF spectrum.
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4.5 Results from CJD plaque analysis

The dataset was organized as showed in table 4.1:

Case number Number of plaques PrPSc type

2 1 Type 1 M/V
7 5 Type 2 V/V
8 5 Type 2 V/V
10 4* Type 1 M/V
11 5 Type 1 M/V
14 3 Type 2 M/V
15 5 Type 2 M/V

Table 4.1: The case numbers is in their original states as set by the university in Zürich.
Every plaque in all cases is captured with two different filters. The case numbers are
unique for every patient.
*Allthough the total number of plaques is four, they are organized as plaque number 1,
2, 3, 5.

4.5.1 Correlation between plaques and AF

Figure 4.6 shows correlation images for three plaques chosen to be representative for
each case. The plaques displayed great variation of correlation with AF spectrum,
seen as zone 90 − 100% in figure 4.5. It was also a strong radially dependence
on most of the plaques. Figure 4.6 shows how the plaques tend towards emitting
spectra more resembling to AF at the periphery than in the center of the plaques.
This effect can be understood as the hFTAA staining having more influence on the
spectra originating from the central area. The result is the opposite of what was
found for hFTAA-staining of amyloid β plaques in earlier LUPAS research on AD,
which indicated that hFTAA stains the periphery more than the center [3].
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(a) Plaque 1 case 7 (b) Plaque 1 case 10 (c) Plaque 1 case 15
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Figure 4.6: (a)-(c) shows intensity maps for hyperspectral images of three different
plaques. (d)-(f) shows the correlation between the dapi filtered image and the dapi filtered
AF (see figure 4.5). The top color bar shows the intensity, and the lower color bar shows
the correlation. Notice how the correlation increases as the distance from the center of
the plaques increases.

4.5.2 Radial distribution of correlation

plotCorrelation has the option to show the correlation as a function of distance
from intensity maximum (center). The function has data points for every radius
rounded to an integer (calculated in pixels), where maximum radius is the pixel
farthest off the center. To make the data useful for statistical work, the radii
were normalized and resampled to 30 points from 0 to 1. When normalized and
resampled, the mean correlation pr distance from center with standard deviation
can be found for each case. Figure 4.7 shows the mean correlation and standard
deviation as a function of normalized distance from the center for all plaques within
three cases.
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Figure 4.7: The mean correlation and standard deviation for all plaques within case 7,
10 and 15 as a function of normalized distance from intensity maximum. Case 10 contains
three plaques, while 7 and 15 has five.

The correlation with AF increases as the distance increases for all three cases.
As previously stated, this indicates that the hFTAA staining influences the center
most for all plaques in the three cases, owing to the fact that correlation with the
non-stained plaque is highest at the periphery. This can only be stated with the
reservation of the un-stained plaque has a emission spectrum representative for the
autofluorescence of CJD plaques. As figure 4.7 shows, the standard deviation varies
massively for the different cases. This effect can not be seen as only a variation in
correlation at certain regions of the plaque. The program is written in such a way
that it is most reliable on circular plaques, as it choses the pixel with maximum
intensity as center, and gets the spectra as a function of distance from this center.
This yields high uncertainty and variation in correlation at large distances for
plaques with irregular shape and many different areas of high intensity.

The acquisition of spectra in the circle-method is loosely based on this proce-
dure, which is why their weaknesses are more or less the same. For example, case
10 consists of three differently shaped plaques (plaque 1, 2 and 5 in case 10, see
appendix 1). Because they at large distances away from the center will represent
different areas of the plaque, the standard deviation is high. On the other hand,
case 15 contains five more or less circular plaques located at the center of the image,
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yielding all correlation values far away from the center to represent the transition
from periphery to background, and therefore the low standard deviation.

