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Abstract The importance of inter-particle radiation for clusters of gray and diffuse

particles is investigated. The radiative cooling of each individual particle is found to

vary strongly with its position in the cluster, and a “mean” radiative particle cooling

term is proposed for single particle simulations of particle clusters or for high detail

simulation, like Direct Numerical Simulations of small sub-volumes of large clusters

of particles. Radiative cooling is shown to be important both for furnaces for coal

gasification and coal combustion. Broadening the particle size distribution is found

to have just a minor effect on the radiative particle cooling. This is particularly the

case for large and dense particle clusters where there is essentially no effect of size

distribution broadening at all. For smaller and more dilute particle clusters, the effect

of distribution broadening is clear but still not dominant.

Keywords combustion · coal · radiation · simulation · particle

1 Introduction

Many industrial processes, such as e.g. pulverized coal or biomass combustors, flu-

idized bed reactors or entrained flow reactors rely on reacting particles. In order to

fully understand these systems, an understanding of the chemical reactions together

with the heat transport to and from the particles is crucial. In most cases, convective

and conductive heat transfer between the particles and the gas must be considered. For

high temperatures, radiative heat transfer should also be taken into account. Here one
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can think of both particle-fluid interactions, particle-wall interactions and particle-to-

particle interactions. In the work reported here, the importance of particle-to-particle

radiation is discussed.

Qiao at al. (2012) [4] studied char gasification in a well-stirred reactor using a

detailed multi-physics model. They applied global chemical kinetics for the hetero-

geneous reactions and GRI-Mech 1.2 for the homogeneous reactions. In their work

the particles were not resolved by a grid, but gradients were taken into account e.g. by

utilizing boundary layer theories. Account was made for the effect of a cloud of parti-

cles on the fluid, but the cloud effect did not take into account the radiative exchange

between the particles.

Mitchell et al. (2007) [6] resolved one single char particle using a spherically

symmetric one dimensional discretization. A six-step adsorption-desorption hetero-

geneous reaction mechanism is then used to evolve the char burning rate, temperature,

diameter, apparent density and specific surface area as a function of time. Since the

reacting particle is fully resolved by the computational grid, the results are used to

study how well the effectiveness factor calculated using the Thiele modulus replicate

the results from their DNS. In this work, only radiative exchange between the particle

and the surrounding walls, which are kept at a constant temperature, was included.

In a recent paper by Hecht et al. (2012) [7], the authors use the SKIPPY code

to study the effect of gasification reactions on oxy-fuel combustion of pulverized

coal. They found that the gasification reactions reduce the particle temperature sig-

nificantly, and thus also the char oxidation rate. The overall char conversion rate was

slightly increased though, due to the combined effect of the oxidation and gasifica-

tion reactions. The SKIPPY code is similar to the code of Mitchell et al. [6] in that

only radiative exchange between the particle and the surrounding walls is take into

account, and that it resolves the particle through a spherical symmetric discretization.

The main difference between the two codes is that SKIPPY is steady state (i.e. not

transient in time), while the code of Mitchell evolves the solution with time.

When performing CFD simulations, particle radiation is often included and found

to be important [1–3]. If, on the other hand, one does not perform a full CFD simu-

lation but is rather interested in solving single particle physics and chemistry in high

detail one often neglects, or partly neglects, radiation. In such cases radiation may not

be considered at all, or if it is taken into account, only particle-wall radiation [4–7] or

particle-fluid radiation [8] is considered. The primary aim of this paper is to obtain a

realistic description for the particle radiation transfer, including both particle-to-wall

and particle-to-particle radiation, that can be used for high detail particle simulations.

The secondary aim is to investigate the effect of particle size distribution broadening

on radiative transfer.

In the current work, only geometric scattering is considered, and the analysis

is limited to the case where the particles radiate like gray bodies and the gaseous

environment between particles is transparent to radiation. The assumption of particles

behaving like gray body radiators is expected to be valid for the char particles of

interest here but not valid for particles with wavelength dependent absorption and

scattering efficiencies, such as devolatilizing coal or biomass particles. The work of

Solomon et al. (1988) [9] indicate that the spectral emittance of coal is dependent on

rank, particle size and the extent of pyrolysis, approaching a highly absorbing gray
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body for chars, anthracites and large particles. Assuming the gaseous environment to

be transparent to radiation is generally considered as a good approximation since both

oxygen and nitrogen have very low absorptivities. Steam and carbon dioxide, on the

other hand, are known to have somewhat higher absorptivities, which yields a higher

opacity than for pure air. It is nevertheless quite common to assume the gaseous

environment to be transparent to radiation even when steam and carbon dioxide are

present. Considering only geometric scattering is valid since the particles have large

size parameters, i.e. ξ = 2πrp/λ > 5 where λ is the wavelength of the radiation and

rp is the particle radius, such that Rayleigh and Mie scattering can be omitted.