A statistical problem arises when the distance is normalized to be from 0 to
1. Ideally, one would like a certain distance to represent the periphery of the
plaque, another distance to be the background, and so on. This would require
the crops of the images to be done in such a way that each plaque occupies the
same amount of area, and the plaque should be centered. In the data presented in
this report, the cropping was already done, so small variations will give a higher
standard deviation seen in figure 4.7. However, the effect of non-circularity is a
greater source of inaccuracy for this procedure. Note that the standard deviation
shown in 4.7 concerns the variation between the different plaques, i.e. it is about
uncertainty in statistics. Non-circular plaques will also cause a high standard
deviation in the correlation vs. distance-plot for one single plaque, which in turn
yields high standard deviation in statistical use.

4.5.3 Radial distribution of ES

Figure 4.8 shows how the mean emission spectrum for three cases with both filters
varies radially. The calculation of a mean spectrum for a case was done by taking
the mean normalized intensity value for every wavelength value. The normalization
is done with respect to the area under the curve, and prevents the total intensity
of the hyperspectral image to affect the result. Figure 4.9 shows the standard
deviation for the mean spectra of zone 20− 30% and 90− 100% seen in figure 4.8.
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Figure 4.8: Plots showing mean emission spectra for each zone in all plaques in one
case. (g) shows legend for (a) - (f). Peaks for dapi filtered plots are at 555 nm, 584 nm
and 606 nm. Peaks for green filtered plots are at 555 nm and 590 nm.
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Figure 4.9: Plots showing the for lines 20−30% and 90−100% in figure 4.8. The shaded
outlines represent the standard deviation for the mean spectrum of all plaques in three
different cases.

Figure 4.8 displays a red shift for both dapi and green filtered spectra as the
zones approaches the center. For the dapi filter spectra, a new maxima at 606 nm
arises. Dapi spectra are more red shifted, and has three local maxima compared
to two in green spectra. The radial dependency is therefore more evident for dapi
spectra. The standard deviation seen in figure 4.9 can in general be said to be
low. There is possible to see a slightly increment for case 10, especially for green
filter. Some of the reason for this can possibly be traced back to the number of
plaques involved in the case. As the plot is a mean of three plaques, compared to
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five plaques for case 7 and case 15, a deviation in the plaque’s emission spectrum1

will affect the standard deviation in a higher degree.

4.6 Sources of error

4.6.1 pH change during preparation

A discussion within the group of the collaborators within the LUPAS project re-
vealed a possible source of error because the sections were decontaminated with
2M NaOH. If the nail polish sealing is leaky, NaOH could access the tissue. A pH
change could massively modify the spectra. As can be seen in appendix 5, a lot
of the correlation images looks completely “red”, meaning the correlation with AF
reference is close to 1 over the entire image. For this reason, results for the “red”
images is not included in this report. The excluded plaques are all plaques in case
2, 8, 11 and 14, and plaque 3 in case 10.

4.6.2 Limited number of AF references

The dataset contained only one image of unstained plaque. It can not be guaranteed
that it is a representative AF spectrum for the center of PrPSc, as one can not rule
out sources of error like NaOH leakage.

1A deviation could originate from for instance sample preparation, prion type heterogeneity,
capturing process etc.
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Chapter 5
Summary and Conclusion

A dataset containing 56 hyperspectral images of hFTAA stained PrPSc plaques
from CJD infected human brain tissue was analyzed, captured with two different
filters (dapi and green). To get an overview, the MatLab program plotCorrelation
[4] (that calculates the correlation coefficient between the emission spectrum for
every pixel and a reference spectrum) was used on every image with AF as reference
spectrum. The correlation images revealed a strong radial dependence for the
emission spectrum.

To examine what happened to the emission spectrum as the distance from the
center of the plaque was increased, two new programs were implemented and added
as an option to plotCorrelation. The underlying idea was to make a program that
took a hyperspectral image as input and plotted a number of spectrums dependent
on the distance from a chosen centre. The number of plots should be so low that
they could be plotted in one 2D coordinate system and still be separable to the
eye. One program was based on pixels lying on a circle around a given centre, and
another based on dividing the image into zones based on total intensity.

The program using circles required a lot of user input and did not contain as
many pixels for mean spectrum calculation as the program based on zone classifi-
cation. The zone-method also gave more reliable results for non-circular plaques,
and did not require any user input. For this reason the zone-method was preferred
in further analysis.