Performing three dimensional CFD simulations of full gasifiers or combustors

are very demanding. Due to the large CPU power required one often has to use very

simplified chemical models, both for the homogeneous and heterogeneous reactions.

In many situations it is therefore better to simulate one single particle with high fi-

delity chemistry, and let this particle represent the “average” particle in the domain.

With this simulation method one can easily do a large parameter scan over a range

of different parameters with detailed chemical reactions. Such an “average particle”

simulation will not yield detailed information of geometrical features in any appli-

cation. Instead it will yield qualitative trends, using accurate chemical kinetics, for

a range of parameters in “typical” conditions relevant for the application of interest.

Traditionally, the particle cooling term used for such single particle simulations of a

cloud of particles has been given by [4,6]

Q = Ap(qp −Eaqw) (1)

where qp and qw are the thermal radiation from the particle and the wall, respectively.

It is evident from this that inter-particle radiation is neglected, which may not be a

good assumption for many applications. A description of a particle cooling term that

does include inter-particle radiation for this kind of simulation tool does not exist in

the open literature. The main objective of the current work is therefore to extend the

above radiative cooling term to also take into account inter-particle radiation.

2 Radiation in a cloud of particles

Consider a cloud of hot particles embedded in a radiatively transparent gas and en-

closed within a confinement. This could for example resemble the situation in an

entrained flow gasifier. If the radiative flux absorbed by a particle is Fa and the flux

absorbed by a replacement blackbody particle having the same size and tempera-

ture is Fbb, then an absorption efficiency factor for the particle can be defined as

Ea = Fa/Fbb, which is a measure of the efficiency of the particle as an absorber com-

pared to that of a blackbody.

A ray of radiation incident on a large particle will either be absorbed or re-

flected by the particle surface. Since the total cross section of a particle with ra-

dius rp is Ap = πr2
p, the absorption cross section must be Aa = EaAp given that a

fraction Ea of all the radiation incident on the particle is absorbed. Since radiation

is either absorbed or reflected the scattering cross section of the particle must be

As = Ap −Aa = (1−Ea)Ap. A scattering efficiency factor is defined, analogously to



4 Nils Erland L. Haugen, Reginald E. Mitchell

the absorption efficiency factor, as the fraction of incident radiation that is scattered

by the particle surface Es = As/Ap, which then yields Es +Ea = 1. For the large par-

ticles of interest, the scattering efficiency factor equals the reflectivity of the particle

surface while the absorption efficiency factor equals the absorptivity of the particle

surface. In all of the following the scattering efficiency factor of the particles is as-

sumed to be much smaller than the absorption efficiency factor such that the effect of

scattered radiation from the particles can be neglected.

The extinction coefficient is a measure of how easily a ray of radiation pene-

trates a given medium without being absorbed. Let a large number of small particles

be embedded in the fluid such that the number density of the particles with radius

between rp and rp+drp is n(rp) drp. Here, and in all the following, the particle num-

ber density is assumed to be homogeneous throughout the domain. If the particles

are treated as diffuse gray bodies with zero scattering coefficients, a ray of radiation

emitted from the source at r = 0 may be absorbed by the particles. The probability of

extinction depends on the number density of particles, the projected particle surface

area and the length of travel. Following the approach of Siegel & Howell [10], the

extinction coefficient is composed of two parts, a contribution from absorption and

one from scattering. As such, the extinction coefficient, K, of the medium due to the

embedded particles is given by

K =

∫ ∞

rp=0
(Ea +Es)n(rp)πr2

pdrp =

∫ ∞

rp=0
n(rp)πr2

pdrp. (2)

Let’s now assume a Gaussian particle size distribution given by

n(rp) =
np

σp

√
π

exp

(

−
(

rp − r̄p

σp

)2
)

, (3)

where np is the total particle number density, r̄p is the mean particle radius and σp

is the width of the particle size distribution. It is convenient to define the distribution

width as a fraction γp of the mean particle radius r̄p, i.e. σp = r̄pγp. Employing this

in Eq. (3), and using the result in Eq. (2) yields the following expression for the

extinction coefficient

K = πnpr̄2
p

[

1+
γp√

π
+

γ2
p

2

]

. (4)

The equation of radiative transfer, which describes the change in spectral radiative

intensity with s around the wavelength λ in the solid angle dωi about the direction of

s, is given by [10]

dIλ (λ ,s)

ds
= −aλ Iλ (λ ,s)+ aλ Iλ ,b(λ ,s)−σλ Iλ (λ ,s)

+
σλ

4π

∫ 4π

ωi=0
Iλ (λ ,s,ωi)Φ(λ ,ω ,ωi)dωi, (5)

where Φ is the phase function for scattering, Iλ ,b is the spectral intensity from a black-

body and aλ and σλ are the spectral absorption and scattering coefficients, respec-

tively. For a medium in which only absorption is important, and where the absorption
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coefficient is assumed to be constant for all wavelengths, the equation of radiative

transfer reduces to

dIλ (λ ,s)

ds
=−KIλ (λ ,s)+ aIλ ,b(λ ,s). (6)

By neglecting emission along the path the spectral intensity of radiation after travel-

ing a distance s into a medium is then found by integration of Eq. (6) to be

Iλ (λ ,s) = Iλ (λ ,0)e
−Ks. (7)

Here Iλ (λ ,0) is the intensity at the beginning of the path, the spectral intensity leav-

ing a char particle, which is assumed to be a gray body emitter. For such radiation,

the total intensity at a distance s from the particle is found by integrating over all

wavelengths

I(r) =

∫ ∞

λ=0
Iλ (λ ,s)dλ =

εpσT 4
p

π
e−Ks. (8)

Here, εp is the particle emissivity, σ is Stefan-Boltzmann constant and Tp is the parti-

cle temperature. Particle scattering has been neglected since for most relevant appli-

cations Ea ≫ Es. Later in the paper, the emission from each particle will be included

through an integration over spherical shells of increasing radius instead of through a

direct inclusion in the equation of radiative transfer. This does not result in any loss

of generality and is done in order to simplify the calculations.

The radiant energy d2Qdλ per unit time in the small wavelength interval dλ
centered around λ that is incident on a surface element dA and originates from a

surface element dAe on the surface of a particle having a center a distance r away

from dA is given by [10]

d2Qdλ = Iλ (λ ,r)dωe cosθedAedλ (9)

where dωe is the solid angle subtended by dA when viewed from dAe and is given by

dωe =
cosθdA

s2
. (10)

Here s is the distance between the differential elements dA and dAe and θe and θ are

the angles between the straight line connecting dA and dAe and the normal to dAe

(ne) and dA (n), respectively. Shown in Fig. 1 is a schematic view of the variables.

Due to the curvature of the particle surface the distance between dA and dAe will

generally be slightly different from r and is denoted s.

The total energy dQ from the particle incident on dA per time unit is found by

integrating over all wavelengths and over the entire surface, Sp, of the particle;

dQ =

∫

Sp

∫ ∞

λ=0
Iλ (λ ,s)

cosθdA

s2
cosθedλ dAe (11)

where s will vary with dAe due to the curvature of the particle surface. By assuming

that rp << r, it follows that s → r and that θ becomes the angle between n and the
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Fig. 1 Schematic of the variables used.

line connecting the center of the particle and dA. Now, by using Eq. (8), it can be

found that

dQ =

∫ ∞

λ=0
Iλ (λ ,r)

πr2
p

r2
cosθdAdλ = σT 4

p εpe−Kr
( rp

r

)2

cosθdA. (12)

The flux at dA due to radiation from the entire particle is now

q =
dQ

dA
= qpe−Kr

(rp

r

)2

cosθ (13)

where the radiative flux emitted from the surface of a particle is

qp = σT 4
p εp. (14)

Assume now that dA corresponds to the projected surface area of some particle pc

with radius rc and external surface are Ap = 4πr2
c . The total emission on pc is then

qdA = qπr2
c , while θ = 0, such that the mean flux q onto the surface of pc due to a

particle with radius rp placed a distance r away from pc is

q =
πr2

c q

Ap

=
1

4
qpe−Kr

(rp

r

)2

. (15)