It was revealed that close to the center of the plaques, a peak at 606 nm appeared
for the dapi filtered images, and a distinct red shift appeared for both dapi and
green filtered images for spectra extracted from the periphery to the center of
the plaques. The peak at 606 nm was absent for a unstained sample present
in the dataset. This implied that the hFTAA staining of PrPSc plaques was most
pronounced in the center, which is the opposite of what was found in earlier research
on hFTAA staining of Amyloid-β plaques from AD, that concluded with hFTAA
staining being most evident in the periphery of the plaques [3].
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Appendix A: Complete list of all plaques including
correlation with AF

This is an overview of the hyperspectral image’s
correlation with spectrum from the center of the

unstained plaque. The right columns is the intensity
images of the plaques, and the right is the correlation.
The center mean stated in all captions for intensity

images is the mean intensity in the 90− 100% zone (the
highest 10% of intensity area).
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Figure 1: Unstained plaque. Hyperspectral images in left column, and correlation with
AF in right column.
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Figure 2: Case 2. Hyperspectral images in left column, and correlation with AF in right
column.
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Figure 3: Case 7. Hyperspectral images in left column, and correlation with AF in right
column.
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Figure 4: Case 8. Hyperspectral images in left column, and correlation with AF in right
column.
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Figure 5: Case 10. Hyperspectral images in left column, and correlation with AF in
right column.
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Figure 6: Case 11. Hyperspectral images in left column, and correlation with AF in
right column.
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Figure 7: Case 14. Hyperspectral images in left column, and correlation with AF in
right column.
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Figure 8: Case 15. Hyperspectral images in left column, and correlation with AF in
right column.
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Appendix B: Program code for zone-method

1 if args.zones
2 xStep=0.1:0.1:1;
3 %xStep = [0.6 0.65:0.02:1]; %alternative xStep
4 %xStep defines which percentage of the intensity is placed in

what
5 %zone. Another vector can also be used, as long as xStep(1)>0

and
6 %xStep(end)==1.
7

8 img = squeeze(sum(A,3));
9 %img=B.corr; %alternative img

10 zones=xStep*(max(max(img))-min(min(img)))+min(min(img));
11

12 cm = jet(length(xStep)); %creating the colormap
13 cimage=zeros(size(img)); %cimage is the image divided into

zones
14 zSpec=zeros((length(xStep)),size(A,3)); %zSpec contains all

the spectra from the zones
15 At = trapz(A,3);
16 Anorm = zeros(size(A));
17 for i=1:size(A,3)
18 Anorm(:,:,i) = A(:,:,i)./At; %Normalizing the spectrum for

every pixel in the image
19 end
20 if args.plot
21 figure(figN);
22 clf;
23 hold on
24 end
25 nspec=cell(1,length(xStep));
26 B(1).zStd=zeros(length(xStep),length(wave));
27 B(1).zStdd=zeros(length(xStep),length(wave));
28 for i=1:length(xStep)
29 if i==1
30 boolImg=(zones(i)>=img);
31 elseif i==length(xStep)
32 boolImg=(zones(i-1)<img);
33 else
34 boolImg=(zones(i-1)<img)&(img<=zones(i));
35 end
36 cimage(boolImg)=zones(i);
37 tmpImg = Anorm;
38 tmpImg(repmat(˜boolImg,[1 1 size(tmpImg,3)])) = NaN;
39 zSpec((i),:)=nanmean(nanmean(tmpImg));
40

41 for j=1:length(wave)
42 tmpi = tmpImg(:,:,j);
43 B(1).zStd(i,j) = std(tmpi(isfinite(tmpi)));
44 end
45

46 if args.mNorm
47 nspec{i} = normalize(zSpec(i,:),’m’);
48 else
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49 nspec{i} = normalize(zSpec(i,:),’a’);
50 end
51