3 Solid-Solid radiation

3.1 Particle-wall radiation

Let’s now assume that we are in a spherical confinement with radius R. The non-

dimensional number τ = RK is the optical thickness. In the case with negligible op-

tical thickness (i.e. τ → 0) the total radiative flux incident on the confinement walls

due to the combined radiation power from all the particles inside the confinement is

lim
τ→0

qpp−w =
1

Aw

lim
τ→0

Qpp−w, (16)
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where Aw = 4πR2 is the total area of the confinement walls and Qpp−w is the total

radiative power incident on the confinement walls. The assumption of zero optical

thickness implies that the total radiative power emitted from all the particles, Qpp,

equals the total radiative power incident on the walls, i.e.

lim
τ→0

Qpp−w = Qpp. (17)

The emitted power from all the particles must equal the product of the number of

particles and the radiative power from each particle integrated over all particles radii,

such that

Qpp =
∫ ∞

rp=0
Qp(rp) ·N(rp)drp, (18)

where Qp(rp) = 4πr2
pqp is the radiative power emitted from the surface of a particle

of radius rp and N(rp)drp = 4
3
πR3n(rp)drp is the number of particles in the con-

finement with radii between rp and rp +drp. Combining Eqs (16)–(18) yields, in the

case of negligible optical thickness, the following expression for the total radiative

flux incident on the confinement wall due to the radiation from all particles:

lim
τ→0

qpp−w =
1

4πR2

∫ ∞

rp=0
4πr2

pqp ·
4

3
πR3n(rp)drp =

4

3
τqp. (19)

In the case of non-negligible optical thickness, the equation for the total radiative

flux on the confinement walls is more complicated. Booth [11] theoretically consid-

ered a cloud of radiating particles in order to determine an effective emissivity that

could be used to describe radiation from the particle cloud. He showed that by as-

suming an absorption efficiency factor of unity, the radiative emission incident on the

walls surrounding the cloud, due to the enclosed particle cloud, is

qpp−w = qpεeff(τ) (20)

where

εeff(τ) =

[

1−
1

2τ2
+ e−2τ

(

1

τ
+

1

2τ2

)]

. (21)

From this it is clear that the cloud of particles within the enclosure may be considered

as a single object with radius R, temperature Tp and an effective emissivity εeff(τ).
For very small values of the optical thickness, it can be shown by Taylor expansion

that

lim
τ→0

εeff(τ) =
4τ

3
. (22)

such that in the case of vanishing τ , Eq. (20) reduces to Eq. (19), as expected.
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4 Particle energy equation

The energy conservation equation for a particle is given by

dTp

dt
=

1

mpcp,p
(Qcon +Qrad +Qother) (23)

where Tp is the particle temperature, mp is the particle mass, cp,p is the specific heat

capacity of the particle and Qrad and Qcon represent the heating/cooling due to ra-

diation and convection and conduction, respectively, and Qother represent any other

heating term that could be due to e.g. chemical reactions. Due to the high thermal con-

ductivities and small radii of the particles of interest (char particles with rp ∼ 50 µm),

the Biot number is significantly less than unity, suggesting that the particle temper-

ature is uniform throughout the particle. For significantly larger particles, with large

Biot numbers, the proposed approach is not valid. The effect of radiative absorption

may be very important for the temperature evolution of a particle, but exactly how im-

portant the absorption is will depend on the position of the particle within the particle

cluster.

4.1 Particle in the center of the enclosure

At the end of Sec. 2, q̄(rp,r) was defined as the mean flux at the surface of a par-

ticle due to the radiative emission from another particle with radius rp a distance r

away. The total flux received by a particle in the center of the enclosure, qpp−pc, is

now found by integrating q̄(rp,r) over all its surrounding particles. This means by

integration over all particle volumes dV (r) and number densities dn(rp), i.e.

qpp−pc =

∫ ∞

rp=0

∫ R

r=0
q̄(rp,r)dV (r)dn(rp). (24)

Since the volume of a spherical shell with thickness dr and radius r is dV(r) =
4πr2dr, and since the particle number density of particles having radii between rp

and rp + drp is given by dn(rp) = n(rp)drp, the above equation becomes

qpp−pc =
∫ ∞

rp=0

∫ R

r=0
4πr2q(rp,r)n(rp)drdrp = qp(1− e−τ) (25)

when Eq. (15) is used for q̄(rp,r) and all particles are assumed to behave alike.

The flux of radiation from the enclosure walls incident on the particle in the center

of the enclosure is

qw−pc = (qw + qw,r)e
−τ (26)

where the radiative flux emitted from a diffuse gray body wall is

qw = εwσT 4
w (27)
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and where the wall temperature and emissivity are given by Tw and εw, respectively.

The radiative flux reflected off the wall, qw,r, is given by the product of the radiative

flux received from the particles and the reflectivity of the wall, ρw, i.e.:

qw,r = ρwqpp−w, (28)

where qpp−w is given by Eq. (20).

The radiative cooling of the particle in the center of the particle cloud, Qrad,centr,

is found by integrating the difference between the absorbed, Eaqpc,rec, and the emit-

ted, qpc,em, radiative flux over the particle surface of the particle in the center of the

particle cloud. The radiative flux emitted from the particle is given by qpc,em = qp,

where qp is found from Eq. (14), while the radiative flux received by the particle in

the center of the cloud is given by the sum of the radiation received from the rest of

the particle cloud and the wall, i.e. qpc,rec = qw−pc + qpp−pc. Since the radiation in

the center of the spherical cloud is isotropic, such that the integration over the particle

surface can be replaced by the external particle surface area, this yields

Qrad,centr = Ap(Eaqpc,rec − qpc,em), (29)

where Ap = 4πr2
p is the surface area of the particle. By employing Eq. (25), Eq. (26)

and Eq. (29) the radiative cooling term of the particle in the center of the particle

cloud becomes

Qrad,centr = Ap

(

qp

[

Ea(1+ e−τ(ρwεeff − 1))− 1
]

+ qwEae−τ
)

. (30)

4.2 Particle near the enclosure

A particle that is very near the enclosure walls will receive the radiative flux from all

the other particles on one side while on the other side it will receive the radiative flux

from the wall. The mean flux received is therefore qpR = 1
2
(qpp−w+qw+qw,r) which

yields

Qrad,R = Ap [qpREa − qp] =
ApEa

2
[qpεeff(τ)(1+ρw)+ qw]−Apqp. (31)

4.3 The “mean” particle

In the following, a radiation term that on average will give the correct net radiative

outflow from the “average” particle in the cloud, is proposed. The radiative term,

Qrad,aver, is defined as the net radiative flux from the entire particle cloud divided by

the total number of particles in the cloud.

Since the gas is assumed not to take part in the radiative exchange, and the con-

tainer wall is assumed to be opaque, the only two radiatively active media are the

particle cloud and the container wall. The net radiative heating of the wall, Ew,net,

equals the radiation absorbed by the wall from the particles, minus the radiation from

the wall which is absorbed by the particles. Similarly the net radiative heating of
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the particles, Ep,net, equals the radiation absorbed by the particles from the wall, mi-

nus the radiation from the particles which is absorbed by the wall. Based on this a

radiative balance equation between the two media can be set up:

Ew,net =−Ep,net. (32)

Note that the above equation does not consider the energy balance of the system, it

only states that the net radiative heating of the wall and the particles must sum to

zero.

Since all surfaces are assumed to be gray and diffuse and since all particles are

assumed to behave alike, the absorptivity of the particle cloud equals the effective

emissivity found in Eq. (21), εeff(τ), such that the total thermal emission from the

wall incident on the particle cloud is

Ew−pp = 4πR2qwεeff(τ). (33)

The net radiative heating of the wall equals the radiative energy the wall absorbs from

the particle cloud minus the radiative energy it emits as thermal radiation, i.e.

Ew,net = Epp−w−Ew−pp, (34)

when Epp−w = 4πR2qpp−wαw and αw = 1− ρw is the absorptivity of the wall. By

using Eq. (20), Eq. (33) and Eq. (34), it is found that the net radiative heating of the

wall is

Ew,net = 4πR2εeff(τ)(αwqp − qw) . (35)

In the beginning of this subsection the radiative cooling term of the average par-

ticle was defined as the net radiative flux from the entire particle cloud divided by the

total number of particles in the cloud. This means that the integral of Qrad,aver over

all particles in the cloud must equal the negative of the net radiative heating of the

particle cloud. From this it is now clear that Qrad,aver is found by

Ep,net =−
4

3
πR3

∫ ∞

rp=0
Qrad,aver(rp)n(rp)drp (36)

when the cloud volume is given by 4πR3/3. When using the relation

Qrad,aver = Apqrad,aver = 4πr2
pqrad,aver, (37)

together with Eq. (2), the integral in Eq. (36) is found to be

∫ ∞

rp=0
Qrad,aver(rp)n(rp)drp = 4qrad,aver

∫ ∞

rp=0
n(rp)πr2

pdrp = 4qrad,averK. (38)