52 if args.plot
53 plot(wave,nspec{i},’-’,’color’,cm(i,:),’LineWidth’,1)
54 end
55 end
56 B(1).zoneSpec.spec=nspec;
57 B(1).zoneSpec.legend = zones;
58 if args.plot
59 hold off
60 figN=figN+1;
61 figure(figN);
62 clf;
63 imagesc(cimage)
64 axis image
65 colormap(cm); %Plotting cimage with the same colormap as

the reference spectras.
66 colorbar;
67 figN=figN+1;
68 end
69

70 B(1).zoneIm = cimage;
71 end
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Appendix C: Program code for circle-method

1 if args.circles
2 if ˜args.input
3 warning(’Circle analysis requires user input’);
4 end
5 n=5; %number of circles
6 if args.plot
7 figure(figN);
8 figN=figN+1;
9 clf;

10 img=squeeze(sum(A,3));
11 imagesc(img);
12 hold on
13 axis image
14 title([’First choose the center, then choose ’,num2str(n),

’ desired radii’])
15 disp([’First choose the center, then choose ’,num2str(n),’

desired radii’]);
16 center=ginput(1);
17 plot(center(1),center(2),’+w’,’MarkerSize’,15)
18

19 X=zeros(1,n);
20 Y=zeros(1,n);
21 [X,Y]=ginput(n);
22 else
23 error(’Cannot turn off plots and use circle analysis’)
24 end
25

26 cm=jet(n);%creating the colormap needed.
27

28 %Calculating the radii
29 for i=1:n
30 R(i)=int32(sqrt((center(1)-X(i)).ˆ2+(center(2)-Y(i)).ˆ2));
31 viscircles(center,R(i),’EdgeColor’,cm(i,:))
32 end
33

34 AA=A(:,:,1);
35 C=cellfun(@(n) 1:n, num2cell(size(AA)),’uniformoutput’,0); %

Constructs two
36 % vectors, from 1 til length of y or x axis in a cell array
37 [C{:}]=ndgrid(C{:}); % Makes a ndgrids of the cell elemets
38 C=cellfun(@(x) x(:), C,’uniformoutput’,0); % Arranges the

cells into
39 % vectors
40 C=[C{:}]; % Converts the cell elements to an array
41 cmc=bsxfun(@minus,C,center(1,:)); % subtracts of the center
42

43 if args.plot
44 figure(figN)
45 figN=figN+1;
46 clf;
47 hold on
48 title(’Plot showing the average reference spectra for each

ring’)
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49 end
50 cSpec=zeros(size(A,3),n);
51 At = trapz(A,3);
52 Anorm = zeros(size(A));
53 for i=1:size(A,3)
54 Anorm(:,:,i) = A(:,:,i)./At; %Normalizing the spectrum for

every pixel in the image
55 end
56 for j=1:n
57 %cmcPos = find(sqrt(cmc(:,1).ˆ2+cmc(:,2).ˆ2)<(R(j)+0.5) &

sqrt(cmc(:,1).ˆ2+cmc(:,2).ˆ2)>(R(j)-0.5));%Finner
interessante posisjoner i arrayen cmc

58 cmcPos = find(int32(sqrt(cmc(:,1).ˆ2+cmc(:,2).ˆ2))==(R(j))
);

59 Bpos = C(cmcPos,:); %Finner relevante posisjoner i
matrisen C

60 size(Bpos)
61 for k=1:size(A,3) %Henter referansespektraene og tar

gjennomsnittet
62 tmpValues=zeros(size(Bpos,1),1);
63 for l=1:size(Bpos,1)
64 tmpValues(l) = Anorm(Bpos(l,2),Bpos(l,1),k);
65 end
66 cSpec(k,j)=mean(tmpValues);
67 cSdev(k,j)=std(tmpValues);
68 end
69

70 if args.mNorm
71 nCspec{j} = normalize(cSpec(:,j),’m’);
72 else
73 nCspec{j} = normalize(cSpec(:,j),’a’);
74 end
75

76 if args.plot
77 plot(wave,nCspec{j},’-’,’color’,cm(j,:),’LineWidth’,1)
78 end
79 end
80 B(1).circleSpec.spec=cSpec;
81 B(1).circleSpec.std=cSdev;
82 end
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