Combining Eq. (38) and Eq. (36) to eliminate the integral, and inserting the resulting

expression for qrad,aver into Eq. (37) yields

Qrad,aver =−
3ApEp,net

16KπR3
. (39)
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Introducing Eq. (32) and Eq. (35) into the above results in the following expression

for the net radiative outflow from the “average” particle

Qrad,aver =
3εeff(τ)Ap

4τ
(αwqp − qw) (40)

since the optical depth of the enclosure is given by τ = KR. We propose that the use

of this average radiative loss better approximates the radiative loss of a particle in a

particle cloud of particles compared to previous methods neglecting the inter-particle

radiation (Eq. (1)). The proposed method is not applicable for CFD simulations of

entire combustors or reactors, where ordinary radiation models like e.g. the discrete

ordinates method or similar can be used. Instead the proposed equation is particu-

larly useful when one is not able to explicitly simulate the radiation from the full

particle cloud but instead focus on a single particle that is supposed to represent all

the other particles. This is the case in the work of e.g. Qiao et al. [4] and Mitchell

et al. [6]. The proposed radiative cooling term will also be applicable when Direct

Numerical Simulations (DNS) are being used to simulate a very small sub domain

of a real application1. This is particularly so due to the small volumes realizable in a

DNS simulations, which requires a radiation model that does not need access to the

particles outside the small simulation volume.

5 Importance of inter-particle radiation for some relevant configurations

In the current section, a few examples of particle sizes and number densities as found

in the literature will be examined to investigate the importance of inter-particle ra-

diation for some application. The cases studied have been kept simple in order to

more easily isolate the effect of particle number density, particle size and size of the

enclosure on the particle cooling. In Table 1, particle data found in the literature is

presented. Case A is from a coal gasification reactor, while the data of [12] are from

Table 1 Mean particle sizes and number densities from previous studies[4,12]. The listed extinction co-

efficients has been calculated from Eq. (4).

Case Reference np [m−3] rp [m] K [m−1]

A Qiao et al. (2012) [4] 1×109 5×10−5 8

B Park et al. (2012) [12] 5×109 1.25×10−5 2.5

C Park et al. (2012) [12] 4×108 1.25×10−5 0.2

two different locations in a pulverized coal furnace: the lower part of the furnace

1 In a DNS all spatial and temporal scales of the fluid are fully resolved, hence the fundamental fluid

equations can be solved without any modeling of the fluid equations. This yields very accurate and reliable

results, but it requires huge computational resources. With a DNS, even on the worlds largest computers,

only small physical domains can therefore be considered.

Note that for a typical DNS the embedded particles are assumed to be very small, and hence are not

resolved. This means that even though the fluid itself can be solved without any modeling, the fluid-particle

coupling must be based on models, such as e.g. the Stokesian drag law.
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close to the burners (Case B) and the upper part of the furnace, downstream of the

burners, where temperatures are relatively low (Case C).

Fig. 2 Optical depth, τ , (left), effective emissivity of the particle cloud, εeff(τ), (middle) and normalized

net radiative cooling of the “average” particle, Qrad,aver/Qrad,ref (right). All results are for a single particle

size, i.e. σp = 0, where rp is given in Table 1. Particle and wall temperatures have been set to 1200 K and

500 K, respectively.

In the left panel of Fig. 2 the optical thickness is plotted as a function of the

enclosure radius R for all three cases listed in Table 1. The inter-particle radiation is

important when τ & 1, which is marked with a horizontal dotted line in the figure,

so for case C, inter-particle radiation starts to have a significant effect for R & 5 m.

For case A and B inter-particle radiation becomes important when the radius of the

domain exceeds about 10 cm and 30 cm, respectively.

In the central panel, the absorption efficiency factor of the particle cloud is shown

as a function of enclosure radius. For case A and B the emissivity is seen to approach

unity for enclosure radii of 1 m and 3 m, respectively. This means that for radii above

this the particle cloud essentially behaves as a solid body with temperature Tp and

radius R. The same is not true for case C, which for all radii considered behaves like

a cloud of diluted radiating particles.

In the right panel Qrad,aver normalized by a reference cooling term Qrad,ref is

shown. Here the reference cooling term is obtained by neglecting particle-particle

radiation, i.e.

Qrad,ref = Ap(qp −Eaqw). (41)

From this it is clear that for large and/or dense particle clouds, the average radia-

tive cooling for the particles is much weaker than when inter-particle radiation is

neglected. For example, for case A with an enclosure radius of 2 m the reference

cooling term is a factor 20 stronger than the cooling term for the average particle.

In Fig. 3 the radiative cooling of a particle normalized by the reference cooling

given by Eq. (41) is plotted as a function of enclosure radius for different particle

positions within the enclosure. The different position are 1) the center of the domain,

given by Eq. (30) (solid line), 2) the periphery, given by Eq. (31) (dotted line) and 3)

the position of the average particle, given by Eq. (40), (dashed line). It is clearly seen
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Fig. 3 Here Qrad/Qrad,ref is plotted as a function of the radius of the enclosure for particles positioned in

the center and on the periphery of the domain together with the value for the average of all the particles.

The three different panes represent the three different cases listed in Table 1. The grey lines correspond to

a particle distribution width σp = rpγp where γp = 0.2, while for the black lines γp = 0. Particle and wall

temperatures have been set to 1200 K and 500 K, respectively.

that the cooling is largest at the periphery, but that the difference is much less for case

C where the particle number density is much smaller. Furthermore it is interesting to

note that the average cooling approaches zero even for an enclosure radius of 5 m for

case A and that the central particles of the same case experience near zero cooling

even for enclosure radii less than a meter.

The grey lines in Fig. 3 represent a distribution width of σp = 0.2rp while the

black lines represent σp = 0. As can be seen, the radiation term is not very sensitive

to the width of the particle size distribution even for a width as wide as 20% of the

mean particle radius. The effect of the broader particle size distribution is largest for

small optical depths, as in Case C, but even here it is rather small.

Simulations of the gasification process presented in a paper by Qiao et al. (2012) [4]

has been performed in order to emphasize the importance of including inter-particle

radiation for dense clouds of particles. The numerical code used to perform the sim-

ulations was comparable to the code used in the above mentioned paper. Tests were

done both with the same radiative cooling term as used by Qiao et al. (Eq. (41)),

which neglects inter-particle radiation, and with the particle cooling term as pro-

posed in this work (Eq. (40)), which includes inter-particle radiation. Compared to

when inter-particle radiation is included, as given by Eq. (40), the time required to

reach full conversion of the char is 47% longer when inter-particle radiation is ne-

glected (Eq. (41)).

Analytical expressions for geometries of the confinement walls other than the

spherical geometry considered in this work do not exist. It can be shown[13], how-

ever, that other geometries like cylinders or cubes give trends for the heat transfer that

are similar to what is found for spherical geometries. In particular it can be shown by

numerical integration [13,14] that for cubes and cylinders having aspect ratios near

unity, the expressions developed for spherical geometries give comparable results for

the net heat transfer to the enclosure walls. It is therefore assumed to be a good ap-
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proximation to use the expressions developed here also for real applications such as

furnaces.

6 Conclusion

The particle cooling due to radiation has been investigated in particle clusters of vari-

able size. When neglecting the effect of scattering and assuming all particles to be-

have alike it is shown that the radiative particle cooling is very sensitive to where the

particle is positioned within the particle cluster. Broadening the particle size distribu-

tion is found to just have a minor impact on the results presented.

Instead of the traditional particle cooling term often used for single particle sim-

ulations of particles in a cluster of particles (Eq. (41)) a new particle cooling term

is proposed (Eq. (40)) where the particle cooling is defined as the average particle

cooling of all the particles. In contrast to Eq. (41), the new particle cooling term does

include inter-particle radiation, which is found to be very important for the applica-

tions studied.

We claim that, compared to previous methods that neglect the inter-particle radia-

tion, the use of the proposed radiative cooling term better approximates the radiative

loss of a particle in a cloud of particles. The proposed method is applicable for sim-

ulations of small sub-volumes of gasifiers, pulverized coal combustors or any system

where hot particle clouds exists. It is particularly useful when one is not interested

in simulating the radiation from the full particle cloud but instead want focus on a

single particle that represent all the other particles in the sub volume. Examples of

such simulations are found in Qiao et al. [4] and Mitchell et al. [6].
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